]>
Commit | Line | Data |
---|---|---|
9dae56ea A |
1 | /**************************************************************** |
2 | * | |
3 | * The author of this software is David M. Gay. | |
4 | * | |
5 | * Copyright (c) 1991, 2000, 2001 by Lucent Technologies. | |
14957cd0 | 6 | * Copyright (C) 2002, 2005, 2006, 2007, 2008, 2010 Apple Inc. All rights reserved. |
9dae56ea A |
7 | * |
8 | * Permission to use, copy, modify, and distribute this software for any | |
9 | * purpose without fee is hereby granted, provided that this entire notice | |
10 | * is included in all copies of any software which is or includes a copy | |
11 | * or modification of this software and in all copies of the supporting | |
12 | * documentation for such software. | |
13 | * | |
14 | * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED | |
15 | * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY | |
16 | * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY | |
17 | * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. | |
18 | * | |
19 | ***************************************************************/ | |
20 | ||
14957cd0 A |
21 | /* Please send bug reports to David M. Gay (dmg at acm dot org, |
22 | * with " at " changed at "@" and " dot " changed to "."). */ | |
9dae56ea A |
23 | |
24 | /* On a machine with IEEE extended-precision registers, it is | |
25 | * necessary to specify double-precision (53-bit) rounding precision | |
26 | * before invoking strtod or dtoa. If the machine uses (the equivalent | |
27 | * of) Intel 80x87 arithmetic, the call | |
28 | * _control87(PC_53, MCW_PC); | |
29 | * does this with many compilers. Whether this or another call is | |
30 | * appropriate depends on the compiler; for this to work, it may be | |
31 | * necessary to #include "float.h" or another system-dependent header | |
32 | * file. | |
33 | */ | |
34 | ||
35 | /* strtod for IEEE-arithmetic machines. | |
36 | * | |
37 | * This strtod returns a nearest machine number to the input decimal | |
38 | * string (or sets errno to ERANGE). With IEEE arithmetic, ties are | |
39 | * broken by the IEEE round-even rule. Otherwise ties are broken by | |
40 | * biased rounding (add half and chop). | |
41 | * | |
42 | * Inspired loosely by William D. Clinger's paper "How to Read Floating | |
43 | * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. | |
44 | * | |
45 | * Modifications: | |
46 | * | |
14957cd0 | 47 | * 1. We only require IEEE double-precision arithmetic (not IEEE double-extended). |
9dae56ea A |
48 | * 2. We get by with floating-point arithmetic in a case that |
49 | * Clinger missed -- when we're computing d * 10^n | |
50 | * for a small integer d and the integer n is not too | |
51 | * much larger than 22 (the maximum integer k for which | |
52 | * we can represent 10^k exactly), we may be able to | |
53 | * compute (d*10^k) * 10^(e-k) with just one roundoff. | |
54 | * 3. Rather than a bit-at-a-time adjustment of the binary | |
55 | * result in the hard case, we use floating-point | |
56 | * arithmetic to determine the adjustment to within | |
57 | * one bit; only in really hard cases do we need to | |
58 | * compute a second residual. | |
59 | * 4. Because of 3., we don't need a large table of powers of 10 | |
60 | * for ten-to-e (just some small tables, e.g. of 10^k | |
61 | * for 0 <= k <= 22). | |
62 | */ | |
63 | ||
9dae56ea A |
64 | #include "config.h" |
65 | #include "dtoa.h" | |
66 | ||
67 | #if HAVE(ERRNO_H) | |
68 | #include <errno.h> | |
9dae56ea | 69 | #endif |
14957cd0 | 70 | #include <float.h> |
9dae56ea A |
71 | #include <math.h> |
72 | #include <stdint.h> | |
14957cd0 | 73 | #include <stdio.h> |
9dae56ea A |
74 | #include <stdlib.h> |
75 | #include <string.h> | |
76 | #include <wtf/AlwaysInline.h> | |
77 | #include <wtf/Assertions.h> | |
14957cd0 | 78 | #include <wtf/DecimalNumber.h> |
9dae56ea | 79 | #include <wtf/FastMalloc.h> |
f9bf01c6 | 80 | #include <wtf/MathExtras.h> |
9dae56ea | 81 | #include <wtf/Threading.h> |
14957cd0 A |
82 | #include <wtf/UnusedParam.h> |
83 | #include <wtf/Vector.h> | |
ba379fdc | 84 | |
9dae56ea A |
85 | #if COMPILER(MSVC) |
86 | #pragma warning(disable: 4244) | |
87 | #pragma warning(disable: 4245) | |
88 | #pragma warning(disable: 4554) | |
89 | #endif | |
90 | ||
9dae56ea A |
91 | namespace WTF { |
92 | ||
14957cd0 | 93 | #if ENABLE(WTF_MULTIPLE_THREADS) |
9dae56ea A |
94 | Mutex* s_dtoaP5Mutex; |
95 | #endif | |
96 | ||
14957cd0 A |
97 | typedef union { |
98 | double d; | |
99 | uint32_t L[2]; | |
100 | } U; | |
9dae56ea | 101 | |
14957cd0 A |
102 | #if CPU(BIG_ENDIAN) || CPU(MIDDLE_ENDIAN) |
103 | #define word0(x) (x)->L[0] | |
104 | #define word1(x) (x)->L[1] | |
9dae56ea | 105 | #else |
ba379fdc A |
106 | #define word0(x) (x)->L[1] |
107 | #define word1(x) (x)->L[0] | |
9dae56ea | 108 | #endif |
ba379fdc | 109 | #define dval(x) (x)->d |
9dae56ea A |
110 | |
111 | /* The following definition of Storeinc is appropriate for MIPS processors. | |
112 | * An alternative that might be better on some machines is | |
14957cd0 | 113 | * *p++ = high << 16 | low & 0xffff; |
9dae56ea | 114 | */ |
14957cd0 A |
115 | static ALWAYS_INLINE uint32_t* storeInc(uint32_t* p, uint16_t high, uint16_t low) |
116 | { | |
117 | uint16_t* p16 = reinterpret_cast<uint16_t*>(p); | |
118 | #if CPU(BIG_ENDIAN) | |
119 | p16[0] = high; | |
120 | p16[1] = low; | |
9dae56ea | 121 | #else |
14957cd0 A |
122 | p16[1] = high; |
123 | p16[0] = low; | |
9dae56ea | 124 | #endif |
14957cd0 A |
125 | return p + 1; |
126 | } | |
9dae56ea A |
127 | |
128 | #define Exp_shift 20 | |
129 | #define Exp_shift1 20 | |
130 | #define Exp_msk1 0x100000 | |
131 | #define Exp_msk11 0x100000 | |
132 | #define Exp_mask 0x7ff00000 | |
133 | #define P 53 | |
134 | #define Bias 1023 | |
135 | #define Emin (-1022) | |
136 | #define Exp_1 0x3ff00000 | |
137 | #define Exp_11 0x3ff00000 | |
138 | #define Ebits 11 | |
139 | #define Frac_mask 0xfffff | |
140 | #define Frac_mask1 0xfffff | |
141 | #define Ten_pmax 22 | |
142 | #define Bletch 0x10 | |
143 | #define Bndry_mask 0xfffff | |
144 | #define Bndry_mask1 0xfffff | |
145 | #define LSB 1 | |
146 | #define Sign_bit 0x80000000 | |
147 | #define Log2P 1 | |
148 | #define Tiny0 0 | |
149 | #define Tiny1 1 | |
150 | #define Quick_max 14 | |
151 | #define Int_max 14 | |
152 | ||
14957cd0 A |
153 | #define rounded_product(a, b) a *= b |
154 | #define rounded_quotient(a, b) a /= b | |
9dae56ea A |
155 | |
156 | #define Big0 (Frac_mask1 | Exp_msk1 * (DBL_MAX_EXP + Bias - 1)) | |
157 | #define Big1 0xffffffff | |
158 | ||
f9bf01c6 A |
159 | #if CPU(PPC64) || CPU(X86_64) |
160 | // FIXME: should we enable this on all 64-bit CPUs? | |
9dae56ea A |
161 | // 64-bit emulation provided by the compiler is likely to be slower than dtoa own code on 32-bit hardware. |
162 | #define USE_LONG_LONG | |
163 | #endif | |
164 | ||
ba379fdc A |
165 | struct BigInt { |
166 | BigInt() : sign(0) { } | |
167 | int sign; | |
9dae56ea | 168 | |
ba379fdc A |
169 | void clear() |
170 | { | |
171 | sign = 0; | |
172 | m_words.clear(); | |
173 | } | |
14957cd0 | 174 | |
ba379fdc A |
175 | size_t size() const |
176 | { | |
177 | return m_words.size(); | |
178 | } | |
9dae56ea | 179 | |
ba379fdc A |
180 | void resize(size_t s) |
181 | { | |
182 | m_words.resize(s); | |
183 | } | |
14957cd0 | 184 | |
ba379fdc A |
185 | uint32_t* words() |
186 | { | |
187 | return m_words.data(); | |
188 | } | |
9dae56ea | 189 | |
ba379fdc A |
190 | const uint32_t* words() const |
191 | { | |
192 | return m_words.data(); | |
193 | } | |
14957cd0 | 194 | |
ba379fdc A |
195 | void append(uint32_t w) |
196 | { | |
197 | m_words.append(w); | |
198 | } | |
14957cd0 | 199 | |
ba379fdc A |
200 | Vector<uint32_t, 16> m_words; |
201 | }; | |
9dae56ea | 202 | |
