]>
Commit | Line | Data |
---|---|---|
6fe7ccc8 | 1 | /* |
ed1e77d3 | 2 | * Copyright (C) 2011-2015 Apple Inc. All rights reserved. |
6fe7ccc8 A |
3 | * |
4 | * Redistribution and use in source and binary forms, with or without | |
5 | * modification, are permitted provided that the following conditions | |
6 | * are met: | |
7 | * 1. Redistributions of source code must retain the above copyright | |
8 | * notice, this list of conditions and the following disclaimer. | |
9 | * 2. Redistributions in binary form must reproduce the above copyright | |
10 | * notice, this list of conditions and the following disclaimer in the | |
11 | * documentation and/or other materials provided with the distribution. | |
12 | * | |
13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY | |
14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | |
16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR | |
17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | |
18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | |
19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | |
20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | |
21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
24 | */ | |
25 | ||
26 | #include "config.h" | |
27 | #include "DFGCSEPhase.h" | |
28 | ||
29 | #if ENABLE(DFG_JIT) | |
30 | ||
81345200 | 31 | #include "DFGAbstractHeap.h" |
ed1e77d3 A |
32 | #include "DFGBlockMapInlines.h" |
33 | #include "DFGClobberSet.h" | |
81345200 A |
34 | #include "DFGClobberize.h" |
35 | #include "DFGEdgeUsesStructure.h" | |
6fe7ccc8 A |
36 | #include "DFGGraph.h" |
37 | #include "DFGPhase.h" | |
81345200 A |
38 | #include "JSCInlines.h" |
39 | #include <array> | |
93a37866 | 40 | #include <wtf/FastBitVector.h> |
6fe7ccc8 A |
41 | |
42 | namespace JSC { namespace DFG { | |
43 | ||
ed1e77d3 A |
44 | // This file contains two CSE implementations: local and global. LocalCSE typically runs when we're |
45 | // in DFG mode, i.e. we want to compile quickly. LocalCSE contains a lot of optimizations for | |
46 | // compile time. GlobalCSE, on the other hand, is fairly straight-forward. It will find more | |
47 | // optimization opportunities by virtue of being global. | |
93a37866 | 48 | |
ed1e77d3 A |
49 | namespace { |
50 | ||
51 | const bool verbose = false; | |
52 | ||
53 | class ClobberFilter { | |
6fe7ccc8 | 54 | public: |
ed1e77d3 A |
55 | ClobberFilter(AbstractHeap heap) |
56 | : m_heap(heap) | |
57 | { | |
58 | } | |
59 | ||
60 | bool operator()(const ImpureMap::KeyValuePairType& pair) const | |
61 | { | |
62 | return m_heap.overlaps(pair.key.heap()); | |
63 | } | |
64 | ||
65 | private: | |
66 | AbstractHeap m_heap; | |
67 | }; | |
68 | ||
69 | inline void clobber(ImpureMap& map, AbstractHeap heap) | |
70 | { | |
71 | ClobberFilter filter(heap); | |
72 | map.removeIf(filter); | |
73 | } | |
74 | ||
75 | class LocalCSEPhase : public Phase { | |
76 | public: | |
77 | LocalCSEPhase(Graph& graph) | |
78 | : Phase(graph, "local common subexpression elimination") | |
79 | , m_smallBlock(graph) | |
80 | , m_largeBlock(graph) | |
6fe7ccc8 | 81 | { |
6fe7ccc8 A |
82 | } |
83 | ||
93a37866 | 84 | bool run() |
6fe7ccc8 | 85 | { |
ed1e77d3 A |
86 | ASSERT(m_graph.m_fixpointState == FixpointNotConverged); |
87 | ASSERT(m_graph.m_form == ThreadedCPS || m_graph.m_form == LoadStore); | |
93a37866 | 88 | |
ed1e77d3 | 89 | bool changed = false; |
93a37866 | 90 | |
81345200 A |
91 | m_graph.clearReplacements(); |
92 | ||
93 | for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) { | |
94 | BasicBlock* block = m_graph.block(blockIndex); | |
