]>
Commit | Line | Data |
---|---|---|
b37bf2e1 A |
1 | /* |
2 | * Copyright (C) 1999-2000 Harri Porten (porten@kde.org) | |
3 | * Copyright (C) 2003, 2007 Apple Inc. All rights reserved. | |
4 | * Copyright (C) 2003 Peter Kelly (pmk@post.com) | |
5 | * Copyright (C) 2006 Alexey Proskuryakov (ap@nypop.com) | |
6 | * | |
7 | * This library is free software; you can redistribute it and/or | |
8 | * modify it under the terms of the GNU Lesser General Public | |
9 | * License as published by the Free Software Foundation; either | |
10 | * version 2 of the License, or (at your option) any later version. | |
11 | * | |
12 | * This library is distributed in the hope that it will be useful, | |
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
15 | * Lesser General Public License for more details. | |
16 | * | |
17 | * You should have received a copy of the GNU Lesser General Public | |
18 | * License along with this library; if not, write to the Free Software | |
19 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
20 | * | |
21 | */ | |
22 | ||
23 | #include "config.h" | |
24 | #include "array_instance.h" | |
25 | ||
26 | #include "JSGlobalObject.h" | |
27 | #include "PropertyNameArray.h" | |
28 | #include <wtf/Assertions.h> | |
29 | ||
30 | using namespace std; | |
31 | ||
32 | namespace KJS { | |
33 | ||
34 | typedef HashMap<unsigned, JSValue*> SparseArrayValueMap; | |
35 | ||
36 | struct ArrayStorage { | |
37 | unsigned m_numValuesInVector; | |
38 | SparseArrayValueMap* m_sparseValueMap; | |
39 | JSValue* m_vector[1]; | |
40 | }; | |
41 | ||
42 | // 0xFFFFFFFF is a bit weird -- is not an array index even though it's an integer | |
43 | static const unsigned maxArrayIndex = 0xFFFFFFFEU; | |
44 | ||
45 | // Our policy for when to use a vector and when to use a sparse map. | |
46 | // For all array indices under sparseArrayCutoff, we always use a vector. | |
47 | // When indices greater than sparseArrayCutoff are involved, we use a vector | |
48 | // as long as it is 1/8 full. If more sparse than that, we use a map. | |
49 | // This value has to be a macro to be used in max() and min() without introducing | |
50 | // a PIC branch in Mach-O binaries, see <rdar://problem/5971391>. | |
51 | #define sparseArrayCutoff 10000U | |
52 | static const unsigned minDensityMultiplier = 8; | |
53 | ||
54 | static const unsigned copyingSortCutoff = 50000; | |
55 | ||
56 | const ClassInfo ArrayInstance::info = {"Array", 0, 0}; | |
57 | ||
58 | static inline size_t storageSize(unsigned vectorLength) | |
59 | { | |
60 | return sizeof(ArrayStorage) - sizeof(JSValue*) + vectorLength * sizeof(JSValue*); | |
61 | } | |
62 | ||
63 | static inline unsigned increasedVectorLength(unsigned newLength) | |
64 | { | |
65 | return (newLength * 3 + 1) / 2; | |
66 | } | |
67 | ||
68 | static inline bool isDenseEnoughForVector(unsigned length, unsigned numValues) | |
69 | { | |
70 | return length / minDensityMultiplier <= numValues; | |
71 | } | |
72 | ||
73 | ArrayInstance::ArrayInstance(JSObject* prototype, unsigned initialLength) | |
74 | : JSObject(prototype) | |
75 | { | |
76 | unsigned initialCapacity = min(initialLength, sparseArrayCutoff); | |
77 | ||
78 | m_length = initialLength; | |
79 | m_vectorLength = initialCapacity; | |
80 | m_storage = static_cast<ArrayStorage*>(fastZeroedMalloc(storageSize(initialCapacity))); | |
81 | ||
82 | Collector::reportExtraMemoryCost(initialCapacity * sizeof(JSValue*)); | |