ba379fdc | 203 | static void multadd(BigInt& b, int m, int a) /* multiply by m and add a */ |
9dae56ea A |
204 | { |
205 | #ifdef USE_LONG_LONG | |
206 | unsigned long long carry; | |
207 | #else | |
208 | uint32_t carry; | |
209 | #endif | |
210 | ||
ba379fdc A |
211 | int wds = b.size(); |
212 | uint32_t* x = b.words(); | |
9dae56ea A |
213 | int i = 0; |
214 | carry = a; | |
215 | do { | |
216 | #ifdef USE_LONG_LONG | |
217 | unsigned long long y = *x * (unsigned long long)m + carry; | |
218 | carry = y >> 32; | |
219 | *x++ = (uint32_t)y & 0xffffffffUL; | |
220 | #else | |
9dae56ea A |
221 | uint32_t xi = *x; |
222 | uint32_t y = (xi & 0xffff) * m + carry; | |
223 | uint32_t z = (xi >> 16) * m + (y >> 16); | |
224 | carry = z >> 16; | |
225 | *x++ = (z << 16) + (y & 0xffff); | |
9dae56ea A |
226 | #endif |
227 | } while (++i < wds); | |
228 | ||
ba379fdc A |
229 | if (carry) |
230 | b.append((uint32_t)carry); | |
9dae56ea A |
231 | } |
232 | ||
ba379fdc | 233 | static void s2b(BigInt& b, const char* s, int nd0, int nd, uint32_t y9) |
9dae56ea | 234 | { |
ba379fdc A |
235 | b.sign = 0; |
236 | b.resize(1); | |
237 | b.words()[0] = y9; | |
9dae56ea A |
238 | |
239 | int i = 9; | |
240 | if (9 < nd0) { | |
241 | s += 9; | |
242 | do { | |
ba379fdc | 243 | multadd(b, 10, *s++ - '0'); |
9dae56ea A |
244 | } while (++i < nd0); |
245 | s++; | |
246 | } else | |
247 | s += 10; | |
248 | for (; i < nd; i++) | |
ba379fdc | 249 | multadd(b, 10, *s++ - '0'); |
9dae56ea A |
250 | } |
251 | ||
252 | static int hi0bits(uint32_t x) | |
253 | { | |
254 | int k = 0; | |
255 | ||
256 | if (!(x & 0xffff0000)) { | |
257 | k = 16; | |
258 | x <<= 16; | |
259 | } | |
260 | if (!(x & 0xff000000)) { | |
261 | k += 8; | |
262 | x <<= 8; | |
263 | } | |
264 | if (!(x & 0xf0000000)) { | |
265 | k += 4; | |
266 | x <<= 4; | |
267 | } | |
268 | if (!(x & 0xc0000000)) { | |
269 | k += 2; | |
270 | x <<= 2; | |
271 | } | |
272 | if (!(x & 0x80000000)) { | |
273 | k++; | |
274 | if (!(x & 0x40000000)) | |
275 | return 32; | |
276 | } | |
277 | return k; | |
278 | } | |
279 | ||
14957cd0 | 280 | static int lo0bits(uint32_t* y) |
9dae56ea A |
281 | { |
282 | int k; | |
283 | uint32_t x = *y; | |
284 | ||
285 | if (x & 7) { | |
286 | if (x & 1) | |
287 | return 0; | |
288 | if (x & 2) { | |
289 | *y = x >> 1; | |
290 | return 1; | |
291 | } | |
292 | *y = x >> 2; | |
293 | return 2; | |
294 | } | |
295 | k = 0; | |
296 | if (!(x & 0xffff)) { | |
297 | k = 16; | |
298 | x >>= 16; | |
299 | } | |
300 | if (!(x & 0xff)) { | |
301 | k += 8; | |
302 | x >>= 8; | |
303 | } | |
304 | if (!(x & 0xf)) { | |
305 | k += 4; | |
306 | x >>= 4; | |
307 | } | |
308 | if (!(x & 0x3)) { | |
309 | k += 2; | |
310 | x >>= 2; | |
311 | } | |
312 | if (!(x & 1)) { | |
313 | k++; | |
314 | x >>= 1; | |
14957cd0 | 315 | if (!x) |
9dae56ea A |
316 | return 32; |
317 | } | |
318 | *y = x; | |
319 | return k; | |
320 | } | |
321 | ||
ba379fdc | 322 | static void i2b(BigInt& b, int i) |
9dae56ea | 323 | { |
ba379fdc A |
324 | b.sign = 0; |
325 | b.resize(1); | |
326 | b.words()[0] = i; | |
9dae56ea A |
327 | } |
328 | ||
ba379fdc | 329 | static void mult(BigInt& aRef, const BigInt& bRef) |
9dae56ea | 330 | { |
ba379fdc A |
331 | const BigInt* a = &aRef; |
332 | const BigInt* b = &bRef; | |
333 | BigInt c; | |
334 | int wa, wb, wc; | |
14957cd0 A |
335 | const uint32_t* x = 0; |
336 | const uint32_t* xa; | |
337 | const uint32_t* xb; | |
338 | const uint32_t* xae; | |
339 | const uint32_t* xbe; | |
340 | uint32_t* xc; | |
341 | uint32_t* xc0; | |
9dae56ea A |
342 | uint32_t y; |
343 | #ifdef USE_LONG_LONG | |
344 | unsigned long long carry, z; | |
345 | #else | |
346 | uint32_t carry, z; | |
347 | #endif | |
348 | ||
ba379fdc A |
349 | if (a->size() < b->size()) { |
350 | const BigInt* tmp = a; | |
9dae56ea | 351 | a = b; |
ba379fdc | 352 | b = tmp; |
9dae56ea | 353 | } |
14957cd0 | 354 | |
ba379fdc A |
355 | wa = a->size(); |
356 | wb = b->size(); | |
9dae56ea | 357 | wc = wa + wb; |
ba379fdc A |
358 | c.resize(wc); |
359 | ||
360 | for (xc = c.words(), xa = xc + wc; xc < xa; xc++) | |
361 | *xc = 0; | |
362 | xa = a->words(); | |
9dae56ea | 363 | xae = xa + wa; |
ba379fdc | 364 | xb = b->words(); |
9dae56ea | 365 | xbe = xb + wb; |
ba379fdc | 366 | xc0 = c.words(); |
9dae56ea A |
367 | #ifdef USE_LONG_LONG |
368 | for (; xb < xbe; xc0++) { | |
369 | if ((y = *xb++)) { | |
370 | x = xa; | |
371 | xc = xc0; | |
372 | carry = 0; | |
373 | do { | |
374 | z = *x++ * (unsigned long long)y + *xc + carry; | |
375 | carry = z >> 32; | |
376 | *xc++ = (uint32_t)z & 0xffffffffUL; | |
377 | } while (x < xae); | |
378 | *xc = (uint32_t)carry; | |
379 | } | |
380 | } | |
381 | #else | |
9dae56ea A |
382 | for (; xb < xbe; xb++, xc0++) { |
383 | if ((y = *xb & 0xffff)) { | |
384 | x = xa; | |
385 | xc = xc0; | |
386 | carry = 0; | |
387 | do { | |
388 | z = (*x & 0xffff) * y + (*xc & 0xffff) + carry; | |
389 | carry = z >> 16; | |
390 | uint32_t z2 = (*x++ >> 16) * y + (*xc >> 16) + carry; | |
391 | carry = z2 >> 16; | |
14957cd0 | 392 | xc = storeInc(xc, z2, z); |
9dae56ea A |
393 | } while (x < xae); |
394 | *xc = carry; | |
395 | } | |
396 | if ((y = *xb >> 16)) { | |
397 | x = xa; | |
398 | xc = xc0; | |
399 | carry = 0; | |
400 | uint32_t z2 = *xc; | |
401 | do { | |
402 | z = (*x & 0xffff) * y + (*xc >> 16) + carry; | |
403 | carry = z >> 16; | |
14957cd0 | 404 | xc = storeInc(xc, z, z2); |
9dae56ea A |
405 | z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry; |
406 | carry = z2 >> 16; | |
407 | } while (x < xae); | |
408 | *xc = z2; | |
409 | } | |
410 | } | |
9dae56ea | 411 | #endif |
ba379fdc A |
412 | for (xc0 = c.words(), xc = xc0 + wc; wc > 0 && !*--xc; --wc) { } |
413 | c.resize(wc); | |
414 | aRef = c; | |
9dae56ea A |
415 | } |
416 | ||
14957cd0 A |
417 | struct P5Node { |
418 | WTF_MAKE_NONCOPYABLE(P5Node); WTF_MAKE_FAST_ALLOCATED; | |
419 | public: | |
420 | P5Node() { } | |
ba379fdc A |
421 | BigInt val; |
422 | P5Node* next; | |
423 | }; | |
14957cd0 | 424 | |
ba379fdc | 425 | static P5Node* p5s; |
14957cd0 | 426 | static int p5sCount; |
9dae56ea | 427 | |
ba379fdc | 428 | static ALWAYS_INLINE void pow5mult(BigInt& b, int k) |
9dae56ea A |
429 | { |
430 | static int p05[3] = { 5, 25, 125 }; | |
431 | ||
432 | if (int i = k & 3) | |
ba379fdc | 433 | multadd(b, p05[i - 1], 0); |
9dae56ea A |
434 | |
435 | if (!(k >>= 2)) | |
ba379fdc | 436 | return; |
9dae56ea | 437 | |
14957cd0 | 438 | #if ENABLE(WTF_MULTIPLE_THREADS) |
9dae56ea A |
439 | s_dtoaP5Mutex->lock(); |
440 | #endif | |
ba379fdc A |
441 | P5Node* p5 = p5s; |
442 | ||
9dae56ea A |
443 | if (!p5) { |
444 | /* first time */ | |
ba379fdc A |
445 | p5 = new P5Node; |
446 | i2b(p5->val, 625); | |
447 | p5->next = 0; | |
448 | p5s = p5; | |
14957cd0 | 449 | p5sCount = 1; |
9dae56ea | 450 | } |
ba379fdc | 451 | |
14957cd0 A |
452 | int p5sCountLocal = p5sCount; |
453 | #if ENABLE(WTF_MULTIPLE_THREADS) | |
9dae56ea A |
454 | s_dtoaP5Mutex->unlock(); |
455 | #endif | |
14957cd0 | 456 | int p5sUsed = 0; |
9dae56ea A |
457 | |
458 | for (;;) { | |
ba379fdc A |
459 | if (k & 1) |
460 | mult(b, p5->val); | |
461 | ||
9dae56ea A |
462 | if (!(k >>= 1)) |
463 | break; | |
464 | ||
14957cd0 A |
465 | if (++p5sUsed == p5sCountLocal) { |
466 | #if ENABLE(WTF_MULTIPLE_THREADS) | |
9dae56ea A |
467 | s_dtoaP5Mutex->lock(); |
468 | #endif | |
14957cd0 | 469 | if (p5sUsed == p5sCount) { |
9dae56ea | 470 | ASSERT(!p5->next); |
ba379fdc A |
471 | p5->next = new P5Node; |
472 | p5->next->next = 0; | |
473 | p5->next->val = p5->val; | |
474 | mult(p5->next->val, p5->next->val); | |
14957cd0 | 475 | ++p5sCount; |
9dae56ea | 476 | } |
14957cd0 A |
477 | |
478 | p5sCountLocal = p5sCount; | |
479 | #if ENABLE(WTF_MULTIPLE_THREADS) | |
9dae56ea A |
480 | s_dtoaP5Mutex->unlock(); |
481 | #endif | |