95 | if (!block) | |
96 | continue; | |
97 | ||
ed1e77d3 A |
98 | if (block->size() <= SmallMaps::capacity) |
99 | changed |= m_smallBlock.run(block); | |
100 | else | |
101 | changed |= m_largeBlock.run(block); | |
81345200 A |
102 | } |
103 | ||
ed1e77d3 | 104 | return changed; |
6fe7ccc8 A |
105 | } |
106 | ||
107 | private: | |
ed1e77d3 A |
108 | class SmallMaps { |
109 | public: | |
110 | // This permits SmallMaps to be used for blocks that have up to 100 nodes. In practice, | |
111 | // fewer than half of the nodes in a block have pure defs, and even fewer have impure defs. | |
112 | // Thus, a capacity limit of 100 probably means that somewhere around ~40 things may end up | |
113 | // in one of these "small" list-based maps. That number still seems largeish, except that | |
114 | // the overhead of HashMaps can be quite high currently: clearing them, or even removing | |
115 | // enough things from them, deletes (or resizes) their backing store eagerly. Hence | |
116 | // HashMaps induce a lot of malloc traffic. | |
117 | static const unsigned capacity = 100; | |
6fe7ccc8 | 118 | |
ed1e77d3 A |
119 | SmallMaps() |
120 | : m_pureLength(0) | |
121 | , m_impureLength(0) | |
122 | { | |
93a37866 | 123 | } |
6fe7ccc8 | 124 | |
ed1e77d3 A |
125 | void clear() |
126 | { | |
127 | m_pureLength = 0; | |
128 | m_impureLength = 0; | |
6fe7ccc8 | 129 | } |
6fe7ccc8 | 130 | |
ed1e77d3 A |
131 | void write(AbstractHeap heap) |
132 | { | |
133 | for (unsigned i = 0; i < m_impureLength; ++i) { | |
134 | if (heap.overlaps(m_impureMap[i].key.heap())) | |
135 | m_impureMap[i--] = m_impureMap[--m_impureLength]; | |
93a37866 | 136 | } |
6fe7ccc8 | 137 | } |
6fe7ccc8 | 138 | |
ed1e77d3 A |
139 | Node* addPure(PureValue value, Node* node) |
140 | { | |
141 | for (unsigned i = m_pureLength; i--;) { | |
142 | if (m_pureMap[i].key == value) | |
143 | return m_pureMap[i].value; | |
6fe7ccc8 | 144 | } |
ed1e77d3 A |
145 | |
146 | ASSERT(m_pureLength < capacity); | |
147 | m_pureMap[m_pureLength++] = WTF::KeyValuePair<PureValue, Node*>(value, node); | |
148 | return nullptr; | |
6fe7ccc8 | 149 | } |
ed1e77d3 A |
150 | |
151 | LazyNode findReplacement(HeapLocation location) | |
152 | { | |
153 | for (unsigned i = m_impureLength; i--;) { | |
154 | if (m_impureMap[i].key == location) | |
155 | return m_impureMap[i].value; | |
93a37866 | 156 | } |
ed1e77d3 | 157 | return nullptr; |
93a37866 | 158 | } |
93a37866 | 159 | |
ed1e77d3 A |
160 | LazyNode addImpure(HeapLocation location, LazyNode node) |
161 | { | |
162 | // FIXME: If we are using small maps, we must not def() derived values. | |
163 | // For now the only derived values we def() are constant-based. | |
164 | if (location.index() && !location.index().isNode()) | |
165 | return nullptr; | |
166 | if (LazyNode result = findReplacement(location)) | |
167 | return result; | |
168 | ASSERT(m_impureLength < capacity); | |
169 | m_impureMap[m_impureLength++] = WTF::KeyValuePair<HeapLocation, LazyNode>(location, node); | |
170 | return nullptr; | |
93a37866 | 171 | } |
93a37866 | 172 | |
ed1e77d3 A |
173 | private: |
174 | WTF::KeyValuePair<PureValue, Node*> m_pureMap[capacity]; | |
175 | WTF::KeyValuePair<HeapLocation, LazyNode> m_impureMap[capacity]; | |
176 | unsigned m_pureLength; | |
177 | unsigned m_impureLength; | |
178 | }; | |
6fe7ccc8 | 179 | |
ed1e77d3 A |
180 | class LargeMaps { |
181 | public: | |
182 | LargeMaps() | |
183 | { | |
93a37866 | 184 | } |
93a37866 | 185 | |
ed1e77d3 A |
186 | void clear() |
187 | { | |
188 | m_pureMap.clear(); | |
189 | m_impureMap.clear(); | |
