]>
Commit | Line | Data |
---|---|---|
b37bf2e1 A |
1 | /* This is JavaScriptCore's variant of the PCRE library. While this library |
2 | started out as a copy of PCRE, many of the features of PCRE have been | |
3 | removed. This library now supports only the regular expression features | |
4 | required by the JavaScript language specification, and has only the functions | |
5 | needed by JavaScriptCore and the rest of WebKit. | |
6 | ||
7 | Originally written by Philip Hazel | |
8 | Copyright (c) 1997-2006 University of Cambridge | |
9 | Copyright (C) 2002, 2004, 2006, 2007 Apple Inc. All rights reserved. | |
10 | Copyright (C) 2007 Eric Seidel <eric@webkit.org> | |
11 | ||
12 | ----------------------------------------------------------------------------- | |
13 | Redistribution and use in source and binary forms, with or without | |
14 | modification, are permitted provided that the following conditions are met: | |
15 | ||
16 | * Redistributions of source code must retain the above copyright notice, | |
17 | this list of conditions and the following disclaimer. | |
18 | ||
19 | * Redistributions in binary form must reproduce the above copyright | |
20 | notice, this list of conditions and the following disclaimer in the | |
21 | documentation and/or other materials provided with the distribution. | |
22 | ||
23 | * Neither the name of the University of Cambridge nor the names of its | |
24 | contributors may be used to endorse or promote products derived from | |
25 | this software without specific prior written permission. | |
26 | ||
27 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
28 | AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
29 | IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
30 | ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | |
31 | LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
32 | CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
33 | SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
34 | INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
35 | CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
36 | ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
37 | POSSIBILITY OF SUCH DAMAGE. | |
38 | ----------------------------------------------------------------------------- | |
39 | */ | |
40 | ||
41 | /* This module contains the external function jsRegExpExecute(), along with | |
42 | supporting internal functions that are not used by other modules. */ | |
43 | ||
44 | #include "config.h" | |
45 | ||
46 | #include "pcre_internal.h" | |
47 | ||
48 | #include <string.h> | |
49 | #include <wtf/ASCIICType.h> | |
50 | #include <wtf/FastMalloc.h> | |
51 | ||
52 | using namespace WTF; | |
53 | ||
54 | /* Negative values for the firstchar and reqchar variables */ | |
55 | ||
56 | #define REQ_UNSET (-2) | |
57 | #define REQ_NONE (-1) | |
58 | ||
59 | /************************************************* | |
60 | * Code parameters and static tables * | |
61 | *************************************************/ | |
62 | ||
63 | /* Maximum number of items on the nested bracket stacks at compile time. This | |
64 | applies to the nesting of all kinds of parentheses. It does not limit | |
65 | un-nested, non-capturing parentheses. This number can be made bigger if | |
66 | necessary - it is used to dimension one int and one unsigned char vector at | |
67 | compile time. */ | |
68 | ||
69 | #define BRASTACK_SIZE 200 | |
70 | ||
71 | /* Table for handling escaped characters in the range '0'-'z'. Positive returns | |
72 | are simple data values; negative values are for special things like \d and so | |
73 | on. Zero means further processing is needed (for things like \x), or the escape | |
74 | is invalid. */ | |
75 | ||
76 | static const short escapes[] = { | |
77 | 0, 0, 0, 0, 0, 0, 0, 0, /* 0 - 7 */ | |
78 | 0, 0, ':', ';', '<', '=', '>', '?', /* 8 - ? */ | |
79 | '@', 0, -ESC_B, 0, -ESC_D, 0, 0, 0, /* @ - G */ | |
80 | 0, 0, 0, 0, 0, 0, 0, 0, /* H - O */ | |
81 | 0, 0, 0, -ESC_S, 0, 0, 0, -ESC_W, /* P - W */ | |
82 | 0, 0, 0, '[', '\\', ']', '^', '_', /* X - _ */ | |
83 | '`', 7, -ESC_b, 0, -ESC_d, 0, '\f', 0, /* ` - g */ | |
84 | 0, 0, 0, 0, 0, 0, '\n', 0, /* h - o */ | |
85 | 0, 0, '\r', -ESC_s, '\t', 0, '\v', -ESC_w, /* p - w */ | |
86 | 0, 0, 0 /* x - z */ | |
87 | }; | |
88 | ||
89 | /* Error code numbers. They are given names so that they can more easily be | |
90 | tracked. */ | |
91 | ||
92 | enum ErrorCode { | |
93 | ERR0, ERR1, ERR2, ERR3, ERR4, ERR5, ERR6, ERR7, ERR8, ERR9, | |
94 | ERR10, ERR11, ERR12, ERR13, ERR14, ERR15, ERR16, ERR17 | |
95 | }; | |
96 | ||
97 | /* The texts of compile-time error messages. These are "char *" because they | |
98 | are passed to the outside world. */ | |
99 | ||
100 | static const char* errorText(ErrorCode code) | |
101 | { | |
102 | static const char errorTexts[] = | |
103 | /* 1 */ | |
104 | "\\ at end of pattern\0" | |
105 | "\\c at end of pattern\0" | |
106 | "character value in \\x{...} sequence is too large\0" | |
107 | "numbers out of order in {} quantifier\0" | |
108 | /* 5 */ | |
109 | "number too big in {} quantifier\0" | |
110 | "missing terminating ] for character class\0" | |
111 | "internal error: code overflow\0" | |
112 | "range out of order in character class\0" | |
113 | "nothing to repeat\0" | |
114 | /* 10 */ | |
115 | "unmatched parentheses\0" | |
116 | "internal error: unexpected repeat\0" | |
117 | "unrecognized character after (?\0" | |
118 | "failed to get memory\0" | |
119 | "missing )\0" | |
120 | /* 15 */ | |
121 | "reference to non-existent subpattern\0" | |
122 | "regular expression too large\0" | |
123 | "parentheses nested too deeply" | |
124 | ; | |
125 | ||
126 | int i = code; | |
127 | const char* text = errorTexts; | |
128 | while (i > 1) | |
129 | i -= !*text++; | |
130 | return text; | |
131 | } | |
132 | ||
133 | /* Structure for passing "static" information around between the functions | |
134 | doing the compiling. */ | |
135 | ||
136 | struct CompileData { | |
137 | CompileData() { | |
138 | top_backref = 0; | |
139 | backrefMap = 0; | |
140 | req_varyopt = 0; | |
141 | needOuterBracket = false; | |
142 | numCapturingBrackets = 0; | |
143 | } | |
144 | int top_backref; /* Maximum back reference */ | |
145 | unsigned backrefMap; /* Bitmap of low back refs */ | |
146 | int req_varyopt; /* "After variable item" flag for reqbyte */ | |
147 | bool needOuterBracket; | |
148 | int numCapturingBrackets; | |
149 | }; | |
150 | ||
151 | /* Definitions to allow mutual recursion */ | |
152 | ||
153 | static bool compileBracket(int, int*, unsigned char**, const UChar**, const UChar*, ErrorCode*, int, int*, int*, CompileData&); | |
154 | static bool bracketIsAnchored(const unsigned char* code); | |
155 | static bool bracketNeedsLineStart(const unsigned char* code, unsigned captureMap, unsigned backrefMap); | |
156 | static int bracketFindFirstAssertedCharacter(const unsigned char* code, bool inassert); | |
157 | ||
158 | /************************************************* | |
159 | * Handle escapes * | |
160 | *************************************************/ | |
161 | ||
162 | /* This function is called when a \ has been encountered. It either returns a | |
163 | positive value for a simple escape such as \n, or a negative value which | |
164 | encodes one of the more complicated things such as \d. When UTF-8 is enabled, | |
165 | a positive value greater than 255 may be returned. On entry, ptr is pointing at | |
166 | the \. On exit, it is on the final character of the escape sequence. | |
167 | ||
168 | Arguments: | |
169 | ptrptr points to the pattern position pointer | |
170 | errorcodeptr points to the errorcode variable | |
171 | bracount number of previous extracting brackets | |
172 | options the options bits | |
173 | isclass true if inside a character class | |
174 | ||
175 | Returns: zero or positive => a data character | |
176 | negative => a special escape sequence | |
177 | on error, errorptr is set | |
178 | */ | |
179 | ||
180 | static int checkEscape(const UChar** ptrptr, const UChar* patternEnd, ErrorCode* errorcodeptr, int bracount, bool isclass) | |
181 | { | |
182 | const UChar* ptr = *ptrptr + 1; | |
183 | ||
184 | /* If backslash is at the end of the pattern, it's an error. */ | |
185 | if (ptr == patternEnd) { | |
186 | *errorcodeptr = ERR1; | |
187 | *ptrptr = ptr; | |
188 | return 0; | |
189 | } | |
190 | ||
191 | int c = *ptr; | |
192 | ||
193 | /* Non-alphamerics are literals. For digits or letters, do an initial lookup in | |
194 | a table. A non-zero result is something that can be returned immediately. | |
195 | Otherwise further processing may be required. */ | |
196 | ||
197 | if (c < '0' || c > 'z') { /* Not alphameric */ | |
198 | } else if (int escapeValue = escapes[c - '0']) { | |
199 | c = escapeValue; | |
200 | if (isclass) { | |
201 | if (-c == ESC_b) | |
202 | c = '\b'; /* \b is backslash in a class */ | |
203 | else if (-c == ESC_B) | |
204 | c = 'B'; /* and \B is a capital B in a class (in browsers event though ECMAScript 15.10.2.19 says it raises an error) */ | |
205 | } | |
206 | /* Escapes that need further processing, or are illegal. */ | |
207 | ||
208 | } else { | |
209 | switch (c) { | |
210 | case '1': | |
211 | case '2': | |
212 | case '3': | |
213 | case '4': | |
214 | case '5': | |
215 | case '6': | |
216 | case '7': | |
217 | case '8': | |
218 | case '9': | |
219 | /* Escape sequences starting with a non-zero digit are backreferences, | |
220 | unless there are insufficient brackets, in which case they are octal | |
221 | escape sequences. Those sequences end on the first non-octal character | |
222 | or when we overflow 0-255, whichever comes first. */ | |
223 | ||
224 | if (!isclass) { | |
225 | const UChar* oldptr = ptr; | |
226 | c -= '0'; | |
227 | while ((ptr + 1 < patternEnd) && isASCIIDigit(ptr[1]) && c <= bracount) | |
228 | c = c * 10 + *(++ptr) - '0'; | |
229 | if (c <= bracount) { | |
230 | c = -(ESC_REF + c); | |
231 | break; | |
232 | } | |
233 | ptr = oldptr; /* Put the pointer back and fall through */ | |
234 | } | |
235 | ||
236 | /* Handle an octal number following \. If the first digit is 8 or 9, | |
237 | this is not octal. */ | |
238 | ||
239 | if ((c = *ptr) >= '8') | |
240 | break; | |
241 | ||
242 | /* \0 always starts an octal number, but we may drop through to here with a | |
243 | larger first octal digit. */ | |
244 | ||
245 | case '0': { | |
246 | c -= '0'; | |
247 | int i; | |
248 | for (i = 1; i <= 2; ++i) { | |
249 | if (ptr + i >= patternEnd || ptr[i] < '0' || ptr[i] > '7') | |
250 | break; | |
251 | int cc = c * 8 + ptr[i] - '0'; | |
252 | if (cc > 255) | |
253 | break; | |
254 | c = cc; | |
255 | } | |
256 | ptr += i - 1; | |
257 | break; | |
258 | } | |
259 | ||
260 | case 'x': { | |
261 | c = 0; | |
262 | int i; | |
263 | for (i = 1; i <= 2; ++i) { | |
264 | if (ptr + i >= patternEnd || !isASCIIHexDigit(ptr[i])) { | |
265 | c = 'x'; | |
266 | i = 1; | |
267 | break; | |
268 | } | |
269 | int cc = ptr[i]; | |
270 | if (cc >= 'a') | |
271 | cc -= 32; /* Convert to upper case */ | |
272 | c = c * 16 + cc - ((cc < 'A') ? '0' : ('A' - 10)); | |
273 | } | |
274 | ptr += i - 1; | |
275 | break; | |
276 | } | |
277 | ||
278 | case 'u': { | |
279 | c = 0; | |
280 | int i; | |
281 | for (i = 1; i <= 4; ++i) { | |
282 | if (ptr + i >= patternEnd || !isASCIIHexDigit(ptr[i])) { | |
283 | c = 'u'; | |
284 | i = 1; | |
285 | break; | |
286 | } | |
287 | int cc = ptr[i]; | |
288 | if (cc >= 'a') | |
289 | cc -= 32; /* Convert to upper case */ | |
290 | c = c * 16 + cc - ((cc < 'A') ? '0' : ('A' - 10)); | |
291 | } | |
292 | ptr += i - 1; | |
293 | break; | |
294 | } | |
295 | ||
296 | case 'c': | |
297 | if (++ptr == patternEnd) { | |
298 | *errorcodeptr = ERR2; | |
299 | return 0; | |
300 | } | |
301 | c = *ptr; | |
302 | ||
303 | /* A letter is upper-cased; then the 0x40 bit is flipped. This coding | |
304 | is ASCII-specific, but then the whole concept of \cx is ASCII-specific. */ | |
305 | c = toASCIIUpper(c) ^ 0x40; | |
306 | break; | |
307 | } | |
308 | } | |
309 | ||
310 | *ptrptr = ptr; | |
311 | return c; | |
312 | } | |
313 | ||
314 | /************************************************* | |
315 | * Check for counted repeat * | |
316 | *************************************************/ | |
317 | ||
318 | /* This function is called when a '{' is encountered in a place where it might | |
319 | start a quantifier. It looks ahead to see if it really is a quantifier or not. | |
320 | It is only a quantifier if it is one of the forms {ddd} {ddd,} or {ddd,ddd} | |
321 | where the ddds are digits. | |
322 | ||
323 | Arguments: | |
324 | p pointer to the first char after '{' | |
325 | ||
326 | Returns: true or false | |
327 | */ | |
328 | ||
329 | static bool isCountedRepeat(const UChar* p, const UChar* patternEnd) | |
330 | { | |
331 | if (p >= patternEnd || !isASCIIDigit(*p)) | |
332 | return false; | |
333 | p++; | |
334 | while (p < patternEnd && isASCIIDigit(*p)) | |
335 | p++; | |
