]>
Commit | Line | Data |
---|---|---|
b37bf2e1 A |
1 | // Copyright (c) 2005, 2007, Google Inc. |
2 | // All rights reserved. | |
14957cd0 | 3 | // Copyright (C) 2005, 2006, 2007, 2008, 2009, 2011 Apple Inc. All rights reserved. |
b37bf2e1 A |
4 | // |
5 | // Redistribution and use in source and binary forms, with or without | |
6 | // modification, are permitted provided that the following conditions are | |
7 | // met: | |
8 | // | |
9 | // * Redistributions of source code must retain the above copyright | |
10 | // notice, this list of conditions and the following disclaimer. | |
11 | // * Redistributions in binary form must reproduce the above | |
12 | // copyright notice, this list of conditions and the following disclaimer | |
13 | // in the documentation and/or other materials provided with the | |
14 | // distribution. | |
15 | // * Neither the name of Google Inc. nor the names of its | |
16 | // contributors may be used to endorse or promote products derived from | |
17 | // this software without specific prior written permission. | |
18 | // | |
19 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
20 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
21 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
22 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
23 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
24 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
25 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
26 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
27 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
28 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
29 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
30 | ||
31 | // --- | |
32 | // Author: Sanjay Ghemawat <opensource@google.com> | |
33 | // | |
34 | // A malloc that uses a per-thread cache to satisfy small malloc requests. | |
35 | // (The time for malloc/free of a small object drops from 300 ns to 50 ns.) | |
36 | // | |
37 | // See doc/tcmalloc.html for a high-level | |
38 | // description of how this malloc works. | |
39 | // | |
40 | // SYNCHRONIZATION | |
41 | // 1. The thread-specific lists are accessed without acquiring any locks. | |
42 | // This is safe because each such list is only accessed by one thread. | |
43 | // 2. We have a lock per central free-list, and hold it while manipulating | |
44 | // the central free list for a particular size. | |
45 | // 3. The central page allocator is protected by "pageheap_lock". | |
46 | // 4. The pagemap (which maps from page-number to descriptor), | |
47 | // can be read without holding any locks, and written while holding | |
48 | // the "pageheap_lock". | |
49 | // 5. To improve performance, a subset of the information one can get | |
50 | // from the pagemap is cached in a data structure, pagemap_cache_, | |
51 | // that atomically reads and writes its entries. This cache can be | |
52 | // read and written without locking. | |
53 | // | |
54 | // This multi-threaded access to the pagemap is safe for fairly | |
55 | // subtle reasons. We basically assume that when an object X is | |
56 | // allocated by thread A and deallocated by thread B, there must | |
57 | // have been appropriate synchronization in the handoff of object | |
58 | // X from thread A to thread B. The same logic applies to pagemap_cache_. | |
59 | // | |
60 | // THE PAGEID-TO-SIZECLASS CACHE | |
61 | // Hot PageID-to-sizeclass mappings are held by pagemap_cache_. If this cache | |
62 | // returns 0 for a particular PageID then that means "no information," not that | |
63 | // the sizeclass is 0. The cache may have stale information for pages that do | |
64 | // not hold the beginning of any free()'able object. Staleness is eliminated | |
65 | // in Populate() for pages with sizeclass > 0 objects, and in do_malloc() and | |
66 | // do_memalign() for all other relevant pages. | |
67 | // | |
68 | // TODO: Bias reclamation to larger addresses | |
69 | // TODO: implement mallinfo/mallopt | |
70 | // TODO: Better testing | |
71 | // | |
72 | // 9/28/2003 (new page-level allocator replaces ptmalloc2): | |
73 | // * malloc/free of small objects goes from ~300 ns to ~50 ns. | |
74 | // * allocation of a reasonably complicated struct | |
75 | // goes from about 1100 ns to about 300 ns. | |
76 | ||
77 | #include "config.h" | |
78 | #include "FastMalloc.h" | |
79 | ||
80 | #include "Assertions.h" | |
ba379fdc | 81 | #include <limits> |
14957cd0 | 82 | #if ENABLE(WTF_MULTIPLE_THREADS) |
b37bf2e1 A |
83 | #include <pthread.h> |
84 | #endif | |
14957cd0 | 85 | #include <wtf/StdLibExtras.h> |
b37bf2e1 A |
86 | |
87 | #ifndef NO_TCMALLOC_SAMPLES | |
88 | #ifdef WTF_CHANGES | |
89 | #define NO_TCMALLOC_SAMPLES | |
90 | #endif | |
91 | #endif | |
92 | ||
f9bf01c6 | 93 | #if !(defined(USE_SYSTEM_MALLOC) && USE_SYSTEM_MALLOC) && defined(NDEBUG) |
b37bf2e1 A |
94 | #define FORCE_SYSTEM_MALLOC 0 |
95 | #else | |
96 | #define FORCE_SYSTEM_MALLOC 1 | |
97 | #endif | |
98 | ||
ba379fdc | 99 | // Use a background thread to periodically scavenge memory to release back to the system |
ba379fdc | 100 | #define USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY 0 |
9dae56ea | 101 | |
b37bf2e1 A |
102 | #ifndef NDEBUG |
103 | namespace WTF { | |
104 | ||
14957cd0 | 105 | #if ENABLE(WTF_MULTIPLE_THREADS) |
b37bf2e1 A |
106 | static pthread_key_t isForbiddenKey; |
107 | static pthread_once_t isForbiddenKeyOnce = PTHREAD_ONCE_INIT; | |
108 | static void initializeIsForbiddenKey() | |
109 | { | |
110 | pthread_key_create(&isForbiddenKey, 0); | |
111 | } | |
112 | ||
f9bf01c6 | 113 | #if !ASSERT_DISABLED |
b37bf2e1 A |
114 | static bool isForbidden() |
115 | { | |
116 | pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey); | |
117 | return !!pthread_getspecific(isForbiddenKey); | |
118 | } | |
f9bf01c6 | 119 | #endif |
b37bf2e1 A |
120 | |
121 | void fastMallocForbid() | |
122 | { | |
123 | pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey); | |
124 | pthread_setspecific(isForbiddenKey, &isForbiddenKey); | |
125 | } | |
126 | ||
127 | void fastMallocAllow() | |
128 | { | |
129 | pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey); | |
130 | pthread_setspecific(isForbiddenKey, 0); | |
131 | } | |
132 | ||
133 | #else | |
134 | ||
135 | static bool staticIsForbidden; | |
136 | static bool isForbidden() | |
137 | { | |
138 | return staticIsForbidden; | |
139 | } | |
140 | ||
141 | void fastMallocForbid() | |
142 | { | |
143 | staticIsForbidden = true; | |
144 | } | |
145 | ||
146 | void fastMallocAllow() | |
147 | { | |
148 | staticIsForbidden = false; | |
149 | } | |
14957cd0 | 150 | #endif // ENABLE(WTF_MULTIPLE_THREADS) |
b37bf2e1 A |
151 | |
152 | } // namespace WTF | |
153 | #endif // NDEBUG | |
154 | ||
155 | #include <string.h> | |
156 | ||
157 | namespace WTF { | |
9dae56ea | 158 | |
ba379fdc A |
159 | |
160 | namespace Internal { | |
14957cd0 A |
161 | #if !ENABLE(WTF_MALLOC_VALIDATION) |
162 | void fastMallocMatchFailed(void*); | |
163 | #else | |
164 | COMPILE_ASSERT(((sizeof(ValidationHeader) % sizeof(AllocAlignmentInteger)) == 0), ValidationHeader_must_produce_correct_alignment); | |
165 | #endif | |
ba379fdc A |
166 | void fastMallocMatchFailed(void*) |
167 | { | |
168 | CRASH(); | |
169 | } | |
170 | ||
171 | } // namespace Internal | |
172 | ||
ba379fdc | 173 | |
9dae56ea | 174 | void* fastZeroedMalloc(size_t n) |
b37bf2e1 | 175 | { |
9dae56ea | 176 | void* result = fastMalloc(n); |
b37bf2e1 | 177 | memset(result, 0, n); |
b37bf2e1 A |
178 | return result; |
179 | } | |
f9bf01c6 A |
180 | |
181 | char* fastStrDup(const char* src) | |
182 | { | |
14957cd0 | 183 | size_t len = strlen(src) + 1; |
f9bf01c6 | 184 | char* dup = static_cast<char*>(fastMalloc(len)); |
14957cd0 | 185 | memcpy(dup, src, len); |
f9bf01c6 A |
186 | return dup; |
187 | } | |
14957cd0 | 188 | |
f9bf01c6 | 189 | TryMallocReturnValue tryFastZeroedMalloc(size_t n) |
9dae56ea | 190 | { |
f9bf01c6 A |
191 | void* result; |
192 | if (!tryFastMalloc(n).getValue(result)) | |
9dae56ea A |
193 | return 0; |
194 | memset(result, 0, n); | |
195 | return result; | |
b37bf2e1 A |
196 | } |
197 | ||
9dae56ea A |
198 | } // namespace WTF |
199 | ||
b37bf2e1 A |
200 | #if FORCE_SYSTEM_MALLOC |
201 | ||
4e4e5a6f A |
202 | #if PLATFORM(BREWMP) |
203 | #include "brew/SystemMallocBrew.h" | |
204 | #endif | |
205 | ||
206 | #if OS(DARWIN) | |
207 | #include <malloc/malloc.h> | |
14957cd0 | 208 | #elif OS(WINDOWS) |
4e4e5a6f A |
209 | #include <malloc.h> |
210 | #endif | |
211 | ||
b37bf2e1 | 212 | namespace WTF { |
9dae56ea | 213 | |
f9bf01c6 | 214 | TryMallocReturnValue tryFastMalloc(size_t n) |
b37bf2e1 A |
215 | { |
216 | ASSERT(!isForbidden()); | |
ba379fdc | 217 | |
14957cd0 A |
218 | #if ENABLE(WTF_MALLOC_VALIDATION) |
219 | if (std::numeric_limits<size_t>::max() - Internal::ValidationBufferSize <= n) // If overflow would occur... | |
ba379fdc A |
220 | return 0; |
221 | ||
14957cd0 | 222 | void* result = malloc(n + Internal::ValidationBufferSize); |
ba379fdc A |
223 | if (!result) |
224 | return 0; | |
14957cd0 A |
225 | Internal::ValidationHeader* header = static_cast<Internal::ValidationHeader*>(result); |
226 | header->m_size = n; | |
227 | header->m_type = Internal::AllocTypeMalloc; | |
228 | header->m_prefix = static_cast<unsigned>(Internal::ValidationPrefix); | |
229 | result = header + 1; | |
230 | *Internal::fastMallocValidationSuffix(result) = Internal::ValidationSuffix; | |
231 | fastMallocValidate(result); | |
ba379fdc A |
232 | return result; |
233 | #else | |
b37bf2e1 | 234 | return malloc(n); |
ba379fdc | 235 | #endif |
b37bf2e1 A |
236 | } |
237 | ||
9dae56ea A |
238 | void* fastMalloc(size_t n) |
239 | { | |
240 | ASSERT(!isForbidden()); | |
ba379fdc | 241 | |
14957cd0 | 242 | #if ENABLE(WTF_MALLOC_VALIDATION) |
f9bf01c6 A |
243 | TryMallocReturnValue returnValue = tryFastMalloc(n); |
244 | void* result; | |
14957cd0 A |
245 | if (!returnValue.getValue(result)) |
246 | CRASH(); | |
ba379fdc | 247 | #else |
9dae56ea | 248 | void* result = malloc(n); |
ba379fdc A |
249 | #endif |
250 | ||
4e4e5a6f A |
251 | if (!result) { |
252 | #if PLATFORM(BREWMP) | |
253 | // The behavior of malloc(0) is implementation defined. | |
254 | // To make sure that fastMalloc never returns 0, retry with fastMalloc(1). | |
255 | if (!n) | |
256 | return fastMalloc(1); | |
257 | #endif | |
9dae56ea | 258 | CRASH(); |
4e4e5a6f A |
259 | } |
260 | ||
9dae56ea A |
261 | return result; |
262 | } | |
263 | ||
f9bf01c6 | 264 | TryMallocReturnValue tryFastCalloc(size_t n_elements, size_t element_size) |
b37bf2e1 A |
265 | { |
266 | ASSERT(!isForbidden()); | |
ba379fdc | 267 | |
14957cd0 | 268 | #if ENABLE(WTF_MALLOC_VALIDATION) |
ba379fdc | 269 | size_t totalBytes = n_elements * element_size; |
14957cd0 | 270 | if (n_elements > 1 && element_size && (totalBytes / element_size) != n_elements) |
ba379fdc A |
271 | return 0; |
272 | ||
14957cd0 A |
273 | TryMallocReturnValue returnValue = tryFastMalloc(totalBytes); |
274 | void* result; | |
275 | if (!returnValue.getValue(result)) | |
ba379fdc | 276 | return 0; |
ba379fdc | 277 | memset(result, 0, totalBytes); |
14957cd0 | 278 | fastMallocValidate(result); |
ba379fdc A |
279 | return result; |
280 | #else | |
b37bf2e1 | 281 | return calloc(n_elements, element_size); |
ba379fdc | 282 | #endif |
b37bf2e1 A |
283 | } |
284 | ||
9dae56ea A |
285 | void* fastCalloc(size_t n_elements, size_t element_size) |
286 | { | |
287 | ASSERT(!isForbidden()); | |
ba379fdc | 288 | |
14957cd0 | 289 | #if ENABLE(WTF_MALLOC_VALIDATION) |
f9bf01c6 A |
290 | TryMallocReturnValue returnValue = tryFastCalloc(n_elements, element_size); |
291 | void* result; | |
14957cd0 A |
292 | if (!returnValue.getValue(result)) |
293 | CRASH(); | |
ba379fdc | 294 | #else |
9dae56ea | 295 | void* result = calloc(n_elements, element_size); |
ba379fdc A |
296 | #endif |
297 | ||
4e4e5a6f A |
298 | if (!result) { |
299 | #if PLATFORM(BREWMP) | |
300 | // If either n_elements or element_size is 0, the behavior of calloc is implementation defined. | |
301 | // To make sure that fastCalloc never returns 0, retry with fastCalloc(1, 1). | |
302 | if (!n_elements || !element_size) | |
303 | return fastCalloc(1, 1); | |
304 | #endif | |
9dae56ea | 305 | CRASH(); |
4e4e5a6f A |
306 | } |
307 | ||
9dae56ea A |
308 | return result; |
309 | } | |
310 | ||
b37bf2e1 A |
311 | void fastFree(void* p) |
312 | { | |
313 | ASSERT(!isForbidden()); | |
ba379fdc | 314 | |
14957cd0 | 315 | #if ENABLE(WTF_MALLOC_VALIDATION) |
ba379fdc A |
316 | if (!p) |
317 | return; | |
14957cd0 A |
318 | |
319 | fastMallocMatchValidateFree(p, Internal::AllocTypeMalloc); | |
320 | Internal::ValidationHeader* header = Internal::fastMallocValidationHeader(p); | |
321 | memset(p, 0xCC, header->m_size); | |
ba379fdc A |
322 | free(header); |
323 | #else | |
b37bf2e1 | 324 | free(p); |
ba379fdc | 325 | #endif |
b37bf2e1 A |
326 | } |
327 | ||
f9bf01c6 | 328 | TryMallocReturnValue tryFastRealloc(void* p, size_t n) |
b37bf2e1 A |
329 | { |
330 | ASSERT(!isForbidden()); | |
ba379fdc | 331 | |
14957cd0 | 332 | #if ENABLE(WTF_MALLOC_VALIDATION) |
ba379fdc | 333 | if (p) { |
14957cd0 | 334 | if (std::numeric_limits<size_t>::max() - Internal::ValidationBufferSize <= n) // If overflow would occur... |
ba379fdc | 335 | return 0; |
14957cd0 A |
336 | fastMallocValidate(p); |
337 | Internal::ValidationHeader* result = static_cast<Internal::ValidationHeader*>(realloc(Internal::fastMallocValidationHeader(p), n + Internal::ValidationBufferSize)); | |