6fe7ccc8 | 190 | } |
ed1e77d3 A |
191 | |
192 | void write(AbstractHeap heap) | |
193 | { | |
194 | clobber(m_impureMap, heap); | |
93a37866 | 195 | } |
93a37866 | 196 | |
ed1e77d3 A |
197 | Node* addPure(PureValue value, Node* node) |
198 | { | |
199 | auto result = m_pureMap.add(value, node); | |
200 | if (result.isNewEntry) | |
201 | return nullptr; | |
202 | return result.iterator->value; | |
6fe7ccc8 | 203 | } |
ed1e77d3 A |
204 | |
205 | LazyNode findReplacement(HeapLocation location) | |
206 | { | |
207 | return m_impureMap.get(location); | |
208 | } | |
209 | ||
210 | LazyNode addImpure(HeapLocation location, LazyNode node) | |
211 | { | |
212 | auto result = m_impureMap.add(location, node); | |
213 | if (result.isNewEntry) | |
214 | return nullptr; | |
215 | return result.iterator->value; | |
216 | } | |
217 | ||
218 | private: | |
219 | HashMap<PureValue, Node*> m_pureMap; | |
220 | HashMap<HeapLocation, LazyNode> m_impureMap; | |
221 | }; | |
222 | ||
223 | template<typename Maps> | |
224 | class BlockCSE { | |
225 | public: | |
226 | BlockCSE(Graph& graph) | |
227 | : m_graph(graph) | |
228 | , m_insertionSet(graph) | |
229 | { | |
230 | } | |
231 | ||
232 | bool run(BasicBlock* block) | |
233 | { | |
234 | m_maps.clear(); | |
235 | m_changed = false; | |
236 | m_block = block; | |
237 | ||
238 | for (unsigned nodeIndex = 0; nodeIndex < block->size(); ++nodeIndex) { | |
239 | m_node = block->at(nodeIndex); | |
240 | m_graph.performSubstitution(m_node); | |
241 | ||
242 | if (m_node->op() == Identity) { | |
243 | m_node->replaceWith(m_node->child1().node()); | |
244 | m_changed = true; | |
245 | } else { | |
246 | // This rule only makes sense for local CSE, since in SSA form we have already | |
247 | // factored the bounds check out of the PutByVal. It's kind of gross, but we | |
248 | // still have reason to believe that PutByValAlias is a good optimization and | |
249 | // that it's better to do it with a single node rather than separating out the | |
250 | // CheckInBounds. | |
251 | if (m_node->op() == PutByVal || m_node->op() == PutByValDirect) { | |
252 | HeapLocation heap; | |
253 | ||
254 | Node* base = m_graph.varArgChild(m_node, 0).node(); | |
255 | Node* index = m_graph.varArgChild(m_node, 1).node(); | |
256 | ||
257 | ArrayMode mode = m_node->arrayMode(); | |
258 | switch (mode.type()) { | |
259 | case Array::Int32: | |
260 | if (!mode.isInBounds()) | |
261 | break; | |
262 | heap = HeapLocation( | |
263 | IndexedPropertyLoc, IndexedInt32Properties, base, index); | |
264 | break; | |
265 | ||
266 | case Array::Double: | |
267 | if (!mode.isInBounds()) | |
268 | break; | |
269 | heap = HeapLocation( | |
270 | IndexedPropertyLoc, IndexedDoubleProperties, base, index); | |
271 | break; | |
272 | ||
273 | case Array::Contiguous: | |
274 | if (!mode.isInBounds()) | |
275 | break; | |
276 | heap = HeapLocation( | |
277 | IndexedPropertyLoc, IndexedContiguousProperties, base, index); | |
278 | break; | |
279 | ||
280 | case Array::Int8Array: | |
281 | case Array::Int16Array: | |
282 | case Array::Int32Array: | |
283 | case Array::Uint8Array: | |
284 | case Array::Uint8ClampedArray: | |
285 | case Array::Uint16Array: | |
286 | case Array::Uint32Array: | |
287 | case Array::Float32Array: | |
288 | case Array::Float64Array: | |
289 | if (!mode.isInBounds()) | |
290 | break; | |
291 | heap = HeapLocation( | |
292 | IndexedPropertyLoc, TypedArrayProperties, base, index); | |
293 | break; | |
294 | ||
295 | default: | |
296 | break; | |
297 | } | |
298 | ||
299 | if (!!heap && m_maps.findReplacement(heap)) | |
