]>
Commit | Line | Data |
---|---|---|
ba379fdc | 1 | /* |
93a37866 | 2 | * Copyright (C) 2009, 2012 Apple Inc. All rights reserved. |
ba379fdc A |
3 | * |
4 | * Redistribution and use in source and binary forms, with or without | |
5 | * modification, are permitted provided that the following conditions | |
6 | * are met: | |
7 | * 1. Redistributions of source code must retain the above copyright | |
8 | * notice, this list of conditions and the following disclaimer. | |
9 | * 2. Redistributions in binary form must reproduce the above copyright | |
10 | * notice, this list of conditions and the following disclaimer in the | |
11 | * documentation and/or other materials provided with the distribution. | |
12 | * | |
13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY | |
14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | |
16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR | |
17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | |
18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | |
19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | |
20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | |
21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
24 | */ | |
25 | ||
26 | #ifndef MacroAssemblerCodeRef_h | |
27 | #define MacroAssemblerCodeRef_h | |
28 | ||
93a37866 | 29 | #include "Disassembler.h" |
ba379fdc | 30 | #include "ExecutableAllocator.h" |
93a37866 A |
31 | #include "LLIntData.h" |
32 | #include <wtf/DataLog.h> | |
6fe7ccc8 A |
33 | #include <wtf/PassRefPtr.h> |
34 | #include <wtf/RefPtr.h> | |
ba379fdc A |
35 | |
36 | // ASSERT_VALID_CODE_POINTER checks that ptr is a non-null pointer, and that it is a valid | |
37 | // instruction address on the platform (for example, check any alignment requirements). | |
f9bf01c6 | 38 | #if CPU(ARM_THUMB2) |
ba379fdc A |
39 | // ARM/thumb instructions must be 16-bit aligned, but all code pointers to be loaded |
40 | // into the processor are decorated with the bottom bit set, indicating that this is | |
41 | // thumb code (as oposed to 32-bit traditional ARM). The first test checks for both | |
42 | // decorated and undectorated null, and the second test ensures that the pointer is | |
43 | // decorated. | |
44 | #define ASSERT_VALID_CODE_POINTER(ptr) \ | |
45 | ASSERT(reinterpret_cast<intptr_t>(ptr) & ~1); \ | |
46 | ASSERT(reinterpret_cast<intptr_t>(ptr) & 1) | |
47 | #define ASSERT_VALID_CODE_OFFSET(offset) \ | |
48 | ASSERT(!(offset & 1)) // Must be multiple of 2. | |
49 | #else | |
50 | #define ASSERT_VALID_CODE_POINTER(ptr) \ | |
51 | ASSERT(ptr) | |
52 | #define ASSERT_VALID_CODE_OFFSET(offset) // Anything goes! | |
53 | #endif | |
54 | ||
6fe7ccc8 A |
55 | #if CPU(X86) && OS(WINDOWS) |
56 | #define CALLING_CONVENTION_IS_STDCALL 1 | |
57 | #ifndef CDECL | |
58 | #if COMPILER(MSVC) | |
59 | #define CDECL __cdecl | |
60 | #else | |
61 | #define CDECL __attribute__ ((__cdecl)) | |
62 | #endif // COMPILER(MSVC) | |
63 | #endif // CDECL | |
64 | #else | |
65 | #define CALLING_CONVENTION_IS_STDCALL 0 | |
66 | #endif | |
67 | ||
68 | #if CPU(X86) | |
69 | #define HAS_FASTCALL_CALLING_CONVENTION 1 | |
70 | #ifndef FASTCALL | |
71 | #if COMPILER(MSVC) | |
72 | #define FASTCALL __fastcall | |
73 | #else | |
74 | #define FASTCALL __attribute__ ((fastcall)) | |
75 | #endif // COMPILER(MSVC) | |
76 | #endif // FASTCALL | |
77 | #else | |
78 | #define HAS_FASTCALL_CALLING_CONVENTION 0 | |
79 | #endif // CPU(X86) | |
80 | ||
ba379fdc A |
81 | namespace JSC { |
82 | ||
83 | // FunctionPtr: | |
84 | // | |
85 | // FunctionPtr should be used to wrap pointers to C/C++ functions in JSC | |
86 | // (particularly, the stub functions). | |
87 | class FunctionPtr { | |
88 | public: | |