ba379fdc A |
338 | if (!result) |
339 | return 0; | |
14957cd0 A |
340 | result->m_size = n; |
341 | result = result + 1; | |
342 | *fastMallocValidationSuffix(result) = Internal::ValidationSuffix; | |
343 | fastMallocValidate(result); | |
ba379fdc A |
344 | return result; |
345 | } else { | |
346 | return fastMalloc(n); | |
347 | } | |
348 | #else | |
b37bf2e1 | 349 | return realloc(p, n); |
ba379fdc | 350 | #endif |
b37bf2e1 A |
351 | } |
352 | ||
9dae56ea A |
353 | void* fastRealloc(void* p, size_t n) |
354 | { | |
355 | ASSERT(!isForbidden()); | |
ba379fdc | 356 | |
14957cd0 | 357 | #if ENABLE(WTF_MALLOC_VALIDATION) |
f9bf01c6 A |
358 | TryMallocReturnValue returnValue = tryFastRealloc(p, n); |
359 | void* result; | |
14957cd0 A |
360 | if (!returnValue.getValue(result)) |
361 | CRASH(); | |
ba379fdc | 362 | #else |
9dae56ea | 363 | void* result = realloc(p, n); |
ba379fdc A |
364 | #endif |
365 | ||
9dae56ea A |
366 | if (!result) |
367 | CRASH(); | |
368 | return result; | |
369 | } | |
370 | ||
b37bf2e1 | 371 | void releaseFastMallocFreeMemory() { } |
9dae56ea A |
372 | |
373 | FastMallocStatistics fastMallocStatistics() | |
374 | { | |
4e4e5a6f | 375 | FastMallocStatistics statistics = { 0, 0, 0 }; |
9dae56ea A |
376 | return statistics; |
377 | } | |
f4e78d34 | 378 | |
4e4e5a6f A |
379 | size_t fastMallocSize(const void* p) |
380 | { | |
14957cd0 A |
381 | #if ENABLE(WTF_MALLOC_VALIDATION) |
382 | return Internal::fastMallocValidationHeader(const_cast<void*>(p))->m_size; | |
383 | #elif OS(DARWIN) | |
4e4e5a6f | 384 | return malloc_size(p); |
14957cd0 A |
385 | #elif OS(WINDOWS) && !PLATFORM(BREWMP) |
386 | // Brew MP uses its own memory allocator, so _msize does not work on the Brew MP simulator. | |
4e4e5a6f A |
387 | return _msize(const_cast<void*>(p)); |
388 | #else | |
389 | return 1; | |
390 | #endif | |
391 | } | |
392 | ||
f4e78d34 | 393 | } // namespace WTF |
b37bf2e1 | 394 | |
f9bf01c6 | 395 | #if OS(DARWIN) |
b37bf2e1 A |
396 | // This symbol is present in the JavaScriptCore exports file even when FastMalloc is disabled. |
397 | // It will never be used in this case, so it's type and value are less interesting than its presence. | |
398 | extern "C" const int jscore_fastmalloc_introspection = 0; | |
399 | #endif | |
400 | ||
f4e78d34 | 401 | #else // FORCE_SYSTEM_MALLOC |
b37bf2e1 A |
402 | |
403 | #if HAVE(STDINT_H) | |
404 | #include <stdint.h> | |
405 | #elif HAVE(INTTYPES_H) | |
406 | #include <inttypes.h> | |
407 | #else | |
408 | #include <sys/types.h> | |
409 | #endif | |
410 | ||
411 | #include "AlwaysInline.h" | |
412 | #include "Assertions.h" | |
413 | #include "TCPackedCache.h" | |
414 | #include "TCPageMap.h" | |
415 | #include "TCSpinLock.h" | |
416 | #include "TCSystemAlloc.h" | |
417 | #include <algorithm> | |
ba379fdc | 418 | #include <limits> |
b37bf2e1 A |
419 | #include <pthread.h> |
420 | #include <stdarg.h> | |
421 | #include <stddef.h> | |
422 | #include <stdio.h> | |
14957cd0 A |
423 | #if HAVE(ERRNO_H) |
424 | #include <errno.h> | |
425 | #endif | |
f9bf01c6 A |
426 | #if OS(UNIX) |
427 | #include <unistd.h> | |
428 | #endif | |
14957cd0 | 429 | #if OS(WINDOWS) |
b37bf2e1 A |
430 | #ifndef WIN32_LEAN_AND_MEAN |
431 | #define WIN32_LEAN_AND_MEAN | |
432 | #endif | |
433 | #include <windows.h> | |
434 | #endif | |
435 | ||
4e4e5a6f | 436 | #ifdef WTF_CHANGES |
b37bf2e1 | 437 | |
f9bf01c6 | 438 | #if OS(DARWIN) |
b37bf2e1 | 439 | #include "MallocZoneSupport.h" |
9dae56ea | 440 | #include <wtf/HashSet.h> |
f9bf01c6 A |
441 | #include <wtf/Vector.h> |
442 | #endif | |
14957cd0 A |
443 | |
444 | #if HAVE(HEADER_DETECTION_H) | |
445 | #include "HeaderDetection.h" | |
446 | #endif | |
447 | ||
f9bf01c6 A |
448 | #if HAVE(DISPATCH_H) |
449 | #include <dispatch/dispatch.h> | |
b37bf2e1 A |
450 | #endif |
451 | ||
14957cd0 A |
452 | #if HAVE(PTHREAD_MACHDEP_H) |
453 | #include <System/pthread_machdep.h> | |
454 | ||
455 | #if defined(__PTK_FRAMEWORK_JAVASCRIPTCORE_KEY0) | |
456 | #define WTF_USE_PTHREAD_GETSPECIFIC_DIRECT 1 | |
457 | #endif | |
458 | #endif | |
f9bf01c6 | 459 | |
b37bf2e1 A |
460 | #ifndef PRIuS |
461 | #define PRIuS "zu" | |
462 | #endif | |
463 | ||
464 | // Calling pthread_getspecific through a global function pointer is faster than a normal | |
465 | // call to the function on Mac OS X, and it's used in performance-critical code. So we | |
466 | // use a function pointer. But that's not necessarily faster on other platforms, and we had | |
467 | // problems with this technique on Windows, so we'll do this only on Mac OS X. | |
f9bf01c6 | 468 | #if OS(DARWIN) |
14957cd0 | 469 | #if !USE(PTHREAD_GETSPECIFIC_DIRECT) |
b37bf2e1 A |
470 | static void* (*pthread_getspecific_function_pointer)(pthread_key_t) = pthread_getspecific; |
471 | #define pthread_getspecific(key) pthread_getspecific_function_pointer(key) | |
14957cd0 A |
472 | #else |
473 | #define pthread_getspecific(key) _pthread_getspecific_direct(key) | |
474 | #define pthread_setspecific(key, val) _pthread_setspecific_direct(key, (val)) | |
b37bf2e1 | 475 | #endif |
4e4e5a6f | 476 | #endif |
b37bf2e1 A |
477 | |
478 | #define DEFINE_VARIABLE(type, name, value, meaning) \ | |
479 | namespace FLAG__namespace_do_not_use_directly_use_DECLARE_##type##_instead { \ | |
480 | type FLAGS_##name(value); \ | |
481 | char FLAGS_no##name; \ | |
482 | } \ | |
483 | using FLAG__namespace_do_not_use_directly_use_DECLARE_##type##_instead::FLAGS_##name | |
484 | ||
485 | #define DEFINE_int64(name, value, meaning) \ | |
486 | DEFINE_VARIABLE(int64_t, name, value, meaning) | |
487 | ||
488 | #define DEFINE_double(name, value, meaning) \ | |
489 | DEFINE_VARIABLE(double, name, value, meaning) | |
490 | ||
491 | namespace WTF { | |
492 | ||
493 | #define malloc fastMalloc | |
494 | #define calloc fastCalloc | |
495 | #define free fastFree | |
496 | #define realloc fastRealloc | |
497 | ||
498 | #define MESSAGE LOG_ERROR | |
499 | #define CHECK_CONDITION ASSERT | |
500 | ||
f9bf01c6 | 501 | #if OS(DARWIN) |
4e4e5a6f | 502 | struct Span; |
ba379fdc | 503 | class TCMalloc_Central_FreeListPadded; |
b37bf2e1 A |
504 | class TCMalloc_PageHeap; |
505 | class TCMalloc_ThreadCache; | |
ba379fdc | 506 | template <typename T> class PageHeapAllocator; |
b37bf2e1 A |
507 | |
508 | class FastMallocZone { | |
509 | public: | |
510 | static void init(); | |
511 | ||
512 | static kern_return_t enumerate(task_t, void*, unsigned typeMmask, vm_address_t zoneAddress, memory_reader_t, vm_range_recorder_t); | |
513 | static size_t goodSize(malloc_zone_t*, size_t size) { return size; } | |
514 | static boolean_t check(malloc_zone_t*) { return true; } | |
515 | static void print(malloc_zone_t*, boolean_t) { } | |
516 | static void log(malloc_zone_t*, void*) { } | |
517 | static void forceLock(malloc_zone_t*) { } | |
518 | static void forceUnlock(malloc_zone_t*) { } | |
9dae56ea | 519 | static void statistics(malloc_zone_t*, malloc_statistics_t* stats) { memset(stats, 0, sizeof(malloc_statistics_t)); } |
b37bf2e1 A |
520 | |
521 | private: | |
ba379fdc | 522 | FastMallocZone(TCMalloc_PageHeap*, TCMalloc_ThreadCache**, TCMalloc_Central_FreeListPadded*, PageHeapAllocator<Span>*, PageHeapAllocator<TCMalloc_ThreadCache>*); |
b37bf2e1 A |
523 | static size_t size(malloc_zone_t*, const void*); |
524 | static void* zoneMalloc(malloc_zone_t*, size_t); | |
525 | static void* zoneCalloc(malloc_zone_t*, size_t numItems, size_t size); | |
526 | static void zoneFree(malloc_zone_t*, void*); | |
527 | static void* zoneRealloc(malloc_zone_t*, void*, size_t); | |
528 | static void* zoneValloc(malloc_zone_t*, size_t) { LOG_ERROR("valloc is not supported"); return 0; } | |
529 | static void zoneDestroy(malloc_zone_t*) { } | |
530 | ||
531 | malloc_zone_t m_zone; | |
532 | TCMalloc_PageHeap* m_pageHeap; | |
533 | TCMalloc_ThreadCache** m_threadHeaps; | |
534 | TCMalloc_Central_FreeListPadded* m_centralCaches; | |
ba379fdc A |
535 | PageHeapAllocator<Span>* m_spanAllocator; |
536 | PageHeapAllocator<TCMalloc_ThreadCache>* m_pageHeapAllocator; | |
b37bf2e1 A |
537 | }; |
538 | ||
539 | #endif | |
540 | ||
541 | #endif | |
542 | ||
543 | #ifndef WTF_CHANGES | |
544 | // This #ifdef should almost never be set. Set NO_TCMALLOC_SAMPLES if | |
545 | // you're porting to a system where you really can't get a stacktrace. | |
546 | #ifdef NO_TCMALLOC_SAMPLES | |
547 | // We use #define so code compiles even if you #include stacktrace.h somehow. | |
548 | # define GetStackTrace(stack, depth, skip) (0) | |
549 | #else | |
550 | # include <google/stacktrace.h> | |
551 | #endif | |
552 | #endif | |
553 | ||
554 | // Even if we have support for thread-local storage in the compiler | |
555 | // and linker, the OS may not support it. We need to check that at | |
556 | // runtime. Right now, we have to keep a manual set of "bad" OSes. | |
557 | #if defined(HAVE_TLS) | |
558 | static bool kernel_supports_tls = false; // be conservative | |
559 | static inline bool KernelSupportsTLS() { | |
560 | return kernel_supports_tls; | |
561 | } | |
562 | # if !HAVE_DECL_UNAME // if too old for uname, probably too old for TLS | |
563 | static void CheckIfKernelSupportsTLS() { | |
564 | kernel_supports_tls = false; | |
565 | } | |
566 | # else | |
567 | # include <sys/utsname.h> // DECL_UNAME checked for <sys/utsname.h> too | |
568 | static void CheckIfKernelSupportsTLS() { | |
569 | struct utsname buf; | |
570 | if (uname(&buf) != 0) { // should be impossible | |
571 | MESSAGE("uname failed assuming no TLS support (errno=%d)\n", errno); | |
572 | kernel_supports_tls = false; | |
573 | } else if (strcasecmp(buf.sysname, "linux") == 0) { | |
574 | // The linux case: the first kernel to support TLS was 2.6.0 | |
575 | if (buf.release[0] < '2' && buf.release[1] == '.') // 0.x or 1.x | |
576 | kernel_supports_tls = false; | |
577 | else if (buf.release[0] == '2' && buf.release[1] == '.' && | |
578 | buf.release[2] >= '0' && buf.release[2] < '6' && | |
579 | buf.release[3] == '.') // 2.0 - 2.5 | |
580 | kernel_supports_tls = false; | |
581 | else | |
582 | kernel_supports_tls = true; | |
583 | } else { // some other kernel, we'll be optimisitic | |
584 | kernel_supports_tls = true; | |
585 | } | |
586 | // TODO(csilvers): VLOG(1) the tls status once we support RAW_VLOG | |
587 | } | |
588 | # endif // HAVE_DECL_UNAME | |
589 | #endif // HAVE_TLS | |
590 | ||
591 | // __THROW is defined in glibc systems. It means, counter-intuitively, | |
592 | // "This function will never throw an exception." It's an optional | |
593 | // optimization tool, but we may need to use it to match glibc prototypes. | |
594 | #ifndef __THROW // I guess we're not on a glibc system | |
595 | # define __THROW // __THROW is just an optimization, so ok to make it "" | |
596 | #endif | |
597 | ||
598 | //------------------------------------------------------------------- | |
599 | // Configuration | |
600 | //------------------------------------------------------------------- | |
601 | ||
602 | // Not all possible combinations of the following parameters make | |
603 | // sense. In particular, if kMaxSize increases, you may have to | |
604 | // increase kNumClasses as well. | |
605 | static const size_t kPageShift = 12; | |
606 | static const size_t kPageSize = 1 << kPageShift; | |
607 | static const size_t kMaxSize = 8u * kPageSize; | |
608 | static const size_t kAlignShift = 3; | |
609 | static const size_t kAlignment = 1 << kAlignShift; | |
610 | static const size_t kNumClasses = 68; | |
611 | ||
612 | // Allocates a big block of memory for the pagemap once we reach more than | |
613 | // 128MB | |
614 | static const size_t kPageMapBigAllocationThreshold = 128 << 20; | |
615 | ||
616 | // Minimum number of pages to fetch from system at a time. Must be | |
f9bf01c6 | 617 | // significantly bigger than kPageSize to amortize system-call |
b37bf2e1 A |
618 | // overhead, and also to reduce external fragementation. Also, we |
619 | // should keep this value big because various incarnations of Linux | |
620 | // have small limits on the number of mmap() regions per | |
621 | // address-space. | |
622 | static const size_t kMinSystemAlloc = 1 << (20 - kPageShift); | |
623 | ||
624 | // Number of objects to move between a per-thread list and a central | |
625 | // list in one shot. We want this to be not too small so we can | |
626 | // amortize the lock overhead for accessing the central list. Making | |
627 | // it too big may temporarily cause unnecessary memory wastage in the | |
628 | // per-thread free list until the scavenger cleans up the list. | |
629 | static int num_objects_to_move[kNumClasses]; | |
630 | ||
631 | // Maximum length we allow a per-thread free-list to have before we | |
632 | // move objects from it into the corresponding central free-list. We | |
633 | // want this big to avoid locking the central free-list too often. It | |
634 | // should not hurt to make this list somewhat big because the | |
635 | // scavenging code will shrink it down when its contents are not in use. | |
636 | static const int kMaxFreeListLength = 256; | |
637 | ||
638 | // Lower and upper bounds on the per-thread cache sizes | |
639 | static const size_t kMinThreadCacheSize = kMaxSize * 2; | |
b5422865 | 640 | static const size_t kMaxThreadCacheSize = 512 * 1024; |
b37bf2e1 A |
641 | |
642 | // Default bound on the total amount of thread caches | |
643 | static const size_t kDefaultOverallThreadCacheSize = 16 << 20; | |
644 | ||
645 | // For all span-lengths < kMaxPages we keep an exact-size list. | |
