]>
Commit | Line | Data |
---|---|---|
b37bf2e1 A |
1 | /* The contents of this file are subject to the Netscape Public |
2 | * License Version 1.1 (the "License"); you may not use this file | |
3 | * except in compliance with the License. You may obtain a copy of | |
4 | * the License at http://www.mozilla.org/NPL/ | |
5 | * | |
6 | * Software distributed under the License is distributed on an "AS | |
7 | * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or | |
8 | * implied. See the License for the specific language governing | |
9 | * rights and limitations under the License. | |
10 | * | |
11 | * The Original Code is Mozilla Communicator client code, released March | |
12 | * 31, 1998. | |
13 | * | |
14 | * The Initial Developer of the Original Code is Netscape Communications | |
15 | * Corporation. Portions created by Netscape are | |
16 | * Copyright (C) 1998 Netscape Communications Corporation. All | |
17 | * Rights Reserved. | |
18 | * | |
19 | * Contributor(s): | |
20 | * | |
21 | */ | |
22 | /** | |
23 | File Name: 11.5.3.js | |
24 | ECMA Section: 11.5.3 Applying the % operator | |
25 | Description: | |
26 | ||
27 | The binary % operator is said to yield the remainder of its operands from | |
28 | an implied division; the left operand is the dividend and the right operand | |
29 | is the divisor. In C and C++, the remainder operator accepts only integral | |
30 | operands, but in ECMAScript, it also accepts floating-point operands. | |
31 | ||
32 | The result of a floating-point remainder operation as computed by the % | |
33 | operator is not the same as the "remainder" operation defined by IEEE 754. | |
34 | The IEEE 754 "remainder" operation computes the remainder from a rounding | |
35 | division, not a truncating division, and so its behavior is not analogous | |
36 | to that of the usual integer remainder operator. Instead the ECMAScript | |
37 | language defines % on floating-point operations to behave in a manner | |
38 | analogous to that of the Java integer remainder operator; this may be | |
39 | compared with the C library function fmod. | |
40 | ||
41 | The result of a ECMAScript floating-point remainder operation is determined by the rules of IEEE arithmetic: | |
42 | ||
43 | If either operand is NaN, the result is NaN. | |
44 | The sign of the result equals the sign of the dividend. | |
45 | If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN. | |
46 | If the dividend is finite and the divisor is an infinity, the result equals the dividend. | |
47 | If the dividend is a zero and the divisor is finite, the result is the same as the dividend. | |
48 | In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r | |
49 | from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that | |
50 | is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as | |
51 | possible without exceeding the magnitude of the true mathematical quotient of n and d. | |
52 | ||
53 | Author: christine@netscape.com | |
54 | Date: 12 november 1997 | |
55 | */ | |
56 | var SECTION = "11.5.3"; | |
57 | var VERSION = "ECMA_1"; | |
58 | startTest(); | |
59 | var testcases = getTestCases(); | |
60 | var BUGNUMBER="111202"; | |
61 | ||
62 | writeHeaderToLog( SECTION + " Applying the % operator"); | |
63 | test(); | |
64 | ||
65 | function test() { | |
66 | for ( tc=0; tc < testcases.length; tc++ ) { | |
67 | testcases[tc].passed = writeTestCaseResult( | |
68 | testcases[tc].expect, | |
69 | testcases[tc].actual, | |
70 | testcases[tc].description +" = "+ | |
71 | testcases[tc].actual ); | |
72 | ||
73 | testcases[tc].reason += ( testcases[tc].passed ) ? "" : "wrong value "; | |
74 | } | |
75 | stopTest(); | |
76 | return ( testcases ); | |
77 | } | |
78 | function getTestCases() { | |
79 | var array = new Array(); | |
80 | var item = 0; | |
81 | ||
82 | // if either operand is NaN, the result is NaN. | |
83 | ||
84 | array[item++] = new TestCase( SECTION, "Number.NaN % Number.NaN", Number.NaN, Number.NaN % Number.NaN ); | |
85 | array[item++] = new TestCase( SECTION, "Number.NaN % 1", Number.NaN, Number.NaN % 1 ); | |
86 | array[item++] = new TestCase( SECTION, "1 % Number.NaN", Number.NaN, 1 % Number.NaN ); | |
87 | ||
88 | array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.NaN", Number.NaN, Number.POSITIVE_INFINITY % Number.NaN ); | |
89 | array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.NaN", Number.NaN, Number.NEGATIVE_INFINITY % Number.NaN ); | |
90 | ||
91 | // If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN. | |
92 | // dividend is an infinity | |
93 | ||
94 | array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY", Number.NaN, Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY ); | |
95 | array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY", Number.NaN, Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY ); | |
96 | array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY", Number.NaN, Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY ); | |
97 | array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY", Number.NaN, Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY ); | |
98 | ||
