]>
Commit | Line | Data |
---|---|---|
9dae56ea A |
1 | /* |
2 | * Copyright (C) 1999-2002 Harri Porten (porten@kde.org) | |
3 | * Copyright (C) 2001 Peter Kelly (pmk@post.com) | |
6fe7ccc8 | 4 | * Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2012 Apple Inc. All rights reserved. |
9dae56ea A |
5 | * Copyright (C) 2007 Cameron Zwarich (cwzwarich@uwaterloo.ca) |
6 | * Copyright (C) 2007 Maks Orlovich | |
7 | * | |
8 | * This library is free software; you can redistribute it and/or | |
9 | * modify it under the terms of the GNU Library General Public | |
10 | * License as published by the Free Software Foundation; either | |
11 | * version 2 of the License, or (at your option) any later version. | |
12 | * | |
13 | * This library is distributed in the hope that it will be useful, | |
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
16 | * Library General Public License for more details. | |
17 | * | |
18 | * You should have received a copy of the GNU Library General Public License | |
19 | * along with this library; see the file COPYING.LIB. If not, write to | |
20 | * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, | |
21 | * Boston, MA 02110-1301, USA. | |
22 | * | |
23 | */ | |
24 | ||
25 | #include "config.h" | |
26 | #include "JSGlobalObjectFunctions.h" | |
27 | ||
28 | #include "CallFrame.h" | |
f9bf01c6 | 29 | #include "Interpreter.h" |
9dae56ea A |
30 | #include "JSGlobalObject.h" |
31 | #include "JSString.h" | |
4e4e5a6f | 32 | #include "JSStringBuilder.h" |
9dae56ea | 33 | #include "Lexer.h" |
f9bf01c6 | 34 | #include "LiteralParser.h" |
9dae56ea | 35 | #include "Nodes.h" |
f9bf01c6 | 36 | #include "Parser.h" |
14957cd0 | 37 | #include "UStringBuilder.h" |
6fe7ccc8 | 38 | #include <wtf/dtoa.h> |
9dae56ea A |
39 | #include <stdio.h> |
40 | #include <stdlib.h> | |
9dae56ea A |
41 | #include <wtf/ASCIICType.h> |
42 | #include <wtf/Assertions.h> | |
43 | #include <wtf/MathExtras.h> | |
14957cd0 | 44 | #include <wtf/StringExtras.h> |
9dae56ea A |
45 | #include <wtf/unicode/UTF8.h> |
46 | ||
47 | using namespace WTF; | |
48 | using namespace Unicode; | |
49 | ||
50 | namespace JSC { | |
51 | ||
14957cd0 | 52 | static JSValue encode(ExecState* exec, const char* doNotEscape) |
9dae56ea | 53 | { |
6fe7ccc8 | 54 | CString cstr = exec->argument(0).toString(exec)->value(exec).utf8(true); |
4e4e5a6f | 55 | if (!cstr.data()) |
14957cd0 | 56 | return throwError(exec, createURIError(exec, "String contained an illegal UTF-16 sequence.")); |
9dae56ea | 57 | |
4e4e5a6f A |
58 | JSStringBuilder builder; |
59 | const char* p = cstr.data(); | |
60 | for (size_t k = 0; k < cstr.length(); k++, p++) { | |
9dae56ea A |
61 | char c = *p; |
62 | if (c && strchr(doNotEscape, c)) | |
f9bf01c6 | 63 | builder.append(c); |
9dae56ea A |
64 | else { |
65 | char tmp[4]; | |
66 | snprintf(tmp, sizeof(tmp), "%%%02X", static_cast<unsigned char>(c)); | |
4e4e5a6f | 67 | builder.append(tmp); |
9dae56ea A |
68 | } |
69 | } | |
4e4e5a6f | 70 | return builder.build(exec); |
9dae56ea A |
71 | } |
72 | ||
6fe7ccc8 A |
73 | template <typename CharType> |
74 | ALWAYS_INLINE | |
75 | static JSValue decode(ExecState* exec, const CharType* characters, int length, const char* doNotUnescape, bool strict) | |
9dae56ea | 76 | { |
4e4e5a6f | 77 | JSStringBuilder builder; |
9dae56ea | 78 | int k = 0; |
9dae56ea | 79 | UChar u = 0; |
6fe7ccc8 A |
80 | while (k < length) { |
81 | const CharType* p = characters + k; | |
82 | CharType c = *p; | |
9dae56ea A |
83 | if (c == '%') { |
84 | int charLen = 0; | |
6fe7ccc8 A |
85 | if (k <= length - 3 && isASCIIHexDigit(p[1]) && isASCIIHexDigit(p[2])) { |
86 | const char b0 = Lexer<CharType>::convertHex(p[1], p[2]); | |
9dae56ea | 87 | const int sequenceLen = UTF8SequenceLength(b0); |