300 | m_node->setOp(PutByValAlias); | |
301 | } | |
302 | ||
303 | clobberize(m_graph, m_node, *this); | |
6fe7ccc8 | 304 | } |
6fe7ccc8 | 305 | } |
6fe7ccc8 | 306 | |
ed1e77d3 A |
307 | m_insertionSet.execute(block); |
308 | ||
309 | return m_changed; | |
93a37866 | 310 | } |
93a37866 | 311 | |
ed1e77d3 | 312 | void read(AbstractHeap) { } |
93a37866 | 313 | |
ed1e77d3 A |
314 | void write(AbstractHeap heap) |
315 | { | |
316 | m_maps.write(heap); | |
6fe7ccc8 | 317 | } |
ed1e77d3 A |
318 | |
319 | void def(PureValue value) | |
320 | { | |
321 | Node* match = m_maps.addPure(value, m_node); | |
322 | if (!match) | |
323 | return; | |
93a37866 | 324 | |
ed1e77d3 A |
325 | m_node->replaceWith(match); |
326 | m_changed = true; | |
93a37866 | 327 | } |
93a37866 | 328 | |
ed1e77d3 A |
329 | void def(HeapLocation location, LazyNode value) |
330 | { | |
331 | LazyNode match = m_maps.addImpure(location, value); | |
332 | if (!match) | |
333 | return; | |
334 | ||
335 | if (m_node->op() == GetLocal) { | |
336 | // Usually the CPS rethreading phase does this. But it's OK for us to mess with | |
337 | // locals so long as: | |
338 | // | |
339 | // - We dethread the graph. Any changes we make may invalidate the assumptions of | |
340 | // our CPS form, particularly if this GetLocal is linked to the variablesAtTail. | |
341 | // | |
342 | // - We don't introduce a Phantom for the child of the GetLocal. This wouldn't be | |
343 | // totally wrong but it would pessimize the code. Just because there is a | |
344 | // GetLocal doesn't mean that the child was live. Simply rerouting the all uses | |
345 | // of this GetLocal will preserve the live-at-exit information just fine. | |
346 | // | |
347 | // We accomplish the latter by just clearing the child; then the Phantom that we | |
348 | // introduce won't have children and so it will eventually just be deleted. | |
349 | ||
350 | m_node->child1() = Edge(); | |
351 | m_graph.dethread(); | |
6fe7ccc8 | 352 | } |
ed1e77d3 A |
353 | |
354 | if (value.isNode() && value.asNode() == m_node) { | |
355 | match.ensureIsNode(m_insertionSet, m_block, 0)->owner = m_block; | |
356 | ASSERT(match.isNode()); | |
357 | m_node->replaceWith(match.asNode()); | |
358 | m_changed = true; | |
81345200 A |
359 | } |
360 | } | |
81345200 | 361 | |
ed1e77d3 A |
362 | private: |
363 | Graph& m_graph; | |
364 | ||
365 | bool m_changed; | |
366 | Node* m_node; | |
367 | BasicBlock* m_block; | |
368 | ||
369 | Maps m_maps; | |
81345200 | 370 | |
ed1e77d3 A |
371 | InsertionSet m_insertionSet; |
372 | }; | |
81345200 | 373 | |
ed1e77d3 A |
374 | BlockCSE<SmallMaps> m_smallBlock; |
375 | BlockCSE<LargeMaps> m_largeBlock; | |
376 | }; | |
377 | ||
378 | class GlobalCSEPhase : public Phase { | |
379 | public: | |
380 | GlobalCSEPhase(Graph& graph) | |
381 | : Phase(graph, "global common subexpression elimination") | |
382 | , m_impureDataMap(graph) | |
383 | , m_insertionSet(graph) | |
6fe7ccc8 | 384 | { |
6fe7ccc8 A |
385 | } |
386 | ||
ed1e77d3 | 387 | bool run() |
6fe7ccc8 | 388 | { |
ed1e77d3 A |
389 | ASSERT(m_graph.m_fixpointState == FixpointNotConverged); |
390 | ASSERT(m_graph.m_form == SSA); | |
6fe7ccc8 | 391 | |
ed1e77d3 A |
392 | m_graph.initializeNodeOwners(); |
393 | m_graph.m_dominators.computeIfNecessary(m_graph); | |
394 | ||
395 | m_preOrder = m_graph.blocksInPreOrder(); | |
396 | ||
397 | // First figure out what gets clobbered by blocks. Node that this uses the preOrder list | |
398 | // for convenience only. | |
399 | for (unsigned i = m_preOrder.size(); i--;) { | |
400 | m_block = m_preOrder[i]; | |
