]>
Commit | Line | Data |
---|---|---|
b37bf2e1 A |
1 | /* |
2 | * Copyright (C) 1999-2000 Harri Porten (porten@kde.org) | |
3 | * Copyright (C) 2006, 2007 Apple Inc. All rights reserved. | |
4 | * | |
5 | * The Original Code is Mozilla Communicator client code, released | |
6 | * March 31, 1998. | |
7 | * | |
8 | * The Initial Developer of the Original Code is | |
9 | * Netscape Communications Corporation. | |
10 | * Portions created by the Initial Developer are Copyright (C) 1998 | |
11 | * the Initial Developer. All Rights Reserved. | |
12 | * | |
13 | * This library is free software; you can redistribute it and/or | |
14 | * modify it under the terms of the GNU Lesser General Public | |
15 | * License as published by the Free Software Foundation; either | |
16 | * version 2.1 of the License, or (at your option) any later version. | |
17 | * | |
18 | * This library is distributed in the hope that it will be useful, | |
19 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
21 | * Lesser General Public License for more details. | |
22 | * | |
23 | * You should have received a copy of the GNU Lesser General Public | |
24 | * License along with this library; if not, write to the Free Software | |
25 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
26 | * | |
27 | * Alternatively, the contents of this file may be used under the terms | |
28 | * of either the Mozilla Public License Version 1.1, found at | |
29 | * http://www.mozilla.org/MPL/ (the "MPL") or the GNU General Public | |
30 | * License Version 2.0, found at http://www.fsf.org/copyleft/gpl.html | |
31 | * (the "GPL"), in which case the provisions of the MPL or the GPL are | |
32 | * applicable instead of those above. If you wish to allow use of your | |
33 | * version of this file only under the terms of one of those two | |
34 | * licenses (the MPL or the GPL) and not to allow others to use your | |
35 | * version of this file under the LGPL, indicate your decision by | |
36 | * deletingthe provisions above and replace them with the notice and | |
37 | * other provisions required by the MPL or the GPL, as the case may be. | |
38 | * If you do not delete the provisions above, a recipient may use your | |
39 | * version of this file under any of the LGPL, the MPL or the GPL. | |
40 | */ | |
41 | ||
42 | #include "config.h" | |
43 | #include "DateMath.h" | |
44 | ||
45 | #include <math.h> | |
46 | #include <stdint.h> | |
47 | #include <value.h> | |
48 | ||
49 | #include <wtf/Assertions.h> | |
50 | ||
51 | #if PLATFORM(DARWIN) | |
52 | #include <notify.h> | |
53 | #endif | |
54 | ||
55 | #if HAVE(SYS_TIME_H) | |
56 | #include <sys/time.h> | |
57 | #endif | |
58 | ||
59 | #if HAVE(SYS_TIMEB_H) | |
60 | #include <sys/timeb.h> | |
61 | #endif | |
62 | ||
63 | namespace KJS { | |
64 | ||
65 | /* Constants */ | |
66 | ||
67 | static const double minutesPerDay = 24.0 * 60.0; | |
68 | static const double secondsPerDay = 24.0 * 60.0 * 60.0; | |
69 | static const double secondsPerYear = 24.0 * 60.0 * 60.0 * 365.0; | |
70 | ||
71 | static const double usecPerSec = 1000000.0; | |
72 | ||
73 | static const double maxUnixTime = 2145859200.0; // 12/31/2037 | |
74 | ||
75 | // Day of year for the first day of each month, where index 0 is January, and day 0 is January 1. | |
76 | // First for non-leap years, then for leap years. | |
77 | static const int firstDayOfMonth[2][12] = { | |
78 | {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334}, | |
79 | {0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335} | |
80 | }; | |
81 | ||
82 | static inline bool isLeapYear(int year) | |
83 | { | |
84 | if (year % 4 != 0) | |
85 | return false; | |
86 | if (year % 400 == 0) | |
87 | return true; | |
88 | if (year % 100 == 0) | |
89 | return false; | |
90 | return true; | |
91 | } | |
92 | ||
93 | static inline int daysInYear(int year) | |