6fe7ccc8 | 88 | if (sequenceLen && k <= length - sequenceLen * 3) { |
9dae56ea A |
89 | charLen = sequenceLen * 3; |
90 | char sequence[5]; | |
91 | sequence[0] = b0; | |
92 | for (int i = 1; i < sequenceLen; ++i) { | |
6fe7ccc8 | 93 | const CharType* q = p + i * 3; |
9dae56ea | 94 | if (q[0] == '%' && isASCIIHexDigit(q[1]) && isASCIIHexDigit(q[2])) |
6fe7ccc8 | 95 | sequence[i] = Lexer<CharType>::convertHex(q[1], q[2]); |
9dae56ea A |
96 | else { |
97 | charLen = 0; | |
98 | break; | |
99 | } | |
100 | } | |
101 | if (charLen != 0) { | |
102 | sequence[sequenceLen] = 0; | |
103 | const int character = decodeUTF8Sequence(sequence); | |
104 | if (character < 0 || character >= 0x110000) | |
105 | charLen = 0; | |
106 | else if (character >= 0x10000) { | |
107 | // Convert to surrogate pair. | |
f9bf01c6 | 108 | builder.append(static_cast<UChar>(0xD800 | ((character - 0x10000) >> 10))); |
9dae56ea A |
109 | u = static_cast<UChar>(0xDC00 | ((character - 0x10000) & 0x3FF)); |
110 | } else | |
111 | u = static_cast<UChar>(character); | |
112 | } | |
113 | } | |
114 | } | |
115 | if (charLen == 0) { | |
116 | if (strict) | |
14957cd0 | 117 | return throwError(exec, createURIError(exec, "URI error")); |
9dae56ea A |
118 | // The only case where we don't use "strict" mode is the "unescape" function. |
119 | // For that, it's good to support the wonky "%u" syntax for compatibility with WinIE. | |
6fe7ccc8 | 120 | if (k <= length - 6 && p[1] == 'u' |
9dae56ea A |
121 | && isASCIIHexDigit(p[2]) && isASCIIHexDigit(p[3]) |
122 | && isASCIIHexDigit(p[4]) && isASCIIHexDigit(p[5])) { | |
123 | charLen = 6; | |
6fe7ccc8 | 124 | u = Lexer<UChar>::convertUnicode(p[2], p[3], p[4], p[5]); |
9dae56ea A |
125 | } |
126 | } | |
127 | if (charLen && (u == 0 || u >= 128 || !strchr(doNotUnescape, u))) { | |
6fe7ccc8 A |
128 | if (u < 256) |
129 | builder.append(static_cast<LChar>(u)); | |
130 | else | |
131 | builder.append(u); | |
132 | k += charLen; | |
133 | continue; | |
9dae56ea A |
134 | } |
135 | } | |
136 | k++; | |
f9bf01c6 | 137 | builder.append(c); |
9dae56ea | 138 | } |
4e4e5a6f | 139 | return builder.build(exec); |
9dae56ea A |
140 | } |
141 | ||
6fe7ccc8 A |
142 | static JSValue decode(ExecState* exec, const char* doNotUnescape, bool strict) |
143 | { | |
144 | JSStringBuilder builder; | |
145 | UString str = exec->argument(0).toString(exec)->value(exec); | |
146 | ||
147 | if (str.is8Bit()) | |
148 | return decode(exec, str.characters8(), str.length(), doNotUnescape, strict); | |
149 | return decode(exec, str.characters16(), str.length(), doNotUnescape, strict); | |
150 | } | |
151 | ||
9dae56ea A |
152 | bool isStrWhiteSpace(UChar c) |
153 | { | |
154 | switch (c) { | |
14957cd0 | 155 | // ECMA-262-5th 7.2 & 7.3 |
9dae56ea A |
156 | case 0x0009: |
157 | case 0x000A: | |
158 | case 0x000B: | |
159 | case 0x000C: | |
160 | case 0x000D: | |
161 | case 0x0020: | |
162 | case 0x00A0: | |
163 | case 0x2028: | |
164 | case 0x2029: | |
14957cd0 | 165 | case 0xFEFF: |
9dae56ea A |
166 | return true; |
167 | default: | |
168 | return c > 0xff && isSeparatorSpace(c); | |
169 | } | |
170 | } | |
171 | ||
172 | static int parseDigit(unsigned short c, int radix) | |
173 | { | |
174 | int digit = -1; | |
175 | ||
176 | if (c >= '0' && c <= '9') | |
177 | digit = c - '0'; | |
178 | else if (c >= 'A' && c <= 'Z') | |
179 | digit = c - 'A' + 10; | |
180 | else if (c >= 'a' && c <= 'z') | |
181 | digit = c - 'a' + 10; | |
182 | ||
183 | if (digit >= radix) | |
184 | return -1; | |
185 | return digit; | |
186 | } | |
187 | ||
6fe7ccc8 | 188 | double parseIntOverflow(const LChar* s, int length, int radix) |
9dae56ea A |
189 | { |
190 | double number = 0.0; | |
191 | double radixMultiplier = 1.0; | |
192 | ||
6fe7ccc8 A |
