]>
Commit | Line | Data |
---|---|---|
f9bf01c6 | 1 | /* |
ed1e77d3 | 2 | * Copyright (C) 2013, 2014 Apple Inc. |
f9bf01c6 A |
3 | * Copyright (C) 2009 University of Szeged |
4 | * All rights reserved. | |
5 | * | |
6 | * Redistribution and use in source and binary forms, with or without | |
7 | * modification, are permitted provided that the following conditions | |
8 | * are met: | |
9 | * 1. Redistributions of source code must retain the above copyright | |
10 | * notice, this list of conditions and the following disclaimer. | |
11 | * 2. Redistributions in binary form must reproduce the above copyright | |
12 | * notice, this list of conditions and the following disclaimer in the | |
13 | * documentation and/or other materials provided with the distribution. | |
14 | * | |
15 | * THIS SOFTWARE IS PROVIDED BY UNIVERSITY OF SZEGED ``AS IS'' AND ANY | |
16 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
17 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | |
18 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL UNIVERSITY OF SZEGED OR | |
19 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | |
20 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | |
21 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | |
22 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | |
23 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
24 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
25 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
26 | */ | |
27 | ||
28 | #include "config.h" | |
29 | ||
30 | #if ENABLE(ASSEMBLER) && CPU(ARM_TRADITIONAL) | |
31 | ||
32 | #include "MacroAssemblerARM.h" | |
33 | ||
34 | #if OS(LINUX) | |
35 | #include <sys/types.h> | |
36 | #include <sys/stat.h> | |
37 | #include <fcntl.h> | |
38 | #include <unistd.h> | |
39 | #include <elf.h> | |
40 | #include <asm/hwcap.h> | |
41 | #endif | |
42 | ||
43 | namespace JSC { | |
44 | ||
45 | static bool isVFPPresent() | |
46 | { | |
47 | #if OS(LINUX) | |
48 | int fd = open("/proc/self/auxv", O_RDONLY); | |
ed1e77d3 | 49 | if (fd != -1) { |
f9bf01c6 A |
50 | Elf32_auxv_t aux; |
51 | while (read(fd, &aux, sizeof(Elf32_auxv_t))) { | |
52 | if (aux.a_type == AT_HWCAP) { | |
53 | close(fd); | |
54 | return aux.a_un.a_val & HWCAP_VFP; | |
55 | } | |
56 | } | |
57 | close(fd); | |
58 | } | |
81345200 | 59 | #endif // OS(LINUX) |
f9bf01c6 | 60 | |
81345200 | 61 | #if (COMPILER(GCC) && defined(__VFP_FP__)) |
14957cd0 A |
62 | return true; |
63 | #else | |
f9bf01c6 | 64 | return false; |
14957cd0 | 65 | #endif |
f9bf01c6 A |
66 | } |
67 | ||
68 | const bool MacroAssemblerARM::s_isVFPPresent = isVFPPresent(); | |
69 | ||
70 | #if CPU(ARMV5_OR_LOWER) | |
71 | /* On ARMv5 and below, natural alignment is required. */ | |
72 | void MacroAssemblerARM::load32WithUnalignedHalfWords(BaseIndex address, RegisterID dest) | |
73 | { | |
74 | ARMWord op2; | |
75 | ||
76 | ASSERT(address.scale >= 0 && address.scale <= 3); | |
77 | op2 = m_assembler.lsl(address.index, static_cast<int>(address.scale)); | |
78 | ||
79 | if (address.offset >= 0 && address.offset + 0x2 <= 0xff) { | |
93a37866 A |
80 | m_assembler.add(ARMRegisters::S0, address.base, op2); |
81 | m_assembler.halfDtrUp(ARMAssembler::LoadUint16, dest, ARMRegisters::S0, ARMAssembler::getOp2Half(address.offset)); | |
82 | m_assembler.halfDtrUp(ARMAssembler::LoadUint16, ARMRegisters::S0, ARMRegisters::S0, ARMAssembler::getOp2Half(address.offset + 0x2)); | |
f9bf01c6 | 83 | } else if (address.offset < 0 && address.offset >= -0xff) { |
93a37866 A |
84 | m_assembler.add(ARMRegisters::S0, address.base, op2); |
85 | m_assembler.halfDtrDown(ARMAssembler::LoadUint16, dest, ARMRegisters::S0, ARMAssembler::getOp2Half(-address.offset)); | |
86 | m_assembler.halfDtrDown(ARMAssembler::LoadUint16, ARMRegisters::S0, ARMRegisters::S0, ARMAssembler::getOp2Half(-address.offset - 0x2)); | |