482 | } | |
483 | p5 = p5->next; | |
484 | } | |
9dae56ea A |
485 | } |
486 | ||
ba379fdc | 487 | static ALWAYS_INLINE void lshift(BigInt& b, int k) |
9dae56ea | 488 | { |
9dae56ea | 489 | int n = k >> 5; |
9dae56ea | 490 | |
ba379fdc A |
491 | int origSize = b.size(); |
492 | int n1 = n + origSize + 1; | |
9dae56ea | 493 | |
ba379fdc A |
494 | if (k &= 0x1f) |
495 | b.resize(b.size() + n + 1); | |
496 | else | |
497 | b.resize(b.size() + n); | |
498 | ||
499 | const uint32_t* srcStart = b.words(); | |
500 | uint32_t* dstStart = b.words(); | |
501 | const uint32_t* src = srcStart + origSize - 1; | |
9dae56ea | 502 | uint32_t* dst = dstStart + n1 - 1; |
ba379fdc | 503 | if (k) { |
9dae56ea A |
504 | uint32_t hiSubword = 0; |
505 | int s = 32 - k; | |
506 | for (; src >= srcStart; --src) { | |
507 | *dst-- = hiSubword | *src >> s; | |
508 | hiSubword = *src << k; | |
509 | } | |
510 | *dst = hiSubword; | |
511 | ASSERT(dst == dstStart + n); | |
ba379fdc | 512 | |
14957cd0 | 513 | b.resize(origSize + n + !!b.words()[n1 - 1]); |
9dae56ea | 514 | } |
9dae56ea A |
515 | else { |
516 | do { | |
517 | *--dst = *src--; | |
518 | } while (src >= srcStart); | |
9dae56ea A |
519 | } |
520 | for (dst = dstStart + n; dst != dstStart; ) | |
521 | *--dst = 0; | |
522 | ||
ba379fdc | 523 | ASSERT(b.size() <= 1 || b.words()[b.size() - 1]); |
9dae56ea A |
524 | } |
525 | ||
ba379fdc | 526 | static int cmp(const BigInt& a, const BigInt& b) |
9dae56ea | 527 | { |
ba379fdc | 528 | const uint32_t *xa, *xa0, *xb, *xb0; |
9dae56ea A |
529 | int i, j; |
530 | ||
ba379fdc A |
531 | i = a.size(); |
532 | j = b.size(); | |
533 | ASSERT(i <= 1 || a.words()[i - 1]); | |
534 | ASSERT(j <= 1 || b.words()[j - 1]); | |
9dae56ea A |
535 | if (i -= j) |
536 | return i; | |
ba379fdc | 537 | xa0 = a.words(); |
9dae56ea | 538 | xa = xa0 + j; |
ba379fdc | 539 | xb0 = b.words(); |
9dae56ea A |
540 | xb = xb0 + j; |
541 | for (;;) { | |
542 | if (*--xa != *--xb) | |
543 | return *xa < *xb ? -1 : 1; | |
544 | if (xa <= xa0) | |
545 | break; | |
546 | } | |
547 | return 0; | |
548 | } | |
549 | ||
ba379fdc | 550 | static ALWAYS_INLINE void diff(BigInt& c, const BigInt& aRef, const BigInt& bRef) |
9dae56ea | 551 | { |
ba379fdc A |
552 | const BigInt* a = &aRef; |
553 | const BigInt* b = &bRef; | |
9dae56ea | 554 | int i, wa, wb; |
14957cd0 | 555 | uint32_t* xc; |
9dae56ea | 556 | |
ba379fdc | 557 | i = cmp(*a, *b); |
9dae56ea | 558 | if (!i) { |
ba379fdc A |
559 | c.sign = 0; |
560 | c.resize(1); | |
561 | c.words()[0] = 0; | |
562 | return; | |
9dae56ea A |
563 | } |
564 | if (i < 0) { | |
ba379fdc | 565 | const BigInt* tmp = a; |
9dae56ea | 566 | a = b; |
ba379fdc | 567 | b = tmp; |
9dae56ea A |
568 | i = 1; |
569 | } else | |
570 | i = 0; | |
ba379fdc A |
571 | |
572 | wa = a->size(); | |
573 | const uint32_t* xa = a->words(); | |
574 | const uint32_t* xae = xa + wa; | |
575 | wb = b->size(); | |
576 | const uint32_t* xb = b->words(); | |
577 | const uint32_t* xbe = xb + wb; | |
578 | ||
579 | c.resize(wa); | |
580 | c.sign = i; | |
581 | xc = c.words(); | |
9dae56ea A |
582 | #ifdef USE_LONG_LONG |
583 | unsigned long long borrow = 0; | |
584 | do { | |
585 | unsigned long long y = (unsigned long long)*xa++ - *xb++ - borrow; | |
586 | borrow = y >> 32 & (uint32_t)1; | |
587 | *xc++ = (uint32_t)y & 0xffffffffUL; | |
588 | } while (xb < xbe); | |
589 | while (xa < xae) { | |
590 | unsigned long long y = *xa++ - borrow; | |
591 | borrow = y >> 32 & (uint32_t)1; | |
592 | *xc++ = (uint32_t)y & 0xffffffffUL; | |
593 | } | |
594 | #else | |
595 | uint32_t borrow = 0; | |
9dae56ea A |
596 | do { |
597 | uint32_t y = (*xa & 0xffff) - (*xb & 0xffff) - borrow; | |
598 | borrow = (y & 0x10000) >> 16; | |
599 | uint32_t z = (*xa++ >> 16) - (*xb++ >> 16) - borrow; | |
600 | borrow = (z & 0x10000) >> 16; | |
14957cd0 | 601 | xc = storeInc(xc, z, y); |
9dae56ea A |
602 | } while (xb < xbe); |
603 | while (xa < xae) { | |
604 | uint32_t y = (*xa & 0xffff) - borrow; | |
605 | borrow = (y & 0x10000) >> 16; | |
606 | uint32_t z = (*xa++ >> 16) - borrow; | |
607 | borrow = (z & 0x10000) >> 16; | |
14957cd0 | 608 | xc = storeInc(xc, z, y); |
9dae56ea | 609 | } |
9dae56ea A |
610 | #endif |
611 | while (!*--xc) | |
612 | wa--; | |
ba379fdc | 613 | c.resize(wa); |
9dae56ea A |
614 | } |
615 | ||
ba379fdc | 616 | static double ulp(U *x) |
9dae56ea A |
617 | { |
618 | register int32_t L; | |
ba379fdc | 619 | U u; |
9dae56ea A |
620 | |
621 | L = (word0(x) & Exp_mask) - (P - 1) * Exp_msk1; | |
ba379fdc A |
622 | word0(&u) = L; |
623 | word1(&u) = 0; | |
ba379fdc | 624 | return dval(&u); |
9dae56ea A |
625 | } |
626 | ||
ba379fdc | 627 | static double b2d(const BigInt& a, int* e) |
9dae56ea | 628 | { |
ba379fdc A |
629 | const uint32_t* xa; |
630 | const uint32_t* xa0; | |
9dae56ea A |
631 | uint32_t w; |
632 | uint32_t y; | |
633 | uint32_t z; | |
634 | int k; | |
ba379fdc | 635 | U d; |
9dae56ea | 636 | |
ba379fdc A |
637 | #define d0 word0(&d) |
638 | #define d1 word1(&d) | |
9dae56ea | 639 | |
ba379fdc A |
640 | xa0 = a.words(); |
641 | xa = xa0 + a.size(); | |
9dae56ea A |
642 | y = *--xa; |
643 | ASSERT(y); | |
644 | k = hi0bits(y); | |
645 | *e = 32 - k; | |
9dae56ea | 646 | if (k < Ebits) { |
ba379fdc | 647 | d0 = Exp_1 | (y >> (Ebits - k)); |
9dae56ea | 648 | w = xa > xa0 ? *--xa : 0; |
ba379fdc | 649 | d1 = (y << (32 - Ebits + k)) | (w >> (Ebits - k)); |
14957cd0 | 650 | goto returnD; |
9dae56ea A |
651 | } |
652 | z = xa > xa0 ? *--xa : 0; | |
653 | if (k -= Ebits) { | |
ba379fdc | 654 | d0 = Exp_1 | (y << k) | (z >> (32 - k)); |
9dae56ea | 655 | y = xa > xa0 ? *--xa : 0; |
ba379fdc | 656 | d1 = (z << k) | (y >> (32 - k)); |
9dae56ea A |
657 | } else { |
658 | d0 = Exp_1 | y; | |
659 | d1 = z; | |
660 | } | |
14957cd0 | 661 | returnD: |
9dae56ea A |
662 | #undef d0 |
663 | #undef d1 | |
ba379fdc | 664 | return dval(&d); |
9dae56ea A |
665 | } |
666 | ||
ba379fdc | 667 | static ALWAYS_INLINE void d2b(BigInt& b, U* d, int* e, int* bits) |
9dae56ea | 668 | { |
9dae56ea | 669 | int de, k; |
14957cd0 A |
670 | uint32_t* x; |
671 | uint32_t y, z; | |
9dae56ea | 672 | int i; |
9dae56ea A |
673 | #define d0 word0(d) |
674 | #define d1 word1(d) | |
675 | ||
ba379fdc | 676 | b.sign = 0; |
ba379fdc | 677 | b.resize(1); |
ba379fdc | 678 | x = b.words(); |
9dae56ea A |
679 | |
680 | z = d0 & Frac_mask; | |
681 | d0 &= 0x7fffffff; /* clear sign bit, which we ignore */ | |
9dae56ea A |
682 | if ((de = (int)(d0 >> Exp_shift))) |
683 | z |= Exp_msk1; | |
9dae56ea A |
684 | if ((y = d1)) { |
685 | if ((k = lo0bits(&y))) { | |
ba379fdc | 686 | x[0] = y | (z << (32 - k)); |
9dae56ea A |
687 | z >>= k; |
688 | } else | |
689 | x[0] = y; | |
14957cd0 A |
690 | if (z) { |
691 | b.resize(2); | |
692 | x[1] = z; | |
693 | } | |
ba379fdc | 694 | |
ba379fdc | 695 | i = b.size(); |
9dae56ea A |
696 | } else { |
697 | k = lo0bits(&z); | |
698 | x[0] = z; | |
ba379fdc | 699 | i = 1; |
ba379fdc | 700 | b.resize(1); |
9dae56ea A |
701 | k += 32; |
702 | } | |
9dae56ea | 703 | if (de) { |
9dae56ea A |
704 | *e = de - Bias - (P - 1) + k; |
705 | *bits = P - k; | |
9dae56ea A |
706 | } else { |
707 | *e = de - Bias - (P - 1) + 1 + k; | |
9dae56ea | 708 | *bits = (32 * i) - hi0bits(x[i - 1]); |
9dae56ea | 709 | } |
9dae56ea A |
710 | } |
711 | #undef d0 | |
712 | #undef d1 | |
713 | ||
ba379fdc | 714 | static double ratio(const BigInt& a, const BigInt& b) |
9dae56ea | 715 | { |
ba379fdc | 716 | U da, db; |
9dae56ea A |
717 | int k, ka, kb; |
718 | ||
ba379fdc A |
719 | dval(&da) = b2d(a, &ka); |
720 | dval(&db) = b2d(b, &kb); | |
ba379fdc | 721 | k = ka - kb + 32 * (a.size() - b.size()); |
9dae56ea | 722 | if (k > 0) |
ba379fdc | 723 | word0(&da) += k * Exp_msk1; |
9dae56ea A |
724 | else { |
725 | k = -k; | |