193 | for (const LChar* p = s + length - 1; p >= s; p--) { |
194 | if (radixMultiplier == std::numeric_limits<double>::infinity()) { | |
9dae56ea | 195 | if (*p != '0') { |
6fe7ccc8 | 196 | number = std::numeric_limits<double>::infinity(); |
9dae56ea A |
197 | break; |
198 | } | |
199 | } else { | |
200 | int digit = parseDigit(*p, radix); | |
201 | number += digit * radixMultiplier; | |
202 | } | |
203 | ||
204 | radixMultiplier *= radix; | |
205 | } | |
206 | ||
207 | return number; | |
208 | } | |
209 | ||
14957cd0 A |
210 | double parseIntOverflow(const UChar* s, int length, int radix) |
211 | { | |
212 | double number = 0.0; | |
213 | double radixMultiplier = 1.0; | |
214 | ||
215 | for (const UChar* p = s + length - 1; p >= s; p--) { | |
6fe7ccc8 | 216 | if (radixMultiplier == std::numeric_limits<double>::infinity()) { |
14957cd0 | 217 | if (*p != '0') { |
6fe7ccc8 | 218 | number = std::numeric_limits<double>::infinity(); |
14957cd0 A |
219 | break; |
220 | } | |
221 | } else { | |
222 | int digit = parseDigit(*p, radix); | |
223 | number += digit * radixMultiplier; | |
224 | } | |
225 | ||
226 | radixMultiplier *= radix; | |
227 | } | |
228 | ||
229 | return number; | |
230 | } | |
231 | ||
6fe7ccc8 A |
232 | // ES5.1 15.1.2.2 |
233 | template <typename CharType> | |
234 | ALWAYS_INLINE | |
235 | static double parseInt(const UString& s, const CharType* data, int radix) | |
9dae56ea | 236 | { |
6fe7ccc8 A |
237 | // 1. Let inputString be ToString(string). |
238 | // 2. Let S be a newly created substring of inputString consisting of the first character that is not a | |
239 | // StrWhiteSpaceChar and all characters following that character. (In other words, remove leading white | |
240 | // space.) If inputString does not contain any such characters, let S be the empty string. | |
14957cd0 | 241 | int length = s.length(); |
9dae56ea | 242 | int p = 0; |
9dae56ea A |
243 | while (p < length && isStrWhiteSpace(data[p])) |
244 | ++p; | |
245 | ||
6fe7ccc8 A |
246 | // 3. Let sign be 1. |
247 | // 4. If S is not empty and the first character of S is a minus sign -, let sign be -1. | |
248 | // 5. If S is not empty and the first character of S is a plus sign + or a minus sign -, then remove the first character from S. | |
9dae56ea A |
249 | double sign = 1; |
250 | if (p < length) { | |
251 | if (data[p] == '+') | |
252 | ++p; | |
253 | else if (data[p] == '-') { | |
254 | sign = -1; | |
255 | ++p; | |
256 | } | |
257 | } | |
258 | ||
6fe7ccc8 A |
259 | // 6. Let R = ToInt32(radix). |
260 | // 7. Let stripPrefix be true. | |
261 | // 8. If R != 0,then | |
262 | // b. If R != 16, let stripPrefix be false. | |
263 | // 9. Else, R == 0 | |
264 | // a. LetR = 10. | |
265 | // 10. If stripPrefix is true, then | |
266 | // a. If the length of S is at least 2 and the first two characters of S are either ―0x or ―0X, | |
267 | // then remove the first two characters from S and let R = 16. | |
268 | // 11. If S contains any character that is not a radix-R digit, then let Z be the substring of S | |
269 | // consisting of all characters before the first such character; otherwise, let Z be S. | |
9dae56ea A |
270 | if ((radix == 0 || radix == 16) && length - p >= 2 && data[p] == '0' && (data[p + 1] == 'x' || data[p + 1] == 'X')) { |
271 | radix = 16; | |
272 | p += 2; | |
6fe7ccc8 A |
273 | } else if (radix == 0) |
274 | radix = 10; | |
9dae56ea | 275 | |
6fe7ccc8 | 276 | // 8.a If R < 2 or R > 36, then return NaN. |
9dae56ea | 277 | if (radix < 2 || radix > 36) |
6fe7ccc8 A |
278 | return std::numeric_limits<double>::quiet_NaN(); |
279 | ||
280 | // 13. Let mathInt be the mathematical integer value that is represented by Z in radix-R notation, using the letters | |
281 | // A-Z and a-z for digits with values 10 through 35. (However, if R is 10 and Z contains more than 20 significant | |