f9bf01c6 | 87 | } else { |
93a37866 A |
88 | m_assembler.moveImm(address.offset, ARMRegisters::S0); |
89 | m_assembler.add(ARMRegisters::S0, ARMRegisters::S0, op2); | |
90 | m_assembler.halfDtrUpRegister(ARMAssembler::LoadUint16, dest, address.base, ARMRegisters::S0); | |
91 | m_assembler.add(ARMRegisters::S0, ARMRegisters::S0, ARMAssembler::Op2Immediate | 0x2); | |
92 | m_assembler.halfDtrUpRegister(ARMAssembler::LoadUint16, ARMRegisters::S0, address.base, ARMRegisters::S0); | |
f9bf01c6 | 93 | } |
93a37866 | 94 | m_assembler.orr(dest, dest, m_assembler.lsl(ARMRegisters::S0, 16)); |
f9bf01c6 | 95 | } |
81345200 A |
96 | #endif // CPU(ARMV5_OR_LOWER) |
97 | ||
ed1e77d3 A |
98 | #if ENABLE(MASM_PROBE) |
99 | ||
100 | #define INDENT printIndent(indentation) | |
81345200 | 101 | |
ed1e77d3 | 102 | void MacroAssemblerARM::printCPURegisters(CPUState& cpu, int indentation) |
81345200 | 103 | { |
ed1e77d3 | 104 | #define PRINT_GPREGISTER(_type, _regName) { \ |
81345200 | 105 | int32_t value = reinterpret_cast<int32_t>(cpu._regName); \ |
ed1e77d3 | 106 | INDENT, dataLogF("%5s: 0x%08x %d\n", #_regName, value, value) ; \ |
81345200 | 107 | } |
ed1e77d3 A |
108 | FOR_EACH_CPU_GPREGISTER(PRINT_GPREGISTER) |
109 | FOR_EACH_CPU_SPECIAL_REGISTER(PRINT_GPREGISTER) | |
110 | #undef PRINT_GPREGISTER | |
81345200 | 111 | |
ed1e77d3 A |
112 | #define PRINT_FPREGISTER(_type, _regName) { \ |
113 | uint64_t* u = reinterpret_cast<uint64_t*>(&cpu._regName); \ | |
81345200 | 114 | double* d = reinterpret_cast<double*>(&cpu._regName); \ |
ed1e77d3 | 115 | INDENT, dataLogF("%5s: 0x%016llx %.13g\n", #_regName, *u, *d); \ |
81345200 | 116 | } |
ed1e77d3 A |
117 | FOR_EACH_CPU_FPREGISTER(PRINT_FPREGISTER) |
118 | #undef PRINT_FPREGISTER | |
81345200 A |
119 | } |
120 | ||
ed1e77d3 | 121 | #undef INDENT |
81345200 | 122 | |
ed1e77d3 A |
123 | void MacroAssemblerARM::printRegister(MacroAssemblerARM::CPUState& cpu, RegisterID regID) |
124 | { | |
125 | const char* name = CPUState::registerName(regID); | |
126 | union { | |
127 | void* voidPtr; | |
128 | intptr_t intptrValue; | |
129 | } u; | |
130 | u.voidPtr = cpu.registerValue(regID); | |
131 | dataLogF("%s:<%p %ld>", name, u.voidPtr, u.intptrValue); | |
81345200 A |
132 | } |
133 | ||
ed1e77d3 A |
134 | void MacroAssemblerARM::printRegister(MacroAssemblerARM::CPUState& cpu, FPRegisterID regID) |
135 | { | |
136 | const char* name = CPUState::registerName(regID); | |
137 | union { | |
138 | double doubleValue; | |
139 | uint64_t uint64Value; | |
140 | } u; | |
141 | u.doubleValue = cpu.registerValue(regID); | |
142 | dataLogF("%s:<0x%016llx %.13g>", name, u.uint64Value, u.doubleValue); | |
143 | } | |
81345200 A |
144 | |
145 | extern "C" void ctiMasmProbeTrampoline(); | |
146 | ||
147 | // For details on "What code is emitted for the probe?" and "What values are in | |
ed1e77d3 A |
148 | // the saved registers?", see comment for MacroAssemblerX86Common::probe() in |
149 | // MacroAssemblerX86Common.cpp. | |
81345200 A |
150 | |
151 | void MacroAssemblerARM::probe(MacroAssemblerARM::ProbeFunction function, void* arg1, void* arg2) | |
152 | { | |
153 | push(RegisterID::sp); | |
154 | push(RegisterID::lr); | |
155 | push(RegisterID::ip); | |
156 | push(RegisterID::S0); | |
157 | // The following uses RegisterID::S0. So, they must come after we push S0 above. | |
158 | push(trustedImm32FromPtr(arg2)); | |
159 | push(trustedImm32FromPtr(arg1)); | |
160 | push(trustedImm32FromPtr(function)); | |
161 | ||
162 | move(trustedImm32FromPtr(ctiMasmProbeTrampoline), RegisterID::S0); | |
163 | m_assembler.blx(RegisterID::S0); | |
f9bf01c6 A |
164 | |
165 | } | |
ed1e77d3 | 166 | #endif // ENABLE(MASM_PROBE) |
81345200 A |
167 | |
168 | } // namespace JSC | |
f9bf01c6 A |
169 | |
170 | #endif // ENABLE(ASSEMBLER) && CPU(ARM_TRADITIONAL) |