336 | if (p < patternEnd && *p == '}') | |
337 | return true; | |
338 | ||
339 | if (p >= patternEnd || *p++ != ',') | |
340 | return false; | |
341 | if (p < patternEnd && *p == '}') | |
342 | return true; | |
343 | ||
344 | if (p >= patternEnd || !isASCIIDigit(*p)) | |
345 | return false; | |
346 | p++; | |
347 | while (p < patternEnd && isASCIIDigit(*p)) | |
348 | p++; | |
349 | ||
350 | return (p < patternEnd && *p == '}'); | |
351 | } | |
352 | ||
353 | /************************************************* | |
354 | * Read repeat counts * | |
355 | *************************************************/ | |
356 | ||
357 | /* Read an item of the form {n,m} and return the values. This is called only | |
358 | after isCountedRepeat() has confirmed that a repeat-count quantifier exists, | |
359 | so the syntax is guaranteed to be correct, but we need to check the values. | |
360 | ||
361 | Arguments: | |
362 | p pointer to first char after '{' | |
363 | minp pointer to int for min | |
364 | maxp pointer to int for max | |
365 | returned as -1 if no max | |
366 | errorcodeptr points to error code variable | |
367 | ||
368 | Returns: pointer to '}' on success; | |
369 | current ptr on error, with errorcodeptr set non-zero | |
370 | */ | |
371 | ||
372 | static const UChar* readRepeatCounts(const UChar* p, int* minp, int* maxp, ErrorCode* errorcodeptr) | |
373 | { | |
374 | int min = 0; | |
375 | int max = -1; | |
376 | ||
377 | /* Read the minimum value and do a paranoid check: a negative value indicates | |
378 | an integer overflow. */ | |
379 | ||
380 | while (isASCIIDigit(*p)) | |
381 | min = min * 10 + *p++ - '0'; | |
382 | if (min < 0 || min > 65535) { | |
383 | *errorcodeptr = ERR5; | |
384 | return p; | |
385 | } | |
386 | ||
387 | /* Read the maximum value if there is one, and again do a paranoid on its size. | |
388 | Also, max must not be less than min. */ | |
389 | ||
390 | if (*p == '}') | |
391 | max = min; | |
392 | else { | |
393 | if (*(++p) != '}') { | |
394 | max = 0; | |
395 | while (isASCIIDigit(*p)) | |
396 | max = max * 10 + *p++ - '0'; | |
397 | if (max < 0 || max > 65535) { | |
398 | *errorcodeptr = ERR5; | |
399 | return p; | |
400 | } | |
401 | if (max < min) { | |
402 | *errorcodeptr = ERR4; | |
403 | return p; | |
404 | } | |
405 | } | |
406 | } | |
407 | ||
408 | /* Fill in the required variables, and pass back the pointer to the terminating | |
409 | '}'. */ | |
410 | ||
411 | *minp = min; | |
412 | *maxp = max; | |
413 | return p; | |
414 | } | |
415 | ||
416 | /************************************************* | |
417 | * Find first significant op code * | |
418 | *************************************************/ | |
419 | ||
420 | /* This is called by several functions that scan a compiled expression looking | |
421 | for a fixed first character, or an anchoring op code etc. It skips over things | |
422 | that do not influence this. | |
423 | ||
424 | Arguments: | |
425 | code pointer to the start of the group | |
426 | Returns: pointer to the first significant opcode | |
427 | */ | |
428 | ||
429 | static const unsigned char* firstSignificantOpcode(const unsigned char* code) | |
430 | { | |
431 | while (*code == OP_BRANUMBER) | |
432 | code += 3; | |
433 | return code; | |
434 | } | |
435 | ||
436 | static const unsigned char* firstSignificantOpcodeSkippingAssertions(const unsigned char* code) | |
437 | { | |
438 | while (true) { | |
439 | switch (*code) { | |
440 | case OP_ASSERT_NOT: | |
441 | advanceToEndOfBracket(code); | |
442 | code += 1 + LINK_SIZE; | |
443 | break; | |
444 | case OP_WORD_BOUNDARY: | |
445 | case OP_NOT_WORD_BOUNDARY: | |
446 | ++code; | |
447 | break; | |
448 | case OP_BRANUMBER: | |
449 | code += 3; | |
450 | break; | |
451 | default: | |
452 | return code; | |
453 | } | |
454 | } | |
455 | } | |
456 | ||
457 | /************************************************* | |
458 | * Get othercase range * | |
459 | *************************************************/ | |
460 | ||
461 | /* This function is passed the start and end of a class range, in UTF-8 mode | |
462 | with UCP support. It searches up the characters, looking for internal ranges of | |
463 | characters in the "other" case. Each call returns the next one, updating the | |
464 | start address. | |
465 | ||
466 | Arguments: | |
467 | cptr points to starting character value; updated | |
468 | d end value | |
469 | ocptr where to put start of othercase range | |
470 | odptr where to put end of othercase range | |
471 | ||
472 | Yield: true when range returned; false when no more | |
473 | */ | |
474 | ||
475 | static bool getOthercaseRange(int* cptr, int d, int* ocptr, int* odptr) | |
476 | { | |
477 | int c, othercase = 0; | |
478 | ||
479 | for (c = *cptr; c <= d; c++) { | |
480 | if ((othercase = kjs_pcre_ucp_othercase(c)) >= 0) | |
481 | break; | |
482 | } | |
483 | ||
484 | if (c > d) | |
485 | return false; | |
486 | ||
487 | *ocptr = othercase; | |
488 | int next = othercase + 1; | |
489 | ||
490 | for (++c; c <= d; c++) { | |
491 | if (kjs_pcre_ucp_othercase(c) != next) | |
492 | break; | |
493 | next++; | |
494 | } | |
495 | ||
496 | *odptr = next - 1; | |
497 | *cptr = c; | |
498 | ||
499 | return true; | |
500 | } | |
501 | ||
502 | /************************************************* | |
503 | * Convert character value to UTF-8 * | |
504 | *************************************************/ | |
505 | ||
506 | /* This function takes an integer value in the range 0 - 0x7fffffff | |
507 | and encodes it as a UTF-8 character in 0 to 6 bytes. | |
508 | ||
509 | Arguments: | |
510 | cvalue the character value | |
511 | buffer pointer to buffer for result - at least 6 bytes long | |
512 | ||
513 | Returns: number of characters placed in the buffer | |
514 | */ | |
515 | ||
516 | static int encodeUTF8(int cvalue, unsigned char *buffer) | |
517 | { | |
518 | int i; | |
519 | for (i = 0; i < kjs_pcre_utf8_table1_size; i++) | |
520 | if (cvalue <= kjs_pcre_utf8_table1[i]) | |
521 | break; | |
522 | buffer += i; | |
523 | for (int j = i; j > 0; j--) { | |
524 | *buffer-- = 0x80 | (cvalue & 0x3f); | |
525 | cvalue >>= 6; | |
526 | } | |
527 | *buffer = kjs_pcre_utf8_table2[i] | cvalue; | |
528 | return i + 1; | |
529 | } | |
530 | ||
531 | /************************************************* | |
532 | * Compile one branch * | |
533 | *************************************************/ | |
534 | ||
535 | /* Scan the pattern, compiling it into the code vector. | |
536 | ||
537 | Arguments: | |
538 | options the option bits | |
539 | brackets points to number of extracting brackets used | |
540 | codeptr points to the pointer to the current code point | |
541 | ptrptr points to the current pattern pointer | |
542 | errorcodeptr points to error code variable | |
543 | firstbyteptr set to initial literal character, or < 0 (REQ_UNSET, REQ_NONE) | |
544 | reqbyteptr set to the last literal character required, else < 0 | |
545 | cd contains pointers to tables etc. | |
546 | ||
547 | Returns: true on success | |
548 | false, with *errorcodeptr set non-zero on error | |
549 | */ | |
550 | ||
551 | static inline bool safelyCheckNextChar(const UChar* ptr, const UChar* patternEnd, UChar expected) | |
552 | { | |
553 | return ((ptr + 1 < patternEnd) && ptr[1] == expected); | |
554 | } | |
555 | ||
556 | static bool | |
557 | compileBranch(int options, int* brackets, unsigned char** codeptr, | |
558 | const UChar** ptrptr, const UChar* patternEnd, ErrorCode* errorcodeptr, int *firstbyteptr, | |
559 | int* reqbyteptr, CompileData& cd) | |
560 | { | |
561 | int repeat_type, op_type; | |
562 | int repeat_min = 0, repeat_max = 0; /* To please picky compilers */ | |
563 | int bravalue = 0; | |
564 | int reqvary, tempreqvary; | |
565 | int c; | |
566 | unsigned char* code = *codeptr; | |
567 | unsigned char* tempcode; | |
568 | bool groupsetfirstbyte = false; | |
569 | const UChar* ptr = *ptrptr; | |
570 | const UChar* tempptr; | |
571 | unsigned char* previous = NULL; | |
572 | unsigned char classbits[32]; | |
573 | ||
574 | bool class_utf8; | |
575 | unsigned char* class_utf8data; | |
576 | unsigned char utf8_char[6]; | |
577 | ||
578 | /* Initialize no first byte, no required byte. REQ_UNSET means "no char | |
579 | matching encountered yet". It gets changed to REQ_NONE if we hit something that | |
580 | matches a non-fixed char first char; reqbyte just remains unset if we never | |
581 | find one. | |
582 | ||
583 | When we hit a repeat whose minimum is zero, we may have to adjust these values | |
584 | to take the zero repeat into account. This is implemented by setting them to | |
585 | zerofirstbyte and zeroreqbyte when such a repeat is encountered. The individual | |
586 | item types that can be repeated set these backoff variables appropriately. */ | |
587 | ||
588 | int firstbyte = REQ_UNSET; | |
589 | int reqbyte = REQ_UNSET; | |
590 | int zeroreqbyte = REQ_UNSET; | |
591 | int zerofirstbyte = REQ_UNSET; | |
592 | ||
593 | /* The variable req_caseopt contains either the REQ_IGNORE_CASE value or zero, | |
594 | according to the current setting of the ignores-case flag. REQ_IGNORE_CASE is a bit | |
595 | value > 255. It is added into the firstbyte or reqbyte variables to record the | |
596 | case status of the value. This is used only for ASCII characters. */ | |
597 | ||
598 | int req_caseopt = (options & IgnoreCaseOption) ? REQ_IGNORE_CASE : 0; | |
599 | ||
600 | /* Switch on next character until the end of the branch */ | |
601 | ||
602 | for (;; ptr++) { | |
603 | bool negate_class; | |
604 | bool should_flip_negation; /* If a negative special such as \S is used, we should negate the whole class to properly support Unicode. */ | |
605 | int class_charcount; | |
606 | int class_lastchar; | |
607 | int skipbytes; | |
608 | int subreqbyte; | |
609 | int subfirstbyte; | |
610 | int mclength; | |
611 | unsigned char mcbuffer[8]; | |
612 | ||
613 | /* Next byte in the pattern */ | |
614 | ||
615 | c = ptr < patternEnd ? *ptr : 0; | |
616 | ||
617 | /* Fill in length of a previous callout, except when the next thing is | |
618 | a quantifier. */ | |
619 | ||
620 | bool is_quantifier = c == '*' || c == '+' || c == '?' || (c == '{' && isCountedRepeat(ptr + 1, patternEnd)); | |
621 | ||
622 | switch (c) { | |
623 | /* The branch terminates at end of string, |, or ). */ | |
624 | ||
625 | case 0: | |
626 | if (ptr < patternEnd) | |
627 | goto NORMAL_CHAR; | |
628 | // End of string; fall through | |
629 | case '|': | |
630 | case ')': | |
631 | *firstbyteptr = firstbyte; | |
632 | *reqbyteptr = reqbyte; | |
633 | *codeptr = code; | |
634 | *ptrptr = ptr; | |
635 | return true; | |
636 | ||
637 | /* Handle single-character metacharacters. In multiline mode, ^ disables | |
638 | the setting of any following char as a first character. */ | |
639 | ||
640 | case '^': | |
641 | if (options & MatchAcrossMultipleLinesOption) { | |
642 | if (firstbyte == REQ_UNSET) | |
643 | firstbyte = REQ_NONE; | |
644 | } | |
645 | previous = NULL; | |
646 | *code++ = OP_CIRC; | |
647 | break; | |
648 | ||
649 | case '$': | |
650 | previous = NULL; | |
651 | *code++ = OP_DOLL; | |
652 | break; | |
653 | ||
654 | /* There can never be a first char if '.' is first, whatever happens about | |
655 | repeats. The value of reqbyte doesn't change either. */ | |
656 | ||
657 | case '.': | |
658 | if (firstbyte == REQ_UNSET) | |
659 | firstbyte = REQ_NONE; | |
660 | zerofirstbyte = firstbyte; | |
661 | zeroreqbyte = reqbyte; | |
662 | previous = code; | |
663 | *code++ = OP_NOT_NEWLINE; | |
664 | break; | |
665 | ||
666 | /* Character classes. If the included characters are all < 256, we build a | |
667 | 32-byte bitmap of the permitted characters, except in the special case | |
668 | where there is only one such character. For negated classes, we build the | |
669 | map as usual, then invert it at the end. However, we use a different opcode | |
670 | so that data characters > 255 can be handled correctly. | |
671 | ||
672 | If the class contains characters outside the 0-255 range, a different | |
673 | opcode is compiled. It may optionally have a bit map for characters < 256, | |
674 | but those above are are explicitly listed afterwards. A flag byte tells | |
675 | whether the bitmap is present, and whether this is a negated class or not. | |
676 | */ | |
677 | ||
678 | case '[': { | |
679 | previous = code; | |
680 | should_flip_negation = false; | |
681 | ||
682 | /* PCRE supports POSIX class stuff inside a class. Perl gives an error if | |
683 | they are encountered at the top level, so we'll do that too. */ | |
684 | ||
685 | /* If the first character is '^', set the negation flag and skip it. */ | |
686 | ||
687 | if (ptr + 1 >= patternEnd) { | |
688 | *errorcodeptr = ERR6; | |
689 | return false; | |
690 | } | |
691 | ||
692 | if (ptr[1] == '^') { | |
693 | negate_class = true; | |
694 | ++ptr; | |
695 | } else | |
696 | negate_class = false; | |
697 | ||
698 | /* Keep a count of chars with values < 256 so that we can optimize the case | |