282 | // digits, every significant digit after the 20th may be replaced by a 0 digit, at the option of the implementation; | |
283 | // and if R is not 2, 4, 8, 10, 16, or 32, then mathInt may be an implementation-dependent approximation to the | |
284 | // mathematical integer value that is represented by Z in radix-R notation.) | |
285 | // 14. Let number be the Number value for mathInt. | |
9dae56ea A |
286 | int firstDigitPosition = p; |
287 | bool sawDigit = false; | |
288 | double number = 0; | |
289 | while (p < length) { | |
290 | int digit = parseDigit(data[p], radix); | |
291 | if (digit == -1) | |
292 | break; | |
293 | sawDigit = true; | |
294 | number *= radix; | |
295 | number += digit; | |
296 | ++p; | |
297 | } | |
298 | ||
6fe7ccc8 A |
299 | // 12. If Z is empty, return NaN. |
300 | if (!sawDigit) | |
301 | return std::numeric_limits<double>::quiet_NaN(); | |
302 | ||
303 | // Alternate code path for certain large numbers. | |
9dae56ea | 304 | if (number >= mantissaOverflowLowerBound) { |
6fe7ccc8 A |
305 | if (radix == 10) { |
306 | size_t parsedLength; | |
307 | number = parseDouble(s.characters() + firstDigitPosition, p - firstDigitPosition, parsedLength); | |
308 | } else if (radix == 2 || radix == 4 || radix == 8 || radix == 16 || radix == 32) | |
14957cd0 | 309 | number = parseIntOverflow(s.substringSharingImpl(firstDigitPosition, p - firstDigitPosition).utf8().data(), p - firstDigitPosition, radix); |
9dae56ea A |
310 | } |
311 | ||
6fe7ccc8 | 312 | // 15. Return sign x number. |
9dae56ea A |
313 | return sign * number; |
314 | } | |
315 | ||
6fe7ccc8 A |
316 | static double parseInt(const UString& s, int radix) |
317 | { | |
318 | if (s.is8Bit()) | |
319 | return parseInt(s, s.characters8(), radix); | |
320 | return parseInt(s, s.characters16(), radix); | |
321 | } | |
322 | ||
14957cd0 A |
323 | static const int SizeOfInfinity = 8; |
324 | ||
6fe7ccc8 A |
325 | template <typename CharType> |
326 | static bool isInfinity(const CharType* data, const CharType* end) | |
14957cd0 A |
327 | { |
328 | return (end - data) >= SizeOfInfinity | |
329 | && data[0] == 'I' | |
330 | && data[1] == 'n' | |
331 | && data[2] == 'f' | |
332 | && data[3] == 'i' | |
333 | && data[4] == 'n' | |
334 | && data[5] == 'i' | |
335 | && data[6] == 't' | |
336 | && data[7] == 'y'; | |
337 | } | |
338 | ||
339 | // See ecma-262 9.3.1 | |
6fe7ccc8 A |
340 | template <typename CharType> |
341 | static double jsHexIntegerLiteral(const CharType*& data, const CharType* end) | |
14957cd0 A |
342 | { |
343 | // Hex number. | |
344 | data += 2; | |
6fe7ccc8 | 345 | const CharType* firstDigitPosition = data; |
14957cd0 A |
346 | double number = 0; |
347 | while (true) { | |
348 | number = number * 16 + toASCIIHexValue(*data); | |
349 | ++data; | |
350 | if (data == end) | |
351 | break; | |
352 | if (!isASCIIHexDigit(*data)) | |
353 | break; | |
354 | } | |
355 | if (number >= mantissaOverflowLowerBound) | |
356 | number = parseIntOverflow(firstDigitPosition, data - firstDigitPosition, 16); | |
357 | ||
358 | return number; | |
359 | } | |
360 | ||
361 | // See ecma-262 9.3.1 | |
6fe7ccc8 A |
362 | template <typename CharType> |
363 | static double jsStrDecimalLiteral(const CharType*& data, const CharType* end) | |
14957cd0 A |
364 | { |
365 | ASSERT(data < end); | |
366 | ||
6fe7ccc8 A |
367 | size_t parsedLength; |
368 | double number = parseDouble(data, end - data, parsedLength); | |
369 | if (parsedLength) { | |
370 | data += parsedLength; | |
14957cd0 A |
371 | return number; |
372 | } | |
373 | ||
374 | // Check for [+-]?Infinity | |
375 | switch (*data) { | |
376 | case 'I': | |
377 | if (isInfinity(data, end)) { | |
378 | data += SizeOfInfinity; | |