83 | } | |
84 | ||
85 | ArrayInstance::ArrayInstance(JSObject* prototype, const List& list) | |
86 | : JSObject(prototype) | |
87 | { | |
88 | unsigned length = list.size(); | |
89 | ||
90 | m_length = length; | |
91 | m_vectorLength = length; | |
92 | ||
93 | ArrayStorage* storage = static_cast<ArrayStorage*>(fastMalloc(storageSize(length))); | |
94 | ||
95 | storage->m_numValuesInVector = length; | |
96 | storage->m_sparseValueMap = 0; | |
97 | ||
98 | size_t i = 0; | |
99 | List::const_iterator end = list.end(); | |
100 | for (List::const_iterator it = list.begin(); it != end; ++it, ++i) | |
101 | storage->m_vector[i] = *it; | |
102 | ||
103 | m_storage = storage; | |
104 | ||
105 | // When the array is created non-empty, its cells are filled, so it's really no worse than | |
106 | // a property map. Therefore don't report extra memory cost. | |
107 | } | |
108 | ||
109 | ArrayInstance::~ArrayInstance() | |
110 | { | |
111 | delete m_storage->m_sparseValueMap; | |
112 | fastFree(m_storage); | |
113 | } | |
114 | ||
115 | JSValue* ArrayInstance::getItem(unsigned i) const | |
116 | { | |
117 | ASSERT(i <= maxArrayIndex); | |
118 | ||
119 | ArrayStorage* storage = m_storage; | |
120 | ||
121 | if (i < m_vectorLength) { | |
122 | JSValue* value = storage->m_vector[i]; | |
123 | return value ? value : jsUndefined(); | |
124 | } | |
125 | ||
126 | SparseArrayValueMap* map = storage->m_sparseValueMap; | |
127 | if (!map) | |
128 | return jsUndefined(); | |
129 | ||
130 | JSValue* value = map->get(i); | |
131 | return value ? value : jsUndefined(); | |
132 | } | |
133 | ||
134 | JSValue* ArrayInstance::lengthGetter(ExecState*, JSObject*, const Identifier&, const PropertySlot& slot) | |
135 | { | |
136 | return jsNumber(static_cast<ArrayInstance*>(slot.slotBase())->m_length); | |
137 | } | |
138 | ||
139 | ALWAYS_INLINE bool ArrayInstance::inlineGetOwnPropertySlot(ExecState* exec, unsigned i, PropertySlot& slot) | |
140 | { | |
141 | ArrayStorage* storage = m_storage; | |
142 | ||
143 | if (i >= m_length) { | |
144 | if (i > maxArrayIndex) | |
145 | return getOwnPropertySlot(exec, Identifier::from(i), slot); | |
146 | return false; | |
147 | } | |
148 | ||
149 | if (i < m_vectorLength) { | |
150 | JSValue*& valueSlot = storage->m_vector[i]; | |
151 | if (valueSlot) { | |
152 | slot.setValueSlot(this, &valueSlot); | |
153 | return true; | |
154 | } | |
155 | } else if (SparseArrayValueMap* map = storage->m_sparseValueMap) { | |
156 | if (i >= sparseArrayCutoff) { | |
157 | SparseArrayValueMap::iterator it = map->find(i); | |
158 | if (it != map->end()) { | |
159 | slot.setValueSlot(this, &it->second); | |
160 | return true; | |
161 | } | |
162 | } | |
163 | } | |
164 | ||
165 | return false; | |
166 | } | |
167 | ||
168 | bool ArrayInstance::getOwnPropertySlot(ExecState* exec, const Identifier& propertyName, PropertySlot& slot) | |
169 | { | |
170 | if (propertyName == exec->propertyNames().length) { | |
171 | slot.setCustom(this, lengthGetter); | |
172 | return true; | |
173 | } | |
174 | ||
175 | bool isArrayIndex; | |
176 | unsigned i = propertyName.toArrayIndex(&isArrayIndex); | |
177 | if (isArrayIndex) | |
178 | return inlineGetOwnPropertySlot(exec, i, slot); | |
179 | ||
180 | return JSObject::getOwnPropertySlot(exec, propertyName, slot); | |
181 | } | |
182 | ||
183 | bool ArrayInstance::getOwnPropertySlot(ExecState* exec, unsigned i, PropertySlot& slot) | |