401 | m_impureData = &m_impureDataMap[m_block]; | |
402 | for (unsigned nodeIndex = m_block->size(); nodeIndex--;) | |
403 | addWrites(m_graph, m_block->at(nodeIndex), m_impureData->writes); | |
93a37866 | 404 | } |
ed1e77d3 A |
405 | |
406 | // Based on my experience doing this before, what follows might have to be made iterative. | |
407 | // Right now it doesn't have to be iterative because everything is dominator-bsed. But when | |
408 | // validation is enabled, we check if iterating would find new CSE opportunities. | |
409 | ||
410 | bool changed = iterate(); | |
411 | ||
412 | // FIXME: It should be possible to assert that CSE will not find any new opportunities if you | |
413 | // run it a second time. Unfortunately, we cannot assert this right now. Note that if we did | |
414 | // this, we'd have to first reset all of our state. | |
415 | // https://bugs.webkit.org/show_bug.cgi?id=145853 | |
416 | ||
417 | return changed; | |
93a37866 A |
418 | } |
419 | ||
ed1e77d3 | 420 | bool iterate() |
93a37866 | 421 | { |
ed1e77d3 A |
422 | if (verbose) |
423 | dataLog("Performing iteration.\n"); | |
424 | ||
425 | m_changed = false; | |
426 | m_graph.clearReplacements(); | |
427 | ||
428 | for (unsigned i = 0; i < m_preOrder.size(); ++i) { | |
429 | m_block = m_preOrder[i]; | |
430 | m_impureData = &m_impureDataMap[m_block]; | |
431 | m_writesSoFar.clear(); | |
432 | ||
433 | if (verbose) | |
434 | dataLog("Processing block ", *m_block, ":\n"); | |
81345200 | 435 | |
ed1e77d3 A |
436 | for (unsigned nodeIndex = 0; nodeIndex < m_block->size(); ++nodeIndex) { |
437 | m_nodeIndex = nodeIndex; | |
438 | m_node = m_block->at(nodeIndex); | |
439 | if (verbose) | |
440 | dataLog(" Looking at node ", m_node, ":\n"); | |
81345200 | 441 | |
ed1e77d3 | 442 | m_graph.performSubstitution(m_node); |
81345200 | 443 | |
ed1e77d3 A |
444 | if (m_node->op() == Identity) { |
445 | m_node->replaceWith(m_node->child1().node()); | |
446 | m_changed = true; | |
447 | } else | |
448 | clobberize(m_graph, m_node, *this); | |
81345200 | 449 | } |
ed1e77d3 A |
450 | |
451 | m_insertionSet.execute(m_block); | |
452 | ||
453 | m_impureData->didVisit = true; | |
81345200 | 454 | } |
ed1e77d3 A |
455 | |
456 | return m_changed; | |
81345200 | 457 | } |
ed1e77d3 A |
458 | |
459 | void read(AbstractHeap) { } | |
81345200 | 460 | |
ed1e77d3 | 461 | void write(AbstractHeap heap) |
81345200 | 462 | { |
ed1e77d3 A |
463 | clobber(m_impureData->availableAtTail, heap); |
464 | m_writesSoFar.add(heap); | |
465 | if (verbose) | |
466 | dataLog(" Clobbered, new tail map: ", mapDump(m_impureData->availableAtTail), "\n"); | |
6fe7ccc8 A |
467 | } |
468 | ||
ed1e77d3 | 469 | void def(PureValue value) |
6fe7ccc8 | 470 | { |
ed1e77d3 A |
471 | // With pure values we do not have to worry about the possibility of some control flow path |
472 | // clobbering the value. So, we just search for all of the like values that have been | |
473 | // computed. We pick one that is in a block that dominates ours. Note that this means that | |
474 | // a PureValue will map to a list of nodes, since there may be many places in the control | |
475 | // flow graph that compute a value but only one of them that dominates us. We may build up | |
476 | // a large list of nodes that compute some value in the case of gnarly control flow. This | |
477 | // is probably OK. | |
6fe7ccc8 | 478 | |
ed1e77d3 A |
479 | auto result = m_pureValues.add(value, Vector<Node*>()); |
480 | if (result.isNewEntry) { | |
481 | result.iterator->value.append(m_node); | |
482 | return; | |
