]> git.saurik.com Git - apple/javascriptcore.git/blame - runtime/Uint16WithFraction.h
JavaScriptCore-1097.13.tar.gz
[apple/javascriptcore.git] / runtime / Uint16WithFraction.h
CommitLineData
6fe7ccc8
A
1/*
2 * Copyright (C) 2011 Apple Inc. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
14 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
16 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
17 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
18 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
19 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
20 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
21 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
23 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 */
25
26#ifndef Uint16WithFraction_h
27#define Uint16WithFraction_h
28
29#include <wtf/MathExtras.h>
30
31namespace JSC {
32
33// Would be nice if this was a static const member, but the OS X linker
34// seems to want a symbol in the binary in that case...
35#define oneGreaterThanMaxUInt16 0x10000
36
37// A uint16_t with an infinite precision fraction. Upon overflowing
38// the uint16_t range, this class will clamp to oneGreaterThanMaxUInt16.
39// This is used in converting the fraction part of a number to a string.
40class Uint16WithFraction {
41public:
42 explicit Uint16WithFraction(double number, uint16_t divideByExponent = 0)
43 {
44 ASSERT(number && isfinite(number) && !signbit(number));
45
46 // Check for values out of uint16_t range.
47 if (number >= oneGreaterThanMaxUInt16) {
48 m_values.append(oneGreaterThanMaxUInt16);
49 m_leadingZeros = 0;
50 return;
51 }
52
53 // Append the units to m_values.
54 double integerPart = floor(number);
55 m_values.append(static_cast<uint32_t>(integerPart));
56
57 bool sign;
58 int32_t exponent;
59 uint64_t mantissa;
60 decomposeDouble(number - integerPart, sign, exponent, mantissa);
61 ASSERT(!sign && exponent < 0);
62 exponent -= divideByExponent;
63
64 int32_t zeroBits = -exponent;
65 --zeroBits;
66
67 // Append the append words for to m_values.
68 while (zeroBits >= 32) {
69 m_values.append(0);
70 zeroBits -= 32;
71 }
72
73 // Left align the 53 bits of the mantissa within 96 bits.
74 uint32_t values[3];
75 values[0] = static_cast<uint32_t>(mantissa >> 21);
76 values[1] = static_cast<uint32_t>(mantissa << 11);
77 values[2] = 0;
78 // Shift based on the remainder of the exponent.
79 if (zeroBits) {
80 values[2] = values[1] << (32 - zeroBits);
81 values[1] = (values[1] >> zeroBits) | (values[0] << (32 - zeroBits));
82 values[0] = (values[0] >> zeroBits);
83 }
84 m_values.append(values[0]);
85 m_values.append(values[1]);
86 m_values.append(values[2]);
87
88 // Canonicalize; remove any trailing zeros.
89 while (m_values.size() > 1 && !m_values.last())
90 m_values.removeLast();
91
92 // Count the number of leading zero, this is useful in optimizing multiplies.
93 m_leadingZeros = 0;
94 while (m_leadingZeros < m_values.size() && !m_values[m_leadingZeros])
95 ++m_leadingZeros;
96 }
97
98 Uint16WithFraction& operator*=(uint16_t multiplier)
99 {
100 ASSERT(checkConsistency());
101
102 // iteratate backwards over the fraction until we reach the leading zeros,
103 // passing the carry from one calculation into the next.
104 uint64_t accumulator = 0;
105 for (size_t i = m_values.size(); i > m_leadingZeros; ) {
106 --i;
107 accumulator += static_cast<uint64_t>(m_values[i]) * static_cast<uint64_t>(multiplier);
108 m_values[i] = static_cast<uint32_t>(accumulator);
109 accumulator >>= 32;
110 }
111
112 if (!m_leadingZeros) {
113 // With a multiplicand and multiplier in the uint16_t range, this cannot carry
114 // (even allowing for the infinity value).
115 ASSERT(!accumulator);
116 // Check for overflow & clamp to 'infinity'.
117 if (m_values[0] >= oneGreaterThanMaxUInt16) {
118 m_values.shrink(1);
119 m_values[0] = oneGreaterThanMaxUInt16;
120 m_leadingZeros = 0;
121 return *this;
122 }
123 } else if (accumulator) {
124 // Check for carry from the last multiply, if so overwrite last leading zero.
125 m_values[--m_leadingZeros] = static_cast<uint32_t>(accumulator);
126 // The limited range of the multiplier should mean that even if we carry into
127 // the units, we don't need to check for overflow of the uint16_t range.
128 ASSERT(m_values[0] < oneGreaterThanMaxUInt16);
129 }
130
131 // Multiplication by an even value may introduce trailing zeros; if so, clean them
132 // up. (Keeping the value in a normalized form makes some of the comparison operations
133 // more efficient).
134 while (m_values.size() > 1 && !m_values.last())
135 m_values.removeLast();
136 ASSERT(checkConsistency());
137 return *this;
138 }
139
140 bool operator<(const Uint16WithFraction& other)
141 {
142 ASSERT(checkConsistency());
143 ASSERT(other.checkConsistency());
144
145 // Iterate over the common lengths of arrays.