699 | of just a single character (as long as it's < 256). For higher valued UTF-8 | |
700 | characters, we don't yet do any optimization. */ | |
701 | ||
702 | class_charcount = 0; | |
703 | class_lastchar = -1; | |
704 | ||
705 | class_utf8 = false; /* No chars >= 256 */ | |
706 | class_utf8data = code + LINK_SIZE + 34; /* For UTF-8 items */ | |
707 | ||
708 | /* Initialize the 32-char bit map to all zeros. We have to build the | |
709 | map in a temporary bit of store, in case the class contains only 1 | |
710 | character (< 256), because in that case the compiled code doesn't use the | |
711 | bit map. */ | |
712 | ||
713 | memset(classbits, 0, 32 * sizeof(unsigned char)); | |
714 | ||
715 | /* Process characters until ] is reached. The first pass | |
716 | through the regex checked the overall syntax, so we don't need to be very | |
717 | strict here. At the start of the loop, c contains the first byte of the | |
718 | character. */ | |
719 | ||
720 | while ((++ptr < patternEnd) && (c = *ptr) != ']') { | |
721 | /* Backslash may introduce a single character, or it may introduce one | |
722 | of the specials, which just set a flag. Escaped items are checked for | |
723 | validity in the pre-compiling pass. The sequence \b is a special case. | |
724 | Inside a class (and only there) it is treated as backspace. Elsewhere | |
725 | it marks a word boundary. Other escapes have preset maps ready to | |
726 | or into the one we are building. We assume they have more than one | |
727 | character in them, so set class_charcount bigger than one. */ | |
728 | ||
729 | if (c == '\\') { | |
730 | c = checkEscape(&ptr, patternEnd, errorcodeptr, cd.numCapturingBrackets, true); | |
731 | if (c < 0) { | |
732 | class_charcount += 2; /* Greater than 1 is what matters */ | |
733 | switch (-c) { | |
734 | case ESC_d: | |
735 | for (c = 0; c < 32; c++) | |
736 | classbits[c] |= classBitmapForChar(c + cbit_digit); | |
737 | continue; | |
738 | ||
739 | case ESC_D: | |
740 | should_flip_negation = true; | |
741 | for (c = 0; c < 32; c++) | |
742 | classbits[c] |= ~classBitmapForChar(c + cbit_digit); | |
743 | continue; | |
744 | ||
745 | case ESC_w: | |
746 | for (c = 0; c < 32; c++) | |
747 | classbits[c] |= classBitmapForChar(c + cbit_word); | |
748 | continue; | |
749 | ||
750 | case ESC_W: | |
751 | should_flip_negation = true; | |
752 | for (c = 0; c < 32; c++) | |
753 | classbits[c] |= ~classBitmapForChar(c + cbit_word); | |
754 | continue; | |
755 | ||
756 | case ESC_s: | |
757 | for (c = 0; c < 32; c++) | |
758 | classbits[c] |= classBitmapForChar(c + cbit_space); | |
759 | continue; | |
760 | ||
761 | case ESC_S: | |
762 | should_flip_negation = true; | |
763 | for (c = 0; c < 32; c++) | |
764 | classbits[c] |= ~classBitmapForChar(c + cbit_space); | |
765 | continue; | |
766 | ||
767 | /* Unrecognized escapes are faulted if PCRE is running in its | |
768 | strict mode. By default, for compatibility with Perl, they are | |
769 | treated as literals. */ | |
770 | ||
771 | default: | |
772 | c = *ptr; /* The final character */ | |
773 | class_charcount -= 2; /* Undo the default count from above */ | |
774 | } | |
775 | } | |
776 | ||
777 | /* Fall through if we have a single character (c >= 0). This may be | |
778 | > 256 in UTF-8 mode. */ | |
779 | ||
780 | } /* End of backslash handling */ | |
781 | ||
782 | /* A single character may be followed by '-' to form a range. However, | |
783 | Perl does not permit ']' to be the end of the range. A '-' character | |
784 | here is treated as a literal. */ | |
785 | ||
786 | if ((ptr + 2 < patternEnd) && ptr[1] == '-' && ptr[2] != ']') { | |
787 | ptr += 2; | |
788 | ||
789 | int d = *ptr; | |
790 | ||
791 | /* The second part of a range can be a single-character escape, but | |
792 | not any of the other escapes. Perl 5.6 treats a hyphen as a literal | |
793 | in such circumstances. */ | |
794 | ||
795 | if (d == '\\') { | |
796 | const UChar* oldptr = ptr; | |
797 | d = checkEscape(&ptr, patternEnd, errorcodeptr, cd.numCapturingBrackets, true); | |
798 | ||
799 | /* \X is literal X; any other special means the '-' was literal */ | |
800 | if (d < 0) { | |
801 | ptr = oldptr - 2; | |
802 | goto LONE_SINGLE_CHARACTER; /* A few lines below */ | |
803 | } | |
804 | } | |
805 | ||
806 | /* The check that the two values are in the correct order happens in | |
807 | the pre-pass. Optimize one-character ranges */ | |
808 | ||
809 | if (d == c) | |
810 | goto LONE_SINGLE_CHARACTER; /* A few lines below */ | |
811 | ||
812 | /* In UTF-8 mode, if the upper limit is > 255, or > 127 for caseless | |
813 | matching, we have to use an XCLASS with extra data items. Caseless | |
814 | matching for characters > 127 is available only if UCP support is | |
815 | available. */ | |
816 | ||
817 | if ((d > 255 || ((options & IgnoreCaseOption) && d > 127))) { | |
818 | class_utf8 = true; | |
819 | ||
820 | /* With UCP support, we can find the other case equivalents of | |
821 | the relevant characters. There may be several ranges. Optimize how | |
822 | they fit with the basic range. */ | |
823 | ||
824 | if (options & IgnoreCaseOption) { | |
825 | int occ, ocd; | |
826 | int cc = c; | |
827 | int origd = d; | |
828 | while (getOthercaseRange(&cc, origd, &occ, &ocd)) { | |
829 | if (occ >= c && ocd <= d) | |
830 | continue; /* Skip embedded ranges */ | |
831 | ||
832 | if (occ < c && ocd >= c - 1) /* Extend the basic range */ | |
833 | { /* if there is overlap, */ | |
834 | c = occ; /* noting that if occ < c */ | |
835 | continue; /* we can't have ocd > d */ | |
836 | } /* because a subrange is */ | |
837 | if (ocd > d && occ <= d + 1) /* always shorter than */ | |
838 | { /* the basic range. */ | |
839 | d = ocd; | |
840 | continue; | |
841 | } | |
842 | ||
843 | if (occ == ocd) | |
844 | *class_utf8data++ = XCL_SINGLE; | |
845 | else { | |
846 | *class_utf8data++ = XCL_RANGE; | |
847 | class_utf8data += encodeUTF8(occ, class_utf8data); | |
848 | } | |
849 | class_utf8data += encodeUTF8(ocd, class_utf8data); | |
850 | } | |
851 | } | |
852 | ||
853 | /* Now record the original range, possibly modified for UCP caseless | |
854 | overlapping ranges. */ | |
855 | ||
856 | *class_utf8data++ = XCL_RANGE; | |
857 | class_utf8data += encodeUTF8(c, class_utf8data); | |
858 | class_utf8data += encodeUTF8(d, class_utf8data); | |
859 | ||
860 | /* With UCP support, we are done. Without UCP support, there is no | |
861 | caseless matching for UTF-8 characters > 127; we can use the bit map | |
862 | for the smaller ones. */ | |
863 | ||
864 | continue; /* With next character in the class */ | |
865 | } | |
866 | ||
867 | /* We use the bit map for all cases when not in UTF-8 mode; else | |
868 | ranges that lie entirely within 0-127 when there is UCP support; else | |
869 | for partial ranges without UCP support. */ | |
870 | ||
871 | for (; c <= d; c++) { | |
872 | classbits[c/8] |= (1 << (c&7)); | |
873 | if (options & IgnoreCaseOption) { | |
874 | int uc = flipCase(c); | |
875 | classbits[uc/8] |= (1 << (uc&7)); | |
876 | } | |
877 | class_charcount++; /* in case a one-char range */ | |
878 | class_lastchar = c; | |
879 | } | |
880 | ||
881 | continue; /* Go get the next char in the class */ | |
882 | } | |
883 | ||
884 | /* Handle a lone single character - we can get here for a normal | |
885 | non-escape char, or after \ that introduces a single character or for an | |
886 | apparent range that isn't. */ | |
887 | ||
888 | LONE_SINGLE_CHARACTER: | |
889 | ||
890 | /* Handle a character that cannot go in the bit map */ | |
891 | ||
892 | if ((c > 255 || ((options & IgnoreCaseOption) && c > 127))) { | |
893 | class_utf8 = true; | |
894 | *class_utf8data++ = XCL_SINGLE; | |
895 | class_utf8data += encodeUTF8(c, class_utf8data); | |
896 | ||
897 | if (options & IgnoreCaseOption) { | |
898 | int othercase; | |
899 | if ((othercase = kjs_pcre_ucp_othercase(c)) >= 0) { | |
900 | *class_utf8data++ = XCL_SINGLE; | |
901 | class_utf8data += encodeUTF8(othercase, class_utf8data); | |
902 | } | |
903 | } | |
904 | } else { | |
905 | /* Handle a single-byte character */ | |
906 | classbits[c/8] |= (1 << (c&7)); | |
907 | if (options & IgnoreCaseOption) { | |
908 | c = flipCase(c); | |
909 | classbits[c/8] |= (1 << (c&7)); | |
910 | } | |
911 | class_charcount++; | |
912 | class_lastchar = c; | |
913 | } | |
914 | } | |
915 | ||
916 | /* If class_charcount is 1, we saw precisely one character whose value is | |
917 | less than 256. In non-UTF-8 mode we can always optimize. In UTF-8 mode, we | |
918 | can optimize the negative case only if there were no characters >= 128 | |
919 | because OP_NOT and the related opcodes like OP_NOTSTAR operate on | |
920 | single-bytes only. This is an historical hangover. Maybe one day we can | |
921 | tidy these opcodes to handle multi-byte characters. | |
922 | ||
923 | The optimization throws away the bit map. We turn the item into a | |
924 | 1-character OP_CHAR[NC] if it's positive, or OP_NOT if it's negative. Note | |
925 | that OP_NOT does not support multibyte characters. In the positive case, it | |
926 | can cause firstbyte to be set. Otherwise, there can be no first char if | |
927 | this item is first, whatever repeat count may follow. In the case of | |
928 | reqbyte, save the previous value for reinstating. */ | |
929 | ||
930 | if (class_charcount == 1 && (!class_utf8 && (!negate_class || class_lastchar < 128))) { | |
931 | zeroreqbyte = reqbyte; | |
932 | ||
933 | /* The OP_NOT opcode works on one-byte characters only. */ | |
934 | ||
935 | if (negate_class) { | |
936 | if (firstbyte == REQ_UNSET) | |
937 | firstbyte = REQ_NONE; | |
938 | zerofirstbyte = firstbyte; | |
939 | *code++ = OP_NOT; | |
940 | *code++ = class_lastchar; | |
941 | break; | |
942 | } | |
943 | ||
944 | /* For a single, positive character, get the value into c, and | |
945 | then we can handle this with the normal one-character code. */ | |
946 | ||
947 | c = class_lastchar; | |
948 | goto NORMAL_CHAR; | |
949 | } /* End of 1-char optimization */ | |
950 | ||
951 | /* The general case - not the one-char optimization. If this is the first | |
952 | thing in the branch, there can be no first char setting, whatever the | |
953 | repeat count. Any reqbyte setting must remain unchanged after any kind of | |
954 | repeat. */ | |
955 | ||
956 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; | |
957 | zerofirstbyte = firstbyte; | |
958 | zeroreqbyte = reqbyte; | |
959 | ||
960 | /* If there are characters with values > 255, we have to compile an | |
961 | extended class, with its own opcode. If there are no characters < 256, | |
962 | we can omit the bitmap. */ | |
963 | ||
964 | if (class_utf8 && !should_flip_negation) { | |
965 | *class_utf8data++ = XCL_END; /* Marks the end of extra data */ | |
966 | *code++ = OP_XCLASS; | |
967 | code += LINK_SIZE; | |
968 | *code = negate_class? XCL_NOT : 0; | |
969 | ||
970 | /* If the map is required, install it, and move on to the end of | |
971 | the extra data */ | |
972 | ||
973 | if (class_charcount > 0) { | |
974 | *code++ |= XCL_MAP; | |
975 | memcpy(code, classbits, 32); | |
976 | code = class_utf8data; | |
977 | } | |
978 | ||
979 | /* If the map is not required, slide down the extra data. */ | |
980 | ||
981 | else { | |
982 | int len = class_utf8data - (code + 33); | |
983 | memmove(code + 1, code + 33, len); | |
984 | code += len + 1; | |
985 | } | |
986 | ||
987 | /* Now fill in the complete length of the item */ | |
988 | ||
989 | putLinkValue(previous + 1, code - previous); | |
990 | break; /* End of class handling */ | |
991 | } | |
992 | ||
993 | /* If there are no characters > 255, negate the 32-byte map if necessary, | |
994 | and copy it into the code vector. If this is the first thing in the branch, | |
995 | there can be no first char setting, whatever the repeat count. Any reqbyte | |
996 | setting must remain unchanged after any kind of repeat. */ | |
997 | ||
998 | *code++ = (negate_class == should_flip_negation) ? OP_CLASS : OP_NCLASS; | |
999 | if (negate_class) | |
1000 | for (c = 0; c < 32; c++) | |
1001 | code[c] = ~classbits[c]; | |
1002 | else | |
1003 | memcpy(code, classbits, 32); | |
1004 | code += 32; | |
1005 | break; | |
1006 | } | |
1007 | ||
1008 | /* Various kinds of repeat; '{' is not necessarily a quantifier, but this | |
1009 | has been tested above. */ | |
1010 | ||
1011 | case '{': | |
1012 | if (!is_quantifier) | |
1013 | goto NORMAL_CHAR; | |
1014 | ptr = readRepeatCounts(ptr + 1, &repeat_min, &repeat_max, errorcodeptr); | |
1015 | if (*errorcodeptr) | |
1016 | goto FAILED; | |
1017 | goto REPEAT; | |
1018 | ||
1019 | case '*': | |
1020 | repeat_min = 0; | |
1021 | repeat_max = -1; | |
1022 | goto REPEAT; | |
1023 | ||
1024 | case '+': | |
1025 | repeat_min = 1; | |
1026 | repeat_max = -1; | |
1027 | goto REPEAT; | |
1028 | ||
1029 | case '?': | |
1030 | repeat_min = 0; | |
1031 | repeat_max = 1; | |
1032 | ||
1033 | REPEAT: | |
1034 | if (!previous) { | |
1035 | *errorcodeptr = ERR9; | |