646 | // REQUIRED: kMaxPages >= kMinSystemAlloc; | |
647 | static const size_t kMaxPages = kMinSystemAlloc; | |
648 | ||
649 | /* The smallest prime > 2^n */ | |
650 | static int primes_list[] = { | |
651 | // Small values might cause high rates of sampling | |
652 | // and hence commented out. | |
653 | // 2, 5, 11, 17, 37, 67, 131, 257, | |
654 | // 521, 1031, 2053, 4099, 8209, 16411, | |
655 | 32771, 65537, 131101, 262147, 524309, 1048583, | |
656 | 2097169, 4194319, 8388617, 16777259, 33554467 }; | |
657 | ||
658 | // Twice the approximate gap between sampling actions. | |
659 | // I.e., we take one sample approximately once every | |
660 | // tcmalloc_sample_parameter/2 | |
661 | // bytes of allocation, i.e., ~ once every 128KB. | |
662 | // Must be a prime number. | |
663 | #ifdef NO_TCMALLOC_SAMPLES | |
664 | DEFINE_int64(tcmalloc_sample_parameter, 0, | |
665 | "Unused: code is compiled with NO_TCMALLOC_SAMPLES"); | |
666 | static size_t sample_period = 0; | |
667 | #else | |
668 | DEFINE_int64(tcmalloc_sample_parameter, 262147, | |
669 | "Twice the approximate gap between sampling actions." | |
670 | " Must be a prime number. Otherwise will be rounded up to a " | |
671 | " larger prime number"); | |
672 | static size_t sample_period = 262147; | |
673 | #endif | |
674 | ||
675 | // Protects sample_period above | |
676 | static SpinLock sample_period_lock = SPINLOCK_INITIALIZER; | |
677 | ||
678 | // Parameters for controlling how fast memory is returned to the OS. | |
679 | ||
680 | DEFINE_double(tcmalloc_release_rate, 1, | |
681 | "Rate at which we release unused memory to the system. " | |
682 | "Zero means we never release memory back to the system. " | |
683 | "Increase this flag to return memory faster; decrease it " | |
684 | "to return memory slower. Reasonable rates are in the " | |
685 | "range [0,10]"); | |
686 | ||
687 | //------------------------------------------------------------------- | |
688 | // Mapping from size to size_class and vice versa | |
689 | //------------------------------------------------------------------- | |
690 | ||
691 | // Sizes <= 1024 have an alignment >= 8. So for such sizes we have an | |
692 | // array indexed by ceil(size/8). Sizes > 1024 have an alignment >= 128. | |
693 | // So for these larger sizes we have an array indexed by ceil(size/128). | |
694 | // | |
695 | // We flatten both logical arrays into one physical array and use | |
696 | // arithmetic to compute an appropriate index. The constants used by | |
697 | // ClassIndex() were selected to make the flattening work. | |
698 | // | |
699 | // Examples: | |
700 | // Size Expression Index | |
701 | // ------------------------------------------------------- | |
702 | // 0 (0 + 7) / 8 0 | |
703 | // 1 (1 + 7) / 8 1 | |
704 | // ... | |
705 | // 1024 (1024 + 7) / 8 128 | |
706 | // 1025 (1025 + 127 + (120<<7)) / 128 129 | |
707 | // ... | |
708 | // 32768 (32768 + 127 + (120<<7)) / 128 376 | |
709 | static const size_t kMaxSmallSize = 1024; | |
710 | static const int shift_amount[2] = { 3, 7 }; // For divides by 8 or 128 | |
711 | static const int add_amount[2] = { 7, 127 + (120 << 7) }; | |
712 | static unsigned char class_array[377]; | |
713 | ||
714 | // Compute index of the class_array[] entry for a given size | |
715 | static inline int ClassIndex(size_t s) { | |
716 | const int i = (s > kMaxSmallSize); | |
717 | return static_cast<int>((s + add_amount[i]) >> shift_amount[i]); | |
718 | } | |
719 | ||
720 | // Mapping from size class to max size storable in that class | |
721 | static size_t class_to_size[kNumClasses]; | |
722 | ||
723 | // Mapping from size class to number of pages to allocate at a time | |
724 | static size_t class_to_pages[kNumClasses]; | |
725 | ||
726 | // TransferCache is used to cache transfers of num_objects_to_move[size_class] | |
727 | // back and forth between thread caches and the central cache for a given size | |
728 | // class. | |
729 | struct TCEntry { | |
730 | void *head; // Head of chain of objects. | |
731 | void *tail; // Tail of chain of objects. | |
732 | }; | |
733 | // A central cache freelist can have anywhere from 0 to kNumTransferEntries | |
734 | // slots to put link list chains into. To keep memory usage bounded the total | |
735 | // number of TCEntries across size classes is fixed. Currently each size | |
736 | // class is initially given one TCEntry which also means that the maximum any | |
737 | // one class can have is kNumClasses. | |
738 | static const int kNumTransferEntries = kNumClasses; | |
739 | ||
740 | // Note: the following only works for "n"s that fit in 32-bits, but | |
741 | // that is fine since we only use it for small sizes. | |
742 | static inline int LgFloor(size_t n) { | |
743 | int log = 0; | |
744 | for (int i = 4; i >= 0; --i) { | |
745 | int shift = (1 << i); | |
746 | size_t x = n >> shift; | |
747 | if (x != 0) { | |
748 | n = x; | |
749 | log += shift; | |
750 | } | |
751 | } | |
752 | ASSERT(n == 1); | |
753 | return log; | |
754 | } | |
755 | ||
756 | // Some very basic linked list functions for dealing with using void * as | |
757 | // storage. | |
758 | ||
759 | static inline void *SLL_Next(void *t) { | |
760 | return *(reinterpret_cast<void**>(t)); | |
761 | } | |
762 | ||
763 | static inline void SLL_SetNext(void *t, void *n) { | |
764 | *(reinterpret_cast<void**>(t)) = n; | |
765 | } | |
766 | ||
767 | static inline void SLL_Push(void **list, void *element) { | |
768 | SLL_SetNext(element, *list); | |
769 | *list = element; | |
770 | } | |
771 | ||
772 | static inline void *SLL_Pop(void **list) { | |
773 | void *result = *list; | |
774 | *list = SLL_Next(*list); | |
775 | return result; | |
776 | } | |
777 | ||
778 | ||
779 | // Remove N elements from a linked list to which head points. head will be | |
780 | // modified to point to the new head. start and end will point to the first | |
781 | // and last nodes of the range. Note that end will point to NULL after this | |
782 | // function is called. | |
783 | static inline void SLL_PopRange(void **head, int N, void **start, void **end) { | |
784 | if (N == 0) { | |
785 | *start = NULL; | |
786 | *end = NULL; | |
787 | return; | |
788 | } | |
789 | ||
790 | void *tmp = *head; | |
791 | for (int i = 1; i < N; ++i) { | |
792 | tmp = SLL_Next(tmp); | |
793 | } | |
794 | ||
795 | *start = *head; | |
796 | *end = tmp; | |
797 | *head = SLL_Next(tmp); | |
798 | // Unlink range from list. | |
799 | SLL_SetNext(tmp, NULL); | |
800 | } | |
801 | ||
802 | static inline void SLL_PushRange(void **head, void *start, void *end) { | |
803 | if (!start) return; | |
804 | SLL_SetNext(end, *head); | |
805 | *head = start; | |
806 | } | |
807 | ||
808 | static inline size_t SLL_Size(void *head) { | |
809 | int count = 0; | |
810 | while (head) { | |
811 | count++; | |
812 | head = SLL_Next(head); | |
813 | } | |
814 | return count; | |
815 | } | |
816 | ||
817 | // Setup helper functions. | |
818 | ||
819 | static ALWAYS_INLINE size_t SizeClass(size_t size) { | |
820 | return class_array[ClassIndex(size)]; | |
821 | } | |
822 | ||
823 | // Get the byte-size for a specified class | |
824 | static ALWAYS_INLINE size_t ByteSizeForClass(size_t cl) { | |
825 | return class_to_size[cl]; | |
826 | } | |
827 | static int NumMoveSize(size_t size) { | |
828 | if (size == 0) return 0; | |
829 | // Use approx 64k transfers between thread and central caches. | |
830 | int num = static_cast<int>(64.0 * 1024.0 / size); | |
831 | if (num < 2) num = 2; | |
832 | // Clamp well below kMaxFreeListLength to avoid ping pong between central | |
833 | // and thread caches. | |
834 | if (num > static_cast<int>(0.8 * kMaxFreeListLength)) | |
835 | num = static_cast<int>(0.8 * kMaxFreeListLength); | |
836 | ||
837 | // Also, avoid bringing in too many objects into small object free | |
838 | // lists. There are lots of such lists, and if we allow each one to | |
839 | // fetch too many at a time, we end up having to scavenge too often | |
840 | // (especially when there are lots of threads and each thread gets a | |
841 | // small allowance for its thread cache). | |
842 | // | |
843 | // TODO: Make thread cache free list sizes dynamic so that we do not | |
844 | // have to equally divide a fixed resource amongst lots of threads. | |
845 | if (num > 32) num = 32; | |
846 | ||
847 | return num; | |
848 | } | |
849 | ||
850 | // Initialize the mapping arrays | |
851 | static void InitSizeClasses() { | |
852 | // Do some sanity checking on add_amount[]/shift_amount[]/class_array[] | |
853 | if (ClassIndex(0) < 0) { | |
854 | MESSAGE("Invalid class index %d for size 0\n", ClassIndex(0)); | |
9dae56ea | 855 | CRASH(); |
b37bf2e1 A |
856 | } |
857 | if (static_cast<size_t>(ClassIndex(kMaxSize)) >= sizeof(class_array)) { | |
858 | MESSAGE("Invalid class index %d for kMaxSize\n", ClassIndex(kMaxSize)); | |
9dae56ea | 859 | CRASH(); |
b37bf2e1 A |
860 | } |
861 | ||
862 | // Compute the size classes we want to use | |
863 | size_t sc = 1; // Next size class to assign | |
864 | unsigned char alignshift = kAlignShift; | |
865 | int last_lg = -1; | |
866 | for (size_t size = kAlignment; size <= kMaxSize; size += (1 << alignshift)) { | |
867 | int lg = LgFloor(size); | |
868 | if (lg > last_lg) { | |
869 | // Increase alignment every so often. | |
870 | // | |
871 | // Since we double the alignment every time size doubles and | |
872 | // size >= 128, this means that space wasted due to alignment is | |
873 | // at most 16/128 i.e., 12.5%. Plus we cap the alignment at 256 | |
874 | // bytes, so the space wasted as a percentage starts falling for | |
875 | // sizes > 2K. | |
876 | if ((lg >= 7) && (alignshift < 8)) { | |
877 | alignshift++; | |
878 | } | |
879 | last_lg = lg; | |
880 | } | |
881 | ||
882 | // Allocate enough pages so leftover is less than 1/8 of total. | |
883 | // This bounds wasted space to at most 12.5%. | |
884 | size_t psize = kPageSize; | |
885 | while ((psize % size) > (psize >> 3)) { | |
886 | psize += kPageSize; | |
887 | } | |
888 | const size_t my_pages = psize >> kPageShift; | |
889 | ||
890 | if (sc > 1 && my_pages == class_to_pages[sc-1]) { | |
891 | // See if we can merge this into the previous class without | |
892 | // increasing the fragmentation of the previous class. | |
893 | const size_t my_objects = (my_pages << kPageShift) / size; | |
894 | const size_t prev_objects = (class_to_pages[sc-1] << kPageShift) | |
895 | / class_to_size[sc-1]; | |
896 | if (my_objects == prev_objects) { | |
897 | // Adjust last class to include this size | |
898 | class_to_size[sc-1] = size; | |
899 | continue; | |
900 | } | |
901 | } | |
902 | ||
903 | // Add new class | |
904 | class_to_pages[sc] = my_pages; | |
905 | class_to_size[sc] = size; | |
906 | sc++; | |
907 | } | |
908 | if (sc != kNumClasses) { | |
909 | MESSAGE("wrong number of size classes: found %" PRIuS " instead of %d\n", | |
910 | sc, int(kNumClasses)); | |
9dae56ea | 911 | CRASH(); |
b37bf2e1 A |
912 | } |
913 | ||
914 | // Initialize the mapping arrays | |
915 | int next_size = 0; | |
916 | for (unsigned char c = 1; c < kNumClasses; c++) { | |
917 | const size_t max_size_in_class = class_to_size[c]; | |
918 | for (size_t s = next_size; s <= max_size_in_class; s += kAlignment) { | |
919 | class_array[ClassIndex(s)] = c; | |
920 | } | |
921 | next_size = static_cast<int>(max_size_in_class + kAlignment); | |
922 | } | |
923 | ||
924 | // Double-check sizes just to be safe | |
925 | for (size_t size = 0; size <= kMaxSize; size++) { | |
926 | const size_t sc = SizeClass(size); | |
927 | if (sc == 0) { | |
928 | MESSAGE("Bad size class %" PRIuS " for %" PRIuS "\n", sc, size); | |
9dae56ea | 929 | CRASH(); |
b37bf2e1 A |
930 | } |
931 | if (sc > 1 && size <= class_to_size[sc-1]) { | |
932 | MESSAGE("Allocating unnecessarily large class %" PRIuS " for %" PRIuS | |
933 | "\n", sc, size); | |
9dae56ea | 934 | CRASH(); |
b37bf2e1 A |
935 | } |
936 | if (sc >= kNumClasses) { | |
937 | MESSAGE("Bad size class %" PRIuS " for %" PRIuS "\n", sc, size); | |
9dae56ea | 938 | CRASH(); |
b37bf2e1 A |
939 | } |
940 | const size_t s = class_to_size[sc]; | |
941 | if (size > s) { | |
942 | MESSAGE("Bad size %" PRIuS " for %" PRIuS " (sc = %" PRIuS ")\n", s, size, sc); | |
9dae56ea | 943 | CRASH(); |
b37bf2e1 A |
944 | } |
945 | if (s == 0) { | |
946 | MESSAGE("Bad size %" PRIuS " for %" PRIuS " (sc = %" PRIuS ")\n", s, size, sc); | |
9dae56ea | 947 | CRASH(); |
b37bf2e1 A |
948 | } |
949 | } | |
950 | ||
951 | // Initialize the num_objects_to_move array. | |
952 | for (size_t cl = 1; cl < kNumClasses; ++cl) { | |
953 | num_objects_to_move[cl] = NumMoveSize(ByteSizeForClass(cl)); | |
954 | } | |
955 | ||
956 | #ifndef WTF_CHANGES | |
957 | if (false) { | |
958 | // Dump class sizes and maximum external wastage per size class | |
959 | for (size_t cl = 1; cl < kNumClasses; ++cl) { | |
960 | const int alloc_size = class_to_pages[cl] << kPageShift; | |
961 | const int alloc_objs = alloc_size / class_to_size[cl]; | |
962 | const int min_used = (class_to_size[cl-1] + 1) * alloc_objs; | |
963 | const int max_waste = alloc_size - min_used; | |
964 | MESSAGE("SC %3d [ %8d .. %8d ] from %8d ; %2.0f%% maxwaste\n", | |
965 | int(cl), | |
966 | int(class_to_size[cl-1] + 1), | |
967 | int(class_to_size[cl]), | |
968 | int(class_to_pages[cl] << kPageShift), | |
969 | max_waste * 100.0 / alloc_size | |
970 | ); | |
971 | } | |
972 | } | |
973 | #endif | |
974 | } | |
975 | ||