6fe7ccc8 | 379 | return std::numeric_limits<double>::infinity(); |
14957cd0 A |
380 | } |
381 | break; | |
382 | ||
383 | case '+': | |
384 | if (isInfinity(data + 1, end)) { | |
385 | data += SizeOfInfinity + 1; | |
6fe7ccc8 | 386 | return std::numeric_limits<double>::infinity(); |
14957cd0 A |
387 | } |
388 | break; | |
389 | ||
390 | case '-': | |
391 | if (isInfinity(data + 1, end)) { | |
392 | data += SizeOfInfinity + 1; | |
6fe7ccc8 | 393 | return -std::numeric_limits<double>::infinity(); |
14957cd0 A |
394 | } |
395 | break; | |
396 | } | |
397 | ||
398 | // Not a number. | |
6fe7ccc8 | 399 | return std::numeric_limits<double>::quiet_NaN(); |
14957cd0 A |
400 | } |
401 | ||
6fe7ccc8 A |
402 | template <typename CharType> |
403 | static double toDouble(const CharType* characters, unsigned size) | |
14957cd0 | 404 | { |
6fe7ccc8 | 405 | const CharType* endCharacters = characters + size; |
14957cd0 A |
406 | |
407 | // Skip leading white space. | |
6fe7ccc8 A |
408 | for (; characters < endCharacters; ++characters) { |
409 | if (!isStrWhiteSpace(*characters)) | |
14957cd0 A |
410 | break; |
411 | } | |
6fe7ccc8 | 412 | |
14957cd0 | 413 | // Empty string. |
6fe7ccc8 | 414 | if (characters == endCharacters) |
14957cd0 | 415 | return 0.0; |
6fe7ccc8 | 416 | |
14957cd0 | 417 | double number; |
6fe7ccc8 A |
418 | if (characters[0] == '0' && characters + 2 < endCharacters && (characters[1] | 0x20) == 'x' && isASCIIHexDigit(characters[2])) |
419 | number = jsHexIntegerLiteral(characters, endCharacters); | |
14957cd0 | 420 | else |
6fe7ccc8 A |
421 | number = jsStrDecimalLiteral(characters, endCharacters); |
422 | ||
14957cd0 | 423 | // Allow trailing white space. |
6fe7ccc8 A |
424 | for (; characters < endCharacters; ++characters) { |
425 | if (!isStrWhiteSpace(*characters)) | |
14957cd0 A |
426 | break; |
427 | } | |
6fe7ccc8 A |
428 | if (characters != endCharacters) |
429 | return std::numeric_limits<double>::quiet_NaN(); | |
430 | ||
14957cd0 A |
431 | return number; |
432 | } | |
433 | ||
6fe7ccc8 A |
434 | // See ecma-262 9.3.1 |
435 | double jsToNumber(const UString& s) | |
436 | { | |
437 | unsigned size = s.length(); | |
438 | ||
439 | if (size == 1) { | |
440 | UChar c = s[0]; | |
441 | if (isASCIIDigit(c)) | |
442 | return c - '0'; | |
443 | if (isStrWhiteSpace(c)) | |
444 | return 0; | |
445 | return std::numeric_limits<double>::quiet_NaN(); | |
446 | } | |
447 | ||
448 | if (s.is8Bit()) | |
449 | return toDouble(s.characters8(), size); | |
450 | return toDouble(s.characters16(), size); | |
451 | } | |
452 | ||
9dae56ea A |
453 | static double parseFloat(const UString& s) |
454 | { | |
14957cd0 | 455 | unsigned size = s.length(); |
9dae56ea | 456 | |
14957cd0 | 457 | if (size == 1) { |
6fe7ccc8 | 458 | UChar c = s[0]; |
14957cd0 A |
459 | if (isASCIIDigit(c)) |
460 | return c - '0'; | |
6fe7ccc8 A |
461 | return std::numeric_limits<double>::quiet_NaN(); |
462 | } | |
463 | ||
464 | if (s.is8Bit()) { | |
465 | const LChar* data = s.characters8(); | |
466 | const LChar* end = data + size; | |
467 | ||
468 | // Skip leading white space. | |
469 | for (; data < end; ++data) { | |
470 | if (!isStrWhiteSpace(*data)) | |
471 | break; | |
472 | } | |
473 | ||
474 | // Empty string. | |
475 | if (data == end) | |
476 | return std::numeric_limits<double>::quiet_NaN(); | |
477 | ||
478 | return jsStrDecimalLiteral(data, end); | |
14957cd0 | 479 | } |
9dae56ea | 480 | |
6fe7ccc8 | 481 | const UChar* data = s.characters16(); |
14957cd0 | 482 | const UChar* end = data + size; |
9dae56ea | 483 | |
14957cd0 A |
484 | // Skip leading white space. |
485 | for (; data < end; ++data) { | |
486 | if (!isStrWhiteSpace(*data)) | |
487 | break; | |
488 | } | |
489 | ||
490 | // Empty string. | |
491 | if (data == end) | |