1036 | goto FAILED; | |
1037 | } | |
1038 | ||
1039 | if (repeat_min == 0) { | |
1040 | firstbyte = zerofirstbyte; /* Adjust for zero repeat */ | |
1041 | reqbyte = zeroreqbyte; /* Ditto */ | |
1042 | } | |
1043 | ||
1044 | /* Remember whether this is a variable length repeat */ | |
1045 | ||
1046 | reqvary = (repeat_min == repeat_max) ? 0 : REQ_VARY; | |
1047 | ||
1048 | op_type = 0; /* Default single-char op codes */ | |
1049 | ||
1050 | /* Save start of previous item, in case we have to move it up to make space | |
1051 | for an inserted OP_ONCE for the additional '+' extension. */ | |
1052 | /* FIXME: Probably don't need this because we don't use OP_ONCE. */ | |
1053 | ||
1054 | tempcode = previous; | |
1055 | ||
1056 | /* If the next character is '+', we have a possessive quantifier. This | |
1057 | implies greediness, whatever the setting of the PCRE_UNGREEDY option. | |
1058 | If the next character is '?' this is a minimizing repeat, by default, | |
1059 | but if PCRE_UNGREEDY is set, it works the other way round. We change the | |
1060 | repeat type to the non-default. */ | |
1061 | ||
1062 | if (safelyCheckNextChar(ptr, patternEnd, '?')) { | |
1063 | repeat_type = 1; | |
1064 | ptr++; | |
1065 | } else | |
1066 | repeat_type = 0; | |
1067 | ||
1068 | /* If previous was a character match, abolish the item and generate a | |
1069 | repeat item instead. If a char item has a minumum of more than one, ensure | |
1070 | that it is set in reqbyte - it might not be if a sequence such as x{3} is | |
1071 | the first thing in a branch because the x will have gone into firstbyte | |
1072 | instead. */ | |
1073 | ||
1074 | if (*previous == OP_CHAR || *previous == OP_CHAR_IGNORING_CASE) { | |
1075 | /* Deal with UTF-8 characters that take up more than one byte. It's | |
1076 | easier to write this out separately than try to macrify it. Use c to | |
1077 | hold the length of the character in bytes, plus 0x80 to flag that it's a | |
1078 | length rather than a small character. */ | |
1079 | ||
1080 | if (code[-1] & 0x80) { | |
1081 | unsigned char *lastchar = code - 1; | |
1082 | while((*lastchar & 0xc0) == 0x80) | |
1083 | lastchar--; | |
1084 | c = code - lastchar; /* Length of UTF-8 character */ | |
1085 | memcpy(utf8_char, lastchar, c); /* Save the char */ | |
1086 | c |= 0x80; /* Flag c as a length */ | |
1087 | } | |
1088 | else { | |
1089 | c = code[-1]; | |
1090 | if (repeat_min > 1) | |
1091 | reqbyte = c | req_caseopt | cd.req_varyopt; | |
1092 | } | |
1093 | ||
1094 | goto OUTPUT_SINGLE_REPEAT; /* Code shared with single character types */ | |
1095 | } | |
1096 | ||
1097 | else if (*previous == OP_ASCII_CHAR || *previous == OP_ASCII_LETTER_IGNORING_CASE) { | |
1098 | c = previous[1]; | |
1099 | if (repeat_min > 1) | |
1100 | reqbyte = c | req_caseopt | cd.req_varyopt; | |
1101 | goto OUTPUT_SINGLE_REPEAT; | |
1102 | } | |
1103 | ||
1104 | /* If previous was a single negated character ([^a] or similar), we use | |
1105 | one of the special opcodes, replacing it. The code is shared with single- | |
1106 | character repeats by setting opt_type to add a suitable offset into | |
1107 | repeat_type. OP_NOT is currently used only for single-byte chars. */ | |
1108 | ||
1109 | else if (*previous == OP_NOT) { | |
1110 | op_type = OP_NOTSTAR - OP_STAR; /* Use "not" opcodes */ | |
1111 | c = previous[1]; | |
1112 | goto OUTPUT_SINGLE_REPEAT; | |
1113 | } | |
1114 | ||
1115 | /* If previous was a character type match (\d or similar), abolish it and | |
1116 | create a suitable repeat item. The code is shared with single-character | |
1117 | repeats by setting op_type to add a suitable offset into repeat_type. */ | |
1118 | ||
1119 | else if (*previous <= OP_NOT_NEWLINE) { | |
1120 | op_type = OP_TYPESTAR - OP_STAR; /* Use type opcodes */ | |
1121 | c = *previous; | |
1122 | ||
1123 | OUTPUT_SINGLE_REPEAT: | |
1124 | int prop_type = -1; | |
1125 | int prop_value = -1; | |
1126 | ||
1127 | unsigned char* oldcode = code; | |
1128 | code = previous; /* Usually overwrite previous item */ | |
1129 | ||
1130 | /* If the maximum is zero then the minimum must also be zero; Perl allows | |
1131 | this case, so we do too - by simply omitting the item altogether. */ | |
1132 | ||
1133 | if (repeat_max == 0) | |
1134 | goto END_REPEAT; | |
1135 | ||
1136 | /* Combine the op_type with the repeat_type */ | |
1137 | ||
1138 | repeat_type += op_type; | |
1139 | ||
1140 | /* A minimum of zero is handled either as the special case * or ?, or as | |
1141 | an UPTO, with the maximum given. */ | |
1142 | ||
1143 | if (repeat_min == 0) { | |
1144 | if (repeat_max == -1) | |
1145 | *code++ = OP_STAR + repeat_type; | |
1146 | else if (repeat_max == 1) | |
1147 | *code++ = OP_QUERY + repeat_type; | |
1148 | else { | |
1149 | *code++ = OP_UPTO + repeat_type; | |
1150 | put2ByteValueAndAdvance(code, repeat_max); | |
1151 | } | |
1152 | } | |
1153 | ||
1154 | /* A repeat minimum of 1 is optimized into some special cases. If the | |
1155 | maximum is unlimited, we use OP_PLUS. Otherwise, the original item it | |
1156 | left in place and, if the maximum is greater than 1, we use OP_UPTO with | |
1157 | one less than the maximum. */ | |
1158 | ||
1159 | else if (repeat_min == 1) { | |
1160 | if (repeat_max == -1) | |
1161 | *code++ = OP_PLUS + repeat_type; | |
1162 | else { | |
1163 | code = oldcode; /* leave previous item in place */ | |
1164 | if (repeat_max == 1) | |
1165 | goto END_REPEAT; | |
1166 | *code++ = OP_UPTO + repeat_type; | |
1167 | put2ByteValueAndAdvance(code, repeat_max - 1); | |
1168 | } | |
1169 | } | |
1170 | ||
1171 | /* The case {n,n} is just an EXACT, while the general case {n,m} is | |
1172 | handled as an EXACT followed by an UPTO. */ | |
1173 | ||
1174 | else { | |
1175 | *code++ = OP_EXACT + op_type; /* NB EXACT doesn't have repeat_type */ | |
1176 | put2ByteValueAndAdvance(code, repeat_min); | |
1177 | ||
1178 | /* If the maximum is unlimited, insert an OP_STAR. Before doing so, | |
1179 | we have to insert the character for the previous code. For a repeated | |
1180 | Unicode property match, there are two extra bytes that define the | |
1181 | required property. In UTF-8 mode, long characters have their length in | |
1182 | c, with the 0x80 bit as a flag. */ | |
1183 | ||
1184 | if (repeat_max < 0) { | |
1185 | if (c >= 128) { | |
1186 | memcpy(code, utf8_char, c & 7); | |
1187 | code += c & 7; | |
1188 | } else { | |
1189 | *code++ = c; | |
1190 | if (prop_type >= 0) { | |
1191 | *code++ = prop_type; | |
1192 | *code++ = prop_value; | |
1193 | } | |
1194 | } | |
1195 | *code++ = OP_STAR + repeat_type; | |
1196 | } | |
1197 | ||
1198 | /* Else insert an UPTO if the max is greater than the min, again | |
1199 | preceded by the character, for the previously inserted code. */ | |
1200 | ||
1201 | else if (repeat_max != repeat_min) { | |
1202 | if (c >= 128) { | |
1203 | memcpy(code, utf8_char, c & 7); | |
1204 | code += c & 7; | |
1205 | } else | |
1206 | *code++ = c; | |
1207 | if (prop_type >= 0) { | |
1208 | *code++ = prop_type; | |
1209 | *code++ = prop_value; | |
1210 | } | |
1211 | repeat_max -= repeat_min; | |
1212 | *code++ = OP_UPTO + repeat_type; | |
1213 | put2ByteValueAndAdvance(code, repeat_max); | |
1214 | } | |
1215 | } | |
1216 | ||
1217 | /* The character or character type itself comes last in all cases. */ | |
1218 | ||
1219 | if (c >= 128) { | |
1220 | memcpy(code, utf8_char, c & 7); | |
1221 | code += c & 7; | |
1222 | } else | |
1223 | *code++ = c; | |
1224 | ||
1225 | /* For a repeated Unicode property match, there are two extra bytes that | |
1226 | define the required property. */ | |
1227 | ||
1228 | if (prop_type >= 0) { | |
1229 | *code++ = prop_type; | |
1230 | *code++ = prop_value; | |
1231 | } | |
1232 | } | |
1233 | ||
1234 | /* If previous was a character class or a back reference, we put the repeat | |
1235 | stuff after it, but just skip the item if the repeat was {0,0}. */ | |
1236 | ||
1237 | else if (*previous == OP_CLASS || | |
1238 | *previous == OP_NCLASS || | |
1239 | *previous == OP_XCLASS || | |
1240 | *previous == OP_REF) | |
1241 | { | |
1242 | if (repeat_max == 0) { | |
1243 | code = previous; | |
1244 | goto END_REPEAT; | |
1245 | } | |
1246 | ||
1247 | if (repeat_min == 0 && repeat_max == -1) | |
1248 | *code++ = OP_CRSTAR + repeat_type; | |
1249 | else if (repeat_min == 1 && repeat_max == -1) | |
1250 | *code++ = OP_CRPLUS + repeat_type; | |
1251 | else if (repeat_min == 0 && repeat_max == 1) | |
1252 | *code++ = OP_CRQUERY + repeat_type; | |
1253 | else { | |
1254 | *code++ = OP_CRRANGE + repeat_type; | |
1255 | put2ByteValueAndAdvance(code, repeat_min); | |
1256 | if (repeat_max == -1) | |
1257 | repeat_max = 0; /* 2-byte encoding for max */ | |
1258 | put2ByteValueAndAdvance(code, repeat_max); | |
1259 | } | |
1260 | } | |
1261 | ||
1262 | /* If previous was a bracket group, we may have to replicate it in certain | |
1263 | cases. */ | |
1264 | ||
1265 | else if (*previous >= OP_BRA) { | |
1266 | int ketoffset = 0; | |
1267 | int len = code - previous; | |
1268 | unsigned char* bralink = NULL; | |
1269 | ||
1270 | /* If the maximum repeat count is unlimited, find the end of the bracket | |
1271 | by scanning through from the start, and compute the offset back to it | |
1272 | from the current code pointer. There may be an OP_OPT setting following | |
1273 | the final KET, so we can't find the end just by going back from the code | |
1274 | pointer. */ | |
1275 | ||
1276 | if (repeat_max == -1) { | |
1277 | const unsigned char* ket = previous; | |
1278 | advanceToEndOfBracket(ket); | |
1279 | ketoffset = code - ket; | |
1280 | } | |
1281 | ||
1282 | /* The case of a zero minimum is special because of the need to stick | |
1283 | OP_BRAZERO in front of it, and because the group appears once in the | |
1284 | data, whereas in other cases it appears the minimum number of times. For | |
1285 | this reason, it is simplest to treat this case separately, as otherwise | |
1286 | the code gets far too messy. There are several special subcases when the | |
1287 | minimum is zero. */ | |
1288 | ||
1289 | if (repeat_min == 0) { | |
1290 | /* If the maximum is also zero, we just omit the group from the output | |
1291 | altogether. */ | |
1292 | ||
1293 | if (repeat_max == 0) { | |
1294 | code = previous; | |
1295 | goto END_REPEAT; | |
1296 | } | |
1297 | ||
1298 | /* If the maximum is 1 or unlimited, we just have to stick in the | |
1299 | BRAZERO and do no more at this point. However, we do need to adjust | |
1300 | any OP_RECURSE calls inside the group that refer to the group itself or | |
1301 | any internal group, because the offset is from the start of the whole | |
1302 | regex. Temporarily terminate the pattern while doing this. */ | |
1303 | ||
1304 | if (repeat_max <= 1) { | |
1305 | *code = OP_END; | |
1306 | memmove(previous+1, previous, len); | |
1307 | code++; | |
1308 | *previous++ = OP_BRAZERO + repeat_type; | |
1309 | } | |
1310 | ||
1311 | /* If the maximum is greater than 1 and limited, we have to replicate | |
1312 | in a nested fashion, sticking OP_BRAZERO before each set of brackets. | |
1313 | The first one has to be handled carefully because it's the original | |
1314 | copy, which has to be moved up. The remainder can be handled by code | |
1315 | that is common with the non-zero minimum case below. We have to | |
1316 | adjust the value of repeat_max, since one less copy is required. */ | |
1317 | ||
1318 | else { | |
1319 | *code = OP_END; | |
1320 | memmove(previous + 2 + LINK_SIZE, previous, len); | |
1321 | code += 2 + LINK_SIZE; | |
1322 | *previous++ = OP_BRAZERO + repeat_type; | |
1323 | *previous++ = OP_BRA; | |
1324 | ||
1325 | /* We chain together the bracket offset fields that have to be | |
1326 | filled in later when the ends of the brackets are reached. */ | |
1327 | ||
1328 | int offset = (!bralink) ? 0 : previous - bralink; | |
1329 | bralink = previous; | |
1330 | putLinkValueAllowZeroAndAdvance(previous, offset); | |
1331 | } | |
1332 | ||
1333 | repeat_max--; | |
1334 | } | |
1335 | ||
1336 | /* If the minimum is greater than zero, replicate the group as many | |
1337 | times as necessary, and adjust the maximum to the number of subsequent | |
1338 | copies that we need. If we set a first char from the group, and didn't | |
1339 | set a required char, copy the latter from the former. */ | |
1340 | ||
1341 | else { | |
1342 | if (repeat_min > 1) { | |
1343 | if (groupsetfirstbyte && reqbyte < 0) | |
1344 | reqbyte = firstbyte; | |
1345 | for (int i = 1; i < repeat_min; i++) { | |
1346 | memcpy(code, previous, len); | |
1347 | code += len; | |
1348 | } | |
1349 | } | |
1350 | if (repeat_max > 0) | |
1351 | repeat_max -= repeat_min; | |
1352 | } | |
1353 | ||
1354 | /* This code is common to both the zero and non-zero minimum cases. If | |
1355 | the maximum is limited, it replicates the group in a nested fashion, | |
1356 | remembering the bracket starts on a stack. In the case of a zero minimum, | |