89 | FunctionPtr() | |
90 | : m_value(0) | |
91 | { | |
92 | } | |
93 | ||
14957cd0 A |
94 | template<typename returnType> |
95 | FunctionPtr(returnType(*value)()) | |
96 | : m_value((void*)value) | |
97 | { | |
98 | ASSERT_VALID_CODE_POINTER(m_value); | |
99 | } | |
100 | ||
101 | template<typename returnType, typename argType1> | |
102 | FunctionPtr(returnType(*value)(argType1)) | |
103 | : m_value((void*)value) | |
104 | { | |
105 | ASSERT_VALID_CODE_POINTER(m_value); | |
106 | } | |
107 | ||
108 | template<typename returnType, typename argType1, typename argType2> | |
109 | FunctionPtr(returnType(*value)(argType1, argType2)) | |
110 | : m_value((void*)value) | |
111 | { | |
112 | ASSERT_VALID_CODE_POINTER(m_value); | |
113 | } | |
114 | ||
115 | template<typename returnType, typename argType1, typename argType2, typename argType3> | |
116 | FunctionPtr(returnType(*value)(argType1, argType2, argType3)) | |
117 | : m_value((void*)value) | |
118 | { | |
119 | ASSERT_VALID_CODE_POINTER(m_value); | |
120 | } | |
121 | ||
122 | template<typename returnType, typename argType1, typename argType2, typename argType3, typename argType4> | |
123 | FunctionPtr(returnType(*value)(argType1, argType2, argType3, argType4)) | |
124 | : m_value((void*)value) | |
125 | { | |
126 | ASSERT_VALID_CODE_POINTER(m_value); | |
127 | } | |
128 | ||
93a37866 A |
129 | template<typename returnType, typename argType1, typename argType2, typename argType3, typename argType4, typename argType5> |
130 | FunctionPtr(returnType(*value)(argType1, argType2, argType3, argType4, argType5)) | |
131 | : m_value((void*)value) | |
132 | { | |
133 | ASSERT_VALID_CODE_POINTER(m_value); | |
134 | } | |
135 | ||
6fe7ccc8 A |
136 | // MSVC doesn't seem to treat functions with different calling conventions as |
137 | // different types; these methods already defined for fastcall, below. | |
138 | #if CALLING_CONVENTION_IS_STDCALL && !OS(WINDOWS) | |
139 | ||
140 | template<typename returnType> | |
141 | FunctionPtr(returnType (CDECL *value)()) | |
142 | : m_value((void*)value) | |
143 | { | |
144 | ASSERT_VALID_CODE_POINTER(m_value); | |
145 | } | |
146 | ||
147 | template<typename returnType, typename argType1> | |
148 | FunctionPtr(returnType (CDECL *value)(argType1)) | |
149 | : m_value((void*)value) | |
150 | { | |
151 | ASSERT_VALID_CODE_POINTER(m_value); | |
152 | } | |
153 | ||
154 | template<typename returnType, typename argType1, typename argType2> | |
155 | FunctionPtr(returnType (CDECL *value)(argType1, argType2)) | |
156 | : m_value((void*)value) | |
157 | { | |
158 | ASSERT_VALID_CODE_POINTER(m_value); | |
159 | } | |
160 | ||
161 | template<typename returnType, typename argType1, typename argType2, typename argType3> | |
162 | FunctionPtr(returnType (CDECL *value)(argType1, argType2, argType3)) | |
163 | : m_value((void*)value) | |
164 | { | |
165 | ASSERT_VALID_CODE_POINTER(m_value); | |
166 | } | |
167 | ||
168 | template<typename returnType, typename argType1, typename argType2, typename argType3, typename argType4> | |
169 | FunctionPtr(returnType (CDECL *value)(argType1, argType2, argType3, argType4)) | |
170 | : m_value((void*)value) | |
171 | { | |
172 | ASSERT_VALID_CODE_POINTER(m_value); | |
173 | } | |
174 | #endif | |
175 | ||
176 | #if HAS_FASTCALL_CALLING_CONVENTION | |
177 | ||
178 | template<typename returnType> | |
179 | FunctionPtr(returnType (FASTCALL *value)()) | |
180 | : m_value((void*)value) | |
181 | { | |
182 | ASSERT_VALID_CODE_POINTER(m_value); | |
183 | } | |
184 | ||
185 | template<typename returnType, typename argType1> | |
186 | FunctionPtr(returnType (FASTCALL *value)(argType1)) | |
187 | : m_value((void*)value) | |
188 | { | |
189 | ASSERT_VALID_CODE_POINTER(m_value); | |