6fe7ccc8 | 492 | return std::numeric_limits<double>::quiet_NaN(); |
14957cd0 A |
493 | |
494 | return jsStrDecimalLiteral(data, end); | |
9dae56ea A |
495 | } |
496 | ||
14957cd0 | 497 | EncodedJSValue JSC_HOST_CALL globalFuncEval(ExecState* exec) |
9dae56ea | 498 | { |
14957cd0 | 499 | JSObject* thisObject = exec->hostThisValue().toThisObject(exec); |
9dae56ea | 500 | JSObject* unwrappedObject = thisObject->unwrappedObject(); |
6fe7ccc8 | 501 | if (!unwrappedObject->isGlobalObject() || jsCast<JSGlobalObject*>(unwrappedObject)->evalFunction() != exec->callee()) |
14957cd0 | 502 | return throwVMError(exec, createEvalError(exec, "The \"this\" value passed to eval must be the global object from which eval originated")); |
9dae56ea | 503 | |
14957cd0 | 504 | JSValue x = exec->argument(0); |
9dae56ea | 505 | if (!x.isString()) |
14957cd0 | 506 | return JSValue::encode(x); |
9dae56ea | 507 | |
6fe7ccc8 | 508 | UString s = x.toString(exec)->value(exec); |
9dae56ea | 509 | |
6fe7ccc8 A |
510 | if (s.is8Bit()) { |
511 | LiteralParser<LChar> preparser(exec, s.characters8(), s.length(), NonStrictJSON); | |
512 | if (JSValue parsedObject = preparser.tryLiteralParse()) | |
513 | return JSValue::encode(parsedObject); | |
514 | } else { | |
515 | LiteralParser<UChar> preparser(exec, s.characters16(), s.length(), NonStrictJSON); | |
516 | if (JSValue parsedObject = preparser.tryLiteralParse()) | |
517 | return JSValue::encode(parsedObject); | |
518 | } | |
ba379fdc | 519 | |
14957cd0 | 520 | EvalExecutable* eval = EvalExecutable::create(exec, makeSource(s), false); |
6fe7ccc8 | 521 | JSObject* error = eval->compile(exec, jsCast<JSGlobalObject*>(unwrappedObject)->globalScopeChain()); |
f9bf01c6 | 522 | if (error) |
14957cd0 | 523 | return throwVMError(exec, error); |
9dae56ea | 524 | |
6fe7ccc8 | 525 | return JSValue::encode(exec->interpreter()->execute(eval, exec, thisObject, jsCast<JSGlobalObject*>(unwrappedObject)->globalScopeChain())); |
9dae56ea A |
526 | } |
527 | ||
14957cd0 | 528 | EncodedJSValue JSC_HOST_CALL globalFuncParseInt(ExecState* exec) |
9dae56ea | 529 | { |
14957cd0 | 530 | JSValue value = exec->argument(0); |
6fe7ccc8 A |
531 | JSValue radixValue = exec->argument(1); |
532 | ||
533 | // Optimized handling for numbers: | |
534 | // If the argument is 0 or a number in range 10^-6 <= n < INT_MAX+1, then parseInt | |
535 | // results in a truncation to integer. In the case of -0, this is converted to 0. | |
536 | // | |
537 | // This is also a truncation for values in the range INT_MAX+1 <= n < 10^21, | |
538 | // however these values cannot be trivially truncated to int since 10^21 exceeds | |
539 | // even the int64_t range. Negative numbers are a little trickier, the case for | |
540 | // values in the range -10^21 < n <= -1 are similar to those for integer, but | |
541 | // values in the range -1 < n <= -10^-6 need to truncate to -0, not 0. | |
542 | static const double tenToTheMinus6 = 0.000001; | |
543 | static const double intMaxPlusOne = 2147483648.0; | |
544 | if (value.isNumber()) { | |
545 | double n = value.asNumber(); | |
546 | if (((n < intMaxPlusOne && n >= tenToTheMinus6) || !n) && radixValue.isUndefinedOrNull()) | |
547 | return JSValue::encode(jsNumber(static_cast<int32_t>(n))); | |
9dae56ea A |
548 | } |
549 | ||
6fe7ccc8 A |
550 | // If ToString throws, we shouldn't call ToInt32. |
551 | UString s = value.toString(exec)->value(exec); | |
552 | if (exec->hadException()) | |
553 | return JSValue::encode(jsUndefined()); | |
554 | ||
555 | return JSValue::encode(jsNumber(parseInt(s, radixValue.toInt32(exec)))); | |
9dae56ea A |
556 | } |
557 | ||
14957cd0 | 558 | EncodedJSValue JSC_HOST_CALL globalFuncParseFloat(ExecState* exec) |
9dae56ea | 559 | { |