ba379fdc | 726 | word0(&db) += k * Exp_msk1; |
9dae56ea | 727 | } |
ba379fdc | 728 | return dval(&da) / dval(&db); |
9dae56ea A |
729 | } |
730 | ||
731 | static const double tens[] = { | |
14957cd0 A |
732 | 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, |
733 | 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, | |
734 | 1e20, 1e21, 1e22 | |
9dae56ea A |
735 | }; |
736 | ||
737 | static const double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 }; | |
738 | static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, | |
14957cd0 A |
739 | 9007199254740992. * 9007199254740992.e-256 |
740 | /* = 2^106 * 1e-256 */ | |
9dae56ea A |
741 | }; |
742 | ||
743 | /* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */ | |
744 | /* flag unnecessarily. It leads to a song and dance at the end of strtod. */ | |
745 | #define Scale_Bit 0x10 | |
746 | #define n_bigtens 5 | |
747 | ||
9dae56ea A |
748 | double strtod(const char* s00, char** se) |
749 | { | |
9dae56ea | 750 | int scale; |
9dae56ea | 751 | int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign, |
14957cd0 | 752 | e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign; |
9dae56ea | 753 | const char *s, *s0, *s1; |
ba379fdc A |
754 | double aadj, aadj1; |
755 | U aadj2, adj, rv, rv0; | |
9dae56ea A |
756 | int32_t L; |
757 | uint32_t y, z; | |
ba379fdc | 758 | BigInt bb, bb1, bd, bd0, bs, delta; |
9dae56ea A |
759 | |
760 | sign = nz0 = nz = 0; | |
ba379fdc | 761 | dval(&rv) = 0; |
14957cd0 | 762 | for (s = s00; ; s++) { |
9dae56ea | 763 | switch (*s) { |
14957cd0 A |
764 | case '-': |
765 | sign = 1; | |
766 | /* no break */ | |
767 | case '+': | |
768 | if (*++s) | |
9dae56ea | 769 | goto break2; |
14957cd0 A |
770 | /* no break */ |
771 | case 0: | |
772 | goto ret0; | |
773 | case '\t': | |
774 | case '\n': | |
775 | case '\v': | |
776 | case '\f': | |
777 | case '\r': | |
778 | case ' ': | |
779 | continue; | |
780 | default: | |
781 | goto break2; | |
9dae56ea | 782 | } |
14957cd0 | 783 | } |
9dae56ea A |
784 | break2: |
785 | if (*s == '0') { | |
786 | nz0 = 1; | |
787 | while (*++s == '0') { } | |
788 | if (!*s) | |
789 | goto ret; | |
790 | } | |
791 | s0 = s; | |
792 | y = z = 0; | |
793 | for (nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++) | |
794 | if (nd < 9) | |
795 | y = (10 * y) + c - '0'; | |
796 | else if (nd < 16) | |
797 | z = (10 * z) + c - '0'; | |
798 | nd0 = nd; | |
799 | if (c == '.') { | |
800 | c = *++s; | |
801 | if (!nd) { | |
802 | for (; c == '0'; c = *++s) | |
803 | nz++; | |
804 | if (c > '0' && c <= '9') { | |
805 | s0 = s; | |
806 | nf += nz; | |
807 | nz = 0; | |
14957cd0 | 808 | goto haveDig; |
9dae56ea | 809 | } |
14957cd0 | 810 | goto digDone; |
9dae56ea A |
811 | } |
812 | for (; c >= '0' && c <= '9'; c = *++s) { | |
14957cd0 | 813 | haveDig: |
9dae56ea A |
814 | nz++; |
815 | if (c -= '0') { | |
816 | nf += nz; | |
817 | for (i = 1; i < nz; i++) | |
818 | if (nd++ < 9) | |
819 | y *= 10; | |
820 | else if (nd <= DBL_DIG + 1) | |
821 | z *= 10; | |
822 | if (nd++ < 9) | |
823 | y = (10 * y) + c; | |
824 | else if (nd <= DBL_DIG + 1) | |
825 | z = (10 * z) + c; | |
826 | nz = 0; | |
827 | } | |
828 | } | |
829 | } | |
14957cd0 | 830 | digDone: |
9dae56ea A |
831 | e = 0; |
832 | if (c == 'e' || c == 'E') { | |
14957cd0 | 833 | if (!nd && !nz && !nz0) |
9dae56ea | 834 | goto ret0; |
9dae56ea A |
835 | s00 = s; |
836 | esign = 0; | |
837 | switch (c = *++s) { | |
14957cd0 A |
838 | case '-': |
839 | esign = 1; | |
840 | case '+': | |
841 | c = *++s; | |
9dae56ea A |
842 | } |
843 | if (c >= '0' && c <= '9') { | |
844 | while (c == '0') | |
845 | c = *++s; | |
846 | if (c > '0' && c <= '9') { | |
847 | L = c - '0'; | |
848 | s1 = s; | |
849 | while ((c = *++s) >= '0' && c <= '9') | |
850 | L = (10 * L) + c - '0'; | |
851 | if (s - s1 > 8 || L > 19999) | |
852 | /* Avoid confusion from exponents | |
853 | * so large that e might overflow. | |
854 | */ | |
855 | e = 19999; /* safe for 16 bit ints */ | |
856 | else | |
857 | e = (int)L; | |
858 | if (esign) | |
859 | e = -e; | |
860 | } else | |
861 | e = 0; | |
862 | } else | |
863 | s = s00; | |
864 | } | |
865 | if (!nd) { | |
866 | if (!nz && !nz0) { | |
9dae56ea A |
867 | ret0: |
868 | s = s00; | |
869 | sign = 0; | |
870 | } | |
871 | goto ret; | |
872 | } | |
873 | e1 = e -= nf; | |
874 | ||
875 | /* Now we have nd0 digits, starting at s0, followed by a | |
876 | * decimal point, followed by nd-nd0 digits. The number we're | |
877 | * after is the integer represented by those digits times | |
878 | * 10**e */ | |
879 | ||
880 | if (!nd0) | |
881 | nd0 = nd; | |
882 | k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1; | |
ba379fdc | 883 | dval(&rv) = y; |
14957cd0 | 884 | if (k > 9) |
ba379fdc | 885 | dval(&rv) = tens[k - 9] * dval(&rv) + z; |
14957cd0 | 886 | if (nd <= DBL_DIG) { |
9dae56ea A |
887 | if (!e) |
888 | goto ret; | |
889 | if (e > 0) { | |
890 | if (e <= Ten_pmax) { | |
ba379fdc | 891 | /* rv = */ rounded_product(dval(&rv), tens[e]); |
9dae56ea A |
892 | goto ret; |
893 | } | |
894 | i = DBL_DIG - nd; | |
895 | if (e <= Ten_pmax + i) { | |
896 | /* A fancier test would sometimes let us do | |
897 | * this for larger i values. | |
898 | */ | |
899 | e -= i; | |
ba379fdc A |
900 | dval(&rv) *= tens[i]; |
901 | /* rv = */ rounded_product(dval(&rv), tens[e]); | |
9dae56ea A |
902 | goto ret; |
903 | } | |
14957cd0 | 904 | } else if (e >= -Ten_pmax) { |
ba379fdc | 905 | /* rv = */ rounded_quotient(dval(&rv), tens[-e]); |
9dae56ea A |
906 | goto ret; |
907 | } | |
9dae56ea A |
908 | } |
909 | e1 += nd - k; | |
910 | ||
9dae56ea | 911 | scale = 0; |
9dae56ea A |
912 | |
913 | /* Get starting approximation = rv * 10**e1 */ | |
914 | ||
915 | if (e1 > 0) { | |
916 | if ((i = e1 & 15)) | |
ba379fdc | 917 | dval(&rv) *= tens[i]; |
9dae56ea A |
918 | if (e1 &= ~15) { |
919 | if (e1 > DBL_MAX_10_EXP) { | |
920 | ovfl: | |
14957cd0 | 921 | #if HAVE(ERRNO_H) |
9dae56ea A |
922 | errno = ERANGE; |
923 | #endif | |
924 | /* Can't trust HUGE_VAL */ | |
ba379fdc A |
925 | word0(&rv) = Exp_mask; |
926 | word1(&rv) = 0; | |
9dae56ea A |
927 | goto ret; |
928 | } | |
929 | e1 >>= 4; | |
930 | for (j = 0; e1 > 1; j++, e1 >>= 1) | |
931 | if (e1 & 1) | |
ba379fdc | 932 | dval(&rv) *= bigtens[j]; |
9dae56ea | 933 | /* The last multiplication could overflow. */ |
ba379fdc A |
934 | word0(&rv) -= P * Exp_msk1; |
935 | dval(&rv) *= bigtens[j]; | |
936 | if ((z = word0(&rv) & Exp_mask) > Exp_msk1 * (DBL_MAX_EXP + Bias - P)) | |
9dae56ea A |
937 | goto ovfl; |
938 | if (z > Exp_msk1 * (DBL_MAX_EXP + Bias - 1 - P)) { | |
939 | /* set to largest number */ | |
940 | /* (Can't trust DBL_MAX) */ | |
ba379fdc A |
941 | word0(&rv) = Big0; |
942 | word1(&rv) = Big1; | |
9dae56ea | 943 | } else |
ba379fdc | 944 | word0(&rv) += P * Exp_msk1; |
9dae56ea A |
945 | } |
946 | } else if (e1 < 0) { | |
947 | e1 = -e1; | |
948 | if ((i = e1 & 15)) | |
ba379fdc | 949 | dval(&rv) /= tens[i]; |
9dae56ea A |
950 | if (e1 >>= 4) { |
951 | if (e1 >= 1 << n_bigtens) | |
952 | goto undfl; | |
9dae56ea A |
953 | if (e1 & Scale_Bit) |
954 | scale = 2 * P; | |
955 | for (j = 0; e1 > 0; j++, e1 >>= 1) | |
956 | if (e1 & 1) | |
ba379fdc A |
957 | dval(&rv) *= tinytens[j]; |
958 | if (scale && (j = (2 * P) + 1 - ((word0(&rv) & Exp_mask) >> Exp_shift)) > 0) { | |
14957cd0 | 959 | /* scaled rv is denormal; clear j low bits */ |
9dae56ea | 960 | if (j >= 32) { |
ba379fdc | 961 | word1(&rv) = 0; |
9dae56ea | 962 | if (j >= 53) |
14957cd0 | 963 | word0(&rv) = (P + 2) * Exp_msk1; |
9dae56ea | 964 | else |
14957cd0 | 965 | word0(&rv) &= 0xffffffff << (j - 32); |
9dae56ea | 966 | } else |
ba379fdc | 967 | word1(&rv) &= 0xffffffff << j; |
9dae56ea | 968 | } |
ba379fdc | 969 | if (!dval(&rv)) { |
9dae56ea | 970 | undfl: |
ba379fdc | 971 | dval(&rv) = 0.; |