190 | } | |
191 | ||
192 | template<typename returnType, typename argType1, typename argType2> | |
193 | FunctionPtr(returnType (FASTCALL *value)(argType1, argType2)) | |
194 | : m_value((void*)value) | |
195 | { | |
196 | ASSERT_VALID_CODE_POINTER(m_value); | |
197 | } | |
198 | ||
199 | template<typename returnType, typename argType1, typename argType2, typename argType3> | |
200 | FunctionPtr(returnType (FASTCALL *value)(argType1, argType2, argType3)) | |
201 | : m_value((void*)value) | |
202 | { | |
203 | ASSERT_VALID_CODE_POINTER(m_value); | |
204 | } | |
205 | ||
206 | template<typename returnType, typename argType1, typename argType2, typename argType3, typename argType4> | |
207 | FunctionPtr(returnType (FASTCALL *value)(argType1, argType2, argType3, argType4)) | |
208 | : m_value((void*)value) | |
209 | { | |
210 | ASSERT_VALID_CODE_POINTER(m_value); | |
211 | } | |
212 | #endif | |
213 | ||
ba379fdc A |
214 | template<typename FunctionType> |
215 | explicit FunctionPtr(FunctionType* value) | |
14957cd0 A |
216 | // Using a C-ctyle cast here to avoid compiler error on RVTC: |
217 | // Error: #694: reinterpret_cast cannot cast away const or other type qualifiers | |
218 | // (I guess on RVTC function pointers have a different constness to GCC/MSVC?) | |
219 | : m_value((void*)value) | |
ba379fdc A |
220 | { |
221 | ASSERT_VALID_CODE_POINTER(m_value); | |
222 | } | |
223 | ||
224 | void* value() const { return m_value; } | |
225 | void* executableAddress() const { return m_value; } | |
226 | ||
227 | ||
228 | private: | |
229 | void* m_value; | |
230 | }; | |
231 | ||
232 | // ReturnAddressPtr: | |
233 | // | |
234 | // ReturnAddressPtr should be used to wrap return addresses generated by processor | |
235 | // 'call' instructions exectued in JIT code. We use return addresses to look up | |
236 | // exception and optimization information, and to repatch the call instruction | |
237 | // that is the source of the return address. | |
238 | class ReturnAddressPtr { | |
239 | public: | |
240 | ReturnAddressPtr() | |
241 | : m_value(0) | |
242 | { | |
243 | } | |
244 | ||
245 | explicit ReturnAddressPtr(void* value) | |
246 | : m_value(value) | |
247 | { | |
248 | ASSERT_VALID_CODE_POINTER(m_value); | |
249 | } | |
250 | ||
251 | explicit ReturnAddressPtr(FunctionPtr function) | |
252 | : m_value(function.value()) | |
253 | { | |
254 | ASSERT_VALID_CODE_POINTER(m_value); | |
255 | } | |
256 | ||
257 | void* value() const { return m_value; } | |
258 | ||
259 | private: | |
260 | void* m_value; | |
261 | }; | |
262 | ||
263 | // MacroAssemblerCodePtr: | |
264 | // | |
265 | // MacroAssemblerCodePtr should be used to wrap pointers to JIT generated code. | |
266 | class MacroAssemblerCodePtr { | |
267 | public: | |
268 | MacroAssemblerCodePtr() | |
269 | : m_value(0) | |
270 | { | |
271 | } | |
272 | ||
273 | explicit MacroAssemblerCodePtr(void* value) | |
f9bf01c6 | 274 | #if CPU(ARM_THUMB2) |
ba379fdc A |
275 | // Decorate the pointer as a thumb code pointer. |
276 | : m_value(reinterpret_cast<char*>(value) + 1) | |
277 | #else | |
278 | : m_value(value) | |
279 | #endif | |
280 | { | |
281 | ASSERT_VALID_CODE_POINTER(m_value); | |
282 | } | |
6fe7ccc8 A |
283 | |
284 | static MacroAssemblerCodePtr createFromExecutableAddress(void* value) | |
285 | { | |
286 | ASSERT_VALID_CODE_POINTER(value); | |
287 | MacroAssemblerCodePtr result; | |
288 | result.m_value = value; | |
289 | return result; | |
290 | } | |
ba379fdc | 291 | |
93a37866 A |
292 | #if ENABLE(LLINT) |
293 | static MacroAssemblerCodePtr createLLIntCodePtr(LLIntCode codeId) | |
6fe7ccc8 | 294 | { |
93a37866 | 295 | return createFromExecutableAddress(LLInt::getCodePtr(codeId)); |
6fe7ccc8 | 296 | } |