1357 | the first one was set up above. In all cases the repeat_max now specifies | |
1358 | the number of additional copies needed. */ | |
1359 | ||
1360 | if (repeat_max >= 0) { | |
1361 | for (int i = repeat_max - 1; i >= 0; i--) { | |
1362 | *code++ = OP_BRAZERO + repeat_type; | |
1363 | ||
1364 | /* All but the final copy start a new nesting, maintaining the | |
1365 | chain of brackets outstanding. */ | |
1366 | ||
1367 | if (i != 0) { | |
1368 | *code++ = OP_BRA; | |
1369 | int offset = (!bralink) ? 0 : code - bralink; | |
1370 | bralink = code; | |
1371 | putLinkValueAllowZeroAndAdvance(code, offset); | |
1372 | } | |
1373 | ||
1374 | memcpy(code, previous, len); | |
1375 | code += len; | |
1376 | } | |
1377 | ||
1378 | /* Now chain through the pending brackets, and fill in their length | |
1379 | fields (which are holding the chain links pro tem). */ | |
1380 | ||
1381 | while (bralink) { | |
1382 | int offset = code - bralink + 1; | |
1383 | unsigned char* bra = code - offset; | |
1384 | int oldlinkoffset = getLinkValueAllowZero(bra + 1); | |
1385 | bralink = (!oldlinkoffset) ? 0 : bralink - oldlinkoffset; | |
1386 | *code++ = OP_KET; | |
1387 | putLinkValueAndAdvance(code, offset); | |
1388 | putLinkValue(bra + 1, offset); | |
1389 | } | |
1390 | } | |
1391 | ||
1392 | /* If the maximum is unlimited, set a repeater in the final copy. We | |
1393 | can't just offset backwards from the current code point, because we | |
1394 | don't know if there's been an options resetting after the ket. The | |
1395 | correct offset was computed above. */ | |
1396 | ||
1397 | else | |
1398 | code[-ketoffset] = OP_KETRMAX + repeat_type; | |
1399 | } | |
1400 | ||
1401 | /* Else there's some kind of shambles */ | |
1402 | ||
1403 | else { | |
1404 | *errorcodeptr = ERR11; | |
1405 | goto FAILED; | |
1406 | } | |
1407 | ||
1408 | /* In all case we no longer have a previous item. We also set the | |
1409 | "follows varying string" flag for subsequently encountered reqbytes if | |
1410 | it isn't already set and we have just passed a varying length item. */ | |
1411 | ||
1412 | END_REPEAT: | |
1413 | previous = NULL; | |
1414 | cd.req_varyopt |= reqvary; | |
1415 | break; | |
1416 | ||
1417 | /* Start of nested bracket sub-expression, or comment or lookahead or | |
1418 | lookbehind or option setting or condition. First deal with special things | |
1419 | that can come after a bracket; all are introduced by ?, and the appearance | |
1420 | of any of them means that this is not a referencing group. They were | |
1421 | checked for validity in the first pass over the string, so we don't have to | |
1422 | check for syntax errors here. */ | |
1423 | ||
1424 | case '(': | |
1425 | skipbytes = 0; | |
1426 | ||
1427 | if (*(++ptr) == '?') { | |
1428 | switch (*(++ptr)) { | |
1429 | case ':': /* Non-extracting bracket */ | |
1430 | bravalue = OP_BRA; | |
1431 | ptr++; | |
1432 | break; | |
1433 | ||
1434 | case '=': /* Positive lookahead */ | |
1435 | bravalue = OP_ASSERT; | |
1436 | ptr++; | |
1437 | break; | |
1438 | ||
1439 | case '!': /* Negative lookahead */ | |
1440 | bravalue = OP_ASSERT_NOT; | |
1441 | ptr++; | |
1442 | break; | |
1443 | ||
1444 | /* Character after (? not specially recognized */ | |
1445 | ||
1446 | default: | |
1447 | *errorcodeptr = ERR12; | |
1448 | goto FAILED; | |
1449 | } | |
1450 | } | |
1451 | ||
1452 | /* Else we have a referencing group; adjust the opcode. If the bracket | |
1453 | number is greater than EXTRACT_BASIC_MAX, we set the opcode one higher, and | |
1454 | arrange for the true number to follow later, in an OP_BRANUMBER item. */ | |
1455 | ||
1456 | else { | |
1457 | if (++(*brackets) > EXTRACT_BASIC_MAX) { | |
1458 | bravalue = OP_BRA + EXTRACT_BASIC_MAX + 1; | |
1459 | code[1 + LINK_SIZE] = OP_BRANUMBER; | |
1460 | put2ByteValue(code + 2 + LINK_SIZE, *brackets); | |
1461 | skipbytes = 3; | |
1462 | } | |
1463 | else | |
1464 | bravalue = OP_BRA + *brackets; | |
1465 | } | |
1466 | ||
1467 | /* Process nested bracketed re. Assertions may not be repeated, but other | |
1468 | kinds can be. We copy code into a non-variable in order to be able | |
1469 | to pass its address because some compilers complain otherwise. Pass in a | |
1470 | new setting for the ims options if they have changed. */ | |
1471 | ||
1472 | previous = (bravalue >= OP_BRAZERO) ? code : 0; | |
1473 | *code = bravalue; | |
1474 | tempcode = code; | |
1475 | tempreqvary = cd.req_varyopt; /* Save value before bracket */ | |
1476 | ||
1477 | if (!compileBracket( | |
1478 | options, | |
1479 | brackets, /* Extracting bracket count */ | |
1480 | &tempcode, /* Where to put code (updated) */ | |
1481 | &ptr, /* Input pointer (updated) */ | |
1482 | patternEnd, | |
1483 | errorcodeptr, /* Where to put an error message */ | |
1484 | skipbytes, /* Skip over OP_BRANUMBER */ | |
1485 | &subfirstbyte, /* For possible first char */ | |
1486 | &subreqbyte, /* For possible last char */ | |
1487 | cd)) /* Tables block */ | |
1488 | goto FAILED; | |
1489 | ||
1490 | /* At the end of compiling, code is still pointing to the start of the | |
1491 | group, while tempcode has been updated to point past the end of the group | |
1492 | and any option resetting that may follow it. The pattern pointer (ptr) | |
1493 | is on the bracket. */ | |
1494 | ||
1495 | /* Handle updating of the required and first characters. Update for normal | |
1496 | brackets of all kinds, and conditions with two branches (see code above). | |
1497 | If the bracket is followed by a quantifier with zero repeat, we have to | |
1498 | back off. Hence the definition of zeroreqbyte and zerofirstbyte outside the | |
1499 | main loop so that they can be accessed for the back off. */ | |
1500 | ||
1501 | zeroreqbyte = reqbyte; | |
1502 | zerofirstbyte = firstbyte; | |
1503 | groupsetfirstbyte = false; | |
1504 | ||
1505 | if (bravalue >= OP_BRA) { | |
1506 | /* If we have not yet set a firstbyte in this branch, take it from the | |
1507 | subpattern, remembering that it was set here so that a repeat of more | |
1508 | than one can replicate it as reqbyte if necessary. If the subpattern has | |
1509 | no firstbyte, set "none" for the whole branch. In both cases, a zero | |
1510 | repeat forces firstbyte to "none". */ | |
1511 | ||
1512 | if (firstbyte == REQ_UNSET) { | |
1513 | if (subfirstbyte >= 0) { | |
1514 | firstbyte = subfirstbyte; | |
1515 | groupsetfirstbyte = true; | |
1516 | } | |
1517 | else | |
1518 | firstbyte = REQ_NONE; | |
1519 | zerofirstbyte = REQ_NONE; | |
1520 | } | |
1521 | ||
1522 | /* If firstbyte was previously set, convert the subpattern's firstbyte | |
1523 | into reqbyte if there wasn't one, using the vary flag that was in | |
1524 | existence beforehand. */ | |
1525 | ||
1526 | else if (subfirstbyte >= 0 && subreqbyte < 0) | |
1527 | subreqbyte = subfirstbyte | tempreqvary; | |
1528 | ||
1529 | /* If the subpattern set a required byte (or set a first byte that isn't | |
1530 | really the first byte - see above), set it. */ | |
1531 | ||
1532 | if (subreqbyte >= 0) | |
1533 | reqbyte = subreqbyte; | |
1534 | } | |
1535 | ||
1536 | /* For a forward assertion, we take the reqbyte, if set. This can be | |
1537 | helpful if the pattern that follows the assertion doesn't set a different | |
1538 | char. For example, it's useful for /(?=abcde).+/. We can't set firstbyte | |
1539 | for an assertion, however because it leads to incorrect effect for patterns | |
1540 | such as /(?=a)a.+/ when the "real" "a" would then become a reqbyte instead | |
1541 | of a firstbyte. This is overcome by a scan at the end if there's no | |
1542 | firstbyte, looking for an asserted first char. */ | |
1543 | ||
1544 | else if (bravalue == OP_ASSERT && subreqbyte >= 0) | |
1545 | reqbyte = subreqbyte; | |
1546 | ||
1547 | /* Now update the main code pointer to the end of the group. */ | |
1548 | ||
1549 | code = tempcode; | |
1550 | ||
1551 | /* Error if hit end of pattern */ | |
1552 | ||
1553 | if (ptr >= patternEnd || *ptr != ')') { | |
1554 | *errorcodeptr = ERR14; | |
1555 | goto FAILED; | |
1556 | } | |
1557 | break; | |
1558 | ||
1559 | /* Check \ for being a real metacharacter; if not, fall through and handle | |
1560 | it as a data character at the start of a string. Escape items are checked | |
1561 | for validity in the pre-compiling pass. */ | |
1562 | ||
1563 | case '\\': | |
1564 | tempptr = ptr; | |
1565 | c = checkEscape(&ptr, patternEnd, errorcodeptr, cd.numCapturingBrackets, false); | |
1566 | ||
1567 | /* Handle metacharacters introduced by \. For ones like \d, the ESC_ values | |
1568 | are arranged to be the negation of the corresponding OP_values. For the | |
1569 | back references, the values are ESC_REF plus the reference number. Only | |
1570 | back references and those types that consume a character may be repeated. | |
1571 | We can test for values between ESC_b and ESC_w for the latter; this may | |
1572 | have to change if any new ones are ever created. */ | |
1573 | ||
1574 | if (c < 0) { | |
1575 | /* For metasequences that actually match a character, we disable the | |
1576 | setting of a first character if it hasn't already been set. */ | |
1577 | ||
1578 | if (firstbyte == REQ_UNSET && -c > ESC_b && -c <= ESC_w) | |
1579 | firstbyte = REQ_NONE; | |
1580 | ||
1581 | /* Set values to reset to if this is followed by a zero repeat. */ | |
1582 | ||
1583 | zerofirstbyte = firstbyte; | |
1584 | zeroreqbyte = reqbyte; | |
1585 | ||
1586 | /* Back references are handled specially */ | |
1587 | ||
1588 | if (-c >= ESC_REF) { | |
1589 | int number = -c - ESC_REF; | |
1590 | previous = code; | |
1591 | *code++ = OP_REF; | |
1592 | put2ByteValueAndAdvance(code, number); | |
1593 | } | |
1594 | ||
1595 | /* For the rest, we can obtain the OP value by negating the escape | |
1596 | value */ | |
1597 | ||
1598 | else { | |
1599 | previous = (-c > ESC_b && -c <= ESC_w) ? code : NULL; | |
1600 | *code++ = -c; | |
1601 | } | |
1602 | continue; | |
1603 | } | |
1604 | ||
1605 | /* Fall through. */ | |
1606 | ||
1607 | /* Handle a literal character. It is guaranteed not to be whitespace or # | |
1608 | when the extended flag is set. If we are in UTF-8 mode, it may be a | |
1609 | multi-byte literal character. */ | |
1610 | ||
1611 | default: | |
1612 | NORMAL_CHAR: | |
1613 | ||
1614 | previous = code; | |
1615 | ||
1616 | if (c < 128) { | |
1617 | mclength = 1; | |
1618 | mcbuffer[0] = c; | |
1619 | ||
1620 | if ((options & IgnoreCaseOption) && (c | 0x20) >= 'a' && (c | 0x20) <= 'z') { | |
1621 | *code++ = OP_ASCII_LETTER_IGNORING_CASE; | |
1622 | *code++ = c | 0x20; | |
1623 | } else { | |
1624 | *code++ = OP_ASCII_CHAR; | |
1625 | *code++ = c; | |
1626 | } | |
1627 | } else { | |
1628 | mclength = encodeUTF8(c, mcbuffer); | |
1629 | ||
1630 | *code++ = (options & IgnoreCaseOption) ? OP_CHAR_IGNORING_CASE : OP_CHAR; | |
1631 | for (c = 0; c < mclength; c++) | |
1632 | *code++ = mcbuffer[c]; | |
1633 | } | |
1634 | ||
1635 | /* Set the first and required bytes appropriately. If no previous first | |
1636 | byte, set it from this character, but revert to none on a zero repeat. | |
1637 | Otherwise, leave the firstbyte value alone, and don't change it on a zero | |
1638 | repeat. */ | |
1639 | ||
1640 | if (firstbyte == REQ_UNSET) { | |
1641 | zerofirstbyte = REQ_NONE; | |
1642 | zeroreqbyte = reqbyte; | |
1643 | ||
1644 | /* If the character is more than one byte long, we can set firstbyte | |
1645 | only if it is not to be matched caselessly. */ | |
1646 | ||
1647 | if (mclength == 1 || req_caseopt == 0) { | |
1648 | firstbyte = mcbuffer[0] | req_caseopt; | |
1649 | if (mclength != 1) | |
1650 | reqbyte = code[-1] | cd.req_varyopt; | |
1651 | } | |
1652 | else | |
1653 | firstbyte = reqbyte = REQ_NONE; | |
1654 | } | |
1655 | ||
1656 | /* firstbyte was previously set; we can set reqbyte only the length is | |
1657 | 1 or the matching is caseful. */ | |
1658 | ||
1659 | else { | |
1660 | zerofirstbyte = firstbyte; | |
1661 | zeroreqbyte = reqbyte; | |
1662 | if (mclength == 1 || req_caseopt == 0) | |
1663 | reqbyte = code[-1] | req_caseopt | cd.req_varyopt; | |
1664 | } | |
1665 | ||
1666 | break; /* End of literal character handling */ | |
1667 | } | |
1668 | } /* end of big loop */ | |
1669 | ||
1670 | /* Control never reaches here by falling through, only by a goto for all the | |
1671 | error states. Pass back the position in the pattern so that it can be displayed | |
1672 | to the user for diagnosing the error. */ | |
1673 | ||
1674 | FAILED: | |
1675 | *ptrptr = ptr; | |
1676 | return false; | |
1677 | } | |
1678 | ||
1679 | /************************************************* | |
1680 | * Compile sequence of alternatives * | |
1681 | *************************************************/ | |
1682 | ||
1683 | /* On entry, ptr is pointing past the bracket character, but on return | |
1684 | it points to the closing bracket, or vertical bar, or end of string. | |
1685 | The code variable is pointing at the byte into which the BRA operator has been | |