6fe7ccc8 | 560 | return JSValue::encode(jsNumber(parseFloat(exec->argument(0).toString(exec)->value(exec)))); |
9dae56ea A |
561 | } |
562 | ||
14957cd0 | 563 | EncodedJSValue JSC_HOST_CALL globalFuncIsNaN(ExecState* exec) |
9dae56ea | 564 | { |
14957cd0 | 565 | return JSValue::encode(jsBoolean(isnan(exec->argument(0).toNumber(exec)))); |
9dae56ea A |
566 | } |
567 | ||
14957cd0 | 568 | EncodedJSValue JSC_HOST_CALL globalFuncIsFinite(ExecState* exec) |
9dae56ea | 569 | { |
14957cd0 | 570 | double n = exec->argument(0).toNumber(exec); |
6fe7ccc8 | 571 | return JSValue::encode(jsBoolean(isfinite(n))); |
9dae56ea A |
572 | } |
573 | ||
14957cd0 | 574 | EncodedJSValue JSC_HOST_CALL globalFuncDecodeURI(ExecState* exec) |
9dae56ea A |
575 | { |
576 | static const char do_not_unescape_when_decoding_URI[] = | |
577 | "#$&+,/:;=?@"; | |
578 | ||
14957cd0 | 579 | return JSValue::encode(decode(exec, do_not_unescape_when_decoding_URI, true)); |
9dae56ea A |
580 | } |
581 | ||
14957cd0 | 582 | EncodedJSValue JSC_HOST_CALL globalFuncDecodeURIComponent(ExecState* exec) |
9dae56ea | 583 | { |
14957cd0 | 584 | return JSValue::encode(decode(exec, "", true)); |
9dae56ea A |
585 | } |
586 | ||
14957cd0 | 587 | EncodedJSValue JSC_HOST_CALL globalFuncEncodeURI(ExecState* exec) |
9dae56ea A |
588 | { |
589 | static const char do_not_escape_when_encoding_URI[] = | |
590 | "ABCDEFGHIJKLMNOPQRSTUVWXYZ" | |
591 | "abcdefghijklmnopqrstuvwxyz" | |
592 | "0123456789" | |
593 | "!#$&'()*+,-./:;=?@_~"; | |
594 | ||
14957cd0 | 595 | return JSValue::encode(encode(exec, do_not_escape_when_encoding_URI)); |
9dae56ea A |
596 | } |
597 | ||
14957cd0 | 598 | EncodedJSValue JSC_HOST_CALL globalFuncEncodeURIComponent(ExecState* exec) |
9dae56ea A |
599 | { |
600 | static const char do_not_escape_when_encoding_URI_component[] = | |
601 | "ABCDEFGHIJKLMNOPQRSTUVWXYZ" | |
602 | "abcdefghijklmnopqrstuvwxyz" | |
603 | "0123456789" | |
604 | "!'()*-._~"; | |
605 | ||
14957cd0 | 606 | return JSValue::encode(encode(exec, do_not_escape_when_encoding_URI_component)); |
9dae56ea A |
607 | } |
608 | ||
14957cd0 | 609 | EncodedJSValue JSC_HOST_CALL globalFuncEscape(ExecState* exec) |
9dae56ea A |
610 | { |
611 | static const char do_not_escape[] = | |
612 | "ABCDEFGHIJKLMNOPQRSTUVWXYZ" | |
613 | "abcdefghijklmnopqrstuvwxyz" | |
614 | "0123456789" | |
615 | "*+-./@_"; | |
616 | ||
4e4e5a6f | 617 | JSStringBuilder builder; |
6fe7ccc8 A |
618 | UString str = exec->argument(0).toString(exec)->value(exec); |
619 | if (str.is8Bit()) { | |
620 | const LChar* c = str.characters8(); | |
621 | for (unsigned k = 0; k < str.length(); k++, c++) { | |
622 | int u = c[0]; | |
623 | if (u && strchr(do_not_escape, static_cast<char>(u))) | |
624 | builder.append(c, 1); | |
625 | else { | |
626 | char tmp[4]; | |
627 | snprintf(tmp, sizeof(tmp), "%%%02X", u); | |
628 | builder.append(tmp); | |
629 | } | |
630 | } | |
631 | ||
632 | return JSValue::encode(builder.build(exec)); | |
633 | } | |
634 | ||
635 | const UChar* c = str.characters16(); | |
14957cd0 | 636 | for (unsigned k = 0; k < str.length(); k++, c++) { |
9dae56ea A |
637 | int u = c[0]; |
638 | if (u > 255) { | |
639 | char tmp[7]; | |
640 | snprintf(tmp, sizeof(tmp), "%%u%04X", u); | |
4e4e5a6f | 641 | builder.append(tmp); |
9dae56ea | 642 | } else if (u != 0 && strchr(do_not_escape, static_cast<char>(u))) |
4e4e5a6f | 643 | builder.append(c, 1); |
9dae56ea A |
644 | else { |
645 | char tmp[4]; | |
646 | snprintf(tmp, sizeof(tmp), "%%%02X", u); | |
4e4e5a6f | 647 | builder.append(tmp); |
9dae56ea | 648 | } |
9dae56ea A |
649 | } |
650 | ||
14957cd0 | 651 | return JSValue::encode(builder.build(exec)); |
9dae56ea A |
652 | } |
653 | ||
14957cd0 | 654 | EncodedJSValue JSC_HOST_CALL globalFuncUnescape(ExecState* exec) |
9dae56ea | 655 | { |