93a37866 A |
297 | #endif |
298 | ||
ba379fdc A |
299 | explicit MacroAssemblerCodePtr(ReturnAddressPtr ra) |
300 | : m_value(ra.value()) | |
301 | { | |
302 | ASSERT_VALID_CODE_POINTER(m_value); | |
303 | } | |
304 | ||
305 | void* executableAddress() const { return m_value; } | |
f9bf01c6 | 306 | #if CPU(ARM_THUMB2) |
ba379fdc A |
307 | // To use this pointer as a data address remove the decoration. |
308 | void* dataLocation() const { ASSERT_VALID_CODE_POINTER(m_value); return reinterpret_cast<char*>(m_value) - 1; } | |
309 | #else | |
310 | void* dataLocation() const { ASSERT_VALID_CODE_POINTER(m_value); return m_value; } | |
311 | #endif | |
312 | ||
14957cd0 | 313 | bool operator!() const |
ba379fdc A |
314 | { |
315 | return !m_value; | |
316 | } | |
317 | ||
318 | private: | |
319 | void* m_value; | |
320 | }; | |
321 | ||
322 | // MacroAssemblerCodeRef: | |
323 | // | |
324 | // A reference to a section of JIT generated code. A CodeRef consists of a | |
325 | // pointer to the code, and a ref pointer to the pool from within which it | |
326 | // was allocated. | |
327 | class MacroAssemblerCodeRef { | |
6fe7ccc8 A |
328 | private: |
329 | // This is private because it's dangerous enough that we want uses of it | |
330 | // to be easy to find - hence the static create method below. | |
331 | explicit MacroAssemblerCodeRef(MacroAssemblerCodePtr codePtr) | |
332 | : m_codePtr(codePtr) | |
333 | { | |
334 | ASSERT(m_codePtr); | |
335 | } | |
336 | ||
ba379fdc A |
337 | public: |
338 | MacroAssemblerCodeRef() | |
ba379fdc A |
339 | { |
340 | } | |
341 | ||
6fe7ccc8 A |
342 | MacroAssemblerCodeRef(PassRefPtr<ExecutableMemoryHandle> executableMemory) |
343 | : m_codePtr(executableMemory->start()) | |
344 | , m_executableMemory(executableMemory) | |
ba379fdc | 345 | { |
6fe7ccc8 A |
346 | ASSERT(m_executableMemory->isManaged()); |
347 | ASSERT(m_executableMemory->start()); | |
348 | ASSERT(m_codePtr); | |
ba379fdc | 349 | } |
6fe7ccc8 A |
350 | |
351 | // Use this only when you know that the codePtr refers to code that is | |
352 | // already being kept alive through some other means. Typically this means | |
353 | // that codePtr is immortal. | |
354 | static MacroAssemblerCodeRef createSelfManagedCodeRef(MacroAssemblerCodePtr codePtr) | |
355 | { | |
356 | return MacroAssemblerCodeRef(codePtr); | |
357 | } | |
358 | ||
93a37866 | 359 | #if ENABLE(LLINT) |
6fe7ccc8 | 360 | // Helper for creating self-managed code refs from LLInt. |
93a37866 | 361 | static MacroAssemblerCodeRef createLLIntCodeRef(LLIntCode codeId) |
6fe7ccc8 | 362 | { |
93a37866 | 363 | return createSelfManagedCodeRef(MacroAssemblerCodePtr::createFromExecutableAddress(LLInt::getCodePtr(codeId))); |
6fe7ccc8 | 364 | } |
93a37866 A |
365 | #endif |
366 | ||
6fe7ccc8 A |
367 | ExecutableMemoryHandle* executableMemory() const |
368 | { | |
369 | return m_executableMemory.get(); | |
370 | } | |
371 | ||
372 | MacroAssemblerCodePtr code() const | |
373 | { | |
374 | return m_codePtr; | |
375 | } | |
376 | ||
377 | size_t size() const | |
378 | { | |
379 | if (!m_executableMemory) | |
380 | return 0; | |
381 | return m_executableMemory->sizeInBytes(); | |
382 | } | |
383 | ||
93a37866 A |
384 | bool tryToDisassemble(const char* prefix) const |
385 | { | |
386 | return JSC::tryToDisassemble(m_codePtr, size(), prefix, WTF::dataFile()); | |
387 | } | |
388 | ||
6fe7ccc8 | 389 | bool operator!() const { return !m_codePtr; } |
ba379fdc | 390 | |
6fe7ccc8 A |
391 | private: |
392 | MacroAssemblerCodePtr m_codePtr; | |
393 | RefPtr<ExecutableMemoryHandle> m_executableMemory; | |
ba379fdc A |
394 | }; |
395 | ||
396 | } // namespace JSC | |
397 | ||
ba379fdc | 398 | #endif // MacroAssemblerCodeRef_h |