81345200 | 483 | } |
6fe7ccc8 | 484 | |
ed1e77d3 A |
485 | for (unsigned i = result.iterator->value.size(); i--;) { |
486 | Node* candidate = result.iterator->value[i]; | |
487 | if (m_graph.m_dominators.dominates(candidate->owner, m_block)) { | |
488 | m_node->replaceWith(candidate); | |
489 | m_changed = true; | |
490 | return; | |
491 | } | |
492 | } | |
93a37866 | 493 | |
ed1e77d3 | 494 | result.iterator->value.append(m_node); |
6fe7ccc8 A |
495 | } |
496 | ||
ed1e77d3 | 497 | LazyNode findReplacement(HeapLocation location) |
6fe7ccc8 | 498 | { |
ed1e77d3 A |
499 | // At this instant, our "availableAtTail" reflects the set of things that are available in |
500 | // this block so far. We check this map to find block-local CSE opportunities before doing | |
501 | // a global search. | |
502 | LazyNode match = m_impureData->availableAtTail.get(location); | |
503 | if (!!match) { | |
504 | if (verbose) | |
505 | dataLog(" Found local match: ", match, "\n"); | |
506 | return match; | |
507 | } | |
93a37866 | 508 | |
ed1e77d3 A |
509 | // If it's not available at this point in the block, and at some prior point in the block |
510 | // we have clobbered this heap location, then there is no point in doing a global search. | |
511 | if (m_writesSoFar.overlaps(location.heap())) { | |
512 | if (verbose) | |
513 | dataLog(" Not looking globally because of local clobber: ", m_writesSoFar, "\n"); | |
514 | return nullptr; | |
515 | } | |
93a37866 | 516 | |
ed1e77d3 A |
517 | // This perfoms a backward search over the control flow graph to find some possible |
518 | // non-local def() that matches our heap location. Such a match is only valid if there does | |
519 | // not exist any path from that def() to our block that contains a write() that overlaps | |
520 | // our heap. This algorithm looks for both of these things (the matching def and the | |
521 | // overlapping writes) in one backwards DFS pass. | |
522 | // | |
523 | // This starts by looking at the starting block's predecessors, and then it continues along | |
524 | // their predecessors. As soon as this finds a possible def() - one that defines the heap | |
525 | // location we want while dominating our starting block - it assumes that this one must be | |
526 | // the match. It then lets the DFS over predecessors complete, but it doesn't add the | |
527 | // def()'s predecessors; this ensures that any blocks we visit thereafter are on some path | |
528 | // from the def() to us. As soon as the DFG finds a write() that overlaps the location's | |
529 | // heap, it stops, assuming that there is no possible match. Note that the write() case may | |
530 | // trigger before we find a def(), or after. Either way, the write() case causes this | |
531 | // function to immediately return nullptr. | |
532 | // | |
533 | // If the write() is found before we find the def(), then we know that any def() we would | |
534 | // find would have a path to us that trips over the write() and hence becomes invalid. This | |
535 | // is just a direct outcome of us looking for a def() that dominates us. Given a block A | |
536 | // that dominates block B - so that A is the one that would have the def() and B is our | |
537 | // starting block - we know that any other block must either be on the path from A to B, or | |
538 | // it must be on a path from the root to A, but not both. So, if we haven't found A yet but | |
539 | // we already have found a block C that has a write(), then C must be on some path from A | |
540 | // to B, which means that A's def() is invalid for our purposes. Hence, before we find the | |