14957cd0 | 656 | UStringBuilder builder; |
6fe7ccc8 | 657 | UString str = exec->argument(0).toString(exec)->value(exec); |
9dae56ea | 658 | int k = 0; |
14957cd0 | 659 | int len = str.length(); |
6fe7ccc8 A |
660 | |
661 | if (str.is8Bit()) { | |
662 | const LChar* characters = str.characters8(); | |
663 | LChar convertedLChar; | |
664 | while (k < len) { | |
665 | const LChar* c = characters + k; | |
666 | if (c[0] == '%' && k <= len - 6 && c[1] == 'u') { | |
667 | if (isASCIIHexDigit(c[2]) && isASCIIHexDigit(c[3]) && isASCIIHexDigit(c[4]) && isASCIIHexDigit(c[5])) { | |
668 | builder.append(Lexer<UChar>::convertUnicode(c[2], c[3], c[4], c[5])); | |
669 | k += 6; | |
670 | continue; | |
671 | } | |
672 | } else if (c[0] == '%' && k <= len - 3 && isASCIIHexDigit(c[1]) && isASCIIHexDigit(c[2])) { | |
673 | convertedLChar = LChar(Lexer<LChar>::convertHex(c[1], c[2])); | |
674 | c = &convertedLChar; | |
675 | k += 2; | |
9dae56ea | 676 | } |
6fe7ccc8 A |
677 | builder.append(*c); |
678 | k++; | |
679 | } | |
680 | } else { | |
681 | const UChar* characters = str.characters16(); | |
682 | ||
683 | while (k < len) { | |
684 | const UChar* c = characters + k; | |
685 | UChar convertedUChar; | |
686 | if (c[0] == '%' && k <= len - 6 && c[1] == 'u') { | |
687 | if (isASCIIHexDigit(c[2]) && isASCIIHexDigit(c[3]) && isASCIIHexDigit(c[4]) && isASCIIHexDigit(c[5])) { | |
688 | convertedUChar = Lexer<UChar>::convertUnicode(c[2], c[3], c[4], c[5]); | |
689 | c = &convertedUChar; | |
690 | k += 5; | |
691 | } | |
692 | } else if (c[0] == '%' && k <= len - 3 && isASCIIHexDigit(c[1]) && isASCIIHexDigit(c[2])) { | |
693 | convertedUChar = UChar(Lexer<UChar>::convertHex(c[1], c[2])); | |
694 | c = &convertedUChar; | |
695 | k += 2; | |
696 | } | |
697 | k++; | |
698 | builder.append(*c); | |
9dae56ea | 699 | } |
9dae56ea A |
700 | } |
701 | ||
14957cd0 | 702 | return JSValue::encode(jsString(exec, builder.toUString())); |
9dae56ea | 703 | } |
9dae56ea | 704 | |
6fe7ccc8 A |
705 | EncodedJSValue JSC_HOST_CALL globalFuncThrowTypeError(ExecState* exec) |
706 | { | |
707 | return throwVMTypeError(exec); | |
708 | } | |
709 | ||
710 | EncodedJSValue JSC_HOST_CALL globalFuncProtoGetter(ExecState* exec) | |
711 | { | |
712 | if (!exec->thisValue().isObject()) | |
713 | return JSValue::encode(exec->thisValue().synthesizePrototype(exec)); | |
714 | ||
715 | JSObject* thisObject = asObject(exec->thisValue()); | |
716 | if (!thisObject->allowsAccessFrom(exec->trueCallerFrame())) | |
717 | return JSValue::encode(jsUndefined()); | |
718 | ||
719 | return JSValue::encode(thisObject->prototype()); | |
720 | } | |
721 | ||
722 | EncodedJSValue JSC_HOST_CALL globalFuncProtoSetter(ExecState* exec) | |
723 | { | |
724 | JSValue value = exec->argument(0); | |
725 | ||
726 | // Setting __proto__ of a primitive should have no effect. | |
727 | if (!exec->thisValue().isObject()) | |
728 | return JSValue::encode(jsUndefined()); | |
729 | ||
730 | JSObject* thisObject = asObject(exec->thisValue()); | |
731 | if (!thisObject->allowsAccessFrom(exec->trueCallerFrame())) | |
732 | return JSValue::encode(jsUndefined()); | |
733 | ||
734 | // Setting __proto__ to a non-object, non-null value is silently ignored to match Mozilla. | |
735 | if (!value.isObject() && !value.isNull()) | |
736 | return JSValue::encode(jsUndefined()); | |
737 | ||
738 | if (!thisObject->isExtensible()) | |
739 | return throwVMError(exec, createTypeError(exec, StrictModeReadonlyPropertyWriteError)); | |
740 | ||
741 | if (!thisObject->setPrototypeWithCycleCheck(exec->globalData(), value)) | |
742 | throwError(exec, createError(exec, "cyclic __proto__ value")); | |
743 | return JSValue::encode(jsUndefined()); | |
744 | } | |
745 | ||
9dae56ea | 746 | } // namespace JSC |