94 | { | |
95 | return 365 + isLeapYear(year); | |
96 | } | |
97 | ||
98 | static inline double daysFrom1970ToYear(int year) | |
99 | { | |
100 | // The Gregorian Calendar rules for leap years: | |
101 | // Every fourth year is a leap year. 2004, 2008, and 2012 are leap years. | |
102 | // However, every hundredth year is not a leap year. 1900 and 2100 are not leap years. | |
103 | // Every four hundred years, there's a leap year after all. 2000 and 2400 are leap years. | |
104 | ||
105 | static const int leapDaysBefore1971By4Rule = 1970 / 4; | |
106 | static const int excludedLeapDaysBefore1971By100Rule = 1970 / 100; | |
107 | static const int leapDaysBefore1971By400Rule = 1970 / 400; | |
108 | ||
109 | const double yearMinusOne = year - 1; | |
110 | const double yearsToAddBy4Rule = floor(yearMinusOne / 4.0) - leapDaysBefore1971By4Rule; | |
111 | const double yearsToExcludeBy100Rule = floor(yearMinusOne / 100.0) - excludedLeapDaysBefore1971By100Rule; | |
112 | const double yearsToAddBy400Rule = floor(yearMinusOne / 400.0) - leapDaysBefore1971By400Rule; | |
113 | ||
114 | return 365.0 * (year - 1970) + yearsToAddBy4Rule - yearsToExcludeBy100Rule + yearsToAddBy400Rule; | |
115 | } | |
116 | ||
117 | static inline double msToDays(double ms) | |
118 | { | |
119 | return floor(ms / msPerDay); | |
120 | } | |
121 | ||
122 | static inline int msToYear(double ms) | |
123 | { | |
124 | int approxYear = static_cast<int>(floor(ms / (msPerDay * 365.2425)) + 1970); | |
125 | double msFromApproxYearTo1970 = msPerDay * daysFrom1970ToYear(approxYear); | |
126 | if (msFromApproxYearTo1970 > ms) | |
127 | return approxYear - 1; | |
128 | if (msFromApproxYearTo1970 + msPerDay * daysInYear(approxYear) <= ms) | |
129 | return approxYear + 1; | |
130 | return approxYear; | |
131 | } | |
132 | ||
133 | static inline int dayInYear(double ms, int year) | |
134 | { | |
135 | return static_cast<int>(msToDays(ms) - daysFrom1970ToYear(year)); | |
136 | } | |
137 | ||
138 | static inline double msToMilliseconds(double ms) | |
139 | { | |
140 | double result = fmod(ms, msPerDay); | |
141 | if (result < 0) | |
142 | result += msPerDay; | |
143 | return result; | |
144 | } | |
145 | ||
146 | // 0: Sunday, 1: Monday, etc. | |
147 | static inline int msToWeekDay(double ms) | |
148 | { | |
149 | int wd = (static_cast<int>(msToDays(ms)) + 4) % 7; | |
150 | if (wd < 0) | |
151 | wd += 7; | |
152 | return wd; | |
153 | } | |
154 | ||
155 | static inline int msToSeconds(double ms) | |
156 | { | |
157 | double result = fmod(floor(ms / msPerSecond), secondsPerMinute); | |
158 | if (result < 0) | |
159 | result += secondsPerMinute; | |
160 | return static_cast<int>(result); | |
161 | } | |
162 | ||
163 | static inline int msToMinutes(double ms) | |
164 | { | |
165 | double result = fmod(floor(ms / msPerMinute), minutesPerHour); | |
166 | if (result < 0) | |
167 | result += minutesPerHour; | |
168 | return static_cast<int>(result); | |
169 | } | |
170 | ||
171 | static inline int msToHours(double ms) | |
172 | { | |
173 | double result = fmod(floor(ms/msPerHour), hoursPerDay); | |
174 | if (result < 0) | |
175 | result += hoursPerDay; | |
176 | return static_cast<int>(result); | |
177 | } | |
178 | ||
179 | static inline int monthFromDayInYear(int dayInYear, bool leapYear) | |
180 | { | |
181 | const int d = dayInYear; | |
182 | int step; | |
183 | ||
184 | if (d < (step = 31)) | |
185 | return 0; | |
186 | step += (leapYear ? 29 : 28); | |
187 | if (d < step) | |
188 | return 1; | |
189 | if (d < (step += 31)) | |
190 | return 2; | |
191 | if (d < (step += 30)) | |
192 | return 3; | |
193 | if (d < (step += 31)) | |
194 | return 4; | |
195 | if (d < (step += 30)) | |
196 | return 5; | |
197 | if (d < (step += 31)) | |
198 | return 6; | |
199 | if (d < (step += 31)) | |
200 | return 7; | |
201 | if (d < (step += 30)) | |