14957cd0 | 972 | #if HAVE(ERRNO_H) |
9dae56ea A |
973 | errno = ERANGE; |
974 | #endif | |
9dae56ea A |
975 | goto ret; |
976 | } | |
9dae56ea A |
977 | } |
978 | } | |
979 | ||
980 | /* Now the hard part -- adjusting rv to the correct value.*/ | |
981 | ||
982 | /* Put digits into bd: true value = bd * 10^e */ | |
983 | ||
ba379fdc | 984 | s2b(bd0, s0, nd0, nd, y); |
9dae56ea A |
985 | |
986 | for (;;) { | |
ba379fdc A |
987 | bd = bd0; |
988 | d2b(bb, &rv, &bbe, &bbbits); /* rv = bb * 2^bbe */ | |
989 | i2b(bs, 1); | |
9dae56ea A |
990 | |
991 | if (e >= 0) { | |
992 | bb2 = bb5 = 0; | |
993 | bd2 = bd5 = e; | |
994 | } else { | |
995 | bb2 = bb5 = -e; | |
996 | bd2 = bd5 = 0; | |
997 | } | |
998 | if (bbe >= 0) | |
999 | bb2 += bbe; | |
1000 | else | |
1001 | bd2 -= bbe; | |
1002 | bs2 = bb2; | |
9dae56ea A |
1003 | j = bbe - scale; |
1004 | i = j + bbbits - 1; /* logb(rv) */ | |
1005 | if (i < Emin) /* denormal */ | |
1006 | j += P - Emin; | |
1007 | else | |
1008 | j = P + 1 - bbbits; | |
9dae56ea A |
1009 | bb2 += j; |
1010 | bd2 += j; | |
9dae56ea | 1011 | bd2 += scale; |
9dae56ea A |
1012 | i = bb2 < bd2 ? bb2 : bd2; |
1013 | if (i > bs2) | |
1014 | i = bs2; | |
1015 | if (i > 0) { | |
1016 | bb2 -= i; | |
1017 | bd2 -= i; | |
1018 | bs2 -= i; | |
1019 | } | |
1020 | if (bb5 > 0) { | |
ba379fdc A |
1021 | pow5mult(bs, bb5); |
1022 | mult(bb, bs); | |
9dae56ea A |
1023 | } |
1024 | if (bb2 > 0) | |
ba379fdc | 1025 | lshift(bb, bb2); |
9dae56ea | 1026 | if (bd5 > 0) |
ba379fdc | 1027 | pow5mult(bd, bd5); |
9dae56ea | 1028 | if (bd2 > 0) |
ba379fdc | 1029 | lshift(bd, bd2); |
9dae56ea | 1030 | if (bs2 > 0) |
ba379fdc A |
1031 | lshift(bs, bs2); |
1032 | diff(delta, bb, bd); | |
1033 | dsign = delta.sign; | |
1034 | delta.sign = 0; | |
9dae56ea A |
1035 | i = cmp(delta, bs); |
1036 | ||
1037 | if (i < 0) { | |
1038 | /* Error is less than half an ulp -- check for | |
1039 | * special case of mantissa a power of two. | |
1040 | */ | |
ba379fdc | 1041 | if (dsign || word1(&rv) || word0(&rv) & Bndry_mask |
ba379fdc | 1042 | || (word0(&rv) & Exp_mask) <= (2 * P + 1) * Exp_msk1 |
9dae56ea | 1043 | ) { |
9dae56ea A |
1044 | break; |
1045 | } | |
ba379fdc | 1046 | if (!delta.words()[0] && delta.size() <= 1) { |
9dae56ea | 1047 | /* exact result */ |
9dae56ea A |
1048 | break; |
1049 | } | |
ba379fdc | 1050 | lshift(delta, Log2P); |
9dae56ea | 1051 | if (cmp(delta, bs) > 0) |
14957cd0 | 1052 | goto dropDown; |
9dae56ea A |
1053 | break; |
1054 | } | |
14957cd0 | 1055 | if (!i) { |
9dae56ea A |
1056 | /* exactly half-way between */ |
1057 | if (dsign) { | |
ba379fdc A |
1058 | if ((word0(&rv) & Bndry_mask1) == Bndry_mask1 |
1059 | && word1(&rv) == ( | |
ba379fdc | 1060 | (scale && (y = word0(&rv) & Exp_mask) <= 2 * P * Exp_msk1) |
9dae56ea | 1061 | ? (0xffffffff & (0xffffffff << (2 * P + 1 - (y >> Exp_shift)))) : |
9dae56ea A |
1062 | 0xffffffff)) { |
1063 | /*boundary case -- increment exponent*/ | |
ba379fdc A |
1064 | word0(&rv) = (word0(&rv) & Exp_mask) + Exp_msk1; |
1065 | word1(&rv) = 0; | |
9dae56ea | 1066 | dsign = 0; |
9dae56ea A |
1067 | break; |
1068 | } | |
ba379fdc | 1069 | } else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) { |
14957cd0 | 1070 | dropDown: |
9dae56ea | 1071 | /* boundary case -- decrement exponent */ |
9dae56ea | 1072 | if (scale) { |
ba379fdc | 1073 | L = word0(&rv) & Exp_mask; |
9dae56ea A |
1074 | if (L <= (2 * P + 1) * Exp_msk1) { |
1075 | if (L > (P + 2) * Exp_msk1) | |
1076 | /* round even ==> */ | |
1077 | /* accept rv */ | |
1078 | break; | |
1079 | /* rv = smallest denormal */ | |
1080 | goto undfl; | |
1081 | } | |
1082 | } | |
ba379fdc | 1083 | L = (word0(&rv) & Exp_mask) - Exp_msk1; |
ba379fdc A |
1084 | word0(&rv) = L | Bndry_mask1; |
1085 | word1(&rv) = 0xffffffff; | |
9dae56ea A |
1086 | break; |
1087 | } | |
ba379fdc | 1088 | if (!(word1(&rv) & LSB)) |
9dae56ea A |
1089 | break; |
1090 | if (dsign) | |
ba379fdc | 1091 | dval(&rv) += ulp(&rv); |
9dae56ea | 1092 | else { |
ba379fdc | 1093 | dval(&rv) -= ulp(&rv); |
ba379fdc | 1094 | if (!dval(&rv)) |
9dae56ea | 1095 | goto undfl; |
9dae56ea | 1096 | } |
9dae56ea | 1097 | dsign = 1 - dsign; |
9dae56ea A |
1098 | break; |
1099 | } | |
1100 | if ((aadj = ratio(delta, bs)) <= 2.) { | |
1101 | if (dsign) | |
1102 | aadj = aadj1 = 1.; | |
ba379fdc | 1103 | else if (word1(&rv) || word0(&rv) & Bndry_mask) { |
ba379fdc | 1104 | if (word1(&rv) == Tiny1 && !word0(&rv)) |
9dae56ea | 1105 | goto undfl; |
9dae56ea A |
1106 | aadj = 1.; |
1107 | aadj1 = -1.; | |
1108 | } else { | |
1109 | /* special case -- power of FLT_RADIX to be */ | |
1110 | /* rounded down... */ | |
1111 | ||
1112 | if (aadj < 2. / FLT_RADIX) | |
1113 | aadj = 1. / FLT_RADIX; | |
1114 | else | |
1115 | aadj *= 0.5; | |
1116 | aadj1 = -aadj; | |
1117 | } | |
1118 | } else { | |
1119 | aadj *= 0.5; | |
1120 | aadj1 = dsign ? aadj : -aadj; | |
9dae56ea | 1121 | } |
ba379fdc | 1122 | y = word0(&rv) & Exp_mask; |
9dae56ea A |
1123 | |
1124 | /* Check for overflow */ | |
1125 | ||
1126 | if (y == Exp_msk1 * (DBL_MAX_EXP + Bias - 1)) { | |
ba379fdc A |
1127 | dval(&rv0) = dval(&rv); |
1128 | word0(&rv) -= P * Exp_msk1; | |
1129 | adj.d = aadj1 * ulp(&rv); | |
1130 | dval(&rv) += adj.d; | |
1131 | if ((word0(&rv) & Exp_mask) >= Exp_msk1 * (DBL_MAX_EXP + Bias - P)) { | |
1132 | if (word0(&rv0) == Big0 && word1(&rv0) == Big1) | |
9dae56ea | 1133 | goto ovfl; |
ba379fdc A |
1134 | word0(&rv) = Big0; |
1135 | word1(&rv) = Big1; | |
9dae56ea | 1136 | goto cont; |
14957cd0 A |
1137 | } |
1138 | word0(&rv) += P * Exp_msk1; | |
9dae56ea | 1139 | } else { |
9dae56ea A |
1140 | if (scale && y <= 2 * P * Exp_msk1) { |
1141 | if (aadj <= 0x7fffffff) { | |
1142 | if ((z = (uint32_t)aadj) <= 0) | |
1143 | z = 1; | |
1144 | aadj = z; | |
1145 | aadj1 = dsign ? aadj : -aadj; | |
1146 | } | |
ba379fdc A |
1147 | dval(&aadj2) = aadj1; |
1148 | word0(&aadj2) += (2 * P + 1) * Exp_msk1 - y; | |
1149 | aadj1 = dval(&aadj2); | |
9dae56ea | 1150 | } |
ba379fdc A |
1151 | adj.d = aadj1 * ulp(&rv); |
1152 | dval(&rv) += adj.d; | |
9dae56ea | 1153 | } |
ba379fdc | 1154 | z = word0(&rv) & Exp_mask; |
14957cd0 | 1155 | if (!scale && y == z) { |
9dae56ea A |
1156 | /* Can we stop now? */ |
1157 | L = (int32_t)aadj; | |
1158 | aadj -= L; | |
1159 | /* The tolerances below are conservative. */ | |
ba379fdc | 1160 | if (dsign || word1(&rv) || word0(&rv) & Bndry_mask) { |
9dae56ea A |
1161 | if (aadj < .4999999 || aadj > .5000001) |
1162 | break; | |
1163 | } else if (aadj < .4999999 / FLT_RADIX) | |
1164 | break; | |
1165 | } | |
9dae56ea | 1166 | cont: |
14957cd0 A |
1167 | {} |
1168 | } | |
9dae56ea | 1169 | if (scale) { |
ba379fdc A |
1170 | word0(&rv0) = Exp_1 - 2 * P * Exp_msk1; |
1171 | word1(&rv0) = 0; | |
1172 | dval(&rv) *= dval(&rv0); | |
14957cd0 | 1173 | #if HAVE(ERRNO_H) |
9dae56ea | 1174 | /* try to avoid the bug of testing an 8087 register value */ |
14957cd0 | 1175 | if (!word0(&rv) && !word1(&rv)) |
9dae56ea A |
1176 | errno = ERANGE; |
1177 | #endif | |
1178 | } | |
9dae56ea A |
1179 | ret: |
1180 | if (se) | |
1181 | *se = const_cast<char*>(s); | |
ba379fdc | 1182 | return sign ? -dval(&rv) : dval(&rv); |
9dae56ea A |
1183 | } |
1184 | ||
ba379fdc | 1185 | static ALWAYS_INLINE int quorem(BigInt& b, BigInt& S) |
9dae56ea | 1186 | { |
ba379fdc | 1187 | size_t n; |
14957cd0 A |
1188 | uint32_t* bx; |
1189 | uint32_t* bxe; | |
1190 | uint32_t q; | |
1191 | uint32_t* sx; | |
1192 | uint32_t* sxe; | |
9dae56ea A |
1193 | #ifdef USE_LONG_LONG |
1194 | unsigned long long borrow, carry, y, ys; | |
1195 | #else | |
1196 | uint32_t borrow, carry, y, ys; | |
9dae56ea | 1197 | uint32_t si, z, zs; |
9dae56ea | 1198 | #endif |
ba379fdc A |
1199 | ASSERT(b.size() <= 1 || b.words()[b.size() - 1]); |