1686 | stored. If the ims options are changed at the start (for a (?ims: group) or | |
1687 | during any branch, we need to insert an OP_OPT item at the start of every | |
1688 | following branch to ensure they get set correctly at run time, and also pass | |
1689 | the new options into every subsequent branch compile. | |
1690 | ||
1691 | Argument: | |
1692 | options option bits, including any changes for this subpattern | |
1693 | brackets -> int containing the number of extracting brackets used | |
1694 | codeptr -> the address of the current code pointer | |
1695 | ptrptr -> the address of the current pattern pointer | |
1696 | errorcodeptr -> pointer to error code variable | |
1697 | skipbytes skip this many bytes at start (for OP_BRANUMBER) | |
1698 | firstbyteptr place to put the first required character, or a negative number | |
1699 | reqbyteptr place to put the last required character, or a negative number | |
1700 | cd points to the data block with tables pointers etc. | |
1701 | ||
1702 | Returns: true on success | |
1703 | */ | |
1704 | ||
1705 | static bool | |
1706 | compileBracket(int options, int* brackets, unsigned char** codeptr, | |
1707 | const UChar** ptrptr, const UChar* patternEnd, ErrorCode* errorcodeptr, int skipbytes, | |
1708 | int* firstbyteptr, int* reqbyteptr, CompileData& cd) | |
1709 | { | |
1710 | const UChar* ptr = *ptrptr; | |
1711 | unsigned char* code = *codeptr; | |
1712 | unsigned char* last_branch = code; | |
1713 | unsigned char* start_bracket = code; | |
1714 | int firstbyte = REQ_UNSET; | |
1715 | int reqbyte = REQ_UNSET; | |
1716 | ||
1717 | /* Offset is set zero to mark that this bracket is still open */ | |
1718 | ||
1719 | putLinkValueAllowZero(code + 1, 0); | |
1720 | code += 1 + LINK_SIZE + skipbytes; | |
1721 | ||
1722 | /* Loop for each alternative branch */ | |
1723 | ||
1724 | while (true) { | |
1725 | /* Now compile the branch */ | |
1726 | ||
1727 | int branchfirstbyte; | |
1728 | int branchreqbyte; | |
1729 | if (!compileBranch(options, brackets, &code, &ptr, patternEnd, errorcodeptr, | |
1730 | &branchfirstbyte, &branchreqbyte, cd)) { | |
1731 | *ptrptr = ptr; | |
1732 | return false; | |
1733 | } | |
1734 | ||
1735 | /* If this is the first branch, the firstbyte and reqbyte values for the | |
1736 | branch become the values for the regex. */ | |
1737 | ||
1738 | if (*last_branch != OP_ALT) { | |
1739 | firstbyte = branchfirstbyte; | |
1740 | reqbyte = branchreqbyte; | |
1741 | } | |
1742 | ||
1743 | /* If this is not the first branch, the first char and reqbyte have to | |
1744 | match the values from all the previous branches, except that if the previous | |
1745 | value for reqbyte didn't have REQ_VARY set, it can still match, and we set | |
1746 | REQ_VARY for the regex. */ | |
1747 | ||
1748 | else { | |
1749 | /* If we previously had a firstbyte, but it doesn't match the new branch, | |
1750 | we have to abandon the firstbyte for the regex, but if there was previously | |
1751 | no reqbyte, it takes on the value of the old firstbyte. */ | |
1752 | ||
1753 | if (firstbyte >= 0 && firstbyte != branchfirstbyte) { | |
1754 | if (reqbyte < 0) | |
1755 | reqbyte = firstbyte; | |
1756 | firstbyte = REQ_NONE; | |
1757 | } | |
1758 | ||
1759 | /* If we (now or from before) have no firstbyte, a firstbyte from the | |
1760 | branch becomes a reqbyte if there isn't a branch reqbyte. */ | |
1761 | ||
1762 | if (firstbyte < 0 && branchfirstbyte >= 0 && branchreqbyte < 0) | |
1763 | branchreqbyte = branchfirstbyte; | |
1764 | ||
1765 | /* Now ensure that the reqbytes match */ | |
1766 | ||
1767 | if ((reqbyte & ~REQ_VARY) != (branchreqbyte & ~REQ_VARY)) | |
1768 | reqbyte = REQ_NONE; | |
1769 | else | |
1770 | reqbyte |= branchreqbyte; /* To "or" REQ_VARY */ | |
1771 | } | |
1772 | ||
1773 | /* Reached end of expression, either ')' or end of pattern. Go back through | |
1774 | the alternative branches and reverse the chain of offsets, with the field in | |
1775 | the BRA item now becoming an offset to the first alternative. If there are | |
1776 | no alternatives, it points to the end of the group. The length in the | |
1777 | terminating ket is always the length of the whole bracketed item. If any of | |
1778 | the ims options were changed inside the group, compile a resetting op-code | |
1779 | following, except at the very end of the pattern. Return leaving the pointer | |
1780 | at the terminating char. */ | |
1781 | ||
1782 | if (ptr >= patternEnd || *ptr != '|') { | |
1783 | int length = code - last_branch; | |
1784 | do { | |
1785 | int prev_length = getLinkValueAllowZero(last_branch + 1); | |
1786 | putLinkValue(last_branch + 1, length); | |
1787 | length = prev_length; | |
1788 | last_branch -= length; | |
1789 | } while (length > 0); | |
1790 | ||
1791 | /* Fill in the ket */ | |
1792 | ||
1793 | *code = OP_KET; | |
1794 | putLinkValue(code + 1, code - start_bracket); | |
1795 | code += 1 + LINK_SIZE; | |
1796 | ||
1797 | /* Set values to pass back */ | |
1798 | ||
1799 | *codeptr = code; | |
1800 | *ptrptr = ptr; | |
1801 | *firstbyteptr = firstbyte; | |
1802 | *reqbyteptr = reqbyte; | |
1803 | return true; | |
1804 | } | |
1805 | ||
1806 | /* Another branch follows; insert an "or" node. Its length field points back | |
1807 | to the previous branch while the bracket remains open. At the end the chain | |
1808 | is reversed. It's done like this so that the start of the bracket has a | |
1809 | zero offset until it is closed, making it possible to detect recursion. */ | |
1810 | ||
1811 | *code = OP_ALT; | |
1812 | putLinkValue(code + 1, code - last_branch); | |
1813 | last_branch = code; | |
1814 | code += 1 + LINK_SIZE; | |
1815 | ptr++; | |
1816 | } | |
1817 | ASSERT_NOT_REACHED(); | |
1818 | } | |
1819 | ||
1820 | /************************************************* | |
1821 | * Check for anchored expression * | |
1822 | *************************************************/ | |
1823 | ||
1824 | /* Try to find out if this is an anchored regular expression. Consider each | |
1825 | alternative branch. If they all start OP_CIRC, or with a bracket | |
1826 | all of whose alternatives start OP_CIRC (recurse ad lib), then | |
1827 | it's anchored. | |
1828 | ||
1829 | Arguments: | |
1830 | code points to start of expression (the bracket) | |
1831 | captureMap a bitmap of which brackets we are inside while testing; this | |
1832 | handles up to substring 31; all brackets after that share | |
1833 | the zero bit | |
1834 | backrefMap the back reference bitmap | |
1835 | */ | |
1836 | ||
1837 | static bool branchIsAnchored(const unsigned char* code) | |
1838 | { | |
1839 | const unsigned char* scode = firstSignificantOpcode(code); | |
1840 | int op = *scode; | |
1841 | ||
1842 | /* Brackets */ | |
1843 | if (op >= OP_BRA || op == OP_ASSERT) | |
1844 | return bracketIsAnchored(scode); | |
1845 | ||
1846 | /* Check for explicit anchoring */ | |
1847 | return op == OP_CIRC; | |
1848 | } | |
1849 | ||
1850 | static bool bracketIsAnchored(const unsigned char* code) | |
1851 | { | |
1852 | do { | |
1853 | if (!branchIsAnchored(code + 1 + LINK_SIZE)) | |
1854 | return false; | |
1855 | code += getLinkValue(code + 1); | |
1856 | } while (*code == OP_ALT); /* Loop for each alternative */ | |
1857 | return true; | |
1858 | } | |
1859 | ||
1860 | /************************************************* | |
1861 | * Check for starting with ^ or .* * | |
1862 | *************************************************/ | |
1863 | ||
1864 | /* This is called to find out if every branch starts with ^ or .* so that | |
1865 | "first char" processing can be done to speed things up in multiline | |
1866 | matching and for non-DOTALL patterns that start with .* (which must start at | |
1867 | the beginning or after \n) | |
1868 | ||
1869 | Except when the .* appears inside capturing parentheses, and there is a | |
1870 | subsequent back reference to those parentheses. By keeping a bitmap of the | |
1871 | first 31 back references, we can catch some of the more common cases more | |
1872 | precisely; all the greater back references share a single bit. | |
1873 | ||
1874 | Arguments: | |
1875 | code points to start of expression (the bracket) | |
1876 | captureMap a bitmap of which brackets we are inside while testing; this | |
1877 | handles up to substring 31; all brackets after that share | |
1878 | the zero bit | |
1879 | backrefMap the back reference bitmap | |
1880 | */ | |
1881 | ||
1882 | static bool branchNeedsLineStart(const unsigned char* code, unsigned captureMap, unsigned backrefMap) | |
1883 | { | |
1884 | const unsigned char* scode = firstSignificantOpcode(code); | |
1885 | int op = *scode; | |
1886 | ||
1887 | /* Capturing brackets */ | |
1888 | if (op > OP_BRA) { | |
1889 | int captureNum = op - OP_BRA; | |
1890 | if (captureNum > EXTRACT_BASIC_MAX) | |
1891 | captureNum = get2ByteValue(scode + 2 + LINK_SIZE); | |
1892 | int bracketMask = (captureNum < 32) ? (1 << captureNum) : 1; | |
1893 | return bracketNeedsLineStart(scode, captureMap | bracketMask, backrefMap); | |
1894 | } | |
1895 | ||
1896 | /* Other brackets */ | |
1897 | if (op == OP_BRA || op == OP_ASSERT) | |
1898 | return bracketNeedsLineStart(scode, captureMap, backrefMap); | |
1899 | ||
1900 | /* .* means "start at start or after \n" if it isn't in brackets that | |
1901 | may be referenced. */ | |
1902 | ||
1903 | if (op == OP_TYPESTAR || op == OP_TYPEMINSTAR) | |
1904 | return scode[1] == OP_NOT_NEWLINE && !(captureMap & backrefMap); | |
1905 | ||
1906 | /* Explicit ^ */ | |
1907 | return op == OP_CIRC; | |
1908 | } | |
1909 | ||
1910 | static bool bracketNeedsLineStart(const unsigned char* code, unsigned captureMap, unsigned backrefMap) | |
1911 | { | |
1912 | do { | |
1913 | if (!branchNeedsLineStart(code + 1 + LINK_SIZE, captureMap, backrefMap)) | |
1914 | return false; | |
1915 | code += getLinkValue(code + 1); | |
1916 | } while (*code == OP_ALT); /* Loop for each alternative */ | |
1917 | return true; | |
1918 | } | |
1919 | ||
1920 | /************************************************* | |
1921 | * Check for asserted fixed first char * | |
1922 | *************************************************/ | |
1923 | ||
1924 | /* During compilation, the "first char" settings from forward assertions are | |
1925 | discarded, because they can cause conflicts with actual literals that follow. | |
1926 | However, if we end up without a first char setting for an unanchored pattern, | |
1927 | it is worth scanning the regex to see if there is an initial asserted first | |
1928 | char. If all branches start with the same asserted char, or with a bracket all | |
1929 | of whose alternatives start with the same asserted char (recurse ad lib), then | |
1930 | we return that char, otherwise -1. | |
1931 | ||
1932 | Arguments: | |
1933 | code points to start of expression (the bracket) | |
1934 | options pointer to the options (used to check casing changes) | |
1935 | inassert true if in an assertion | |
1936 | ||
1937 | Returns: -1 or the fixed first char | |
1938 | */ | |
1939 | ||
1940 | static int branchFindFirstAssertedCharacter(const unsigned char* code, bool inassert) | |
1941 | { | |
1942 | const unsigned char* scode = firstSignificantOpcodeSkippingAssertions(code); | |
1943 | int op = *scode; | |
1944 | ||
1945 | if (op >= OP_BRA) | |
1946 | op = OP_BRA; | |
1947 | ||
1948 | switch (op) { | |
1949 | default: | |
1950 | return -1; | |
1951 | ||
1952 | case OP_BRA: | |
1953 | case OP_ASSERT: | |
1954 | return bracketFindFirstAssertedCharacter(scode, op == OP_ASSERT); | |
1955 | ||
1956 | case OP_EXACT: | |
1957 | scode += 2; | |
1958 | /* Fall through */ | |
1959 | ||
1960 | case OP_CHAR: | |
1961 | case OP_CHAR_IGNORING_CASE: | |
1962 | case OP_ASCII_CHAR: | |
1963 | case OP_ASCII_LETTER_IGNORING_CASE: | |
1964 | case OP_PLUS: | |
1965 | case OP_MINPLUS: | |
1966 | if (!inassert) | |
1967 | return -1; | |
1968 | return scode[1]; | |
1969 | } | |
1970 | } | |
1971 | ||
1972 | static int bracketFindFirstAssertedCharacter(const unsigned char* code, bool inassert) | |
1973 | { | |
1974 | int c = -1; | |
1975 | do { | |
1976 | int d = branchFindFirstAssertedCharacter(code + 1 + LINK_SIZE, inassert); | |
1977 | if (d < 0) | |
1978 | return -1; | |
1979 | if (c < 0) | |
1980 | c = d; | |
1981 | else if (c != d) | |
1982 | return -1; | |
1983 | code += getLinkValue(code + 1); | |
1984 | } while (*code == OP_ALT); | |
1985 | return c; | |
1986 | } | |
1987 | ||
1988 | static inline int multiplyWithOverflowCheck(int a, int b) | |
1989 | { | |
1990 | if (!a || !b) | |
1991 | return 0; | |
1992 | if (a > MAX_PATTERN_SIZE / b) | |
1993 | return -1; | |
1994 | return a * b; | |
1995 | } | |
1996 | ||
1997 | static int calculateCompiledPatternLength(const UChar* pattern, int patternLength, JSRegExpIgnoreCaseOption ignoreCase, | |
1998 | CompileData& cd, ErrorCode& errorcode) | |
1999 | { | |
2000 | /* Make a pass over the pattern to compute the | |
2001 | amount of store required to hold the compiled code. This does not have to be | |