976 | // ------------------------------------------------------------------------- | |
977 | // Simple allocator for objects of a specified type. External locking | |
978 | // is required before accessing one of these objects. | |
979 | // ------------------------------------------------------------------------- | |
980 | ||
981 | // Metadata allocator -- keeps stats about how many bytes allocated | |
982 | static uint64_t metadata_system_bytes = 0; | |
983 | static void* MetaDataAlloc(size_t bytes) { | |
984 | void* result = TCMalloc_SystemAlloc(bytes, 0); | |
985 | if (result != NULL) { | |
986 | metadata_system_bytes += bytes; | |
987 | } | |
988 | return result; | |
989 | } | |
990 | ||
991 | template <class T> | |
992 | class PageHeapAllocator { | |
993 | private: | |
994 | // How much to allocate from system at a time | |
995 | static const size_t kAllocIncrement = 32 << 10; | |
996 | ||
997 | // Aligned size of T | |
998 | static const size_t kAlignedSize | |
999 | = (((sizeof(T) + kAlignment - 1) / kAlignment) * kAlignment); | |
1000 | ||
1001 | // Free area from which to carve new objects | |
1002 | char* free_area_; | |
1003 | size_t free_avail_; | |
1004 | ||
ba379fdc A |
1005 | // Linked list of all regions allocated by this allocator |
1006 | void* allocated_regions_; | |
1007 | ||
b37bf2e1 A |
1008 | // Free list of already carved objects |
1009 | void* free_list_; | |
1010 | ||
1011 | // Number of allocated but unfreed objects | |
1012 | int inuse_; | |
1013 | ||
1014 | public: | |
1015 | void Init() { | |
1016 | ASSERT(kAlignedSize <= kAllocIncrement); | |
1017 | inuse_ = 0; | |
ba379fdc | 1018 | allocated_regions_ = 0; |
b37bf2e1 A |
1019 | free_area_ = NULL; |
1020 | free_avail_ = 0; | |
1021 | free_list_ = NULL; | |
1022 | } | |
1023 | ||
1024 | T* New() { | |
1025 | // Consult free list | |
1026 | void* result; | |
1027 | if (free_list_ != NULL) { | |
1028 | result = free_list_; | |
1029 | free_list_ = *(reinterpret_cast<void**>(result)); | |
1030 | } else { | |
1031 | if (free_avail_ < kAlignedSize) { | |
1032 | // Need more room | |
ba379fdc A |
1033 | char* new_allocation = reinterpret_cast<char*>(MetaDataAlloc(kAllocIncrement)); |
1034 | if (!new_allocation) | |
1035 | CRASH(); | |
1036 | ||
14957cd0 | 1037 | *reinterpret_cast_ptr<void**>(new_allocation) = allocated_regions_; |
ba379fdc A |
1038 | allocated_regions_ = new_allocation; |
1039 | free_area_ = new_allocation + kAlignedSize; | |
1040 | free_avail_ = kAllocIncrement - kAlignedSize; | |
b37bf2e1 A |
1041 | } |
1042 | result = free_area_; | |
1043 | free_area_ += kAlignedSize; | |
1044 | free_avail_ -= kAlignedSize; | |
1045 | } | |
1046 | inuse_++; | |
1047 | return reinterpret_cast<T*>(result); | |
1048 | } | |
1049 | ||
1050 | void Delete(T* p) { | |
1051 | *(reinterpret_cast<void**>(p)) = free_list_; | |
1052 | free_list_ = p; | |
1053 | inuse_--; | |
1054 | } | |
1055 | ||
1056 | int inuse() const { return inuse_; } | |
ba379fdc | 1057 | |
f9bf01c6 | 1058 | #if defined(WTF_CHANGES) && OS(DARWIN) |
ba379fdc A |
1059 | template <class Recorder> |
1060 | void recordAdministrativeRegions(Recorder& recorder, const RemoteMemoryReader& reader) | |
1061 | { | |
14957cd0 A |
1062 | for (void* adminAllocation = allocated_regions_; adminAllocation; adminAllocation = reader.nextEntryInLinkedList(reinterpret_cast<void**>(adminAllocation))) |
1063 | recorder.recordRegion(reinterpret_cast<vm_address_t>(adminAllocation), kAllocIncrement); | |
ba379fdc A |
1064 | } |
1065 | #endif | |
b37bf2e1 A |
1066 | }; |
1067 | ||
1068 | // ------------------------------------------------------------------------- | |
1069 | // Span - a contiguous run of pages | |
1070 | // ------------------------------------------------------------------------- | |
1071 | ||
1072 | // Type that can hold a page number | |
1073 | typedef uintptr_t PageID; | |
1074 | ||
1075 | // Type that can hold the length of a run of pages | |
1076 | typedef uintptr_t Length; | |
1077 | ||
1078 | static const Length kMaxValidPages = (~static_cast<Length>(0)) >> kPageShift; | |
1079 | ||
1080 | // Convert byte size into pages. This won't overflow, but may return | |
1081 | // an unreasonably large value if bytes is huge enough. | |
1082 | static inline Length pages(size_t bytes) { | |
1083 | return (bytes >> kPageShift) + | |
1084 | ((bytes & (kPageSize - 1)) > 0 ? 1 : 0); | |
1085 | } | |
1086 | ||
1087 | // Convert a user size into the number of bytes that will actually be | |
1088 | // allocated | |
1089 | static size_t AllocationSize(size_t bytes) { | |
1090 | if (bytes > kMaxSize) { | |
1091 | // Large object: we allocate an integral number of pages | |
1092 | ASSERT(bytes <= (kMaxValidPages << kPageShift)); | |
1093 | return pages(bytes) << kPageShift; | |
1094 | } else { | |
1095 | // Small object: find the size class to which it belongs | |
1096 | return ByteSizeForClass(SizeClass(bytes)); | |
1097 | } | |
1098 | } | |
1099 | ||
1100 | // Information kept for a span (a contiguous run of pages). | |
1101 | struct Span { | |
1102 | PageID start; // Starting page number | |
1103 | Length length; // Number of pages in span | |
1104 | Span* next; // Used when in link list | |
1105 | Span* prev; // Used when in link list | |
1106 | void* objects; // Linked list of free objects | |
1107 | unsigned int free : 1; // Is the span free | |
9dae56ea | 1108 | #ifndef NO_TCMALLOC_SAMPLES |
b37bf2e1 | 1109 | unsigned int sample : 1; // Sampled object? |
9dae56ea | 1110 | #endif |
b37bf2e1 A |
1111 | unsigned int sizeclass : 8; // Size-class for small objects (or 0) |
1112 | unsigned int refcount : 11; // Number of non-free objects | |
9dae56ea | 1113 | bool decommitted : 1; |
b37bf2e1 A |
1114 | |
1115 | #undef SPAN_HISTORY | |
1116 | #ifdef SPAN_HISTORY | |
1117 | // For debugging, we can keep a log events per span | |
1118 | int nexthistory; | |
1119 | char history[64]; | |
1120 | int value[64]; | |
1121 | #endif | |
1122 | }; | |
1123 | ||
9dae56ea | 1124 | #define ASSERT_SPAN_COMMITTED(span) ASSERT(!span->decommitted) |
9dae56ea | 1125 | |
b37bf2e1 A |
1126 | #ifdef SPAN_HISTORY |
1127 | void Event(Span* span, char op, int v = 0) { | |
1128 | span->history[span->nexthistory] = op; | |
1129 | span->value[span->nexthistory] = v; | |
1130 | span->nexthistory++; | |
1131 | if (span->nexthistory == sizeof(span->history)) span->nexthistory = 0; | |
1132 | } | |
1133 | #else | |
1134 | #define Event(s,o,v) ((void) 0) | |
1135 | #endif | |
1136 | ||
1137 | // Allocator/deallocator for spans | |
1138 | static PageHeapAllocator<Span> span_allocator; | |
1139 | static Span* NewSpan(PageID p, Length len) { | |
1140 | Span* result = span_allocator.New(); | |
1141 | memset(result, 0, sizeof(*result)); | |
1142 | result->start = p; | |
1143 | result->length = len; | |
1144 | #ifdef SPAN_HISTORY | |
1145 | result->nexthistory = 0; | |
1146 | #endif | |
1147 | return result; | |
1148 | } | |
1149 | ||
1150 | static inline void DeleteSpan(Span* span) { | |
1151 | #ifndef NDEBUG | |
1152 | // In debug mode, trash the contents of deleted Spans | |
1153 | memset(span, 0x3f, sizeof(*span)); | |
1154 | #endif | |
1155 | span_allocator.Delete(span); | |
1156 | } | |
1157 | ||
1158 | // ------------------------------------------------------------------------- | |
1159 | // Doubly linked list of spans. | |
1160 | // ------------------------------------------------------------------------- | |
1161 | ||
1162 | static inline void DLL_Init(Span* list) { | |
1163 | list->next = list; | |
1164 | list->prev = list; | |
1165 | } | |
1166 | ||
1167 | static inline void DLL_Remove(Span* span) { | |
1168 | span->prev->next = span->next; | |
1169 | span->next->prev = span->prev; | |
1170 | span->prev = NULL; | |
1171 | span->next = NULL; | |
1172 | } | |
1173 | ||
1174 | static ALWAYS_INLINE bool DLL_IsEmpty(const Span* list) { | |
1175 | return list->next == list; | |
1176 | } | |
1177 | ||
b37bf2e1 A |
1178 | static int DLL_Length(const Span* list) { |
1179 | int result = 0; | |
1180 | for (Span* s = list->next; s != list; s = s->next) { | |
1181 | result++; | |
1182 | } | |
1183 | return result; | |
1184 | } | |
b37bf2e1 A |
1185 | |
1186 | #if 0 /* Not needed at the moment -- causes compiler warnings if not used */ | |
1187 | static void DLL_Print(const char* label, const Span* list) { | |
1188 | MESSAGE("%-10s %p:", label, list); | |
1189 | for (const Span* s = list->next; s != list; s = s->next) { | |
1190 | MESSAGE(" <%p,%u,%u>", s, s->start, s->length); | |
1191 | } | |
1192 | MESSAGE("\n"); | |
1193 | } | |
1194 | #endif | |
1195 | ||
1196 | static inline void DLL_Prepend(Span* list, Span* span) { | |
1197 | ASSERT(span->next == NULL); | |
1198 | ASSERT(span->prev == NULL); | |
1199 | span->next = list->next; | |
1200 | span->prev = list; | |
1201 | list->next->prev = span; | |
1202 | list->next = span; | |
1203 | } | |
1204 | ||
1205 | // ------------------------------------------------------------------------- | |
1206 | // Stack traces kept for sampled allocations | |
1207 | // The following state is protected by pageheap_lock_. | |
1208 | // ------------------------------------------------------------------------- | |
1209 | ||
1210 | // size/depth are made the same size as a pointer so that some generic | |
1211 | // code below can conveniently cast them back and forth to void*. | |
1212 | static const int kMaxStackDepth = 31; | |
1213 | struct StackTrace { | |
1214 | uintptr_t size; // Size of object | |
1215 | uintptr_t depth; // Number of PC values stored in array below | |
1216 | void* stack[kMaxStackDepth]; | |
1217 | }; | |
1218 | static PageHeapAllocator<StackTrace> stacktrace_allocator; | |
1219 | static Span sampled_objects; | |
1220 | ||
1221 | // ------------------------------------------------------------------------- | |
1222 | // Map from page-id to per-page data | |
1223 | // ------------------------------------------------------------------------- | |
1224 | ||
1225 | // We use PageMap2<> for 32-bit and PageMap3<> for 64-bit machines. | |
1226 | // We also use a simple one-level cache for hot PageID-to-sizeclass mappings, | |
1227 | // because sometimes the sizeclass is all the information we need. | |
1228 | ||
1229 | // Selector class -- general selector uses 3-level map | |
1230 | template <int BITS> class MapSelector { | |
1231 | public: | |
1232 | typedef TCMalloc_PageMap3<BITS-kPageShift> Type; | |
1233 | typedef PackedCache<BITS, uint64_t> CacheType; | |
1234 | }; | |
1235 | ||
9dae56ea | 1236 | #if defined(WTF_CHANGES) |
f9bf01c6 | 1237 | #if CPU(X86_64) |
9dae56ea A |
1238 | // On all known X86-64 platforms, the upper 16 bits are always unused and therefore |
1239 | // can be excluded from the PageMap key. | |
1240 | // See http://en.wikipedia.org/wiki/X86-64#Virtual_address_space_details | |
1241 | ||
1242 | static const size_t kBitsUnusedOn64Bit = 16; | |
1243 | #else | |
1244 | static const size_t kBitsUnusedOn64Bit = 0; | |
1245 | #endif | |
1246 | ||
1247 | // A three-level map for 64-bit machines | |
1248 | template <> class MapSelector<64> { | |
1249 | public: | |
1250 | typedef TCMalloc_PageMap3<64 - kPageShift - kBitsUnusedOn64Bit> Type; | |
1251 | typedef PackedCache<64, uint64_t> CacheType; | |
1252 | }; | |
1253 | #endif | |
1254 | ||
b37bf2e1 A |
1255 | // A two-level map for 32-bit machines |
1256 | template <> class MapSelector<32> { | |
1257 | public: | |
9dae56ea A |
1258 | typedef TCMalloc_PageMap2<32 - kPageShift> Type; |
1259 | typedef PackedCache<32 - kPageShift, uint16_t> CacheType; | |
b37bf2e1 A |
1260 | }; |
1261 | ||
1262 | // ------------------------------------------------------------------------- | |
1263 | // Page-level allocator | |
1264 | // * Eager coalescing | |
1265 | // | |
1266 | // Heap for page-level allocation. We allow allocating and freeing a | |
1267 | // contiguous runs of pages (called a "span"). | |
1268 | // ------------------------------------------------------------------------- | |
1269 | ||
ba379fdc | 1270 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY |
4e4e5a6f A |
1271 | // The page heap maintains a free list for spans that are no longer in use by |
1272 | // the central cache or any thread caches. We use a background thread to | |
1273 | // periodically scan the free list and release a percentage of it back to the OS. | |
1274 | ||
1275 | // If free_committed_pages_ exceeds kMinimumFreeCommittedPageCount, the | |
1276 | // background thread: | |
1277 | // - wakes up | |
1278 | // - pauses for kScavengeDelayInSeconds | |
1279 | // - returns to the OS a percentage of the memory that remained unused during | |
1280 | // that pause (kScavengePercentage * min_free_committed_pages_since_last_scavenge_) | |
1281 | // The goal of this strategy is to reduce memory pressure in a timely fashion | |
1282 | // while avoiding thrashing the OS allocator. | |
1283 | ||
1284 | // Time delay before the page heap scavenger will consider returning pages to | |
1285 | // the OS. | |
1286 | static const int kScavengeDelayInSeconds = 2; | |
1287 | ||
1288 | // Approximate percentage of free committed pages to return to the OS in one | |
1289 | // scavenge. | |
1290 | static const float kScavengePercentage = .5f; | |
1291 | ||
1292 | // number of span lists to keep spans in when memory is returned. | |
1293 | static const int kMinSpanListsWithSpans = 32; | |
1294 | ||
1295 | // Number of free committed pages that we want to keep around. The minimum number of pages used when there | |
1296 | // is 1 span in each of the first kMinSpanListsWithSpans spanlists. Currently 528 pages. | |