1200 | ASSERT(S.size() <= 1 || S.words()[S.size() - 1]); | |
9dae56ea | 1201 | |
ba379fdc A |
1202 | n = S.size(); |
1203 | ASSERT_WITH_MESSAGE(b.size() <= n, "oversize b in quorem"); | |
1204 | if (b.size() < n) | |
9dae56ea | 1205 | return 0; |
ba379fdc | 1206 | sx = S.words(); |
9dae56ea | 1207 | sxe = sx + --n; |
ba379fdc | 1208 | bx = b.words(); |
9dae56ea A |
1209 | bxe = bx + n; |
1210 | q = *bxe / (*sxe + 1); /* ensure q <= true quotient */ | |
1211 | ASSERT_WITH_MESSAGE(q <= 9, "oversized quotient in quorem"); | |
1212 | if (q) { | |
1213 | borrow = 0; | |
1214 | carry = 0; | |
1215 | do { | |
1216 | #ifdef USE_LONG_LONG | |
1217 | ys = *sx++ * (unsigned long long)q + carry; | |
1218 | carry = ys >> 32; | |
1219 | y = *bx - (ys & 0xffffffffUL) - borrow; | |
1220 | borrow = y >> 32 & (uint32_t)1; | |
1221 | *bx++ = (uint32_t)y & 0xffffffffUL; | |
1222 | #else | |
9dae56ea A |
1223 | si = *sx++; |
1224 | ys = (si & 0xffff) * q + carry; | |
1225 | zs = (si >> 16) * q + (ys >> 16); | |
1226 | carry = zs >> 16; | |
1227 | y = (*bx & 0xffff) - (ys & 0xffff) - borrow; | |
1228 | borrow = (y & 0x10000) >> 16; | |
1229 | z = (*bx >> 16) - (zs & 0xffff) - borrow; | |
1230 | borrow = (z & 0x10000) >> 16; | |
14957cd0 | 1231 | bx = storeInc(bx, z, y); |
9dae56ea A |
1232 | #endif |
1233 | } while (sx <= sxe); | |
1234 | if (!*bxe) { | |
ba379fdc | 1235 | bx = b.words(); |
9dae56ea A |
1236 | while (--bxe > bx && !*bxe) |
1237 | --n; | |
ba379fdc | 1238 | b.resize(n); |
9dae56ea A |
1239 | } |
1240 | } | |
1241 | if (cmp(b, S) >= 0) { | |
1242 | q++; | |
1243 | borrow = 0; | |
1244 | carry = 0; | |
ba379fdc A |
1245 | bx = b.words(); |
1246 | sx = S.words(); | |
9dae56ea A |
1247 | do { |
1248 | #ifdef USE_LONG_LONG | |
1249 | ys = *sx++ + carry; | |
1250 | carry = ys >> 32; | |
1251 | y = *bx - (ys & 0xffffffffUL) - borrow; | |
1252 | borrow = y >> 32 & (uint32_t)1; | |
1253 | *bx++ = (uint32_t)y & 0xffffffffUL; | |
1254 | #else | |
9dae56ea A |
1255 | si = *sx++; |
1256 | ys = (si & 0xffff) + carry; | |
1257 | zs = (si >> 16) + (ys >> 16); | |
1258 | carry = zs >> 16; | |
1259 | y = (*bx & 0xffff) - (ys & 0xffff) - borrow; | |
1260 | borrow = (y & 0x10000) >> 16; | |
1261 | z = (*bx >> 16) - (zs & 0xffff) - borrow; | |
1262 | borrow = (z & 0x10000) >> 16; | |
14957cd0 | 1263 | bx = storeInc(bx, z, y); |
9dae56ea A |
1264 | #endif |
1265 | } while (sx <= sxe); | |
ba379fdc | 1266 | bx = b.words(); |
9dae56ea A |
1267 | bxe = bx + n; |
1268 | if (!*bxe) { | |
1269 | while (--bxe > bx && !*bxe) | |
1270 | --n; | |
ba379fdc | 1271 | b.resize(n); |
9dae56ea A |
1272 | } |
1273 | } | |
1274 | return q; | |
1275 | } | |
1276 | ||
9dae56ea A |
1277 | /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. |
1278 | * | |
1279 | * Inspired by "How to Print Floating-Point Numbers Accurately" by | |
14957cd0 | 1280 | * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126]. |
9dae56ea A |
1281 | * |
1282 | * Modifications: | |
1283 | * 1. Rather than iterating, we use a simple numeric overestimate | |
1284 | * to determine k = floor(log10(d)). We scale relevant | |
1285 | * quantities using O(log2(k)) rather than O(k) multiplications. | |
1286 | * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't | |
1287 | * try to generate digits strictly left to right. Instead, we | |
1288 | * compute with fewer bits and propagate the carry if necessary | |
1289 | * when rounding the final digit up. This is often faster. | |
1290 | * 3. Under the assumption that input will be rounded nearest, | |
1291 | * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. | |
1292 | * That is, we allow equality in stopping tests when the | |
1293 | * round-nearest rule will give the same floating-point value | |
1294 | * as would satisfaction of the stopping test with strict | |
1295 | * inequality. | |
1296 | * 4. We remove common factors of powers of 2 from relevant | |
1297 | * quantities. | |
1298 | * 5. When converting floating-point integers less than 1e16, | |
1299 | * we use floating-point arithmetic rather than resorting | |
1300 | * to multiple-precision integers. | |
1301 | * 6. When asked to produce fewer than 15 digits, we first try | |
1302 | * to get by with floating-point arithmetic; we resort to | |
1303 | * multiple-precision integer arithmetic only if we cannot | |
1304 | * guarantee that the floating-point calculation has given | |
1305 | * the correctly rounded result. For k requested digits and | |
1306 | * "uniformly" distributed input, the probability is | |
1307 | * something like 10^(k-15) that we must resort to the int32_t | |
1308 | * calculation. | |
14957cd0 A |
1309 | * |
1310 | * Note: 'leftright' translates to 'generate shortest possible string'. | |
9dae56ea | 1311 | */ |
14957cd0 A |
1312 | template<bool roundingNone, bool roundingSignificantFigures, bool roundingDecimalPlaces, bool leftright> |
1313 | void dtoa(DtoaBuffer result, double dd, int ndigits, bool& signOut, int& exponentOut, unsigned& precisionOut) | |
9dae56ea | 1314 | { |
14957cd0 A |
1315 | // Exactly one rounding mode must be specified. |
1316 | ASSERT(roundingNone + roundingSignificantFigures + roundingDecimalPlaces == 1); | |
1317 | // roundingNone only allowed (only sensible?) with leftright set. | |
1318 | ASSERT(!roundingNone || leftright); | |
9dae56ea | 1319 | |
14957cd0 | 1320 | ASSERT(!isnan(dd) && !isinf(dd)); |
9dae56ea A |
1321 | |
1322 | int bbits, b2, b5, be, dig, i, ieps, ilim = 0, ilim0, ilim1 = 0, | |
14957cd0 A |
1323 | j, j1, k, k0, k_check, m2, m5, s2, s5, |
1324 | spec_case; | |
9dae56ea | 1325 | int32_t L; |
9dae56ea A |
1326 | int denorm; |
1327 | uint32_t x; | |
14957cd0 | 1328 | BigInt b, delta, mlo, mhi, S; |
ba379fdc A |
1329 | U d2, eps, u; |
1330 | double ds; | |
14957cd0 A |
1331 | char* s; |
1332 | char* s0; | |
9dae56ea | 1333 | |
ba379fdc | 1334 | u.d = dd; |
9dae56ea | 1335 | |
14957cd0 A |
1336 | /* Infinity or NaN */ |
1337 | ASSERT((word0(&u) & Exp_mask) != Exp_mask); | |
1338 | ||
1339 | // JavaScript toString conversion treats -0 as 0. | |
ba379fdc | 1340 | if (!dval(&u)) { |
14957cd0 A |
1341 | signOut = false; |
1342 | exponentOut = 0; | |
1343 | precisionOut = 1; | |
ba379fdc A |
1344 | result[0] = '0'; |
1345 | result[1] = '\0'; | |
1346 | return; | |
9dae56ea A |
1347 | } |
1348 | ||
14957cd0 A |
1349 | if (word0(&u) & Sign_bit) { |
1350 | signOut = true; | |
1351 | word0(&u) &= ~Sign_bit; // clear sign bit | |
1352 | } else | |
1353 | signOut = false; | |
9dae56ea | 1354 | |
ba379fdc | 1355 | d2b(b, &u, &be, &bbits); |
ba379fdc | 1356 | if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask >> Exp_shift1)))) { |
ba379fdc A |
1357 | dval(&d2) = dval(&u); |
1358 | word0(&d2) &= Frac_mask1; | |
1359 | word0(&d2) |= Exp_11; | |
9dae56ea A |
1360 | |
1361 | /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 | |
1362 | * log10(x) = log(x) / log(10) | |
1363 | * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) | |
1364 | * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) | |
1365 | * | |
1366 | * This suggests computing an approximation k to log10(d) by | |
1367 | * | |
1368 | * k = (i - Bias)*0.301029995663981 | |
1369 | * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); | |
1370 | * | |
1371 | * We want k to be too large rather than too small. | |
1372 | * The error in the first-order Taylor series approximation | |
1373 | * is in our favor, so we just round up the constant enough | |
1374 | * to compensate for any error in the multiplication of | |
1375 | * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, | |
1376 | * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, | |
1377 | * adding 1e-13 to the constant term more than suffices. | |
1378 | * Hence we adjust the constant term to 0.1760912590558. | |