2002 | perfect as long as errors are overestimates. */ | |
2003 | ||
2004 | if (patternLength > MAX_PATTERN_SIZE) { | |
2005 | errorcode = ERR16; | |
2006 | return -1; | |
2007 | } | |
2008 | ||
2009 | int length = 1 + LINK_SIZE; /* For initial BRA plus length */ | |
2010 | int branch_extra = 0; | |
2011 | int lastitemlength = 0; | |
2012 | unsigned brastackptr = 0; | |
2013 | int brastack[BRASTACK_SIZE]; | |
2014 | unsigned char bralenstack[BRASTACK_SIZE]; | |
2015 | int bracount = 0; | |
2016 | ||
2017 | const UChar* ptr = (const UChar*)(pattern - 1); | |
2018 | const UChar* patternEnd = (const UChar*)(pattern + patternLength); | |
2019 | ||
2020 | while (++ptr < patternEnd) { | |
2021 | int minRepeats = 0, maxRepeats = 0; | |
2022 | int c = *ptr; | |
2023 | ||
2024 | switch (c) { | |
2025 | /* A backslashed item may be an escaped data character or it may be a | |
2026 | character type. */ | |
2027 | ||
2028 | case '\\': | |
2029 | c = checkEscape(&ptr, patternEnd, &errorcode, cd.numCapturingBrackets, false); | |
2030 | if (errorcode != 0) | |
2031 | return -1; | |
2032 | ||
2033 | lastitemlength = 1; /* Default length of last item for repeats */ | |
2034 | ||
2035 | if (c >= 0) { /* Data character */ | |
2036 | length += 2; /* For a one-byte character */ | |
2037 | ||
2038 | if (c > 127) { | |
2039 | int i; | |
2040 | for (i = 0; i < kjs_pcre_utf8_table1_size; i++) | |
2041 | if (c <= kjs_pcre_utf8_table1[i]) break; | |
2042 | length += i; | |
2043 | lastitemlength += i; | |
2044 | } | |
2045 | ||
2046 | continue; | |
2047 | } | |
2048 | ||
2049 | /* Other escapes need one byte */ | |
2050 | ||
2051 | length++; | |
2052 | ||
2053 | /* A back reference needs an additional 2 bytes, plus either one or 5 | |
2054 | bytes for a repeat. We also need to keep the value of the highest | |
2055 | back reference. */ | |
2056 | ||
2057 | if (c <= -ESC_REF) { | |
2058 | int refnum = -c - ESC_REF; | |
2059 | cd.backrefMap |= (refnum < 32) ? (1 << refnum) : 1; | |
2060 | if (refnum > cd.top_backref) | |
2061 | cd.top_backref = refnum; | |
2062 | length += 2; /* For single back reference */ | |
2063 | if (safelyCheckNextChar(ptr, patternEnd, '{') && isCountedRepeat(ptr + 2, patternEnd)) { | |
2064 | ptr = readRepeatCounts(ptr + 2, &minRepeats, &maxRepeats, &errorcode); | |
2065 | if (errorcode) | |
2066 | return -1; | |
2067 | if ((minRepeats == 0 && (maxRepeats == 1 || maxRepeats == -1)) || | |
2068 | (minRepeats == 1 && maxRepeats == -1)) | |
2069 | length++; | |
2070 | else | |
2071 | length += 5; | |
2072 | if (safelyCheckNextChar(ptr, patternEnd, '?')) | |
2073 | ptr++; | |
2074 | } | |
2075 | } | |
2076 | continue; | |
2077 | ||
2078 | case '^': /* Single-byte metacharacters */ | |
2079 | case '.': | |
2080 | case '$': | |
2081 | length++; | |
2082 | lastitemlength = 1; | |
2083 | continue; | |
2084 | ||
2085 | case '*': /* These repeats won't be after brackets; */ | |
2086 | case '+': /* those are handled separately */ | |
2087 | case '?': | |
2088 | length++; | |
2089 | goto POSSESSIVE; | |
2090 | ||
2091 | /* This covers the cases of braced repeats after a single char, metachar, | |
2092 | class, or back reference. */ | |
2093 | ||
2094 | case '{': | |
2095 | if (!isCountedRepeat(ptr + 1, patternEnd)) | |
2096 | goto NORMAL_CHAR; | |
2097 | ptr = readRepeatCounts(ptr + 1, &minRepeats, &maxRepeats, &errorcode); | |
2098 | if (errorcode != 0) | |
2099 | return -1; | |
2100 | ||
2101 | /* These special cases just insert one extra opcode */ | |
2102 | ||
2103 | if ((minRepeats == 0 && (maxRepeats == 1 || maxRepeats == -1)) || | |
2104 | (minRepeats == 1 && maxRepeats == -1)) | |
2105 | length++; | |
2106 | ||
2107 | /* These cases might insert additional copies of a preceding character. */ | |
2108 | ||
2109 | else { | |
2110 | if (minRepeats != 1) { | |
2111 | length -= lastitemlength; /* Uncount the original char or metachar */ | |
2112 | if (minRepeats > 0) | |
2113 | length += 3 + lastitemlength; | |
2114 | } | |
2115 | length += lastitemlength + ((maxRepeats > 0) ? 3 : 1); | |
2116 | } | |
2117 | ||
2118 | if (safelyCheckNextChar(ptr, patternEnd, '?')) | |
2119 | ptr++; /* Needs no extra length */ | |
2120 | ||
2121 | POSSESSIVE: /* Test for possessive quantifier */ | |
2122 | if (safelyCheckNextChar(ptr, patternEnd, '+')) { | |
2123 | ptr++; | |
2124 | length += 2 + 2 * LINK_SIZE; /* Allow for atomic brackets */ | |
2125 | } | |
2126 | continue; | |
2127 | ||
2128 | /* An alternation contains an offset to the next branch or ket. If any ims | |
2129 | options changed in the previous branch(es), and/or if we are in a | |
2130 | lookbehind assertion, extra space will be needed at the start of the | |
2131 | branch. This is handled by branch_extra. */ | |
2132 | ||
2133 | case '|': | |
2134 | if (brastackptr == 0) | |
2135 | cd.needOuterBracket = true; | |
2136 | length += 1 + LINK_SIZE + branch_extra; | |
2137 | continue; | |
2138 | ||
2139 | /* A character class uses 33 characters provided that all the character | |
2140 | values are less than 256. Otherwise, it uses a bit map for low valued | |
2141 | characters, and individual items for others. Don't worry about character | |
2142 | types that aren't allowed in classes - they'll get picked up during the | |
2143 | compile. A character class that contains only one single-byte character | |
2144 | uses 2 or 3 bytes, depending on whether it is negated or not. Notice this | |
2145 | where we can. (In UTF-8 mode we can do this only for chars < 128.) */ | |
2146 | ||
2147 | case '[': { | |
2148 | int class_optcount; | |
2149 | if (*(++ptr) == '^') { | |
2150 | class_optcount = 10; /* Greater than one */ | |
2151 | ptr++; | |
2152 | } | |
2153 | else | |
2154 | class_optcount = 0; | |
2155 | ||
2156 | bool class_utf8 = false; | |
2157 | ||
2158 | for (; ptr < patternEnd && *ptr != ']'; ++ptr) { | |
2159 | /* Check for escapes */ | |
2160 | ||
2161 | if (*ptr == '\\') { | |
2162 | c = checkEscape(&ptr, patternEnd, &errorcode, cd.numCapturingBrackets, true); | |
2163 | if (errorcode != 0) | |
2164 | return -1; | |
2165 | ||
2166 | /* Handle escapes that turn into characters */ | |
2167 | ||
2168 | if (c >= 0) | |
2169 | goto NON_SPECIAL_CHARACTER; | |
2170 | ||
2171 | /* Escapes that are meta-things. The normal ones just affect the | |
2172 | bit map, but Unicode properties require an XCLASS extended item. */ | |
2173 | ||
2174 | else | |
2175 | class_optcount = 10; /* \d, \s etc; make sure > 1 */ | |
2176 | } | |
2177 | ||
2178 | /* Anything else increments the possible optimization count. We have to | |
2179 | detect ranges here so that we can compute the number of extra ranges for | |
2180 | caseless wide characters when UCP support is available. If there are wide | |
2181 | characters, we are going to have to use an XCLASS, even for single | |
2182 | characters. */ | |
2183 | ||
2184 | else { | |
2185 | c = *ptr; | |
2186 | ||
2187 | /* Come here from handling \ above when it escapes to a char value */ | |
2188 | ||
2189 | NON_SPECIAL_CHARACTER: | |
2190 | class_optcount++; | |
2191 | ||
2192 | int d = -1; | |
2193 | if (safelyCheckNextChar(ptr, patternEnd, '-')) { | |
2194 | UChar const *hyptr = ptr++; | |
2195 | if (safelyCheckNextChar(ptr, patternEnd, '\\')) { | |
2196 | ptr++; | |
2197 | d = checkEscape(&ptr, patternEnd, &errorcode, cd.numCapturingBrackets, true); | |
2198 | if (errorcode != 0) | |
2199 | return -1; | |
2200 | } | |
2201 | else if ((ptr + 1 < patternEnd) && ptr[1] != ']') | |
2202 | d = *++ptr; | |
2203 | if (d < 0) | |
2204 | ptr = hyptr; /* go back to hyphen as data */ | |
2205 | } | |
2206 | ||
2207 | /* If d >= 0 we have a range. In UTF-8 mode, if the end is > 255, or > | |
2208 | 127 for caseless matching, we will need to use an XCLASS. */ | |
2209 | ||
2210 | if (d >= 0) { | |
2211 | class_optcount = 10; /* Ensure > 1 */ | |
2212 | if (d < c) { | |
2213 | errorcode = ERR8; | |
2214 | return -1; | |
2215 | } | |
2216 | ||
2217 | if ((d > 255 || (ignoreCase && d > 127))) { | |
2218 | unsigned char buffer[6]; | |
2219 | if (!class_utf8) /* Allow for XCLASS overhead */ | |
2220 | { | |
2221 | class_utf8 = true; | |
2222 | length += LINK_SIZE + 2; | |
2223 | } | |
2224 | ||
2225 | /* If we have UCP support, find out how many extra ranges are | |
2226 | needed to map the other case of characters within this range. We | |
2227 | have to mimic the range optimization here, because extending the | |
2228 | range upwards might push d over a boundary that makes it use | |
2229 | another byte in the UTF-8 representation. */ | |
2230 | ||
2231 | if (ignoreCase) { | |
2232 | int occ, ocd; | |
2233 | int cc = c; | |
2234 | int origd = d; | |
2235 | while (getOthercaseRange(&cc, origd, &occ, &ocd)) { | |
2236 | if (occ >= c && ocd <= d) | |
2237 | continue; /* Skip embedded */ | |
2238 | ||
2239 | if (occ < c && ocd >= c - 1) /* Extend the basic range */ | |
2240 | { /* if there is overlap, */ | |
2241 | c = occ; /* noting that if occ < c */ | |
2242 | continue; /* we can't have ocd > d */ | |
2243 | } /* because a subrange is */ | |
2244 | if (ocd > d && occ <= d + 1) /* always shorter than */ | |
2245 | { /* the basic range. */ | |
2246 | d = ocd; | |
2247 | continue; | |
2248 | } | |
2249 | ||
2250 | /* An extra item is needed */ | |
2251 | ||
2252 | length += 1 + encodeUTF8(occ, buffer) + | |
2253 | ((occ == ocd) ? 0 : encodeUTF8(ocd, buffer)); | |
2254 | } | |
2255 | } | |
2256 | ||
2257 | /* The length of the (possibly extended) range */ | |
2258 | ||
2259 | length += 1 + encodeUTF8(c, buffer) + encodeUTF8(d, buffer); | |
2260 | } | |
2261 | ||
2262 | } | |
2263 | ||
2264 | /* We have a single character. There is nothing to be done unless we | |
2265 | are in UTF-8 mode. If the char is > 255, or 127 when caseless, we must | |
2266 | allow for an XCL_SINGLE item, doubled for caselessness if there is UCP | |
2267 | support. */ | |
2268 | ||
2269 | else { | |
2270 | if ((c > 255 || (ignoreCase && c > 127))) { | |
2271 | unsigned char buffer[6]; | |
2272 | class_optcount = 10; /* Ensure > 1 */ | |
2273 | if (!class_utf8) /* Allow for XCLASS overhead */ | |
2274 | { | |
2275 | class_utf8 = true; | |
2276 | length += LINK_SIZE + 2; | |
2277 | } | |
2278 | length += (ignoreCase ? 2 : 1) * (1 + encodeUTF8(c, buffer)); | |
2279 | } | |
2280 | } | |
2281 | } | |
2282 | } | |
2283 | ||
2284 | if (ptr >= patternEnd) { /* Missing terminating ']' */ | |
2285 | errorcode = ERR6; | |
2286 | return -1; | |
2287 | } | |
2288 | ||
2289 | /* We can optimize when there was only one optimizable character. | |
2290 | Note that this does not detect the case of a negated single character. | |
2291 | In that case we do an incorrect length computation, but it's not a serious | |
2292 | problem because the computed length is too large rather than too small. */ | |
2293 | ||
2294 | if (class_optcount == 1) | |
2295 | goto NORMAL_CHAR; | |
2296 | ||
2297 | /* Here, we handle repeats for the class opcodes. */ | |
2298 | { | |
2299 | length += 33; | |
2300 | ||
2301 | /* A repeat needs either 1 or 5 bytes. If it is a possessive quantifier, | |
2302 | we also need extra for wrapping the whole thing in a sub-pattern. */ | |
2303 | ||
2304 | if (safelyCheckNextChar(ptr, patternEnd, '{') && isCountedRepeat(ptr + 2, patternEnd)) { | |
2305 | ptr = readRepeatCounts(ptr + 2, &minRepeats, &maxRepeats, &errorcode); | |
2306 | if (errorcode != 0) | |
2307 | return -1; | |
2308 | if ((minRepeats == 0 && (maxRepeats == 1 || maxRepeats == -1)) || | |
2309 | (minRepeats == 1 && maxRepeats == -1)) | |
2310 | length++; | |
2311 | else | |
2312 | length += 5; | |
2313 | if (safelyCheckNextChar(ptr, patternEnd, '+')) { | |
2314 | ptr++; | |
2315 | length += 2 + 2 * LINK_SIZE; | |
2316 | } else if (safelyCheckNextChar(ptr, patternEnd, '?')) | |
2317 | ptr++; | |
2318 | } | |
2319 | } | |
2320 | continue; | |
2321 | } | |
2322 | ||
2323 | /* Brackets may be genuine groups or special things */ | |
2324 | ||
2325 | case '(': { | |
2326 | int branch_newextra = 0; | |
2327 | int bracket_length = 1 + LINK_SIZE; | |
2328 | bool capturing = false; | |
2329 | ||
2330 | /* Handle special forms of bracket, which all start (? */ | |
2331 | ||
2332 | if (safelyCheckNextChar(ptr, patternEnd, '?')) { | |
2333 | switch (c = (ptr + 2 < patternEnd ? ptr[2] : 0)) { | |
2334 | /* Non-referencing groups and lookaheads just move the pointer on, and | |
2335 | then behave like a non-special bracket, except that they don't increment | |
2336 | the count of extracting brackets. Ditto for the "once only" bracket, | |
2337 | which is in Perl from version 5.005. */ | |
2338 | ||
2339 | case ':': | |
2340 | case '=': | |
2341 | case '!': | |
2342 | ptr += 2; | |
2343 | break; | |
2344 | ||
2345 | /* Else loop checking valid options until ) is met. Anything else is an | |
2346 | error. If we are without any brackets, i.e. at top level, the settings | |
2347 | act as if specified in the options, so massage the options immediately. | |
2348 | This is for backward compatibility with Perl 5.004. */ | |
2349 | ||