1297 | static const size_t kMinimumFreeCommittedPageCount = kMinSpanListsWithSpans * ((1.0f+kMinSpanListsWithSpans) / 2.0f); | |
1298 | ||
ba379fdc A |
1299 | #endif |
1300 | ||
14957cd0 A |
1301 | static SpinLock pageheap_lock = SPINLOCK_INITIALIZER; |
1302 | ||
b37bf2e1 A |
1303 | class TCMalloc_PageHeap { |
1304 | public: | |
1305 | void init(); | |
1306 | ||
1307 | // Allocate a run of "n" pages. Returns zero if out of memory. | |
1308 | Span* New(Length n); | |
1309 | ||
1310 | // Delete the span "[p, p+n-1]". | |
1311 | // REQUIRES: span was returned by earlier call to New() and | |
1312 | // has not yet been deleted. | |
1313 | void Delete(Span* span); | |
1314 | ||
1315 | // Mark an allocated span as being used for small objects of the | |
1316 | // specified size-class. | |
1317 | // REQUIRES: span was returned by an earlier call to New() | |
1318 | // and has not yet been deleted. | |
1319 | void RegisterSizeClass(Span* span, size_t sc); | |
1320 | ||
1321 | // Split an allocated span into two spans: one of length "n" pages | |
1322 | // followed by another span of length "span->length - n" pages. | |
1323 | // Modifies "*span" to point to the first span of length "n" pages. | |
1324 | // Returns a pointer to the second span. | |
1325 | // | |
1326 | // REQUIRES: "0 < n < span->length" | |
1327 | // REQUIRES: !span->free | |
1328 | // REQUIRES: span->sizeclass == 0 | |
1329 | Span* Split(Span* span, Length n); | |
1330 | ||
1331 | // Return the descriptor for the specified page. | |
1332 | inline Span* GetDescriptor(PageID p) const { | |
1333 | return reinterpret_cast<Span*>(pagemap_.get(p)); | |
1334 | } | |
1335 | ||
1336 | #ifdef WTF_CHANGES | |
1337 | inline Span* GetDescriptorEnsureSafe(PageID p) | |
1338 | { | |
1339 | pagemap_.Ensure(p, 1); | |
1340 | return GetDescriptor(p); | |
1341 | } | |
9dae56ea A |
1342 | |
1343 | size_t ReturnedBytes() const; | |
b37bf2e1 A |
1344 | #endif |
1345 | ||
1346 | // Dump state to stderr | |
1347 | #ifndef WTF_CHANGES | |
1348 | void Dump(TCMalloc_Printer* out); | |
1349 | #endif | |
1350 | ||
1351 | // Return number of bytes allocated from system | |
1352 | inline uint64_t SystemBytes() const { return system_bytes_; } | |
1353 | ||
1354 | // Return number of free bytes in heap | |
1355 | uint64_t FreeBytes() const { | |
1356 | return (static_cast<uint64_t>(free_pages_) << kPageShift); | |
1357 | } | |
1358 | ||
1359 | bool Check(); | |
14957cd0 | 1360 | bool CheckList(Span* list, Length min_pages, Length max_pages, bool decommitted); |
b37bf2e1 A |
1361 | |
1362 | // Release all pages on the free list for reuse by the OS: | |
1363 | void ReleaseFreePages(); | |
1364 | ||
1365 | // Return 0 if we have no information, or else the correct sizeclass for p. | |
1366 | // Reads and writes to pagemap_cache_ do not require locking. | |
1367 | // The entries are 64 bits on 64-bit hardware and 16 bits on | |
1368 | // 32-bit hardware, and we don't mind raciness as long as each read of | |
1369 | // an entry yields a valid entry, not a partially updated entry. | |
1370 | size_t GetSizeClassIfCached(PageID p) const { | |
1371 | return pagemap_cache_.GetOrDefault(p, 0); | |
1372 | } | |
1373 | void CacheSizeClass(PageID p, size_t cl) const { pagemap_cache_.Put(p, cl); } | |
1374 | ||
1375 | private: | |
1376 | // Pick the appropriate map and cache types based on pointer size | |
1377 | typedef MapSelector<8*sizeof(uintptr_t)>::Type PageMap; | |
1378 | typedef MapSelector<8*sizeof(uintptr_t)>::CacheType PageMapCache; | |
1379 | PageMap pagemap_; | |
1380 | mutable PageMapCache pagemap_cache_; | |
1381 | ||
1382 | // We segregate spans of a given size into two circular linked | |
1383 | // lists: one for normal spans, and one for spans whose memory | |
1384 | // has been returned to the system. | |
1385 | struct SpanList { | |
1386 | Span normal; | |
1387 | Span returned; | |
1388 | }; | |
1389 | ||
1390 | // List of free spans of length >= kMaxPages | |
1391 | SpanList large_; | |
1392 | ||
1393 | // Array mapping from span length to a doubly linked list of free spans | |
1394 | SpanList free_[kMaxPages]; | |
1395 | ||
1396 | // Number of pages kept in free lists | |
1397 | uintptr_t free_pages_; | |
1398 | ||
1399 | // Bytes allocated from system | |
1400 | uint64_t system_bytes_; | |
1401 | ||
ba379fdc A |
1402 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY |
1403 | // Number of pages kept in free lists that are still committed. | |
1404 | Length free_committed_pages_; | |
1405 | ||
4e4e5a6f A |
1406 | // Minimum number of free committed pages since last scavenge. (Can be 0 if |
1407 | // we've committed new pages since the last scavenge.) | |
1408 | Length min_free_committed_pages_since_last_scavenge_; | |
ba379fdc A |
1409 | #endif |
1410 | ||
b37bf2e1 A |
1411 | bool GrowHeap(Length n); |
1412 | ||
1413 | // REQUIRES span->length >= n | |
1414 | // Remove span from its free list, and move any leftover part of | |
1415 | // span into appropriate free lists. Also update "span" to have | |
1416 | // length exactly "n" and mark it as non-free so it can be returned | |
1417 | // to the client. | |
1418 | // | |
1419 | // "released" is true iff "span" was found on a "returned" list. | |
1420 | void Carve(Span* span, Length n, bool released); | |
1421 | ||
1422 | void RecordSpan(Span* span) { | |
1423 | pagemap_.set(span->start, span); | |
1424 | if (span->length > 1) { | |
1425 | pagemap_.set(span->start + span->length - 1, span); | |
1426 | } | |
1427 | } | |
1428 | ||
1429 | // Allocate a large span of length == n. If successful, returns a | |
1430 | // span of exactly the specified length. Else, returns NULL. | |
1431 | Span* AllocLarge(Length n); | |
1432 | ||
ba379fdc | 1433 | #if !USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY |
b37bf2e1 A |
1434 | // Incrementally release some memory to the system. |
1435 | // IncrementalScavenge(n) is called whenever n pages are freed. | |
1436 | void IncrementalScavenge(Length n); | |
ba379fdc | 1437 | #endif |
b37bf2e1 A |
1438 | |
1439 | // Number of pages to deallocate before doing more scavenging | |
1440 | int64_t scavenge_counter_; | |
1441 | ||
1442 | // Index of last free list we scavenged | |
1443 | size_t scavenge_index_; | |
1444 | ||
f9bf01c6 | 1445 | #if defined(WTF_CHANGES) && OS(DARWIN) |
b37bf2e1 A |
1446 | friend class FastMallocZone; |
1447 | #endif | |
ba379fdc A |
1448 | |
1449 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY | |
f9bf01c6 A |
1450 | void initializeScavenger(); |
1451 | ALWAYS_INLINE void signalScavenger(); | |
1452 | void scavenge(); | |
4e4e5a6f | 1453 | ALWAYS_INLINE bool shouldScavenge() const; |
ba379fdc | 1454 | |
14957cd0 A |
1455 | #if HAVE(DISPATCH_H) || OS(WINDOWS) |
1456 | void periodicScavenge(); | |
1457 | ALWAYS_INLINE bool isScavengerSuspended(); | |
1458 | ALWAYS_INLINE void scheduleScavenger(); | |
1459 | ALWAYS_INLINE void rescheduleScavenger(); | |
1460 | ALWAYS_INLINE void suspendScavenger(); | |
1461 | #endif | |
1462 | ||
1463 | #if HAVE(DISPATCH_H) | |
1464 | dispatch_queue_t m_scavengeQueue; | |
1465 | dispatch_source_t m_scavengeTimer; | |
1466 | bool m_scavengingSuspended; | |
1467 | #elif OS(WINDOWS) | |
1468 | static void CALLBACK scavengerTimerFired(void*, BOOLEAN); | |
1469 | HANDLE m_scavengeQueueTimer; | |
1470 | #else | |
4e4e5a6f | 1471 | static NO_RETURN_WITH_VALUE void* runScavengerThread(void*); |
ba379fdc A |
1472 | NO_RETURN void scavengerThread(); |
1473 | ||
4e4e5a6f | 1474 | // Keeps track of whether the background thread is actively scavenging memory every kScavengeDelayInSeconds, or |
f9bf01c6 A |
1475 | // it's blocked waiting for more pages to be deleted. |
1476 | bool m_scavengeThreadActive; | |
ba379fdc A |
1477 | |
1478 | pthread_mutex_t m_scavengeMutex; | |
ba379fdc | 1479 | pthread_cond_t m_scavengeCondition; |
f9bf01c6 | 1480 | #endif |
ba379fdc | 1481 | |
ba379fdc | 1482 | #endif // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY |
b37bf2e1 A |
1483 | }; |
1484 | ||
1485 | void TCMalloc_PageHeap::init() | |
1486 | { | |
1487 | pagemap_.init(MetaDataAlloc); | |
1488 | pagemap_cache_ = PageMapCache(0); | |
1489 | free_pages_ = 0; | |
1490 | system_bytes_ = 0; | |
ba379fdc A |
1491 | |
1492 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY | |
1493 | free_committed_pages_ = 0; | |
4e4e5a6f | 1494 | min_free_committed_pages_since_last_scavenge_ = 0; |
ba379fdc A |
1495 | #endif // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY |
1496 | ||
b37bf2e1 A |
1497 | scavenge_counter_ = 0; |
1498 | // Start scavenging at kMaxPages list | |
1499 | scavenge_index_ = kMaxPages-1; | |
1500 | COMPILE_ASSERT(kNumClasses <= (1 << PageMapCache::kValuebits), valuebits); | |
1501 | DLL_Init(&large_.normal); | |
1502 | DLL_Init(&large_.returned); | |
1503 | for (size_t i = 0; i < kMaxPages; i++) { | |
1504 | DLL_Init(&free_[i].normal); | |
1505 | DLL_Init(&free_[i].returned); | |
1506 | } | |
ba379fdc A |
1507 | |
1508 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY | |
f9bf01c6 A |
1509 | initializeScavenger(); |
1510 | #endif // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY | |
1511 | } | |
1512 | ||
1513 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY | |
1514 | ||
14957cd0 | 1515 | #if HAVE(DISPATCH_H) |
f9bf01c6 A |
1516 | |
1517 | void TCMalloc_PageHeap::initializeScavenger() | |
1518 | { | |
14957cd0 A |
1519 | m_scavengeQueue = dispatch_queue_create("com.apple.JavaScriptCore.FastMallocSavenger", NULL); |
1520 | m_scavengeTimer = dispatch_source_create(DISPATCH_SOURCE_TYPE_TIMER, 0, 0, m_scavengeQueue); | |
1521 | dispatch_time_t startTime = dispatch_time(DISPATCH_TIME_NOW, kScavengeDelayInSeconds * NSEC_PER_SEC); | |
1522 | dispatch_source_set_timer(m_scavengeTimer, startTime, kScavengeDelayInSeconds * NSEC_PER_SEC, 1000 * NSEC_PER_USEC); | |
1523 | dispatch_source_set_event_handler(m_scavengeTimer, ^{ periodicScavenge(); }); | |
1524 | m_scavengingSuspended = true; | |
b37bf2e1 A |
1525 | } |
1526 | ||
14957cd0 | 1527 | ALWAYS_INLINE bool TCMalloc_PageHeap::isScavengerSuspended() |
ba379fdc | 1528 | { |
14957cd0 A |
1529 | ASSERT(pageheap_lock.IsHeld()); |
1530 | return m_scavengingSuspended; | |
ba379fdc A |
1531 | } |
1532 | ||
14957cd0 A |
1533 | ALWAYS_INLINE void TCMalloc_PageHeap::scheduleScavenger() |
1534 | { | |
1535 | ASSERT(pageheap_lock.IsHeld()); | |
1536 | m_scavengingSuspended = false; | |
1537 | dispatch_resume(m_scavengeTimer); | |
1538 | } | |
1539 | ||
1540 | ALWAYS_INLINE void TCMalloc_PageHeap::rescheduleScavenger() | |
1541 | { | |
1542 | // Nothing to do here for libdispatch. | |
1543 | } | |
1544 | ||
1545 | ALWAYS_INLINE void TCMalloc_PageHeap::suspendScavenger() | |
1546 | { | |
1547 | ASSERT(pageheap_lock.IsHeld()); | |
1548 | m_scavengingSuspended = true; | |
1549 | dispatch_suspend(m_scavengeTimer); | |
1550 | } | |
1551 | ||
1552 | #elif OS(WINDOWS) | |
1553 | ||
1554 | void TCMalloc_PageHeap::scavengerTimerFired(void* context, BOOLEAN) | |
1555 | { | |
1556 | static_cast<TCMalloc_PageHeap*>(context)->periodicScavenge(); | |
1557 | } | |
1558 | ||
1559 | void TCMalloc_PageHeap::initializeScavenger() | |
1560 | { | |
1561 | m_scavengeQueueTimer = 0; | |
1562 | } | |
1563 | ||
1564 | ALWAYS_INLINE bool TCMalloc_PageHeap::isScavengerSuspended() | |
1565 | { | |
1566 | ASSERT(IsHeld(pageheap_lock)); | |
1567 | return !m_scavengeQueueTimer; | |
1568 | } | |
1569 | ||
1570 | ALWAYS_INLINE void TCMalloc_PageHeap::scheduleScavenger() | |
1571 | { | |
1572 | // We need to use WT_EXECUTEONLYONCE here and reschedule the timer, because | |
1573 | // Windows will fire the timer event even when the function is already running. | |
1574 | ASSERT(IsHeld(pageheap_lock)); | |
1575 | CreateTimerQueueTimer(&m_scavengeQueueTimer, 0, scavengerTimerFired, this, kScavengeDelayInSeconds * 1000, 0, WT_EXECUTEONLYONCE); | |
1576 | } | |
1577 | ||
1578 | ALWAYS_INLINE void TCMalloc_PageHeap::rescheduleScavenger() | |
1579 | { | |
1580 | // We must delete the timer and create it again, because it is not possible to retrigger a timer on Windows. | |
1581 | suspendScavenger(); | |
1582 | scheduleScavenger(); | |
1583 | } | |
1584 | ||
1585 | ALWAYS_INLINE void TCMalloc_PageHeap::suspendScavenger() | |
f9bf01c6 | 1586 | { |
14957cd0 A |
1587 | ASSERT(IsHeld(pageheap_lock)); |
1588 | HANDLE scavengeQueueTimer = m_scavengeQueueTimer; | |
1589 | m_scavengeQueueTimer = 0; | |
1590 | DeleteTimerQueueTimer(0, scavengeQueueTimer, 0); | |
f9bf01c6 A |
1591 | } |
1592 | ||
14957cd0 | 1593 | #else |
f9bf01c6 A |
1594 | |
1595 | void TCMalloc_PageHeap::initializeScavenger() | |
1596 | { | |
14957cd0 A |
1597 | // Create a non-recursive mutex. |
1598 | #if !defined(PTHREAD_MUTEX_NORMAL) || PTHREAD_MUTEX_NORMAL == PTHREAD_MUTEX_DEFAULT | |
1599 | pthread_mutex_init(&m_scavengeMutex, 0); | |
1600 | #else | |
1601 | pthread_mutexattr_t attr; | |
1602 | pthread_mutexattr_init(&attr); | |
1603 | pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL); | |
1604 | ||
1605 | pthread_mutex_init(&m_scavengeMutex, &attr); | |
1606 | ||
1607 | pthread_mutexattr_destroy(&attr); | |
1608 | #endif | |
1609 | ||
1610 | pthread_cond_init(&m_scavengeCondition, 0); | |
1611 | m_scavengeThreadActive = true; | |
1612 | pthread_t thread; | |
1613 | pthread_create(&thread, 0, runScavengerThread, this); | |
1614 | } | |
1615 | ||
1616 | void* TCMalloc_PageHeap::runScavengerThread(void* context) | |
1617 | { | |
1618 | static_cast<TCMalloc_PageHeap*>(context)->scavengerThread(); | |