184 | { | |
185 | return inlineGetOwnPropertySlot(exec, i, slot); | |
186 | } | |
187 | ||
188 | // ECMA 15.4.5.1 | |
189 | void ArrayInstance::put(ExecState* exec, const Identifier& propertyName, JSValue* value, int attributes) | |
190 | { | |
191 | bool isArrayIndex; | |
192 | unsigned i = propertyName.toArrayIndex(&isArrayIndex); | |
193 | if (isArrayIndex) { | |
194 | put(exec, i, value, attributes); | |
195 | return; | |
196 | } | |
197 | ||
198 | if (propertyName == exec->propertyNames().length) { | |
199 | unsigned newLength = value->toUInt32(exec); | |
200 | if (value->toNumber(exec) != static_cast<double>(newLength)) { | |
201 | throwError(exec, RangeError, "Invalid array length."); | |
202 | return; | |
203 | } | |
204 | setLength(newLength); | |
205 | return; | |
206 | } | |
207 | ||
208 | JSObject::put(exec, propertyName, value, attributes); | |
209 | } | |
210 | ||
211 | void ArrayInstance::put(ExecState* exec, unsigned i, JSValue* value, int attributes) | |
212 | { | |
213 | if (i > maxArrayIndex) { | |
214 | put(exec, Identifier::from(i), value, attributes); | |
215 | return; | |
216 | } | |
217 | ||
218 | ArrayStorage* storage = m_storage; | |
219 | ||
220 | unsigned length = m_length; | |
221 | if (i >= length) { | |
222 | length = i + 1; | |
223 | m_length = length; | |
224 | } | |
225 | ||
226 | if (i < m_vectorLength) { | |
227 | JSValue*& valueSlot = storage->m_vector[i]; | |
228 | storage->m_numValuesInVector += !valueSlot; | |
229 | valueSlot = value; | |
230 | return; | |
231 | } | |
232 | ||
233 | SparseArrayValueMap* map = storage->m_sparseValueMap; | |
234 | ||
235 | if (i >= sparseArrayCutoff) { | |
236 | // We miss some cases where we could compact the storage, such as a large array that is being filled from the end | |
237 | // (which will only be compacted as we reach indices that are less than cutoff) - but this makes the check much faster. | |
238 | if (!isDenseEnoughForVector(i + 1, storage->m_numValuesInVector + 1)) { | |
239 | if (!map) { | |
240 | map = new SparseArrayValueMap; | |
241 | storage->m_sparseValueMap = map; | |
242 | } | |
243 | map->set(i, value); | |
244 | return; | |
245 | } | |
246 | } | |
247 | ||
248 | // We have decided that we'll put the new item into the vector. | |
249 | // Fast case is when there is no sparse map, so we can increase the vector size without moving values from it. | |
250 | if (!map || map->isEmpty()) { | |
251 | increaseVectorLength(i + 1); | |
252 | storage = m_storage; | |
253 | ++storage->m_numValuesInVector; | |
254 | storage->m_vector[i] = value; | |
255 | return; | |
256 | } | |
257 | ||
258 | // Decide how many values it would be best to move from the map. | |
259 | unsigned newNumValuesInVector = storage->m_numValuesInVector + 1; | |
260 | unsigned newVectorLength = increasedVectorLength(i + 1); | |
261 | for (unsigned j = max(m_vectorLength, sparseArrayCutoff); j < newVectorLength; ++j) | |
262 | newNumValuesInVector += map->contains(j); | |
263 | if (i >= sparseArrayCutoff) | |
264 | newNumValuesInVector -= map->contains(i); | |
265 | if (isDenseEnoughForVector(newVectorLength, newNumValuesInVector)) { | |
266 | unsigned proposedNewNumValuesInVector = newNumValuesInVector; | |
267 | while (true) { | |
268 | unsigned proposedNewVectorLength = increasedVectorLength(newVectorLength + 1); | |
269 | for (unsigned j = max(newVectorLength, sparseArrayCutoff); j < proposedNewVectorLength; ++j) | |