1379 | * (We could get a more accurate k by invoking log10, | |
1380 | * but this is probably not worthwhile.) | |
1381 | */ | |
1382 | ||
1383 | i -= Bias; | |
9dae56ea A |
1384 | denorm = 0; |
1385 | } else { | |
1386 | /* d is denormalized */ | |
1387 | ||
1388 | i = bbits + be + (Bias + (P - 1) - 1); | |
ba379fdc A |
1389 | x = (i > 32) ? (word0(&u) << (64 - i)) | (word1(&u) >> (i - 32)) |
1390 | : word1(&u) << (32 - i); | |
1391 | dval(&d2) = x; | |
1392 | word0(&d2) -= 31 * Exp_msk1; /* adjust exponent */ | |
9dae56ea A |
1393 | i -= (Bias + (P - 1) - 1) + 1; |
1394 | denorm = 1; | |
1395 | } | |
ba379fdc | 1396 | ds = (dval(&d2) - 1.5) * 0.289529654602168 + 0.1760912590558 + (i * 0.301029995663981); |
9dae56ea A |
1397 | k = (int)ds; |
1398 | if (ds < 0. && ds != k) | |
1399 | k--; /* want k = floor(ds) */ | |
1400 | k_check = 1; | |
1401 | if (k >= 0 && k <= Ten_pmax) { | |
ba379fdc | 1402 | if (dval(&u) < tens[k]) |
9dae56ea A |
1403 | k--; |
1404 | k_check = 0; | |
1405 | } | |
1406 | j = bbits - i - 1; | |
1407 | if (j >= 0) { | |
1408 | b2 = 0; | |
1409 | s2 = j; | |
1410 | } else { | |
1411 | b2 = -j; | |
1412 | s2 = 0; | |
1413 | } | |
1414 | if (k >= 0) { | |
1415 | b5 = 0; | |
1416 | s5 = k; | |
1417 | s2 += k; | |
1418 | } else { | |
1419 | b2 -= k; | |
1420 | b5 = -k; | |
1421 | s5 = 0; | |
1422 | } | |
1423 | ||
14957cd0 A |
1424 | if (roundingNone) { |
1425 | ilim = ilim1 = -1; | |
1426 | i = 18; | |
1427 | ndigits = 0; | |
1428 | } | |
1429 | if (roundingSignificantFigures) { | |
1430 | if (ndigits <= 0) | |
1431 | ndigits = 1; | |
1432 | ilim = ilim1 = i = ndigits; | |
1433 | } | |
1434 | if (roundingDecimalPlaces) { | |
1435 | i = ndigits + k + 1; | |
1436 | ilim = i; | |
1437 | ilim1 = i - 1; | |
1438 | if (i <= 0) | |
1439 | i = 1; | |
1440 | } | |
9dae56ea | 1441 | |
ba379fdc | 1442 | s = s0 = result; |
9dae56ea | 1443 | |
14957cd0 | 1444 | if (ilim >= 0 && ilim <= Quick_max) { |
9dae56ea A |
1445 | /* Try to get by with floating-point arithmetic. */ |
1446 | ||
1447 | i = 0; | |
ba379fdc | 1448 | dval(&d2) = dval(&u); |
9dae56ea A |
1449 | k0 = k; |
1450 | ilim0 = ilim; | |
1451 | ieps = 2; /* conservative */ | |
1452 | if (k > 0) { | |
1453 | ds = tens[k & 0xf]; | |
1454 | j = k >> 4; | |
1455 | if (j & Bletch) { | |
1456 | /* prevent overflows */ | |
1457 | j &= Bletch - 1; | |
ba379fdc | 1458 | dval(&u) /= bigtens[n_bigtens - 1]; |
9dae56ea A |
1459 | ieps++; |
1460 | } | |
1461 | for (; j; j >>= 1, i++) { | |
1462 | if (j & 1) { | |
1463 | ieps++; | |
1464 | ds *= bigtens[i]; | |
1465 | } | |
1466 | } | |
ba379fdc | 1467 | dval(&u) /= ds; |
9dae56ea | 1468 | } else if ((j1 = -k)) { |
ba379fdc | 1469 | dval(&u) *= tens[j1 & 0xf]; |
9dae56ea A |
1470 | for (j = j1 >> 4; j; j >>= 1, i++) { |
1471 | if (j & 1) { | |
1472 | ieps++; | |
ba379fdc | 1473 | dval(&u) *= bigtens[i]; |
9dae56ea A |
1474 | } |
1475 | } | |
1476 | } | |
ba379fdc | 1477 | if (k_check && dval(&u) < 1. && ilim > 0) { |
9dae56ea | 1478 | if (ilim1 <= 0) |
14957cd0 | 1479 | goto fastFailed; |
9dae56ea A |
1480 | ilim = ilim1; |
1481 | k--; | |
ba379fdc | 1482 | dval(&u) *= 10.; |
9dae56ea A |
1483 | ieps++; |
1484 | } | |
ba379fdc A |
1485 | dval(&eps) = (ieps * dval(&u)) + 7.; |
1486 | word0(&eps) -= (P - 1) * Exp_msk1; | |
14957cd0 | 1487 | if (!ilim) { |
ba379fdc A |
1488 | S.clear(); |
1489 | mhi.clear(); | |
1490 | dval(&u) -= 5.; | |
1491 | if (dval(&u) > dval(&eps)) | |
14957cd0 | 1492 | goto oneDigit; |
ba379fdc | 1493 | if (dval(&u) < -dval(&eps)) |
14957cd0 A |
1494 | goto noDigits; |
1495 | goto fastFailed; | |
9dae56ea | 1496 | } |
9dae56ea A |
1497 | if (leftright) { |
1498 | /* Use Steele & White method of only | |
1499 | * generating digits needed. | |
1500 | */ | |
ba379fdc | 1501 | dval(&eps) = (0.5 / tens[ilim - 1]) - dval(&eps); |
9dae56ea | 1502 | for (i = 0;;) { |
ba379fdc A |
1503 | L = (long int)dval(&u); |
1504 | dval(&u) -= L; | |
9dae56ea | 1505 | *s++ = '0' + (int)L; |
ba379fdc A |
1506 | if (dval(&u) < dval(&eps)) |
1507 | goto ret; | |
1508 | if (1. - dval(&u) < dval(&eps)) | |
14957cd0 | 1509 | goto bumpUp; |
9dae56ea A |
1510 | if (++i >= ilim) |
1511 | break; | |
ba379fdc A |
1512 | dval(&eps) *= 10.; |
1513 | dval(&u) *= 10.; | |
9dae56ea A |
1514 | } |
1515 | } else { | |
9dae56ea | 1516 | /* Generate ilim digits, then fix them up. */ |
ba379fdc A |
1517 | dval(&eps) *= tens[ilim - 1]; |
1518 | for (i = 1;; i++, dval(&u) *= 10.) { | |
1519 | L = (int32_t)(dval(&u)); | |
1520 | if (!(dval(&u) -= L)) | |
9dae56ea A |
1521 | ilim = i; |
1522 | *s++ = '0' + (int)L; | |
1523 | if (i == ilim) { | |
ba379fdc | 1524 | if (dval(&u) > 0.5 + dval(&eps)) |
14957cd0 A |
1525 | goto bumpUp; |
1526 | if (dval(&u) < 0.5 - dval(&eps)) { | |
9dae56ea A |
1527 | while (*--s == '0') { } |
1528 | s++; | |
ba379fdc | 1529 | goto ret; |
9dae56ea A |
1530 | } |
1531 | break; | |
1532 | } | |
1533 | } | |
9dae56ea | 1534 | } |
14957cd0 | 1535 | fastFailed: |
9dae56ea | 1536 | s = s0; |
ba379fdc | 1537 | dval(&u) = dval(&d2); |
9dae56ea A |
1538 | k = k0; |
1539 | ilim = ilim0; | |
1540 | } | |
1541 | ||
1542 | /* Do we have a "small" integer? */ | |
1543 | ||
1544 | if (be >= 0 && k <= Int_max) { | |
1545 | /* Yes. */ | |
1546 | ds = tens[k]; | |
1547 | if (ndigits < 0 && ilim <= 0) { | |
ba379fdc A |
1548 | S.clear(); |
1549 | mhi.clear(); | |
1550 | if (ilim < 0 || dval(&u) <= 5 * ds) | |
14957cd0 A |
1551 | goto noDigits; |
1552 | goto oneDigit; | |
9dae56ea | 1553 | } |
ba379fdc A |
1554 | for (i = 1;; i++, dval(&u) *= 10.) { |
1555 | L = (int32_t)(dval(&u) / ds); | |
1556 | dval(&u) -= L * ds; | |
9dae56ea | 1557 | *s++ = '0' + (int)L; |
ba379fdc | 1558 | if (!dval(&u)) { |
9dae56ea A |
1559 | break; |
1560 | } | |
1561 | if (i == ilim) { | |
ba379fdc A |
1562 | dval(&u) += dval(&u); |
1563 | if (dval(&u) > ds || (dval(&u) == ds && (L & 1))) { | |
14957cd0 | 1564 | bumpUp: |
9dae56ea A |
1565 | while (*--s == '9') |
1566 | if (s == s0) { | |
1567 | k++; | |
1568 | *s = '0'; | |
1569 | break; | |
1570 | } | |
1571 | ++*s++; | |
1572 | } | |
1573 | break; | |
1574 | } | |
1575 | } | |
ba379fdc | 1576 | goto ret; |
9dae56ea A |
1577 | } |
1578 | ||
1579 | m2 = b2; | |
1580 | m5 = b5; | |
ba379fdc A |
1581 | mhi.clear(); |
1582 | mlo.clear(); | |
9dae56ea | 1583 | if (leftright) { |
14957cd0 | 1584 | i = denorm ? be + (Bias + (P - 1) - 1 + 1) : 1 + P - bbits; |
9dae56ea A |
1585 | b2 += i; |
1586 | s2 += i; | |
ba379fdc | 1587 | i2b(mhi, 1); |
9dae56ea A |
1588 | } |
1589 | if (m2 > 0 && s2 > 0) { | |
1590 | i = m2 < s2 ? m2 : s2; | |
1591 | b2 -= i; | |
1592 | m2 -= i; | |
1593 | s2 -= i; | |
1594 | } | |
1595 | if (b5 > 0) { | |
1596 | if (leftright) { | |
1597 | if (m5 > 0) { | |
ba379fdc A |
1598 | pow5mult(mhi, m5); |
1599 | mult(b, mhi); | |
9dae56ea A |
1600 | } |
1601 | if ((j = b5 - m5)) | |
ba379fdc | 1602 | pow5mult(b, j); |
9dae56ea | 1603 | } else |
ba379fdc | 1604 | pow5mult(b, b5); |
14957cd0 | 1605 | } |
ba379fdc | 1606 | i2b(S, 1); |
9dae56ea | 1607 | if (s5 > 0) |
ba379fdc | 1608 | pow5mult(S, s5); |
9dae56ea A |
1609 | |
1610 | /* Check for special case that d is a normalized power of 2. */ | |
1611 | ||
1612 | spec_case = 0; | |
14957cd0 | 1613 | if ((roundingNone || leftright) && (!word1(&u) && !(word0(&u) & Bndry_mask) && word0(&u) & (Exp_mask & ~Exp_msk1))) { |
9dae56ea A |
1614 | /* The special case */ |
1615 | b2 += Log2P; | |
1616 | s2 += Log2P; | |
1617 | spec_case = 1; | |
1618 | } | |
1619 | ||
1620 | /* Arrange for convenient computation of quotients: | |
1621 | * shift left if necessary so divisor has 4 leading 0 bits. | |
1622 | * | |
1623 | * Perhaps we should just compute leading 28 bits of S once | |
1624 | * and for all and pass them and a shift to quorem, so it | |
1625 | * can do shifts and ors to compute the numerator for q. | |