146 size_t minSize = std::min(m_values.size(), other.m_values.size());
147 for (size_t index = 0; index < minSize; ++index) {
148 // If we find a value that is not equal, compare and return.
149 uint32_t fromThis = m_values[index];
150 uint32_t fromOther = other.m_values[index];
151 if (fromThis != fromOther)
152 return fromThis < fromOther;
153 }
154 // If these numbers have the same lengths, they are equal,
155 // otherwise which ever number has a longer fraction in larger.
156 return other.m_values.size() > minSize;
157 }
158
159 // Return the floor (non-fractional portion) of the number, clearing this to zero,
160 // leaving the fractional part unchanged.
161 uint32_t floorAndSubtract()
162 {
163 // 'floor' is simple the integer portion of the value.
164 uint32_t floor = m_values[0];
165
166 // If floor is non-zero,
167 if (floor) {
168 m_values[0] = 0;
169 m_leadingZeros = 1;
170 while (m_leadingZeros < m_values.size() && !m_values[m_leadingZeros])
171 ++m_leadingZeros;
172 }
173
174 return floor;
175 }
176
177 // Compare this value to 0.5, returns -1 for less than, 0 for equal, 1 for greater.
178 int comparePoint5()
179 {
180 ASSERT(checkConsistency());
181 // If units != 0, this is greater than 0.5.
182 if (m_values[0])
183 return 1;
184 // If size == 1 this value is 0, hence < 0.5.
185 if (m_values.size() == 1)
186 return -1;
187 // Compare to 0.5.
188 if (m_values[1] > 0x80000000ul)
189 return 1;
190 if (m_values[1] < 0x80000000ul)
191 return -1;
192 // Check for more words - since normalized numbers have no trailing zeros, if
193 // there are more that two digits we can assume at least one more is non-zero,
194 // and hence the value is > 0.5.
195 return m_values.size() > 2 ? 1 : 0;
196 }
197
198 // Return true if the sum of this plus addend would be greater than 1.
199 bool sumGreaterThanOne(const Uint16WithFraction& addend)
200 {
201 ASSERT(checkConsistency());
202 ASSERT(addend.checkConsistency());
203
204 // First, sum the units. If the result is greater than one, return true.
205 // If equal to one, return true if either number has a fractional part.
206 uint32_t sum = m_values[0] + addend.m_values[0];
207 if (sum)
208 return sum > 1 || std::max(m_values.size(), addend.m_values.size()) > 1;
209
210 // We could still produce a result greater than zero if addition of the next
211 // word from the fraction were to carry, leaving a result > 0.
212
213 // Iterate over the common lengths of arrays.
214 size_t minSize = std::min(m_values.size(), addend.m_values.size());
215 for (size_t index = 1; index < minSize; ++index) {
216 // Sum the next word from this & the addend.
217 uint32_t fromThis = m_values[index];
218 uint32_t fromAddend = addend.m_values[index];
219 sum = fromThis + fromAddend;
220
221 // Check for overflow. If so, check whether the remaining result is non-zero,
222 // or if there are any further words in the fraction.
223 if (sum < fromThis)
224 return sum || (index + 1) < std::max(m_values.size(), addend.m_values.size());
225
226 // If the sum is uint32_t max, then we would carry a 1 if addition of the next
227 // digits in the number were to overflow.
228 if (sum != 0xFFFFFFFF)
229 return false;
230 }
231 return false;
232 }
233
234private:
235 bool checkConsistency() const
236 {
237 // All values should have at least one value.
238 return (m_values.size())
239 // The units value must be a uint16_t, or the value is the overflow value.
240 && (m_values[0] < oneGreaterThanMaxUInt16 || (m_values[0] == oneGreaterThanMaxUInt16 && m_values.size() == 1))
241 // There should be no trailing zeros (unless this value is zero!).
242 && (m_values.last() || m_values.size() == 1);
243 }
244
245 // The internal storage of the number. This vector is always at least one entry in size,
246 // with the first entry holding the portion of the number greater than zero. The first
247 // value always hold a value in the uint16_t range, or holds the value oneGreaterThanMaxUInt16 to
248 // indicate the value has overflowed to >= 0x10000. If the units value is oneGreaterThanMaxUInt16,
249 // there can be no fraction (size must be 1).
250 //
251 // Subsequent values in the array represent portions of the fractional part of this number.
252 // The total value of the number is the sum of (m_values[i] / pow(2^32, i)), for each i
253 // in the array. The vector should contain no trailing zeros, except for the value '0',
254 // represented by a vector contianing a single zero value. These constraints are checked
255 // by 'checkConsistency()', above.
256 //
257 // The inline capacity of the vector is set to be able to contain any IEEE double (1 for
258 // the units column, 32 for zeros introduced due to an exponent up to -3FE, and 2 for
259 // bits taken from the mantissa).
260 Vector<uint32_t, 36> m_values;
261
262 // Cache a count of the number of leading zeros in m_values. We can use this to optimize
263 // methods that would otherwise need visit all words in the vector, e.g. multiplication.
264 size_t m_leadingZeros;
265};
266
267}
268
269#endif
270