202 | return 8; | |
203 | if (d < (step += 31)) | |
204 | return 9; | |
205 | if (d < (step += 30)) | |
206 | return 10; | |
207 | return 11; | |
208 | } | |
209 | ||
210 | static inline bool checkMonth(int dayInYear, int& startDayOfThisMonth, int& startDayOfNextMonth, int daysInThisMonth) | |
211 | { | |
212 | startDayOfThisMonth = startDayOfNextMonth; | |
213 | startDayOfNextMonth += daysInThisMonth; | |
214 | return (dayInYear <= startDayOfNextMonth); | |
215 | } | |
216 | ||
217 | static inline int dayInMonthFromDayInYear(int dayInYear, bool leapYear) | |
218 | { | |
219 | const int d = dayInYear; | |
220 | int step; | |
221 | int next = 30; | |
222 | ||
223 | if (d <= next) | |
224 | return d + 1; | |
225 | const int daysInFeb = (leapYear ? 29 : 28); | |
226 | if (checkMonth(d, step, next, daysInFeb)) | |
227 | return d - step; | |
228 | if (checkMonth(d, step, next, 31)) | |
229 | return d - step; | |
230 | if (checkMonth(d, step, next, 30)) | |
231 | return d - step; | |
232 | if (checkMonth(d, step, next, 31)) | |
233 | return d - step; | |
234 | if (checkMonth(d, step, next, 30)) | |
235 | return d - step; | |
236 | if (checkMonth(d, step, next, 31)) | |
237 | return d - step; | |
238 | if (checkMonth(d, step, next, 31)) | |
239 | return d - step; | |
240 | if (checkMonth(d, step, next, 30)) | |
241 | return d - step; | |
242 | if (checkMonth(d, step, next, 31)) | |
243 | return d - step; | |
244 | if (checkMonth(d, step, next, 30)) | |
245 | return d - step; | |
246 | step = next; | |
247 | return d - step; | |
248 | } | |
249 | ||
250 | static inline int monthToDayInYear(int month, bool isLeapYear) | |
251 | { | |
252 | return firstDayOfMonth[isLeapYear][month]; | |
253 | } | |
254 | ||
255 | static inline double timeToMS(double hour, double min, double sec, double ms) | |
256 | { | |
257 | return (((hour * minutesPerHour + min) * secondsPerMinute + sec) * msPerSecond + ms); | |
258 | } | |
259 | ||
260 | static int dateToDayInYear(int year, int month, int day) | |
261 | { | |
262 | year += month / 12; | |
263 | ||
264 | month %= 12; | |
265 | if (month < 0) { | |
266 | month += 12; | |
267 | --year; | |
268 | } | |
269 | ||
270 | int yearday = static_cast<int>(floor(daysFrom1970ToYear(year))); | |
271 | int monthday = monthToDayInYear(month, isLeapYear(year)); | |
272 | ||
273 | return yearday + monthday + day - 1; | |
274 | } | |
275 | ||
276 | double getCurrentUTCTime() | |
277 | { | |
278 | #if PLATFORM(WIN_OS) | |
279 | #if COMPILER(BORLAND) | |
280 | struct timeb timebuffer; | |
281 | ftime(&timebuffer); | |
282 | #else | |
283 | struct _timeb timebuffer; | |
284 | _ftime(&timebuffer); | |
285 | #endif | |
286 | double utc = timebuffer.time * msPerSecond + timebuffer.millitm; | |
287 | #else | |
288 | struct timeval tv; | |
289 | gettimeofday(&tv, 0); | |
290 | double utc = floor(tv.tv_sec * msPerSecond + tv.tv_usec / 1000); | |
291 | #endif | |
292 | return utc; | |
293 | } | |
294 | ||
295 | // There is a hard limit at 2038 that we currently do not have a workaround | |
296 | // for (rdar://problem/5052975). | |
297 | static inline int maximumYearForDST() | |
298 | { | |
299 | return 2037; | |
300 | } | |
301 | ||
302 | // It is ok if the cached year is not the current year (e.g. Dec 31st) | |
303 | // so long as the rules for DST did not change between the two years, if it does | |
304 | // the app would need to be restarted. | |
305 | static int mimimumYearForDST() | |
306 | { | |
307 | // Because of the 2038 issue (see maximumYearForDST) if the current year is | |
308 | // greater than the max year minus 27 (2010), we want to use the max year | |
309 | // minus 27 instead, to ensure there is a range of 28 years that all years | |
310 | // can map to. | |
311 | static int minYear = std::min(msToYear(getCurrentUTCTime()), maximumYearForDST() - 27) ; | |