1626 | */ | |
ba379fdc | 1627 | if ((i = ((s5 ? 32 - hi0bits(S.words()[S.size() - 1]) : 1) + s2) & 0x1f)) |
9dae56ea | 1628 | i = 32 - i; |
9dae56ea A |
1629 | if (i > 4) { |
1630 | i -= 4; | |
1631 | b2 += i; | |
1632 | m2 += i; | |
1633 | s2 += i; | |
1634 | } else if (i < 4) { | |
1635 | i += 28; | |
1636 | b2 += i; | |
1637 | m2 += i; | |
1638 | s2 += i; | |
1639 | } | |
1640 | if (b2 > 0) | |
ba379fdc | 1641 | lshift(b, b2); |
9dae56ea | 1642 | if (s2 > 0) |
ba379fdc | 1643 | lshift(S, s2); |
9dae56ea | 1644 | if (k_check) { |
14957cd0 | 1645 | if (cmp(b, S) < 0) { |
9dae56ea | 1646 | k--; |
ba379fdc | 1647 | multadd(b, 10, 0); /* we botched the k estimate */ |
9dae56ea | 1648 | if (leftright) |
ba379fdc | 1649 | multadd(mhi, 10, 0); |
9dae56ea A |
1650 | ilim = ilim1; |
1651 | } | |
1652 | } | |
14957cd0 A |
1653 | if (ilim <= 0 && roundingDecimalPlaces) { |
1654 | if (ilim < 0) | |
1655 | goto noDigits; | |
1656 | multadd(S, 5, 0); | |
1657 | // For IEEE-754 unbiased rounding this check should be <=, such that 0.5 would flush to zero. | |
1658 | if (cmp(b, S) < 0) | |
1659 | goto noDigits; | |
1660 | goto oneDigit; | |
1661 | } | |
9dae56ea A |
1662 | if (leftright) { |
1663 | if (m2 > 0) | |
ba379fdc | 1664 | lshift(mhi, m2); |
9dae56ea A |
1665 | |
1666 | /* Compute mlo -- check for special case | |
1667 | * that d is a normalized power of 2. | |
1668 | */ | |
1669 | ||
1670 | mlo = mhi; | |
14957cd0 | 1671 | if (spec_case) |
ba379fdc | 1672 | lshift(mhi, Log2P); |
9dae56ea A |
1673 | |
1674 | for (i = 1;;i++) { | |
14957cd0 | 1675 | dig = quorem(b, S) + '0'; |
9dae56ea A |
1676 | /* Do we yet have the shortest decimal string |
1677 | * that will round to d? | |
1678 | */ | |
1679 | j = cmp(b, mlo); | |
ba379fdc A |
1680 | diff(delta, S, mhi); |
1681 | j1 = delta.sign ? 1 : cmp(b, delta); | |
14957cd0 A |
1682 | #ifdef DTOA_ROUND_BIASED |
1683 | if (j < 0 || !j) { | |
1684 | #else | |
1685 | // FIXME: ECMA-262 specifies that equidistant results round away from | |
1686 | // zero, which probably means we shouldn't be on the unbiased code path | |
1687 | // (the (word1(&u) & 1) clause is looking highly suspicious). I haven't | |
1688 | // yet understood this code well enough to make the call, but we should | |
1689 | // probably be enabling DTOA_ROUND_BIASED. I think the interesting corner | |
1690 | // case to understand is probably "Math.pow(0.5, 24).toString()". | |
1691 | // I believe this value is interesting because I think it is precisely | |
1692 | // representable in binary floating point, and its decimal representation | |
1693 | // has a single digit that Steele & White reduction can remove, with the | |
1694 | // value 5 (thus equidistant from the next numbers above and below). | |
1695 | // We produce the correct answer using either codepath, and I don't as | |
1696 | // yet understand why. :-) | |
1697 | if (!j1 && !(word1(&u) & 1)) { | |
9dae56ea | 1698 | if (dig == '9') |
14957cd0 | 1699 | goto round9up; |
9dae56ea A |
1700 | if (j > 0) |
1701 | dig++; | |
9dae56ea A |
1702 | *s++ = dig; |
1703 | goto ret; | |
1704 | } | |
14957cd0 | 1705 | if (j < 0 || (!j && !(word1(&u) & 1))) { |
9dae56ea | 1706 | #endif |
14957cd0 | 1707 | if ((b.words()[0] || b.size() > 1) && (j1 > 0)) { |
ba379fdc | 1708 | lshift(b, 1); |
9dae56ea | 1709 | j1 = cmp(b, S); |
14957cd0 A |
1710 | // For IEEE-754 round-to-even, this check should be (j1 > 0 || (!j1 && (dig & 1))), |
1711 | // but ECMA-262 specifies that equidistant values (e.g. (.5).toFixed()) should | |
1712 | // be rounded away from zero. | |
1713 | if (j1 >= 0) { | |
1714 | if (dig == '9') | |
1715 | goto round9up; | |
1716 | dig++; | |
1717 | } | |
9dae56ea | 1718 | } |
9dae56ea A |
1719 | *s++ = dig; |
1720 | goto ret; | |
1721 | } | |
1722 | if (j1 > 0) { | |
1723 | if (dig == '9') { /* possible if i == 1 */ | |
14957cd0 | 1724 | round9up: |
9dae56ea A |
1725 | *s++ = '9'; |
1726 | goto roundoff; | |
1727 | } | |
1728 | *s++ = dig + 1; | |
1729 | goto ret; | |
1730 | } | |
1731 | *s++ = dig; | |
1732 | if (i == ilim) | |
1733 | break; | |
ba379fdc A |
1734 | multadd(b, 10, 0); |
1735 | multadd(mlo, 10, 0); | |
1736 | multadd(mhi, 10, 0); | |
9dae56ea | 1737 | } |
14957cd0 | 1738 | } else { |
9dae56ea | 1739 | for (i = 1;; i++) { |
14957cd0 A |
1740 | *s++ = dig = quorem(b, S) + '0'; |
1741 | if (!b.words()[0] && b.size() <= 1) | |
9dae56ea | 1742 | goto ret; |
9dae56ea A |
1743 | if (i >= ilim) |
1744 | break; | |
ba379fdc | 1745 | multadd(b, 10, 0); |
9dae56ea | 1746 | } |
14957cd0 | 1747 | } |
9dae56ea A |
1748 | |
1749 | /* Round off last digit */ | |
1750 | ||
ba379fdc | 1751 | lshift(b, 1); |
9dae56ea | 1752 | j = cmp(b, S); |
14957cd0 A |
1753 | // For IEEE-754 round-to-even, this check should be (j > 0 || (!j && (dig & 1))), |
1754 | // but ECMA-262 specifies that equidistant values (e.g. (.5).toFixed()) should | |
1755 | // be rounded away from zero. | |
1756 | if (j >= 0) { | |
9dae56ea A |
1757 | roundoff: |
1758 | while (*--s == '9') | |
1759 | if (s == s0) { | |
1760 | k++; | |
1761 | *s++ = '1'; | |
1762 | goto ret; | |
1763 | } | |
1764 | ++*s++; | |
1765 | } else { | |
1766 | while (*--s == '0') { } | |
1767 | s++; | |
1768 | } | |
1769 | goto ret; | |
14957cd0 A |
1770 | noDigits: |
1771 | exponentOut = 0; | |
1772 | precisionOut = 1; | |
1773 | result[0] = '0'; | |
1774 | result[1] = '\0'; | |
1775 | return; | |
1776 | oneDigit: | |
9dae56ea A |
1777 | *s++ = '1'; |
1778 | k++; | |
1779 | goto ret; | |
1780 | ret: | |
14957cd0 | 1781 | ASSERT(s > result); |
9dae56ea | 1782 | *s = 0; |
14957cd0 A |
1783 | exponentOut = k; |
1784 | precisionOut = s - result; | |
9dae56ea A |
1785 | } |
1786 | ||
14957cd0 | 1787 | void dtoa(DtoaBuffer result, double dd, bool& sign, int& exponent, unsigned& precision) |
f9bf01c6 | 1788 | { |
14957cd0 A |
1789 | // flags are roundingNone, leftright. |
1790 | dtoa<true, false, false, true>(result, dd, 0, sign, exponent, precision); | |
f9bf01c6 A |
1791 | } |
1792 | ||
14957cd0 | 1793 | void dtoaRoundSF(DtoaBuffer result, double dd, int ndigits, bool& sign, int& exponent, unsigned& precision) |
f9bf01c6 | 1794 | { |
14957cd0 A |
1795 | // flag is roundingSignificantFigures. |
1796 | dtoa<false, true, false, false>(result, dd, ndigits, sign, exponent, precision); | |
1797 | } | |
f9bf01c6 | 1798 | |
14957cd0 A |
1799 | void dtoaRoundDP(DtoaBuffer result, double dd, int ndigits, bool& sign, int& exponent, unsigned& precision) |
1800 | { | |
1801 | // flag is roundingDecimalPlaces. | |
1802 | dtoa<false, false, true, false>(result, dd, ndigits, sign, exponent, precision); | |
1803 | } | |
f9bf01c6 | 1804 | |
14957cd0 A |
1805 | static ALWAYS_INLINE void copyAsciiToUTF16(UChar* next, const char* src, unsigned size) |
1806 | { | |
1807 | for (unsigned i = 0; i < size; ++i) | |
1808 | *next++ = *src++; | |
1809 | } | |
f9bf01c6 | 1810 | |
14957cd0 A |
1811 | unsigned numberToString(double d, NumberToStringBuffer buffer) |
1812 | { | |
1813 | // Handle NaN and Infinity. | |
1814 | if (isnan(d) || isinf(d)) { | |
1815 | if (isnan(d)) { | |
1816 | copyAsciiToUTF16(buffer, "NaN", 3); | |
1817 | return 3; | |
f9bf01c6 | 1818 | } |
14957cd0 A |
1819 | if (d > 0) { |
1820 | copyAsciiToUTF16(buffer, "Infinity", 8); | |
1821 | return 8; | |
f9bf01c6 | 1822 | } |
14957cd0 A |
1823 | copyAsciiToUTF16(buffer, "-Infinity", 9); |
1824 | return 9; | |
1825 | } | |
f9bf01c6 | 1826 | |
14957cd0 A |
1827 | // Convert to decimal with rounding. |
1828 | DecimalNumber number(d); | |
1829 | return number.exponent() >= -6 && number.exponent() < 21 | |
1830 | ? number.toStringDecimal(buffer, NumberToStringBufferLength) | |
1831 | : number.toStringExponential(buffer, NumberToStringBufferLength); | |
f9bf01c6 A |
1832 | } |
1833 | ||
9dae56ea | 1834 | } // namespace WTF |