2350 | default: | |
2351 | errorcode = ERR12; | |
2352 | return -1; | |
2353 | } | |
2354 | } else | |
2355 | capturing = 1; | |
2356 | ||
2357 | /* Capturing brackets must be counted so we can process escapes in a | |
2358 | Perlish way. If the number exceeds EXTRACT_BASIC_MAX we are going to need | |
2359 | an additional 3 bytes of memory per capturing bracket. */ | |
2360 | ||
2361 | if (capturing) { | |
2362 | bracount++; | |
2363 | if (bracount > EXTRACT_BASIC_MAX) | |
2364 | bracket_length += 3; | |
2365 | } | |
2366 | ||
2367 | /* Save length for computing whole length at end if there's a repeat that | |
2368 | requires duplication of the group. Also save the current value of | |
2369 | branch_extra, and start the new group with the new value. If non-zero, this | |
2370 | will either be 2 for a (?imsx: group, or 3 for a lookbehind assertion. */ | |
2371 | ||
2372 | if (brastackptr >= sizeof(brastack)/sizeof(int)) { | |
2373 | errorcode = ERR17; | |
2374 | return -1; | |
2375 | } | |
2376 | ||
2377 | bralenstack[brastackptr] = branch_extra; | |
2378 | branch_extra = branch_newextra; | |
2379 | ||
2380 | brastack[brastackptr++] = length; | |
2381 | length += bracket_length; | |
2382 | continue; | |
2383 | } | |
2384 | ||
2385 | /* Handle ket. Look for subsequent maxRepeats/minRepeats; for certain sets of values we | |
2386 | have to replicate this bracket up to that many times. If brastackptr is | |
2387 | 0 this is an unmatched bracket which will generate an error, but take care | |
2388 | not to try to access brastack[-1] when computing the length and restoring | |
2389 | the branch_extra value. */ | |
2390 | ||
2391 | case ')': { | |
2392 | int duplength; | |
2393 | length += 1 + LINK_SIZE; | |
2394 | if (brastackptr > 0) { | |
2395 | duplength = length - brastack[--brastackptr]; | |
2396 | branch_extra = bralenstack[brastackptr]; | |
2397 | } | |
2398 | else | |
2399 | duplength = 0; | |
2400 | ||
2401 | /* Leave ptr at the final char; for readRepeatCounts this happens | |
2402 | automatically; for the others we need an increment. */ | |
2403 | ||
2404 | if ((ptr + 1 < patternEnd) && (c = ptr[1]) == '{' && isCountedRepeat(ptr + 2, patternEnd)) { | |
2405 | ptr = readRepeatCounts(ptr + 2, &minRepeats, &maxRepeats, &errorcode); | |
2406 | if (errorcode) | |
2407 | return -1; | |
2408 | } else if (c == '*') { | |
2409 | minRepeats = 0; | |
2410 | maxRepeats = -1; | |
2411 | ptr++; | |
2412 | } else if (c == '+') { | |
2413 | minRepeats = 1; | |
2414 | maxRepeats = -1; | |
2415 | ptr++; | |
2416 | } else if (c == '?') { | |
2417 | minRepeats = 0; | |
2418 | maxRepeats = 1; | |
2419 | ptr++; | |
2420 | } else { | |
2421 | minRepeats = 1; | |
2422 | maxRepeats = 1; | |
2423 | } | |
2424 | ||
2425 | /* If the minimum is zero, we have to allow for an OP_BRAZERO before the | |
2426 | group, and if the maximum is greater than zero, we have to replicate | |
2427 | maxval-1 times; each replication acquires an OP_BRAZERO plus a nesting | |
2428 | bracket set. */ | |
2429 | ||
2430 | int repeatsLength; | |
2431 | if (minRepeats == 0) { | |
2432 | length++; | |
2433 | if (maxRepeats > 0) { | |
2434 | repeatsLength = multiplyWithOverflowCheck(maxRepeats - 1, duplength + 3 + 2 * LINK_SIZE); | |
2435 | if (repeatsLength < 0) { | |
2436 | errorcode = ERR16; | |
2437 | return -1; | |
2438 | } | |
2439 | length += repeatsLength; | |
2440 | if (length > MAX_PATTERN_SIZE) { | |
2441 | errorcode = ERR16; | |
2442 | return -1; | |
2443 | } | |
2444 | } | |
2445 | } | |
2446 | ||
2447 | /* When the minimum is greater than zero, we have to replicate up to | |
2448 | minval-1 times, with no additions required in the copies. Then, if there | |
2449 | is a limited maximum we have to replicate up to maxval-1 times allowing | |
2450 | for a BRAZERO item before each optional copy and nesting brackets for all | |
2451 | but one of the optional copies. */ | |
2452 | ||
2453 | else { | |
2454 | repeatsLength = multiplyWithOverflowCheck(minRepeats - 1, duplength); | |
2455 | if (repeatsLength < 0) { | |
2456 | errorcode = ERR16; | |
2457 | return -1; | |
2458 | } | |
2459 | length += repeatsLength; | |
2460 | if (maxRepeats > minRepeats) { /* Need this test as maxRepeats=-1 means no limit */ | |
2461 | repeatsLength = multiplyWithOverflowCheck(maxRepeats - minRepeats, duplength + 3 + 2 * LINK_SIZE); | |
2462 | if (repeatsLength < 0) { | |
2463 | errorcode = ERR16; | |
2464 | return -1; | |
2465 | } | |
2466 | length += repeatsLength - (2 + 2 * LINK_SIZE); | |
2467 | } | |
2468 | if (length > MAX_PATTERN_SIZE) { | |
2469 | errorcode = ERR16; | |
2470 | return -1; | |
2471 | } | |
2472 | } | |
2473 | ||
2474 | /* Allow space for once brackets for "possessive quantifier" */ | |
2475 | ||
2476 | if (safelyCheckNextChar(ptr, patternEnd, '+')) { | |
2477 | ptr++; | |
2478 | length += 2 + 2 * LINK_SIZE; | |
2479 | } | |
2480 | continue; | |
2481 | } | |
2482 | ||
2483 | /* Non-special character. It won't be space or # in extended mode, so it is | |
2484 | always a genuine character. If we are in a \Q...\E sequence, check for the | |
2485 | end; if not, we have a literal. */ | |
2486 | ||
2487 | default: | |
2488 | NORMAL_CHAR: | |
2489 | length += 2; /* For a one-byte character */ | |
2490 | lastitemlength = 1; /* Default length of last item for repeats */ | |
2491 | ||
2492 | if (c > 127) { | |
2493 | int i; | |
2494 | for (i = 0; i < kjs_pcre_utf8_table1_size; i++) | |
2495 | if (c <= kjs_pcre_utf8_table1[i]) | |
2496 | break; | |
2497 | length += i; | |
2498 | lastitemlength += i; | |
2499 | } | |
2500 | ||
2501 | continue; | |
2502 | } | |
2503 | } | |
2504 | ||
2505 | length += 2 + LINK_SIZE; /* For final KET and END */ | |
2506 | ||
2507 | cd.numCapturingBrackets = bracount; | |
2508 | return length; | |
2509 | } | |
2510 | ||
2511 | /************************************************* | |
2512 | * Compile a Regular Expression * | |
2513 | *************************************************/ | |
2514 | ||
2515 | /* This function takes a string and returns a pointer to a block of store | |
2516 | holding a compiled version of the expression. The original API for this | |
2517 | function had no error code return variable; it is retained for backwards | |
2518 | compatibility. The new function is given a new name. | |
2519 | ||
2520 | Arguments: | |
2521 | pattern the regular expression | |
2522 | options various option bits | |
2523 | errorcodeptr pointer to error code variable (pcre_compile2() only) | |
2524 | can be NULL if you don't want a code value | |
2525 | errorptr pointer to pointer to error text | |
2526 | erroroffset ptr offset in pattern where error was detected | |
2527 | tables pointer to character tables or NULL | |
2528 | ||
2529 | Returns: pointer to compiled data block, or NULL on error, | |
2530 | with errorptr and erroroffset set | |
2531 | */ | |
2532 | ||
2533 | static inline JSRegExp* returnError(ErrorCode errorcode, const char** errorptr) | |
2534 | { | |
2535 | *errorptr = errorText(errorcode); | |
2536 | return 0; | |
2537 | } | |
2538 | ||
2539 | JSRegExp* jsRegExpCompile(const UChar* pattern, int patternLength, | |
2540 | JSRegExpIgnoreCaseOption ignoreCase, JSRegExpMultilineOption multiline, | |
2541 | unsigned* numSubpatterns, const char** errorptr) | |
2542 | { | |
2543 | /* We can't pass back an error message if errorptr is NULL; I guess the best we | |
2544 | can do is just return NULL, but we can set a code value if there is a code pointer. */ | |
2545 | if (!errorptr) | |
2546 | return 0; | |
2547 | *errorptr = NULL; | |
2548 | ||
2549 | CompileData cd; | |
2550 | ||
2551 | ErrorCode errorcode = ERR0; | |
2552 | /* Call this once just to count the brackets. */ | |
2553 | calculateCompiledPatternLength(pattern, patternLength, ignoreCase, cd, errorcode); | |
2554 | /* Call it again to compute the length. */ | |
2555 | int length = calculateCompiledPatternLength(pattern, patternLength, ignoreCase, cd, errorcode); | |
2556 | if (errorcode) | |
2557 | return returnError(errorcode, errorptr); | |
2558 | ||
2559 | if (length > MAX_PATTERN_SIZE) | |
2560 | return returnError(ERR16, errorptr); | |
2561 | ||
2562 | size_t size = length + sizeof(JSRegExp); | |
2563 | JSRegExp* re = reinterpret_cast<JSRegExp*>(new char[size]); | |
2564 | ||
2565 | if (!re) | |
2566 | return returnError(ERR13, errorptr); | |
2567 | ||
2568 | re->options = (ignoreCase ? IgnoreCaseOption : 0) | (multiline ? MatchAcrossMultipleLinesOption : 0); | |
2569 | ||
2570 | /* The starting points of the name/number translation table and of the code are | |
2571 | passed around in the compile data block. */ | |
2572 | ||
2573 | const unsigned char* codeStart = (const unsigned char*)(re + 1); | |
2574 | ||
2575 | /* Set up a starting, non-extracting bracket, then compile the expression. On | |
2576 | error, errorcode will be set non-zero, so we don't need to look at the result | |
2577 | of the function here. */ | |
2578 | ||
2579 | const UChar* ptr = (const UChar*)pattern; | |
2580 | const UChar* patternEnd = pattern + patternLength; | |
2581 | unsigned char* code = (unsigned char*)codeStart; | |
2582 | int firstbyte, reqbyte; | |
2583 | int bracketCount = 0; | |
2584 | if (!cd.needOuterBracket) | |
2585 | compileBranch(re->options, &bracketCount, &code, &ptr, patternEnd, &errorcode, &firstbyte, &reqbyte, cd); | |
2586 | else { | |
2587 | *code = OP_BRA; | |
2588 | compileBracket(re->options, &bracketCount, &code, &ptr, patternEnd, &errorcode, 0, &firstbyte, &reqbyte, cd); | |
2589 | } | |
2590 | re->top_bracket = bracketCount; | |
2591 | re->top_backref = cd.top_backref; | |
2592 | ||
2593 | /* If not reached end of pattern on success, there's an excess bracket. */ | |
2594 | ||
2595 | if (errorcode == 0 && ptr < patternEnd) | |
2596 | errorcode = ERR10; | |
2597 | ||
2598 | /* Fill in the terminating state and check for disastrous overflow, but | |
2599 | if debugging, leave the test till after things are printed out. */ | |
2600 | ||
2601 | *code++ = OP_END; | |
2602 | ||
2603 | ASSERT(code - codeStart <= length); | |
2604 | if (code - codeStart > length) | |
2605 | errorcode = ERR7; | |
2606 | ||
2607 | /* Give an error if there's back reference to a non-existent capturing | |
2608 | subpattern. */ | |
2609 | ||
2610 | if (re->top_backref > re->top_bracket) | |
2611 | errorcode = ERR15; | |
2612 | ||
2613 | /* Failed to compile, or error while post-processing */ | |
2614 | ||
2615 | if (errorcode != ERR0) { | |
2616 | delete [] reinterpret_cast<char*>(re); | |
2617 | return returnError(errorcode, errorptr); | |
2618 | } | |
2619 | ||
2620 | /* If the anchored option was not passed, set the flag if we can determine that | |
2621 | the pattern is anchored by virtue of ^ characters or \A or anything else (such | |
2622 | as starting with .* when DOTALL is set). | |
2623 | ||
2624 | Otherwise, if we know what the first character has to be, save it, because that | |
2625 | speeds up unanchored matches no end. If not, see if we can set the | |
2626 | UseMultiLineFirstByteOptimizationOption flag. This is helpful for multiline matches when all branches | |
2627 | start with ^. and also when all branches start with .* for non-DOTALL matches. | |
2628 | */ | |
2629 | ||
2630 | if (cd.needOuterBracket ? bracketIsAnchored(codeStart) : branchIsAnchored(codeStart)) | |
2631 | re->options |= IsAnchoredOption; | |
2632 | else { | |
2633 | if (firstbyte < 0) { | |
2634 | firstbyte = (cd.needOuterBracket | |
2635 | ? bracketFindFirstAssertedCharacter(codeStart, false) | |
2636 | : branchFindFirstAssertedCharacter(codeStart, false)) | |
2637 | | ((re->options & IgnoreCaseOption) ? REQ_IGNORE_CASE : 0); | |
2638 | } | |
2639 | if (firstbyte >= 0) { | |
2640 | int ch = firstbyte & 255; | |
2641 | if (ch < 127) { | |
2642 | re->first_byte = ((firstbyte & REQ_IGNORE_CASE) && flipCase(ch) == ch) ? ch : firstbyte; | |
2643 | re->options |= UseFirstByteOptimizationOption; | |
2644 | } | |
2645 | } else { | |
2646 | if (cd.needOuterBracket ? bracketNeedsLineStart(codeStart, 0, cd.backrefMap) : branchNeedsLineStart(codeStart, 0, cd.backrefMap)) | |
2647 | re->options |= UseMultiLineFirstByteOptimizationOption; | |
2648 | } | |
2649 | } | |
2650 | ||
2651 | /* For an anchored pattern, we use the "required byte" only if it follows a | |
2652 | variable length item in the regex. Remove the caseless flag for non-caseable | |
2653 | bytes. */ | |
2654 | ||
2655 | if (reqbyte >= 0 && (!(re->options & IsAnchoredOption) || (reqbyte & REQ_VARY))) { | |
2656 | int ch = reqbyte & 255; | |
2657 | if (ch < 127) { | |
2658 | re->req_byte = ((reqbyte & REQ_IGNORE_CASE) && flipCase(ch) == ch) ? (reqbyte & ~REQ_IGNORE_CASE) : reqbyte; | |
2659 | re->options |= UseRequiredByteOptimizationOption; | |
2660 | } | |
2661 | } | |
2662 | ||
2663 | if (numSubpatterns) | |
2664 | *numSubpatterns = re->top_bracket; | |
2665 | return re; | |
2666 | } | |
2667 | ||
2668 | void jsRegExpFree(JSRegExp* re) | |
2669 | { | |
2670 | delete [] reinterpret_cast<char*>(re); | |
2671 | } |