1619 | #if (COMPILER(MSVC) || COMPILER(SUNCC)) | |
1620 | // Without this, Visual Studio and Sun Studio will complain that this method does not return a value. | |
1621 | return 0; | |
1622 | #endif | |
f9bf01c6 A |
1623 | } |
1624 | ||
1625 | ALWAYS_INLINE void TCMalloc_PageHeap::signalScavenger() | |
1626 | { | |
14957cd0 A |
1627 | // m_scavengeMutex should be held before accessing m_scavengeThreadActive. |
1628 | ASSERT(pthread_mutex_trylock(m_scavengeMutex)); | |
1629 | if (!m_scavengeThreadActive && shouldScavenge()) | |
1630 | pthread_cond_signal(&m_scavengeCondition); | |
f9bf01c6 A |
1631 | } |
1632 | ||
1633 | #endif | |
1634 | ||
4e4e5a6f | 1635 | void TCMalloc_PageHeap::scavenge() |
ba379fdc | 1636 | { |
4e4e5a6f A |
1637 | size_t pagesToRelease = min_free_committed_pages_since_last_scavenge_ * kScavengePercentage; |
1638 | size_t targetPageCount = std::max<size_t>(kMinimumFreeCommittedPageCount, free_committed_pages_ - pagesToRelease); | |
1639 | ||
14957cd0 | 1640 | Length lastFreeCommittedPages = free_committed_pages_; |
4e4e5a6f | 1641 | while (free_committed_pages_ > targetPageCount) { |
14957cd0 | 1642 | ASSERT(Check()); |
4e4e5a6f A |
1643 | for (int i = kMaxPages; i > 0 && free_committed_pages_ >= targetPageCount; i--) { |
1644 | SpanList* slist = (static_cast<size_t>(i) == kMaxPages) ? &large_ : &free_[i]; | |
1645 | // If the span size is bigger than kMinSpanListsWithSpans pages return all the spans in the list, else return all but 1 span. | |
1646 | // Return only 50% of a spanlist at a time so spans of size 1 are not the only ones left. | |
14957cd0 A |
1647 | size_t length = DLL_Length(&slist->normal); |
1648 | size_t numSpansToReturn = (i > kMinSpanListsWithSpans) ? length : length / 2; | |
4e4e5a6f A |
1649 | for (int j = 0; static_cast<size_t>(j) < numSpansToReturn && !DLL_IsEmpty(&slist->normal) && free_committed_pages_ > targetPageCount; j++) { |
1650 | Span* s = slist->normal.prev; | |
1651 | DLL_Remove(s); | |
1652 | ASSERT(!s->decommitted); | |
1653 | if (!s->decommitted) { | |
1654 | TCMalloc_SystemRelease(reinterpret_cast<void*>(s->start << kPageShift), | |
1655 | static_cast<size_t>(s->length << kPageShift)); | |
1656 | ASSERT(free_committed_pages_ >= s->length); | |
1657 | free_committed_pages_ -= s->length; | |
1658 | s->decommitted = true; | |
1659 | } | |
1660 | DLL_Prepend(&slist->returned, s); | |
ba379fdc | 1661 | } |
ba379fdc | 1662 | } |
14957cd0 A |
1663 | |
1664 | if (lastFreeCommittedPages == free_committed_pages_) | |
1665 | break; | |
1666 | lastFreeCommittedPages = free_committed_pages_; | |
ba379fdc | 1667 | } |
4e4e5a6f A |
1668 | |
1669 | min_free_committed_pages_since_last_scavenge_ = free_committed_pages_; | |
ba379fdc A |
1670 | } |
1671 | ||
4e4e5a6f | 1672 | ALWAYS_INLINE bool TCMalloc_PageHeap::shouldScavenge() const |
ba379fdc A |
1673 | { |
1674 | return free_committed_pages_ > kMinimumFreeCommittedPageCount; | |
1675 | } | |
1676 | ||
1677 | #endif // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY | |
1678 | ||
b37bf2e1 A |
1679 | inline Span* TCMalloc_PageHeap::New(Length n) { |
1680 | ASSERT(Check()); | |
1681 | ASSERT(n > 0); | |
1682 | ||
1683 | // Find first size >= n that has a non-empty list | |
1684 | for (Length s = n; s < kMaxPages; s++) { | |
1685 | Span* ll = NULL; | |
1686 | bool released = false; | |
1687 | if (!DLL_IsEmpty(&free_[s].normal)) { | |
1688 | // Found normal span | |
1689 | ll = &free_[s].normal; | |
1690 | } else if (!DLL_IsEmpty(&free_[s].returned)) { | |
1691 | // Found returned span; reallocate it | |
1692 | ll = &free_[s].returned; | |
1693 | released = true; | |
1694 | } else { | |
1695 | // Keep looking in larger classes | |
1696 | continue; | |
1697 | } | |
1698 | ||
1699 | Span* result = ll->next; | |
1700 | Carve(result, n, released); | |
ba379fdc | 1701 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY |
4e4e5a6f A |
1702 | // The newly allocated memory is from a span that's in the normal span list (already committed). Update the |
1703 | // free committed pages count. | |
1704 | ASSERT(free_committed_pages_ >= n); | |
1705 | free_committed_pages_ -= n; | |
1706 | if (free_committed_pages_ < min_free_committed_pages_since_last_scavenge_) | |
1707 | min_free_committed_pages_since_last_scavenge_ = free_committed_pages_; | |
ba379fdc | 1708 | #endif // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY |
b37bf2e1 A |
1709 | ASSERT(Check()); |
1710 | free_pages_ -= n; | |
1711 | return result; | |
1712 | } | |
1713 | ||
1714 | Span* result = AllocLarge(n); | |
9dae56ea A |
1715 | if (result != NULL) { |
1716 | ASSERT_SPAN_COMMITTED(result); | |
1717 | return result; | |
1718 | } | |
b37bf2e1 A |
1719 | |
1720 | // Grow the heap and try again | |
1721 | if (!GrowHeap(n)) { | |
1722 | ASSERT(Check()); | |
1723 | return NULL; | |
1724 | } | |
1725 | ||
1726 | return AllocLarge(n); | |
1727 | } | |
1728 | ||
1729 | Span* TCMalloc_PageHeap::AllocLarge(Length n) { | |
1730 | // find the best span (closest to n in size). | |
1731 | // The following loops implements address-ordered best-fit. | |
1732 | bool from_released = false; | |
1733 | Span *best = NULL; | |
1734 | ||
1735 | // Search through normal list | |
1736 | for (Span* span = large_.normal.next; | |
1737 | span != &large_.normal; | |
1738 | span = span->next) { | |
1739 | if (span->length >= n) { | |
1740 | if ((best == NULL) | |
1741 | || (span->length < best->length) | |
1742 | || ((span->length == best->length) && (span->start < best->start))) { | |
1743 | best = span; | |
1744 | from_released = false; | |
1745 | } | |
1746 | } | |
1747 | } | |
1748 | ||
1749 | // Search through released list in case it has a better fit | |
1750 | for (Span* span = large_.returned.next; | |
1751 | span != &large_.returned; | |
1752 | span = span->next) { | |
1753 | if (span->length >= n) { | |
1754 | if ((best == NULL) | |
1755 | || (span->length < best->length) | |
1756 | || ((span->length == best->length) && (span->start < best->start))) { | |
1757 | best = span; | |
1758 | from_released = true; | |
1759 | } | |
1760 | } | |
1761 | } | |
1762 | ||
1763 | if (best != NULL) { | |
1764 | Carve(best, n, from_released); | |
ba379fdc | 1765 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY |
4e4e5a6f A |
1766 | // The newly allocated memory is from a span that's in the normal span list (already committed). Update the |
1767 | // free committed pages count. | |
1768 | ASSERT(free_committed_pages_ >= n); | |
1769 | free_committed_pages_ -= n; | |
1770 | if (free_committed_pages_ < min_free_committed_pages_since_last_scavenge_) | |
1771 | min_free_committed_pages_since_last_scavenge_ = free_committed_pages_; | |
ba379fdc | 1772 | #endif // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY |
b37bf2e1 A |
1773 | ASSERT(Check()); |
1774 | free_pages_ -= n; | |
1775 | return best; | |
1776 | } | |
1777 | return NULL; | |
1778 | } | |
1779 | ||
1780 | Span* TCMalloc_PageHeap::Split(Span* span, Length n) { | |
1781 | ASSERT(0 < n); | |
1782 | ASSERT(n < span->length); | |
1783 | ASSERT(!span->free); | |
1784 | ASSERT(span->sizeclass == 0); | |
1785 | Event(span, 'T', n); | |
1786 | ||
1787 | const Length extra = span->length - n; | |
1788 | Span* leftover = NewSpan(span->start + n, extra); | |
1789 | Event(leftover, 'U', extra); | |
1790 | RecordSpan(leftover); | |
1791 | pagemap_.set(span->start + n - 1, span); // Update map from pageid to span | |
1792 | span->length = n; | |
1793 | ||
1794 | return leftover; | |
1795 | } | |
1796 | ||
1797 | inline void TCMalloc_PageHeap::Carve(Span* span, Length n, bool released) { | |
1798 | ASSERT(n > 0); | |
1799 | DLL_Remove(span); | |
1800 | span->free = 0; | |
1801 | Event(span, 'A', n); | |
1802 | ||
4e4e5a6f A |
1803 | if (released) { |
1804 | // If the span chosen to carve from is decommited, commit the entire span at once to avoid committing spans 1 page at a time. | |
1805 | ASSERT(span->decommitted); | |
1806 | TCMalloc_SystemCommit(reinterpret_cast<void*>(span->start << kPageShift), static_cast<size_t>(span->length << kPageShift)); | |
1807 | span->decommitted = false; | |
1808 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY | |
1809 | free_committed_pages_ += span->length; | |
1810 | #endif | |
1811 | } | |
1812 | ||
b37bf2e1 A |
1813 | const int extra = static_cast<int>(span->length - n); |
1814 | ASSERT(extra >= 0); | |
1815 | if (extra > 0) { | |
1816 | Span* leftover = NewSpan(span->start + n, extra); | |
1817 | leftover->free = 1; | |
4e4e5a6f | 1818 | leftover->decommitted = false; |
b37bf2e1 A |
1819 | Event(leftover, 'S', extra); |
1820 | RecordSpan(leftover); | |
1821 | ||
1822 | // Place leftover span on appropriate free list | |
1823 | SpanList* listpair = (static_cast<size_t>(extra) < kMaxPages) ? &free_[extra] : &large_; | |
4e4e5a6f | 1824 | Span* dst = &listpair->normal; |
b37bf2e1 A |
1825 | DLL_Prepend(dst, leftover); |
1826 | ||
1827 | span->length = n; | |
1828 | pagemap_.set(span->start + n - 1, span); | |
1829 | } | |
1830 | } | |
1831 | ||
9dae56ea A |
1832 | static ALWAYS_INLINE void mergeDecommittedStates(Span* destination, Span* other) |
1833 | { | |
ba379fdc A |
1834 | if (destination->decommitted && !other->decommitted) { |
1835 | TCMalloc_SystemRelease(reinterpret_cast<void*>(other->start << kPageShift), | |
1836 | static_cast<size_t>(other->length << kPageShift)); | |
1837 | } else if (other->decommitted && !destination->decommitted) { | |
1838 | TCMalloc_SystemRelease(reinterpret_cast<void*>(destination->start << kPageShift), | |
1839 | static_cast<size_t>(destination->length << kPageShift)); | |
9dae56ea | 1840 | destination->decommitted = true; |
ba379fdc | 1841 | } |
9dae56ea | 1842 | } |
9dae56ea | 1843 | |
b37bf2e1 A |
1844 | inline void TCMalloc_PageHeap::Delete(Span* span) { |
1845 | ASSERT(Check()); | |
1846 | ASSERT(!span->free); | |
1847 | ASSERT(span->length > 0); | |
1848 | ASSERT(GetDescriptor(span->start) == span); | |
1849 | ASSERT(GetDescriptor(span->start + span->length - 1) == span); | |
1850 | span->sizeclass = 0; | |
9dae56ea | 1851 | #ifndef NO_TCMALLOC_SAMPLES |
b37bf2e1 | 1852 | span->sample = 0; |
9dae56ea | 1853 | #endif |
b37bf2e1 A |
1854 | |
1855 | // Coalesce -- we guarantee that "p" != 0, so no bounds checking | |
1856 | // necessary. We do not bother resetting the stale pagemap | |
1857 | // entries for the pieces we are merging together because we only | |
1858 | // care about the pagemap entries for the boundaries. | |
ba379fdc A |
1859 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY |
1860 | // Track the total size of the neighboring free spans that are committed. | |
1861 | Length neighboringCommittedSpansLength = 0; | |
1862 | #endif | |
b37bf2e1 A |
1863 | const PageID p = span->start; |
1864 | const Length n = span->length; | |
1865 | Span* prev = GetDescriptor(p-1); | |
1866 | if (prev != NULL && prev->free) { | |
1867 | // Merge preceding span into this span | |
1868 | ASSERT(prev->start + prev->length == p); | |
1869 | const Length len = prev->length; | |
ba379fdc A |
1870 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY |
1871 | if (!prev->decommitted) | |
1872 | neighboringCommittedSpansLength += len; | |
1873 | #endif | |
9dae56ea | 1874 | mergeDecommittedStates(span, prev); |
b37bf2e1 A |
1875 | DLL_Remove(prev); |
1876 | DeleteSpan(prev); | |
1877 | span->start -= len; | |
1878 | span->length += len; | |
1879 | pagemap_.set(span->start, span); | |
1880 | Event(span, 'L', len); | |
1881 | } | |
1882 | Span* next = GetDescriptor(p+n); | |
1883 | if (next != NULL && next->free) { | |
1884 | // Merge next span into this span | |
1885 | ASSERT(next->start == p+n); | |
1886 | const Length len = next->length; | |
ba379fdc A |
1887 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY |
1888 | if (!next->decommitted) | |
1889 | neighboringCommittedSpansLength += len; | |
1890 | #endif | |
9dae56ea | 1891 | mergeDecommittedStates(span, next); |
b37bf2e1 A |
1892 | DLL_Remove(next); |
1893 | DeleteSpan(next); | |
1894 | span->length += len; | |
1895 | pagemap_.set(span->start + span->length - 1, span); | |
1896 | Event(span, 'R', len); | |
1897 | } | |
1898 | ||
1899 | Event(span, 'D', span->length); | |
1900 | span->free = 1; | |
ba379fdc A |
1901 | if (span->decommitted) { |
1902 | if (span->length < kMaxPages) | |
1903 | DLL_Prepend(&free_[span->length].returned, span); | |
1904 | else | |
1905 | DLL_Prepend(&large_.returned, span); | |
b37bf2e1 | 1906 | } else { |
ba379fdc A |
1907 | if (span->length < kMaxPages) |
1908 | DLL_Prepend(&free_[span->length].normal, span); | |
1909 | else | |
1910 | DLL_Prepend(&large_.normal, span); | |
b37bf2e1 A |
1911 | } |
1912 | free_pages_ += n; | |
1913 | ||
ba379fdc A |
1914 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY |
1915 | if (span->decommitted) { | |
1916 | // If the merged span is decommitted, that means we decommitted any neighboring spans that were | |
1917 | // committed. Update the free committed pages count. | |
1918 | free_committed_pages_ -= neighboringCommittedSpansLength; | |
4e4e5a6f A |
1919 | if (free_committed_pages_ < min_free_committed_pages_since_last_scavenge_) |
1920 | min_free_committed_pages_since_last_scavenge_ = free_committed_pages_; | |
ba379fdc A |
1921 | } else { |
1922 | // If the merged span remains committed, add the deleted span's size to the free committed pages count. | |
1923 | free_committed_pages_ += n; | |
1924 | } | |
1925 | ||
