]>
Commit | Line | Data |
---|---|---|
4e4e5a6f A |
1 | /* |
2 | * Copyright (C) 2010 Google Inc. All rights reserved. | |
3 | * | |
4 | * Redistribution and use in source and binary forms, with or without | |
5 | * modification, are permitted provided that the following conditions | |
6 | * are met: | |
7 | * | |
8 | * 1. Redistributions of source code must retain the above copyright | |
9 | * notice, this list of conditions and the following disclaimer. | |
10 | * 2. Redistributions in binary form must reproduce the above copyright | |
11 | * notice, this list of conditions and the following disclaimer in the | |
12 | * documentation and/or other materials provided with the distribution. | |
13 | * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of | |
14 | * its contributors may be used to endorse or promote products derived | |
15 | * from this software without specific prior written permission. | |
16 | * | |
17 | * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY | |
18 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |
19 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
20 | * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY | |
21 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | |
22 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
23 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND | |
24 | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF | |
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
27 | */ | |
28 | ||
29 | #ifndef Vector3_h | |
30 | #define Vector3_h | |
31 | ||
32 | #include <math.h> | |
33 | ||
34 | namespace WebCore { | |
35 | ||
36 | class Vector3 { | |
37 | public: | |
38 | Vector3() | |
39 | : m_x(0.0) | |
40 | , m_y(0.0) | |
41 | , m_z(0.0) | |
42 | { | |
43 | } | |
44 | ||
45 | Vector3(double x, double y, double z) | |
46 | : m_x(x) | |
47 | , m_y(y) | |
48 | , m_z(z) | |
49 | { | |
50 | } | |
51 | ||
52 | Vector3(const float p[3]) | |
53 | : m_x(p[0]) | |
54 | , m_y(p[1]) | |
55 | , m_z(p[2]) | |
56 | { | |
57 | } | |
58 | ||
59 | Vector3(const double p[3]) | |
60 | : m_x(p[0]) | |
61 | , m_y(p[1]) | |
62 | , m_z(p[2]) | |
63 | { | |
64 | } | |
65 | ||
66 | double abs() const | |
67 | { | |
68 | return sqrt(m_x * m_x + m_y * m_y + m_z * m_z); | |
69 | } | |
70 | ||
71 | bool isZero() const | |
72 | { | |
73 | return !m_x && !m_y && !m_z; | |
74 | } | |
75 | ||
76 | void normalize() | |
77 | { | |
78 | double absValue = abs(); | |
79 | if (!absValue) | |
80 | return; | |
81 | ||
82 | double k = 1.0 / absValue; | |
83 | m_x *= k; | |
84 | m_y *= k; | |
85 | m_z *= k; | |
86 | } | |
87 | ||
88 | double x() const { return m_x; } | |
89 | double y() const { return m_y; } | |
90 | double z() const { return m_z; } | |
91 | ||
92 | private: | |
93 | double m_x; | |
94 | double m_y; | |
95 | double m_z; | |
96 | }; | |
97 | ||
98 | inline Vector3 operator+(const Vector3& v1, const Vector3& v2) | |
99 | { | |
100 | return Vector3(v1.x() + v2.x(), v1.y() + v2.y(), v1.z() + v2.z()); | |
101 | } | |
102 | ||
103 | inline Vector3 operator-(const Vector3& v1, const Vector3& v2) | |
104 | { | |
105 | return Vector3(v1.x() - v2.x(), v1.y() - v2.y(), v1.z() - v2.z()); | |
106 | } | |
107 | ||
108 | inline Vector3 operator*(double k, const Vector3& v) | |
109 | { | |
110 | return Vector3(k * v.x(), k * v.y(), k * v.z()); | |
111 | } | |
112 | ||
113 | inline Vector3 operator*(const Vector3& v, double k) | |
114 | { | |
115 | return Vector3(k * v.x(), k * v.y(), k * v.z()); | |
116 | } | |
117 | ||
118 | inline double dot(const Vector3& v1, const Vector3& v2) | |
119 | { | |
120 | return v1.x() * v2.x() + v1.y() * v2.y() + v1.z() * v2.z(); | |
121 | } | |
122 | ||
123 | inline Vector3 cross(const Vector3& v1, const Vector3& v2) | |
124 | { | |
125 | double x3 = v1.y() * v2.z() - v1.z() * v2.y(); | |
126 | double y3 = v1.z() * v2.x() - v1.x() * v2.z(); | |
127 | double z3 = v1.x() * v2.y() - v1.y() * v2.x(); | |
128 | return Vector3(x3, y3, z3); | |
129 | } | |
130 | ||
131 | inline double distance(const Vector3& v1, const Vector3& v2) | |
132 | { | |
133 | return (v1 - v2).abs(); | |
134 | } | |
135 | ||
136 | } // WebCore | |
137 | ||
138 | #endif // Vector3_h |