270 | proposedNewNumValuesInVector += map->contains(j); | |
271 | if (!isDenseEnoughForVector(proposedNewVectorLength, proposedNewNumValuesInVector)) | |
272 | break; | |
273 | newVectorLength = proposedNewVectorLength; | |
274 | newNumValuesInVector = proposedNewNumValuesInVector; | |
275 | } | |
276 | } | |
277 | ||
278 | storage = static_cast<ArrayStorage*>(fastRealloc(storage, storageSize(newVectorLength))); | |
279 | ||
280 | unsigned vectorLength = m_vectorLength; | |
281 | if (newNumValuesInVector == storage->m_numValuesInVector + 1) { | |
282 | for (unsigned j = vectorLength; j < newVectorLength; ++j) | |
283 | storage->m_vector[j] = 0; | |
284 | if (i > sparseArrayCutoff) | |
285 | map->remove(i); | |
286 | } else { | |
287 | for (unsigned j = vectorLength; j < max(vectorLength, sparseArrayCutoff); ++j) | |
288 | storage->m_vector[j] = 0; | |
289 | for (unsigned j = max(vectorLength, sparseArrayCutoff); j < newVectorLength; ++j) | |
290 | storage->m_vector[j] = map->take(j); | |
291 | } | |
292 | ||
293 | storage->m_vector[i] = value; | |
294 | ||
295 | m_vectorLength = newVectorLength; | |
296 | storage->m_numValuesInVector = newNumValuesInVector; | |
297 | ||
298 | m_storage = storage; | |
299 | } | |
300 | ||
301 | bool ArrayInstance::deleteProperty(ExecState* exec, const Identifier& propertyName) | |
302 | { | |
303 | bool isArrayIndex; | |
304 | unsigned i = propertyName.toArrayIndex(&isArrayIndex); | |
305 | if (isArrayIndex) | |
306 | return deleteProperty(exec, i); | |
307 | ||
308 | if (propertyName == exec->propertyNames().length) | |
309 | return false; | |
310 | ||
311 | return JSObject::deleteProperty(exec, propertyName); | |
312 | } | |
313 | ||
314 | bool ArrayInstance::deleteProperty(ExecState* exec, unsigned i) | |
315 | { | |
316 | ArrayStorage* storage = m_storage; | |
317 | ||
318 | if (i < m_vectorLength) { | |
319 | JSValue*& valueSlot = storage->m_vector[i]; | |
320 | bool hadValue = valueSlot; | |
321 | valueSlot = 0; | |
322 | storage->m_numValuesInVector -= hadValue; | |
323 | return hadValue; | |
324 | } | |
325 | ||
326 | if (SparseArrayValueMap* map = storage->m_sparseValueMap) { | |
327 | if (i >= sparseArrayCutoff) { | |
328 | SparseArrayValueMap::iterator it = map->find(i); | |
329 | if (it != map->end()) { | |
330 | map->remove(it); | |
331 | return true; | |
332 | } | |
333 | } | |
334 | } | |
335 | ||
336 | if (i > maxArrayIndex) | |
337 | return deleteProperty(exec, Identifier::from(i)); | |
338 | ||
339 | return false; | |
340 | } | |
341 | ||
342 | void ArrayInstance::getPropertyNames(ExecState* exec, PropertyNameArray& propertyNames) | |
343 | { | |
344 | // FIXME: Filling PropertyNameArray with an identifier for every integer | |
345 | // is incredibly inefficient for large arrays. We need a different approach. | |
346 | ||
347 | ArrayStorage* storage = m_storage; | |
348 | ||
349 | unsigned usedVectorLength = min(m_length, m_vectorLength); | |
350 | for (unsigned i = 0; i < usedVectorLength; ++i) { | |
351 | if (storage->m_vector[i]) | |
352 | propertyNames.add(Identifier::from(i)); | |
353 | } | |
354 | ||
355 | if (SparseArrayValueMap* map = storage->m_sparseValueMap) { | |
356 | SparseArrayValueMap::iterator end = map->end(); | |
357 | for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it) | |
358 | propertyNames.add(Identifier::from(it->first)); | |
359 | } | |