1926 | // Make sure the scavenge thread becomes active if we have enough freed pages to release some back to the system. | |
f9bf01c6 | 1927 | signalScavenger(); |
ba379fdc | 1928 | #else |
b37bf2e1 | 1929 | IncrementalScavenge(n); |
ba379fdc A |
1930 | #endif |
1931 | ||
b37bf2e1 A |
1932 | ASSERT(Check()); |
1933 | } | |
1934 | ||
ba379fdc | 1935 | #if !USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY |
b37bf2e1 A |
1936 | void TCMalloc_PageHeap::IncrementalScavenge(Length n) { |
1937 | // Fast path; not yet time to release memory | |
1938 | scavenge_counter_ -= n; | |
1939 | if (scavenge_counter_ >= 0) return; // Not yet time to scavenge | |
1940 | ||
8537cb5c | 1941 | static const size_t kDefaultReleaseDelay = 64; |
b37bf2e1 A |
1942 | |
1943 | // Find index of free list to scavenge | |
1944 | size_t index = scavenge_index_ + 1; | |
1945 | for (size_t i = 0; i < kMaxPages+1; i++) { | |
1946 | if (index > kMaxPages) index = 0; | |
1947 | SpanList* slist = (index == kMaxPages) ? &large_ : &free_[index]; | |
1948 | if (!DLL_IsEmpty(&slist->normal)) { | |
1949 | // Release the last span on the normal portion of this list | |
1950 | Span* s = slist->normal.prev; | |
1951 | DLL_Remove(s); | |
1952 | TCMalloc_SystemRelease(reinterpret_cast<void*>(s->start << kPageShift), | |
1953 | static_cast<size_t>(s->length << kPageShift)); | |
9dae56ea | 1954 | s->decommitted = true; |
b37bf2e1 A |
1955 | DLL_Prepend(&slist->returned, s); |
1956 | ||
8537cb5c | 1957 | scavenge_counter_ = std::max<size_t>(16UL, std::min<size_t>(kDefaultReleaseDelay, kDefaultReleaseDelay - (free_pages_ / kDefaultReleaseDelay))); |
b37bf2e1 A |
1958 | |
1959 | if (index == kMaxPages && !DLL_IsEmpty(&slist->normal)) | |
1960 | scavenge_index_ = index - 1; | |
1961 | else | |
1962 | scavenge_index_ = index; | |
1963 | return; | |
1964 | } | |
1965 | index++; | |
1966 | } | |
1967 | ||
1968 | // Nothing to scavenge, delay for a while | |
1969 | scavenge_counter_ = kDefaultReleaseDelay; | |
1970 | } | |
ba379fdc | 1971 | #endif |
b37bf2e1 A |
1972 | |
1973 | void TCMalloc_PageHeap::RegisterSizeClass(Span* span, size_t sc) { | |
1974 | // Associate span object with all interior pages as well | |
1975 | ASSERT(!span->free); | |
1976 | ASSERT(GetDescriptor(span->start) == span); | |
1977 | ASSERT(GetDescriptor(span->start+span->length-1) == span); | |
1978 | Event(span, 'C', sc); | |
1979 | span->sizeclass = static_cast<unsigned int>(sc); | |
1980 | for (Length i = 1; i < span->length-1; i++) { | |
1981 | pagemap_.set(span->start+i, span); | |
1982 | } | |
1983 | } | |
9dae56ea A |
1984 | |
1985 | #ifdef WTF_CHANGES | |
1986 | size_t TCMalloc_PageHeap::ReturnedBytes() const { | |
1987 | size_t result = 0; | |
1988 | for (unsigned s = 0; s < kMaxPages; s++) { | |
1989 | const int r_length = DLL_Length(&free_[s].returned); | |
1990 | unsigned r_pages = s * r_length; | |
1991 | result += r_pages << kPageShift; | |
1992 | } | |
1993 | ||
1994 | for (Span* s = large_.returned.next; s != &large_.returned; s = s->next) | |
1995 | result += s->length << kPageShift; | |
1996 | return result; | |
1997 | } | |
1998 | #endif | |
b37bf2e1 A |
1999 | |
2000 | #ifndef WTF_CHANGES | |
2001 | static double PagesToMB(uint64_t pages) { | |
2002 | return (pages << kPageShift) / 1048576.0; | |
2003 | } | |
2004 | ||
2005 | void TCMalloc_PageHeap::Dump(TCMalloc_Printer* out) { | |
2006 | int nonempty_sizes = 0; | |
2007 | for (int s = 0; s < kMaxPages; s++) { | |
2008 | if (!DLL_IsEmpty(&free_[s].normal) || !DLL_IsEmpty(&free_[s].returned)) { | |
2009 | nonempty_sizes++; | |
2010 | } | |
2011 | } | |
2012 | out->printf("------------------------------------------------\n"); | |
2013 | out->printf("PageHeap: %d sizes; %6.1f MB free\n", | |
2014 | nonempty_sizes, PagesToMB(free_pages_)); | |
2015 | out->printf("------------------------------------------------\n"); | |
2016 | uint64_t total_normal = 0; | |
2017 | uint64_t total_returned = 0; | |
2018 | for (int s = 0; s < kMaxPages; s++) { | |
2019 | const int n_length = DLL_Length(&free_[s].normal); | |
2020 | const int r_length = DLL_Length(&free_[s].returned); | |
2021 | if (n_length + r_length > 0) { | |
2022 | uint64_t n_pages = s * n_length; | |
2023 | uint64_t r_pages = s * r_length; | |
2024 | total_normal += n_pages; | |
2025 | total_returned += r_pages; | |
2026 | out->printf("%6u pages * %6u spans ~ %6.1f MB; %6.1f MB cum" | |
2027 | "; unmapped: %6.1f MB; %6.1f MB cum\n", | |
2028 | s, | |
2029 | (n_length + r_length), | |
2030 | PagesToMB(n_pages + r_pages), | |
2031 | PagesToMB(total_normal + total_returned), | |
2032 | PagesToMB(r_pages), | |
2033 | PagesToMB(total_returned)); | |
2034 | } | |
2035 | } | |
2036 | ||
2037 | uint64_t n_pages = 0; | |
2038 | uint64_t r_pages = 0; | |
2039 | int n_spans = 0; | |
2040 | int r_spans = 0; | |
2041 | out->printf("Normal large spans:\n"); | |
2042 | for (Span* s = large_.normal.next; s != &large_.normal; s = s->next) { | |
2043 | out->printf(" [ %6" PRIuS " pages ] %6.1f MB\n", | |
2044 | s->length, PagesToMB(s->length)); | |
2045 | n_pages += s->length; | |
2046 | n_spans++; | |
2047 | } | |
2048 | out->printf("Unmapped large spans:\n"); | |
2049 | for (Span* s = large_.returned.next; s != &large_.returned; s = s->next) { | |
2050 | out->printf(" [ %6" PRIuS " pages ] %6.1f MB\n", | |
2051 | s->length, PagesToMB(s->length)); | |
2052 | r_pages += s->length; | |
2053 | r_spans++; | |
2054 | } | |
2055 | total_normal += n_pages; | |
2056 | total_returned += r_pages; | |
2057 | out->printf(">255 large * %6u spans ~ %6.1f MB; %6.1f MB cum" | |
2058 | "; unmapped: %6.1f MB; %6.1f MB cum\n", | |
2059 | (n_spans + r_spans), | |
2060 | PagesToMB(n_pages + r_pages), | |
2061 | PagesToMB(total_normal + total_returned), | |
2062 | PagesToMB(r_pages), | |
2063 | PagesToMB(total_returned)); | |
2064 | } | |
2065 | #endif | |
2066 | ||
2067 | bool TCMalloc_PageHeap::GrowHeap(Length n) { | |
2068 | ASSERT(kMaxPages >= kMinSystemAlloc); | |
2069 | if (n > kMaxValidPages) return false; | |
2070 | Length ask = (n>kMinSystemAlloc) ? n : static_cast<Length>(kMinSystemAlloc); | |
2071 | size_t actual_size; | |
2072 | void* ptr = TCMalloc_SystemAlloc(ask << kPageShift, &actual_size, kPageSize); | |
2073 | if (ptr == NULL) { | |
2074 | if (n < ask) { | |
2075 | // Try growing just "n" pages | |
2076 | ask = n; | |
9dae56ea | 2077 | ptr = TCMalloc_SystemAlloc(ask << kPageShift, &actual_size, kPageSize); |
b37bf2e1 A |
2078 | } |
2079 | if (ptr == NULL) return false; | |
2080 | } | |
2081 | ask = actual_size >> kPageShift; | |
2082 | ||
2083 | uint64_t old_system_bytes = system_bytes_; | |
2084 | system_bytes_ += (ask << kPageShift); | |
2085 | const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift; | |
2086 | ASSERT(p > 0); | |
2087 | ||
2088 | // If we have already a lot of pages allocated, just pre allocate a bunch of | |
2089 | // memory for the page map. This prevents fragmentation by pagemap metadata | |
2090 | // when a program keeps allocating and freeing large blocks. | |
2091 | ||
2092 | if (old_system_bytes < kPageMapBigAllocationThreshold | |
2093 | && system_bytes_ >= kPageMapBigAllocationThreshold) { | |
2094 | pagemap_.PreallocateMoreMemory(); | |
2095 | } | |
2096 | ||
2097 | // Make sure pagemap_ has entries for all of the new pages. | |
2098 | // Plus ensure one before and one after so coalescing code | |
2099 | // does not need bounds-checking. | |
2100 | if (pagemap_.Ensure(p-1, ask+2)) { | |
2101 | // Pretend the new area is allocated and then Delete() it to | |
2102 | // cause any necessary coalescing to occur. | |
2103 | // | |
2104 | // We do not adjust free_pages_ here since Delete() will do it for us. | |
2105 | Span* span = NewSpan(p, ask); | |
2106 | RecordSpan(span); | |
2107 | Delete(span); | |
2108 | ASSERT(Check()); | |
2109 | return true; | |
2110 | } else { | |
2111 | // We could not allocate memory within "pagemap_" | |
2112 | // TODO: Once we can return memory to the system, return the new span | |
2113 | return false; | |
2114 | } | |
2115 | } | |
2116 | ||
2117 | bool TCMalloc_PageHeap::Check() { | |
2118 | ASSERT(free_[0].normal.next == &free_[0].normal); | |
2119 | ASSERT(free_[0].returned.next == &free_[0].returned); | |
14957cd0 A |
2120 | CheckList(&large_.normal, kMaxPages, 1000000000, false); |
2121 | CheckList(&large_.returned, kMaxPages, 1000000000, true); | |
b37bf2e1 | 2122 | for (Length s = 1; s < kMaxPages; s++) { |
14957cd0 A |
2123 | CheckList(&free_[s].normal, s, s, false); |
2124 | CheckList(&free_[s].returned, s, s, true); | |
b37bf2e1 A |
2125 | } |
2126 | return true; | |
2127 | } | |
2128 | ||
2129 | #if ASSERT_DISABLED | |
14957cd0 | 2130 | bool TCMalloc_PageHeap::CheckList(Span*, Length, Length, bool) { |
b37bf2e1 A |
2131 | return true; |
2132 | } | |
2133 | #else | |
14957cd0 | 2134 | bool TCMalloc_PageHeap::CheckList(Span* list, Length min_pages, Length max_pages, bool decommitted) { |
b37bf2e1 A |
2135 | for (Span* s = list->next; s != list; s = s->next) { |
2136 | CHECK_CONDITION(s->free); | |
2137 | CHECK_CONDITION(s->length >= min_pages); | |
2138 | CHECK_CONDITION(s->length <= max_pages); | |
2139 | CHECK_CONDITION(GetDescriptor(s->start) == s); | |
2140 | CHECK_CONDITION(GetDescriptor(s->start+s->length-1) == s); | |
14957cd0 | 2141 | CHECK_CONDITION(s->decommitted == decommitted); |
b37bf2e1 A |
2142 | } |
2143 | return true; | |
2144 | } | |
2145 | #endif | |
2146 | ||
2147 | static void ReleaseFreeList(Span* list, Span* returned) { | |
2148 | // Walk backwards through list so that when we push these | |
2149 | // spans on the "returned" list, we preserve the order. | |
2150 | while (!DLL_IsEmpty(list)) { | |
2151 | Span* s = list->prev; | |
2152 | DLL_Remove(s); | |
14957cd0 | 2153 | s->decommitted = true; |
b37bf2e1 A |
2154 | DLL_Prepend(returned, s); |
2155 | TCMalloc_SystemRelease(reinterpret_cast<void*>(s->start << kPageShift), | |
2156 | static_cast<size_t>(s->length << kPageShift)); | |
2157 | } | |
2158 | } | |
2159 | ||
2160 | void TCMalloc_PageHeap::ReleaseFreePages() { | |
2161 | for (Length s = 0; s < kMaxPages; s++) { | |
2162 | ReleaseFreeList(&free_[s].normal, &free_[s].returned); | |
2163 | } | |
2164 | ReleaseFreeList(&large_.normal, &large_.returned); | |
2165 | ASSERT(Check()); | |
2166 | } | |
2167 | ||
2168 | //------------------------------------------------------------------- | |
2169 | // Free list | |
2170 | //------------------------------------------------------------------- | |
2171 | ||
2172 | class TCMalloc_ThreadCache_FreeList { | |
2173 | private: | |
2174 | void* list_; // Linked list of nodes | |
2175 | uint16_t length_; // Current length | |
2176 | uint16_t lowater_; // Low water mark for list length | |
2177 | ||
2178 | public: | |
2179 | void Init() { | |
2180 | list_ = NULL; | |
2181 | length_ = 0; | |
2182 | lowater_ = 0; | |
2183 | } | |
2184 | ||
2185 | // Return current length of list | |
2186 | int length() const { | |
2187 | return length_; | |
2188 | } | |
2189 | ||
2190 | // Is list empty? | |
2191 | bool empty() const { | |
2192 | return list_ == NULL; | |
2193 | } | |
2194 | ||
2195 | // Low-water mark management | |
2196 | int lowwatermark() const { return lowater_; } | |
2197 | void clear_lowwatermark() { lowater_ = length_; } | |
2198 | ||
2199 | ALWAYS_INLINE void Push(void* ptr) { | |
2200 | SLL_Push(&list_, ptr); | |
2201 | length_++; | |
2202 | } | |
2203 | ||
2204 | void PushRange(int N, void *start, void *end) { | |
2205 | SLL_PushRange(&list_, start, end); | |
2206 | length_ = length_ + static_cast<uint16_t>(N); | |
2207 | } | |
2208 | ||
2209 | void PopRange(int N, void **start, void **end) { | |
2210 | SLL_PopRange(&list_, N, start, end); | |
2211 | ASSERT(length_ >= N); | |
2212 | length_ = length_ - static_cast<uint16_t>(N); | |
2213 | if (length_ < lowater_) lowater_ = length_; | |
2214 | } | |
2215 | ||
2216 | ALWAYS_INLINE void* Pop() { | |
2217 | ASSERT(list_ != NULL); | |
2218 | length_--; | |
2219 | if (length_ < lowater_) lowater_ = length_; | |
2220 | return SLL_Pop(&list_); | |
2221 | } | |
2222 | ||
2223 | #ifdef WTF_CHANGES | |
2224 | template <class Finder, class Reader> | |
2225 | void enumerateFreeObjects(Finder& finder, const Reader& reader) | |
2226 | { | |
14957cd0 | 2227 | for (void* nextObject = list_; nextObject; nextObject = reader.nextEntryInLinkedList(reinterpret_cast<void**>(nextObject))) |
b37bf2e1 A |
2228 | finder.visit(nextObject); |
2229 | } | |
2230 | #endif | |
2231 | }; | |
2232 | ||
2233 | //------------------------------------------------------------------- | |
2234 | // Data kept per thread | |
2235 | //------------------------------------------------------------------- | |
2236 | ||
2237 | class TCMalloc_ThreadCache { | |
2238 | private: | |
2239 | typedef TCMalloc_ThreadCache_FreeList FreeList; | |
14957cd0 | 2240 | #if OS(WINDOWS) |
b37bf2e1 A |
2241 | typedef DWORD ThreadIdentifier; |
2242 | #else | |
2243 | typedef pthread_t ThreadIdentifier; | |
2244 | #endif | |
2245 | ||
2246 | size_t size_; // Combined size of data | |
2247 | ThreadIdentifier tid_; // Which thread owns it | |
2248 | bool in_setspecific_; // Called pthread_setspecific? | |
2249 | FreeList list_[kNumClasses]; // Array indexed by size-class | |
2250 | ||
2251 | // We sample allocations, biased by the size of the allocation | |
2252 | uint32_t rnd_; // Cheap random number generator | |
2253 | size_t bytes_until_sample_; // Bytes until we sample next | |
2254 | ||
2255 | // Allocate a new heap. REQUIRES: pageheap_lock is held. | |