541 | // def(), stopping on write() is the right thing to do. | |
542 | // | |
543 | // Stopping on write() is also the right thing to do after we find the def(). After we find | |
544 | // the def(), we don't add that block's predecessors to the search worklist. That means | |
545 | // that henceforth the only blocks we will see in the search are blocks on the path from | |
546 | // the def() to us. If any such block has a write() that clobbers our heap then we should | |
547 | // give up. | |
548 | // | |
549 | // Hence this graph search algorithm ends up being deceptively simple: any overlapping | |
550 | // write() causes us to immediately return nullptr, and a matching def() means that we just | |
551 | // record it and neglect to visit its precessors. | |
93a37866 | 552 | |
ed1e77d3 A |
553 | Vector<BasicBlock*, 8> worklist; |
554 | Vector<BasicBlock*, 8> seenList; | |
555 | BitVector seen; | |
6fe7ccc8 | 556 | |
ed1e77d3 A |
557 | for (unsigned i = m_block->predecessors.size(); i--;) { |
558 | BasicBlock* predecessor = m_block->predecessors[i]; | |
559 | if (!seen.get(predecessor->index)) { | |
560 | worklist.append(predecessor); | |
561 | seen.set(predecessor->index); | |
81345200 | 562 | } |
93a37866 | 563 | } |
ed1e77d3 A |
564 | |
565 | while (!worklist.isEmpty()) { | |
566 | BasicBlock* block = worklist.takeLast(); | |
567 | seenList.append(block); | |
568 | ||
569 | if (verbose) | |
570 | dataLog(" Searching in block ", *block, "\n"); | |
571 | ImpureBlockData& data = m_impureDataMap[block]; | |
572 | ||
573 | // We require strict domination because this would only see things in our own block if | |
574 | // they came *after* our position in the block. Clearly, while our block dominates | |
575 | // itself, the things in the block after us don't dominate us. | |
576 | if (m_graph.m_dominators.strictlyDominates(block, m_block)) { | |
577 | if (verbose) | |
578 | dataLog(" It strictly dominates.\n"); | |
579 | DFG_ASSERT(m_graph, m_node, data.didVisit); | |
580 | DFG_ASSERT(m_graph, m_node, !match); | |
581 | if (verbose) | |
582 | dataLog(" Availability map: ", mapDump(data.availableAtTail), "\n"); | |
583 | match = data.availableAtTail.get(location); | |
584 | if (verbose) | |
585 | dataLog(" Availability: ", match, "\n"); | |
586 | if (!!match) { | |
587 | // Don't examine the predecessors of a match. At this point we just want to | |
588 | // establish that other blocks on the path from here to there don't clobber | |
589 | // the location we're interested in. | |
590 | continue; | |
591 | } | |
93a37866 | 592 | } |
93a37866 | 593 | |
ed1e77d3 A |
594 | if (verbose) |
595 | dataLog(" Dealing with write set ", data.writes, "\n"); | |
596 | if (data.writes.overlaps(location.heap())) { | |
597 | if (verbose) | |
598 | dataLog(" Clobbered.\n"); | |
599 | return nullptr; | |
6fe7ccc8 | 600 | } |
93a37866 | 601 | |
ed1e77d3 A |
602 | for (unsigned i = block->predecessors.size(); i--;) { |
603 | BasicBlock* predecessor = block->predecessors[i]; | |
604 | if (!seen.get(predecessor->index)) { | |
605 | worklist.append(predecessor); | |
606 | seen.set(predecessor->index); | |
607 | } | |
93a37866 | 608 | } |
6fe7ccc8 A |
609 | } |
610 | ||
ed1e77d3 A |
611 | if (!match) |
612 | return nullptr; | |
613 | ||
614 | // Cache the results for next time. We cache them both for this block and for all of our | |
615 | // predecessors, since even though we've already visited our predecessors, our predecessors | |
616 | // probably have successors other than us. | |