312 | return minYear; | |
313 | } | |
314 | ||
315 | /* | |
316 | * Find an equivalent year for the one given, where equivalence is deterined by | |
317 | * the two years having the same leapness and the first day of the year, falling | |
318 | * on the same day of the week. | |
319 | * | |
320 | * This function returns a year between this current year and 2037, however this | |
321 | * function will potentially return incorrect results if the current year is after | |
322 | * 2010, (rdar://problem/5052975), if the year passed in is before 1900 or after | |
323 | * 2100, (rdar://problem/5055038). | |
324 | */ | |
325 | int equivalentYearForDST(int year) | |
326 | { | |
327 | static int minYear = mimimumYearForDST(); | |
328 | static int maxYear = maximumYearForDST(); | |
329 | ||
330 | int difference; | |
331 | if (year > maxYear) | |
332 | difference = minYear - year; | |
333 | else if (year < minYear) | |
334 | difference = maxYear - year; | |
335 | else | |
336 | return year; | |
337 | ||
338 | int quotient = difference / 28; | |
339 | int product = (quotient) * 28; | |
340 | ||
341 | year += product; | |
342 | ASSERT((year >= minYear && year <= maxYear) || (product - year == static_cast<int>(NaN))); | |
343 | return year; | |
344 | } | |
345 | ||
346 | /* | |
347 | * Get the difference in milliseconds between this time zone and UTC (GMT) | |
348 | * NOT including DST. | |
349 | */ | |
350 | double getUTCOffset() | |
351 | { | |
352 | #if PLATFORM(DARWIN) | |
353 | // Register for a notification whenever the time zone changes. | |
354 | static bool triedToRegister = false; | |
355 | static bool haveNotificationToken = false; | |
356 | static int notificationToken; | |
357 | if (!triedToRegister) { | |
358 | triedToRegister = true; | |
359 | uint32_t status = notify_register_check("com.apple.system.timezone", ¬ificationToken); | |
360 | if (status == NOTIFY_STATUS_OK) | |
361 | haveNotificationToken = true; | |
362 | } | |
363 | ||
364 | // If we can verify that we have not received a time zone notification, | |
365 | // then use the cached offset from the last time this function was called. | |
366 | static bool haveCachedOffset = false; | |
367 | static double cachedOffset; | |
368 | if (haveNotificationToken && haveCachedOffset) { | |
369 | int notified; | |
370 | uint32_t status = notify_check(notificationToken, ¬ified); | |
371 | if (status == NOTIFY_STATUS_OK && !notified) | |
372 | return cachedOffset; | |
373 | } | |
374 | #endif | |
375 | ||
376 | tm localt; | |
377 | ||
378 | memset(&localt, 0, sizeof(localt)); | |
379 | ||
380 | // get the difference between this time zone and UTC on Jan 01, 2000 12:00:00 AM | |
381 | localt.tm_mday = 1; | |
382 | localt.tm_year = 100; | |
383 | double utcOffset = 946684800.0 - mktime(&localt); | |
384 | ||
385 | utcOffset *= msPerSecond; | |
386 | ||
387 | #if PLATFORM(DARWIN) | |
388 | haveCachedOffset = true; | |
389 | cachedOffset = utcOffset; | |
390 | #endif | |
391 | ||
392 | return utcOffset; | |
393 | } | |
394 | ||
395 | /* | |
396 | * Get the DST offset for the time passed in. Takes | |
397 | * seconds (not milliseconds) and cannot handle dates before 1970 | |
398 | * on some OS' | |
399 | */ | |
400 | static double getDSTOffsetSimple(double localTimeSeconds, double utcOffset) | |
401 | { | |
402 | if (localTimeSeconds > maxUnixTime) | |
403 | localTimeSeconds = maxUnixTime; | |
404 | else if (localTimeSeconds < 0) // Go ahead a day to make localtime work (does not work with 0) | |
405 | localTimeSeconds += secondsPerDay; | |
406 | ||
407 | //input is UTC so we have to shift back to local time to determine DST thus the + getUTCOffset() | |
408 | double offsetTime = (localTimeSeconds * msPerSecond) + utcOffset; | |
409 | ||
410 | // Offset from UTC but doesn't include DST obviously | |
411 | int offsetHour = msToHours(offsetTime); | |