360 | ||
361 | JSObject::getPropertyNames(exec, propertyNames); | |
362 | } | |
363 | ||
364 | void ArrayInstance::increaseVectorLength(unsigned newLength) | |
365 | { | |
366 | // This function leaves the array in an internally inconsistent state, because it does not move any values from sparse value map | |
367 | // to the vector. Callers have to account for that, because they can do it more efficiently. | |
368 | ||
369 | ArrayStorage* storage = m_storage; | |
370 | ||
371 | unsigned vectorLength = m_vectorLength; | |
372 | ASSERT(newLength > vectorLength); | |
373 | unsigned newVectorLength = increasedVectorLength(newLength); | |
374 | ||
375 | storage = static_cast<ArrayStorage*>(fastRealloc(storage, storageSize(newVectorLength))); | |
376 | m_vectorLength = newVectorLength; | |
377 | ||
378 | for (unsigned i = vectorLength; i < newVectorLength; ++i) | |
379 | storage->m_vector[i] = 0; | |
380 | ||
381 | m_storage = storage; | |
382 | } | |
383 | ||
384 | void ArrayInstance::setLength(unsigned newLength) | |
385 | { | |
386 | ArrayStorage* storage = m_storage; | |
387 | ||
388 | unsigned length = m_length; | |
389 | ||
390 | if (newLength < length) { | |
391 | unsigned usedVectorLength = min(length, m_vectorLength); | |
392 | for (unsigned i = newLength; i < usedVectorLength; ++i) { | |
393 | JSValue*& valueSlot = storage->m_vector[i]; | |
394 | bool hadValue = valueSlot; | |
395 | valueSlot = 0; | |
396 | storage->m_numValuesInVector -= hadValue; | |
397 | } | |
398 | ||
399 | if (SparseArrayValueMap* map = storage->m_sparseValueMap) { | |
400 | SparseArrayValueMap copy = *map; | |
401 | SparseArrayValueMap::iterator end = copy.end(); | |
402 | for (SparseArrayValueMap::iterator it = copy.begin(); it != end; ++it) { | |
403 | if (it->first >= newLength) | |
404 | map->remove(it->first); | |
405 | } | |
406 | if (map->isEmpty()) { | |
407 | delete map; | |
408 | storage->m_sparseValueMap = 0; | |
409 | } | |
410 | } | |
411 | } | |
412 | ||
413 | m_length = newLength; | |
414 | } | |
415 | ||
416 | void ArrayInstance::mark() | |
417 | { | |
418 | JSObject::mark(); | |
419 | ||
420 | ArrayStorage* storage = m_storage; | |
421 | ||
422 | unsigned usedVectorLength = min(m_length, m_vectorLength); | |
423 | for (unsigned i = 0; i < usedVectorLength; ++i) { | |
424 | JSValue* value = storage->m_vector[i]; | |
425 | if (value && !value->marked()) | |
426 | value->mark(); | |
427 | } | |
428 | ||
429 | if (SparseArrayValueMap* map = storage->m_sparseValueMap) { | |
430 | SparseArrayValueMap::iterator end = map->end(); | |
431 | for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it) { | |
432 | JSValue* value = it->second; | |
433 | if (!value->marked()) | |
434 | value->mark(); | |
435 | } | |
436 | } | |
437 | } | |
438 | ||
439 | static int compareByStringPairForQSort(const void* a, const void* b) | |
440 | { | |
441 | const std::pair<JSValue*, UString>* va = static_cast<const std::pair<JSValue*, UString>*>(a); | |
442 | const std::pair<JSValue*, UString>* vb = static_cast<const std::pair<JSValue*, UString>*>(b); | |
443 | return compare(va->second, vb->second); | |
444 | } | |
445 | ||
446 | static ExecState* execForCompareByStringForQSort = 0; | |
447 | static int compareByStringForQSort(const void* a, const void* b) | |
448 | { | |
449 | ExecState* exec = execForCompareByStringForQSort; | |
450 | ||
451 | JSValue* va = *static_cast<JSValue* const*>(a); | |