617 | // FIXME: Consider caching failed searches as well, when match is null. It's not clear that | |
618 | // the reduction in compile time would warrant the increase in complexity, though. | |
619 | // https://bugs.webkit.org/show_bug.cgi?id=134876 | |
620 | for (BasicBlock* block : seenList) | |
621 | m_impureDataMap[block].availableAtTail.add(location, match); | |
622 | m_impureData->availableAtTail.add(location, match); | |
623 | ||
624 | return match; | |
6fe7ccc8 A |
625 | } |
626 | ||
ed1e77d3 | 627 | void def(HeapLocation location, LazyNode value) |
6fe7ccc8 | 628 | { |
ed1e77d3 A |
629 | if (verbose) |
630 | dataLog(" Got heap location def: ", location, " -> ", value, "\n"); | |
93a37866 | 631 | |
ed1e77d3 | 632 | LazyNode match = findReplacement(location); |
93a37866 | 633 | |
ed1e77d3 A |
634 | if (verbose) |
635 | dataLog(" Got match: ", match, "\n"); | |
93a37866 | 636 | |
ed1e77d3 A |
637 | if (!match) { |
638 | if (verbose) | |
639 | dataLog(" Adding at-tail mapping: ", location, " -> ", value, "\n"); | |
640 | auto result = m_impureData->availableAtTail.add(location, value); | |
641 | ASSERT_UNUSED(result, result.isNewEntry); | |
642 | return; | |
643 | } | |
644 | ||
645 | if (value.isNode() && value.asNode() == m_node) { | |
646 | if (!match.isNode()) { | |
647 | // We need to properly record the constant in order to use an existing one if applicable. | |
648 | // This ensures that re-running GCSE will not find new optimizations. | |
649 | match.ensureIsNode(m_insertionSet, m_block, m_nodeIndex)->owner = m_block; | |
650 | auto result = m_pureValues.add(PureValue(match.asNode(), match->constant()), Vector<Node*>()); | |
651 | bool replaced = false; | |
652 | if (!result.isNewEntry) { | |
653 | for (unsigned i = result.iterator->value.size(); i--;) { | |
654 | Node* candidate = result.iterator->value[i]; | |
655 | if (m_graph.m_dominators.dominates(candidate->owner, m_block)) { | |
656 | ASSERT(candidate); | |
657 | match->replaceWith(candidate); | |
658 | match.setNode(candidate); | |
659 | replaced = true; | |
660 | break; | |
661 | } | |
662 | } | |
663 | } | |
664 | if (!replaced) | |
665 | result.iterator->value.append(match.asNode()); | |
666 | } | |
667 | ASSERT(match.asNode()); | |
668 | m_node->replaceWith(match.asNode()); | |
669 | m_changed = true; | |
6fe7ccc8 A |
670 | } |
671 | } | |
672 | ||
ed1e77d3 A |
673 | struct ImpureBlockData { |
674 | ImpureBlockData() | |
675 | : didVisit(false) | |
676 | { | |
677 | } | |
678 | ||
679 | ClobberSet writes; | |
680 | ImpureMap availableAtTail; | |
681 | bool didVisit; | |
682 | }; | |
683 | ||
684 | Vector<BasicBlock*> m_preOrder; | |
685 | ||
686 | PureMultiMap m_pureValues; | |
687 | BlockMap<ImpureBlockData> m_impureDataMap; | |
688 | ||
689 | BasicBlock* m_block; | |
690 | Node* m_node; | |
691 | unsigned m_nodeIndex; | |
692 | ImpureBlockData* m_impureData; | |
693 | ClobberSet m_writesSoFar; | |
694 | InsertionSet m_insertionSet; | |
695 | ||
696 | bool m_changed; | |
6fe7ccc8 A |
697 | }; |
698 | ||
ed1e77d3 A |
699 | } // anonymous namespace |
700 | ||
701 | bool performLocalCSE(Graph& graph) | |
93a37866 | 702 | { |
ed1e77d3 A |
703 | SamplingRegion samplingRegion("DFG LocalCSE Phase"); |
704 | return runPhase<LocalCSEPhase>(graph); | |
93a37866 A |
705 | } |
706 | ||
ed1e77d3 | 707 | bool performGlobalCSE(Graph& graph) |
6fe7ccc8 | 708 | { |
ed1e77d3 A |
709 | SamplingRegion samplingRegion("DFG GlobalCSE Phase"); |
710 | return runPhase<GlobalCSEPhase>(graph); | |
6fe7ccc8 A |
711 | } |
712 | ||
713 | } } // namespace JSC::DFG | |
714 | ||
715 | #endif // ENABLE(DFG_JIT) |