99 | array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % 0", Number.NaN, Number.POSITIVE_INFINITY % 0 ); | |
100 | array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % 0", Number.NaN, Number.NEGATIVE_INFINITY % 0 ); | |
101 | array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % -0", Number.NaN, Number.POSITIVE_INFINITY % -0 ); | |
102 | array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -0", Number.NaN, Number.NEGATIVE_INFINITY % -0 ); | |
103 | ||
104 | array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % 1 ", Number.NaN, Number.NEGATIVE_INFINITY % 1 ); | |
105 | array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -1 ", Number.NaN, Number.NEGATIVE_INFINITY % -1 ); | |
106 | array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % 1 ", Number.NaN, Number.POSITIVE_INFINITY % 1 ); | |
107 | array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % -1 ", Number.NaN, Number.POSITIVE_INFINITY % -1 ); | |
108 | ||
109 | array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % Number.MAX_VALUE ", Number.NaN, Number.NEGATIVE_INFINITY % Number.MAX_VALUE ); | |
110 | array[item++] = new TestCase( SECTION, "Number.NEGATIVE_INFINITY % -Number.MAX_VALUE ", Number.NaN, Number.NEGATIVE_INFINITY % -Number.MAX_VALUE ); | |
111 | array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % Number.MAX_VALUE ", Number.NaN, Number.POSITIVE_INFINITY % Number.MAX_VALUE ); | |
112 | array[item++] = new TestCase( SECTION, "Number.POSITIVE_INFINITY % -Number.MAX_VALUE ", Number.NaN, Number.POSITIVE_INFINITY % -Number.MAX_VALUE ); | |
113 | ||
114 | // divisor is 0 | |
115 | array[item++] = new TestCase( SECTION, "0 % -0", Number.NaN, 0 % -0 ); | |
116 | array[item++] = new TestCase( SECTION, "-0 % 0", Number.NaN, -0 % 0 ); | |
117 | array[item++] = new TestCase( SECTION, "-0 % -0", Number.NaN, -0 % -0 ); | |
118 | array[item++] = new TestCase( SECTION, "0 % 0", Number.NaN, 0 % 0 ); | |
119 | ||
120 | array[item++] = new TestCase( SECTION, "1 % 0", Number.NaN, 1%0 ); | |
121 | array[item++] = new TestCase( SECTION, "1 % -0", Number.NaN, 1%-0 ); | |
122 | array[item++] = new TestCase( SECTION, "-1 % 0", Number.NaN, -1%0 ); | |
123 | array[item++] = new TestCase( SECTION, "-1 % -0", Number.NaN, -1%-0 ); | |
124 | ||
125 | array[item++] = new TestCase( SECTION, "Number.MAX_VALUE % 0", Number.NaN, Number.MAX_VALUE%0 ); | |
126 | array[item++] = new TestCase( SECTION, "Number.MAX_VALUE % -0", Number.NaN, Number.MAX_VALUE%-0 ); | |
127 | array[item++] = new TestCase( SECTION, "-Number.MAX_VALUE % 0", Number.NaN, -Number.MAX_VALUE%0 ); | |
128 | array[item++] = new TestCase( SECTION, "-Number.MAX_VALUE % -0", Number.NaN, -Number.MAX_VALUE%-0 ); | |
129 | ||
130 | // If the dividend is finite and the divisor is an infinity, the result equals the dividend. | |
131 | ||
132 | array[item++] = new TestCase( SECTION, "1 % Number.NEGATIVE_INFINITY", 1, 1 % Number.NEGATIVE_INFINITY ); | |
133 | array[item++] = new TestCase( SECTION, "1 % Number.POSITIVE_INFINITY", 1, 1 % Number.POSITIVE_INFINITY ); | |
134 | array[item++] = new TestCase( SECTION, "-1 % Number.POSITIVE_INFINITY", -1, -1 % Number.POSITIVE_INFINITY ); | |
135 | array[item++] = new TestCase( SECTION, "-1 % Number.NEGATIVE_INFINITY", -1, -1 % Number.NEGATIVE_INFINITY ); | |
136 | ||
137 | array[item++] = new TestCase( SECTION, "Number.MAX_VALUE % Number.NEGATIVE_INFINITY", Number.MAX_VALUE, Number.MAX_VALUE % Number.NEGATIVE_INFINITY ); | |
138 | array[item++] = new TestCase( SECTION, "Number.MAX_VALUE % Number.POSITIVE_INFINITY", Number.MAX_VALUE, Number.MAX_VALUE % Number.POSITIVE_INFINITY ); | |
139 | array[item++] = new TestCase( SECTION, "-Number.MAX_VALUE % Number.POSITIVE_INFINITY", -Number.MAX_VALUE, -Number.MAX_VALUE % Number.POSITIVE_INFINITY ); | |
140 | array[item++] = new TestCase( SECTION, "-Number.MAX_VALUE % Number.NEGATIVE_INFINITY", -Number.MAX_VALUE, -Number.MAX_VALUE % Number.NEGATIVE_INFINITY ); | |
141 | ||
142 | array[item++] = new TestCase( SECTION, "0 % Number.POSITIVE_INFINITY", 0, 0 % Number.POSITIVE_INFINITY ); | |
143 | array[item++] = new TestCase( SECTION, "0 % Number.NEGATIVE_INFINITY", 0, 0 % Number.NEGATIVE_INFINITY ); | |
144 | array[item++] = new TestCase( SECTION, "-0 % Number.POSITIVE_INFINITY", -0, -0 % Number.POSITIVE_INFINITY ); | |
145 | array[item++] = new TestCase( SECTION, "-0 % Number.NEGATIVE_INFINITY", -0, -0 % Number.NEGATIVE_INFINITY ); | |
146 | ||
147 | // If the dividend is a zero and the divisor is finite, the result is the same as the dividend. | |
148 | ||
149 | array[item++] = new TestCase( SECTION, "0 % 1", 0, 0 % 1 ); | |
150 | array[item++] = new TestCase( SECTION, "0 % -1", -0, 0 % -1 ); | |
151 | array[item++] = new TestCase( SECTION, "-0 % 1", -0, -0 % 1 ); | |
152 | array[item++] = new TestCase( SECTION, "-0 % -1", 0, -0 % -1 ); | |
153 | ||
154 | // In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r | |
155 | // from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that | |
156 | // is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as | |
157 | // possible without exceeding the magnitude of the true mathematical quotient of n and d. | |
158 | ||
159 | return ( array ); | |
160 | } |