452 | JSValue* vb = *static_cast<JSValue* const*>(b); | |
453 | ASSERT(!va->isUndefined()); | |
454 | ASSERT(!vb->isUndefined()); | |
455 | ||
456 | return compare(va->toString(exec), vb->toString(exec)); | |
457 | } | |
458 | ||
459 | void ArrayInstance::sort(ExecState* exec) | |
460 | { | |
461 | unsigned lengthNotIncludingUndefined = compactForSorting(); | |
462 | ||
463 | if (lengthNotIncludingUndefined < copyingSortCutoff) { | |
464 | // Converting JavaScript values to strings can be expensive, so we do it once up front and sort based on that. | |
465 | // This is a considerable improvement over doing it twice per comparison, though it requires a large temporary | |
466 | // buffer. For large arrays, we fall back to a qsort on the JavaScriptValues to avoid creating copies. | |
467 | ||
468 | Vector<std::pair<JSValue*, UString> > values(lengthNotIncludingUndefined); | |
469 | for (size_t i = 0; i < lengthNotIncludingUndefined; i++) { | |
470 | JSValue* value = m_storage->m_vector[i]; | |
471 | ASSERT(!value->isUndefined()); | |
472 | values[i].first = value; | |
473 | values[i].second = value->toString(exec); | |
474 | } | |
475 | ||
476 | // FIXME: Since we sort by string value, a fast algorithm might be to use a radix sort. That would be O(N) rather | |
477 | // than O(N log N). | |
478 | ||
479 | #if HAVE(MERGESORT) | |
480 | mergesort(values.begin(), values.size(), sizeof(std::pair<JSValue*, UString>), compareByStringPairForQSort); | |
481 | #else | |
482 | qsort(values.begin(), values.size(), sizeof(std::pair<JSValue*, UString>), compareByStringPairForQSort); | |
483 | #endif | |
484 | for (size_t i = 0; i < lengthNotIncludingUndefined; i++) | |
485 | m_storage->m_vector[i] = values[i].first; | |
486 | return; | |
487 | } | |
488 | ||
489 | ExecState* oldExec = execForCompareByStringForQSort; | |
490 | execForCompareByStringForQSort = exec; | |
491 | qsort(m_storage->m_vector, lengthNotIncludingUndefined, sizeof(JSValue*), compareByStringForQSort); | |
492 | execForCompareByStringForQSort = oldExec; | |
493 | } | |
494 | ||
495 | struct CompareWithCompareFunctionArguments { | |
496 | CompareWithCompareFunctionArguments(ExecState *e, JSObject *cf) | |
497 | : exec(e) | |
498 | , compareFunction(cf) | |
499 | , globalObject(e->dynamicGlobalObject()) | |
500 | { | |
501 | } | |
502 | ||
503 | ExecState *exec; | |
504 | JSObject *compareFunction; | |
505 | List arguments; | |
506 | JSGlobalObject* globalObject; | |
507 | }; | |
508 | ||
509 | static CompareWithCompareFunctionArguments* compareWithCompareFunctionArguments = 0; | |
510 | ||
511 | static int compareWithCompareFunctionForQSort(const void* a, const void* b) | |
512 | { | |
513 | CompareWithCompareFunctionArguments *args = compareWithCompareFunctionArguments; | |
514 | ||
515 | JSValue* va = *static_cast<JSValue* const*>(a); | |
516 | JSValue* vb = *static_cast<JSValue* const*>(b); | |
517 | ASSERT(!va->isUndefined()); | |
518 | ASSERT(!vb->isUndefined()); | |
519 | ||
520 | args->arguments.clear(); | |
521 | args->arguments.append(va); | |
522 | args->arguments.append(vb); | |
523 | double compareResult = args->compareFunction->call | |
524 | (args->exec, args->globalObject, args->arguments)->toNumber(args->exec); | |
525 | return compareResult < 0 ? -1 : compareResult > 0 ? 1 : 0; | |
526 | } | |
527 | ||
528 | void ArrayInstance::sort(ExecState* exec, JSObject* compareFunction) | |