412 | int offsetMinute = msToMinutes(offsetTime); | |
413 | ||
414 | // FIXME: time_t has a potential problem in 2038 | |
415 | time_t localTime = static_cast<time_t>(localTimeSeconds); | |
416 | ||
417 | tm localTM; | |
418 | #if PLATFORM(QT) | |
419 | // ### this is not threadsafe but we don't use multiple threads anyway | |
420 | // in the Qt build | |
421 | #if USE(MULTIPLE_THREADS) | |
422 | #error Mulitple threads are currently not supported in the Qt/mingw build | |
423 | #endif | |
424 | localTM = *localtime(&localTime); | |
425 | #elif PLATFORM(WIN_OS) | |
426 | #if COMPILER(MSVC7) | |
427 | localTM = *localtime(&localTime); | |
428 | #else | |
429 | localtime_s(&localTM, &localTime); | |
430 | #endif | |
431 | #else | |
432 | localtime_r(&localTime, &localTM); | |
433 | #endif | |
434 | ||
435 | double diff = ((localTM.tm_hour - offsetHour) * secondsPerHour) + ((localTM.tm_min - offsetMinute) * 60); | |
436 | ||
437 | if (diff < 0) | |
438 | diff += secondsPerDay; | |
439 | ||
440 | return (diff * msPerSecond); | |
441 | } | |
442 | ||
443 | // Get the DST offset, given a time in UTC | |
444 | static double getDSTOffset(double ms, double utcOffset) | |
445 | { | |
446 | // On Mac OS X, the call to localtime (see getDSTOffsetSimple) will return historically accurate | |
447 | // DST information (e.g. New Zealand did not have DST from 1946 to 1974) however the JavaScript | |
448 | // standard explicitly dictates that historical information should not be considered when | |
449 | // determining DST. For this reason we shift away from years that localtime can handle but would | |
450 | // return historically accurate information. | |
451 | int year = msToYear(ms); | |
452 | int equivalentYear = equivalentYearForDST(year); | |
453 | if (year != equivalentYear) { | |
454 | bool leapYear = isLeapYear(year); | |
455 | int dayInYearLocal = dayInYear(ms, year); | |
456 | int dayInMonth = dayInMonthFromDayInYear(dayInYearLocal, leapYear); | |
457 | int month = monthFromDayInYear(dayInYearLocal, leapYear); | |
458 | int day = dateToDayInYear(equivalentYear, month, dayInMonth); | |
459 | ms = (day * msPerDay) + msToMilliseconds(ms); | |
460 | } | |
461 | ||
462 | return getDSTOffsetSimple(ms / msPerSecond, utcOffset); | |
463 | } | |
464 | ||
465 | double gregorianDateTimeToMS(const GregorianDateTime& t, double milliSeconds, bool inputIsUTC) | |
466 | { | |
467 | int day = dateToDayInYear(t.year + 1900, t.month, t.monthDay); | |
468 | double ms = timeToMS(t.hour, t.minute, t.second, milliSeconds); | |
469 | double result = (day * msPerDay) + ms; | |
470 | ||
471 | if (!inputIsUTC) { // convert to UTC | |
472 | double utcOffset = getUTCOffset(); | |
473 | result -= utcOffset; | |
474 | result -= getDSTOffset(result, utcOffset); | |
475 | } | |
476 | ||
477 | return result; | |
478 | } | |
479 | ||
480 | void msToGregorianDateTime(double ms, bool outputIsUTC, GregorianDateTime& tm) | |
481 | { | |
482 | // input is UTC | |
483 | double dstOff = 0.0; | |
484 | const double utcOff = getUTCOffset(); | |
485 | ||
486 | if (!outputIsUTC) { // convert to local time | |
487 | dstOff = getDSTOffset(ms, utcOff); | |
488 | ms += dstOff + utcOff; | |
489 | } | |
490 | ||
491 | const int year = msToYear(ms); | |
492 | tm.second = msToSeconds(ms); | |
493 | tm.minute = msToMinutes(ms); | |
494 | tm.hour = msToHours(ms); | |
495 | tm.weekDay = msToWeekDay(ms); | |
496 | tm.yearDay = dayInYear(ms, year); | |
497 | tm.monthDay = dayInMonthFromDayInYear(tm.yearDay, isLeapYear(year)); | |
498 | tm.month = monthFromDayInYear(tm.yearDay, isLeapYear(year)); | |
499 | tm.year = year - 1900; | |
500 | tm.isDST = dstOff != 0.0; | |
501 | ||
502 | tm.utcOffset = static_cast<long>((dstOff + utcOff) / msPerSecond); | |
503 | tm.timeZone = NULL; | |
504 | } | |
505 | ||
506 | } // namespace KJS |