529 | { | |
530 | size_t lengthNotIncludingUndefined = compactForSorting(); | |
531 | ||
532 | CompareWithCompareFunctionArguments* oldArgs = compareWithCompareFunctionArguments; | |
533 | CompareWithCompareFunctionArguments args(exec, compareFunction); | |
534 | compareWithCompareFunctionArguments = &args; | |
535 | ||
536 | #if HAVE(MERGESORT) | |
537 | // Because mergesort usually does fewer compares, it is faster than qsort here. | |
538 | // However, because it requires extra copies of the storage buffer, don't use it for very | |
539 | // large arrays. | |
540 | ||
541 | // FIXME: A tree sort using a perfectly balanced tree (e.g. an AVL tree) could do an even | |
542 | // better job of minimizing compares. | |
543 | ||
544 | if (lengthNotIncludingUndefined < copyingSortCutoff) { | |
545 | // During the sort, we could do a garbage collect, and it's important to still | |
546 | // have references to every object in the array for ArrayInstance::mark. | |
547 | // The mergesort algorithm does not guarantee this, so we sort a copy rather | |
548 | // than the original. | |
549 | size_t size = storageSize(m_vectorLength); | |
550 | ArrayStorage* copy = static_cast<ArrayStorage*>(fastMalloc(size)); | |
551 | memcpy(copy, m_storage, size); | |
552 | mergesort(copy->m_vector, lengthNotIncludingUndefined, sizeof(JSValue*), compareWithCompareFunctionForQSort); | |
553 | fastFree(m_storage); | |
554 | m_storage = copy; | |
555 | compareWithCompareFunctionArguments = oldArgs; | |
556 | return; | |
557 | } | |
558 | #endif | |
559 | ||
560 | qsort(m_storage->m_vector, lengthNotIncludingUndefined, sizeof(JSValue*), compareWithCompareFunctionForQSort); | |
561 | compareWithCompareFunctionArguments = oldArgs; | |
562 | } | |
563 | ||
564 | unsigned ArrayInstance::compactForSorting() | |
565 | { | |
566 | ArrayStorage* storage = m_storage; | |
567 | ||
568 | unsigned usedVectorLength = min(m_length, m_vectorLength); | |
569 | ||
570 | unsigned numDefined = 0; | |
571 | unsigned numUndefined = 0; | |
572 | ||
573 | for (; numDefined < usedVectorLength; ++numDefined) { | |
574 | JSValue* v = storage->m_vector[numDefined]; | |
575 | if (!v || v->isUndefined()) | |
576 | break; | |
577 | } | |
578 | for (unsigned i = numDefined; i < usedVectorLength; ++i) { | |
579 | if (JSValue* v = storage->m_vector[i]) { | |
580 | if (v->isUndefined()) | |
581 | ++numUndefined; | |
582 | else | |
583 | storage->m_vector[numDefined++] = v; | |
584 | } | |
585 | } | |
586 | ||
587 | unsigned newUsedVectorLength = numDefined + numUndefined; | |
588 | ||
589 | if (SparseArrayValueMap* map = storage->m_sparseValueMap) { | |
590 | newUsedVectorLength += map->size(); | |
591 | if (newUsedVectorLength > m_vectorLength) { | |
592 | increaseVectorLength(newUsedVectorLength); | |
593 | storage = m_storage; | |
594 | } | |
595 | ||
596 | SparseArrayValueMap::iterator end = map->end(); | |
597 | for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it) | |
598 | storage->m_vector[numDefined++] = it->second; | |
599 | ||
600 | delete map; | |
601 | storage->m_sparseValueMap = 0; | |
602 | } | |
603 | ||
604 | for (unsigned i = numDefined; i < newUsedVectorLength; ++i) | |
605 | storage->m_vector[i] = jsUndefined(); | |
606 | for (unsigned i = newUsedVectorLength; i < usedVectorLength; ++i) | |
607 | storage->m_vector[i] = 0; | |
608 | ||
609 | return numDefined; | |
610 | } | |
611 | ||
612 | } |