2256 | static inline TCMalloc_ThreadCache* NewHeap(ThreadIdentifier tid); | |
2257 | ||
2258 | // Use only as pthread thread-specific destructor function. | |
2259 | static void DestroyThreadCache(void* ptr); | |
2260 | public: | |
2261 | // All ThreadCache objects are kept in a linked list (for stats collection) | |
2262 | TCMalloc_ThreadCache* next_; | |
2263 | TCMalloc_ThreadCache* prev_; | |
2264 | ||
2265 | void Init(ThreadIdentifier tid); | |
2266 | void Cleanup(); | |
2267 | ||
2268 | // Accessors (mostly just for printing stats) | |
2269 | int freelist_length(size_t cl) const { return list_[cl].length(); } | |
2270 | ||
2271 | // Total byte size in cache | |
2272 | size_t Size() const { return size_; } | |
2273 | ||
4e4e5a6f | 2274 | ALWAYS_INLINE void* Allocate(size_t size); |
b37bf2e1 A |
2275 | void Deallocate(void* ptr, size_t size_class); |
2276 | ||
4e4e5a6f | 2277 | ALWAYS_INLINE void FetchFromCentralCache(size_t cl, size_t allocationSize); |
b37bf2e1 A |
2278 | void ReleaseToCentralCache(size_t cl, int N); |
2279 | void Scavenge(); | |
2280 | void Print() const; | |
2281 | ||
2282 | // Record allocation of "k" bytes. Return true iff allocation | |
2283 | // should be sampled | |
2284 | bool SampleAllocation(size_t k); | |
2285 | ||
2286 | // Pick next sampling point | |
2287 | void PickNextSample(size_t k); | |
2288 | ||
2289 | static void InitModule(); | |
2290 | static void InitTSD(); | |
2291 | static TCMalloc_ThreadCache* GetThreadHeap(); | |
2292 | static TCMalloc_ThreadCache* GetCache(); | |
2293 | static TCMalloc_ThreadCache* GetCacheIfPresent(); | |
2294 | static TCMalloc_ThreadCache* CreateCacheIfNecessary(); | |
2295 | static void DeleteCache(TCMalloc_ThreadCache* heap); | |
2296 | static void BecomeIdle(); | |
2297 | static void RecomputeThreadCacheSize(); | |
2298 | ||
2299 | #ifdef WTF_CHANGES | |
2300 | template <class Finder, class Reader> | |
2301 | void enumerateFreeObjects(Finder& finder, const Reader& reader) | |
2302 | { | |
2303 | for (unsigned sizeClass = 0; sizeClass < kNumClasses; sizeClass++) | |
2304 | list_[sizeClass].enumerateFreeObjects(finder, reader); | |
2305 | } | |
2306 | #endif | |
2307 | }; | |
2308 | ||
2309 | //------------------------------------------------------------------- | |
2310 | // Data kept per size-class in central cache | |
2311 | //------------------------------------------------------------------- | |
2312 | ||
2313 | class TCMalloc_Central_FreeList { | |
2314 | public: | |
2315 | void Init(size_t cl); | |
2316 | ||
2317 | // These methods all do internal locking. | |
2318 | ||
2319 | // Insert the specified range into the central freelist. N is the number of | |
2320 | // elements in the range. | |
2321 | void InsertRange(void *start, void *end, int N); | |
2322 | ||
2323 | // Returns the actual number of fetched elements into N. | |
2324 | void RemoveRange(void **start, void **end, int *N); | |
2325 | ||
2326 | // Returns the number of free objects in cache. | |
2327 | size_t length() { | |
2328 | SpinLockHolder h(&lock_); | |
2329 | return counter_; | |
2330 | } | |
2331 | ||
2332 | // Returns the number of free objects in the transfer cache. | |
2333 | int tc_length() { | |
2334 | SpinLockHolder h(&lock_); | |
2335 | return used_slots_ * num_objects_to_move[size_class_]; | |
2336 | } | |
2337 | ||
2338 | #ifdef WTF_CHANGES | |
2339 | template <class Finder, class Reader> | |
9dae56ea | 2340 | void enumerateFreeObjects(Finder& finder, const Reader& reader, TCMalloc_Central_FreeList* remoteCentralFreeList) |
b37bf2e1 A |
2341 | { |
2342 | for (Span* span = &empty_; span && span != &empty_; span = (span->next ? reader(span->next) : 0)) | |
2343 | ASSERT(!span->objects); | |
2344 | ||
2345 | ASSERT(!nonempty_.objects); | |
9dae56ea A |
2346 | static const ptrdiff_t nonemptyOffset = reinterpret_cast<const char*>(&nonempty_) - reinterpret_cast<const char*>(this); |
2347 | ||
2348 | Span* remoteNonempty = reinterpret_cast<Span*>(reinterpret_cast<char*>(remoteCentralFreeList) + nonemptyOffset); | |
2349 | Span* remoteSpan = nonempty_.next; | |
2350 | ||
2351 | for (Span* span = reader(remoteSpan); span && remoteSpan != remoteNonempty; remoteSpan = span->next, span = (span->next ? reader(span->next) : 0)) { | |
14957cd0 | 2352 | for (void* nextObject = span->objects; nextObject; nextObject = reader.nextEntryInLinkedList(reinterpret_cast<void**>(nextObject))) |
b37bf2e1 A |
2353 | finder.visit(nextObject); |
2354 | } | |
2355 | } | |
2356 | #endif | |
2357 | ||
2358 | private: | |
2359 | // REQUIRES: lock_ is held | |
2360 | // Remove object from cache and return. | |
2361 | // Return NULL if no free entries in cache. | |
2362 | void* FetchFromSpans(); | |
2363 | ||
2364 | // REQUIRES: lock_ is held | |
2365 | // Remove object from cache and return. Fetches | |
2366 | // from pageheap if cache is empty. Only returns | |
2367 | // NULL on allocation failure. | |
2368 | void* FetchFromSpansSafe(); | |
2369 | ||
2370 | // REQUIRES: lock_ is held | |
2371 | // Release a linked list of objects to spans. | |
2372 | // May temporarily release lock_. | |
2373 | void ReleaseListToSpans(void *start); | |
2374 | ||
2375 | // REQUIRES: lock_ is held | |
2376 | // Release an object to spans. | |
2377 | // May temporarily release lock_. | |
4e4e5a6f | 2378 | ALWAYS_INLINE void ReleaseToSpans(void* object); |
b37bf2e1 A |
2379 | |
2380 | // REQUIRES: lock_ is held | |
2381 | // Populate cache by fetching from the page heap. | |
2382 | // May temporarily release lock_. | |
4e4e5a6f | 2383 | ALWAYS_INLINE void Populate(); |
b37bf2e1 A |
2384 | |
2385 | // REQUIRES: lock is held. | |
2386 | // Tries to make room for a TCEntry. If the cache is full it will try to | |
2387 | // expand it at the cost of some other cache size. Return false if there is | |
2388 | // no space. | |
2389 | bool MakeCacheSpace(); | |
2390 | ||
2391 | // REQUIRES: lock_ for locked_size_class is held. | |
2392 | // Picks a "random" size class to steal TCEntry slot from. In reality it | |
2393 | // just iterates over the sizeclasses but does so without taking a lock. | |
2394 | // Returns true on success. | |
2395 | // May temporarily lock a "random" size class. | |
4e4e5a6f | 2396 | static ALWAYS_INLINE bool EvictRandomSizeClass(size_t locked_size_class, bool force); |
b37bf2e1 A |
2397 | |
2398 | // REQUIRES: lock_ is *not* held. | |
2399 | // Tries to shrink the Cache. If force is true it will relase objects to | |
2400 | // spans if it allows it to shrink the cache. Return false if it failed to | |
2401 | // shrink the cache. Decrements cache_size_ on succeess. | |
2402 | // May temporarily take lock_. If it takes lock_, the locked_size_class | |
2403 | // lock is released to the thread from holding two size class locks | |
2404 | // concurrently which could lead to a deadlock. | |
2405 | bool ShrinkCache(int locked_size_class, bool force); | |
2406 | ||
2407 | // This lock protects all the data members. cached_entries and cache_size_ | |
2408 | // may be looked at without holding the lock. | |
2409 | SpinLock lock_; | |
2410 | ||
2411 | // We keep linked lists of empty and non-empty spans. | |
2412 | size_t size_class_; // My size class | |
2413 | Span empty_; // Dummy header for list of empty spans | |
2414 | Span nonempty_; // Dummy header for list of non-empty spans | |
2415 | size_t counter_; // Number of free objects in cache entry | |
2416 | ||
2417 | // Here we reserve space for TCEntry cache slots. Since one size class can | |
2418 | // end up getting all the TCEntries quota in the system we just preallocate | |
2419 | // sufficient number of entries here. | |
2420 | TCEntry tc_slots_[kNumTransferEntries]; | |
2421 | ||
2422 | // Number of currently used cached entries in tc_slots_. This variable is | |
2423 | // updated under a lock but can be read without one. | |
2424 | int32_t used_slots_; | |
2425 | // The current number of slots for this size class. This is an | |
2426 | // adaptive value that is increased if there is lots of traffic | |
2427 | // on a given size class. | |
2428 | int32_t cache_size_; | |
2429 | }; | |
2430 | ||
2431 | // Pad each CentralCache object to multiple of 64 bytes | |
2432 | class TCMalloc_Central_FreeListPadded : public TCMalloc_Central_FreeList { | |
2433 | private: | |
2434 | char pad_[(64 - (sizeof(TCMalloc_Central_FreeList) % 64)) % 64]; | |
2435 | }; | |
2436 | ||
2437 | //------------------------------------------------------------------- | |
2438 | // Global variables | |
2439 | //------------------------------------------------------------------- | |
2440 | ||
2441 | // Central cache -- a collection of free-lists, one per size-class. | |
2442 | // We have a separate lock per free-list to reduce contention. | |
2443 | static TCMalloc_Central_FreeListPadded central_cache[kNumClasses]; | |
2444 | ||
2445 | // Page-level allocator | |
4e4e5a6f | 2446 | static AllocAlignmentInteger pageheap_memory[(sizeof(TCMalloc_PageHeap) + sizeof(AllocAlignmentInteger) - 1) / sizeof(AllocAlignmentInteger)]; |
b37bf2e1 A |
2447 | static bool phinited = false; |
2448 | ||
2449 | // Avoid extra level of indirection by making "pageheap" be just an alias | |
2450 | // of pageheap_memory. | |
2451 | typedef union { | |
2452 | void* m_memory; | |
2453 | TCMalloc_PageHeap* m_pageHeap; | |
2454 | } PageHeapUnion; | |
2455 | ||
2456 | static inline TCMalloc_PageHeap* getPageHeap() | |
2457 | { | |
2458 | PageHeapUnion u = { &pageheap_memory[0] }; | |
2459 | return u.m_pageHeap; | |
2460 | } | |
2461 | ||
2462 | #define pageheap getPageHeap() | |
2463 | ||
ba379fdc | 2464 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY |
f9bf01c6 | 2465 | |
14957cd0 A |
2466 | #if HAVE(DISPATCH_H) || OS(WINDOWS) |
2467 | ||
2468 | void TCMalloc_PageHeap::periodicScavenge() | |
ba379fdc | 2469 | { |
14957cd0 A |
2470 | SpinLockHolder h(&pageheap_lock); |
2471 | pageheap->scavenge(); | |
2472 | ||
2473 | if (shouldScavenge()) { | |
2474 | rescheduleScavenger(); | |
2475 | return; | |
2476 | } | |
2477 | ||
2478 | suspendScavenger(); | |
ba379fdc | 2479 | } |
14957cd0 A |
2480 | |
2481 | ALWAYS_INLINE void TCMalloc_PageHeap::signalScavenger() | |
2482 | { | |
2483 | ASSERT(pageheap_lock.IsHeld()); | |
2484 | if (isScavengerSuspended() && shouldScavenge()) | |
2485 | scheduleScavenger(); | |
2486 | } | |
2487 | ||
2488 | #else | |
ba379fdc A |
2489 | |
2490 | void TCMalloc_PageHeap::scavengerThread() | |
2491 | { | |
2492 | #if HAVE(PTHREAD_SETNAME_NP) | |
2493 | pthread_setname_np("JavaScriptCore: FastMalloc scavenger"); | |
2494 | #endif | |
2495 | ||
2496 | while (1) { | |
4e4e5a6f | 2497 | if (!shouldScavenge()) { |
ba379fdc A |
2498 | pthread_mutex_lock(&m_scavengeMutex); |
2499 | m_scavengeThreadActive = false; | |
4e4e5a6f | 2500 | // Block until there are enough free committed pages to release back to the system. |
ba379fdc A |
2501 | pthread_cond_wait(&m_scavengeCondition, &m_scavengeMutex); |
2502 | m_scavengeThreadActive = true; | |
2503 | pthread_mutex_unlock(&m_scavengeMutex); | |
2504 | } | |
4e4e5a6f | 2505 | sleep(kScavengeDelayInSeconds); |
ba379fdc A |
2506 | { |
2507 | SpinLockHolder h(&pageheap_lock); | |
2508 | pageheap->scavenge(); | |
2509 | } | |
2510 | } | |
2511 | } | |
f9bf01c6 | 2512 | |
14957cd0 | 2513 | #endif |
f9bf01c6 | 2514 | |
ba379fdc A |
2515 | #endif |
2516 | ||
b37bf2e1 A |
2517 | // If TLS is available, we also store a copy |
2518 | // of the per-thread object in a __thread variable | |
2519 | // since __thread variables are faster to read | |
2520 | // than pthread_getspecific(). We still need | |
2521 | // pthread_setspecific() because __thread | |
2522 | // variables provide no way to run cleanup | |
2523 | // code when a thread is destroyed. | |
2524 | #ifdef HAVE_TLS | |
2525 | static __thread TCMalloc_ThreadCache *threadlocal_heap; | |
2526 | #endif | |
2527 | // Thread-specific key. Initialization here is somewhat tricky | |
2528 | // because some Linux startup code invokes malloc() before it | |
2529 | // is in a good enough state to handle pthread_keycreate(). | |
2530 | // Therefore, we use TSD keys only after tsd_inited is set to true. | |
2531 | // Until then, we use a slow path to get the heap object. | |
2532 | static bool tsd_inited = false; | |
4e4e5a6f | 2533 | #if USE(PTHREAD_GETSPECIFIC_DIRECT) |
14957cd0 | 2534 | static const pthread_key_t heap_key = __PTK_FRAMEWORK_JAVASCRIPTCORE_KEY0; |
4e4e5a6f | 2535 | #else |
b37bf2e1 | 2536 | static pthread_key_t heap_key; |
4e4e5a6f | 2537 | #endif |
14957cd0 | 2538 | #if OS(WINDOWS) |
b37bf2e1 A |
2539 | DWORD tlsIndex = TLS_OUT_OF_INDEXES; |
2540 | #endif | |
2541 | ||
2542 | static ALWAYS_INLINE void setThreadHeap(TCMalloc_ThreadCache* heap) | |
2543 | { | |
14957cd0 A |
2544 | #if USE(PTHREAD_GETSPECIFIC_DIRECT) |
2545 | // Can't have two libraries both doing this in the same process, | |
2546 | // so check and make this crash right away. | |
2547 | if (pthread_getspecific(heap_key)) | |
2548 | CRASH(); | |
2549 | #endif | |
2550 | ||
2551 | // Still do pthread_setspecific even if there's an alternate form | |
2552 | // of thread-local storage in use, to benefit from the delete callback. | |
b37bf2e1 | 2553 | pthread_setspecific(heap_key, heap); |
14957cd0 A |
2554 | |
2555 | #if OS(WINDOWS) | |
b37bf2e1 A |
2556 | TlsSetValue(tlsIndex, heap); |
2557 | #endif | |
2558 | } | |
2559 | ||
2560 | // Allocator for thread heaps | |
2561 | static PageHeapAllocator<TCMalloc_ThreadCache> threadheap_allocator; | |
2562 | ||
2563 | // Linked list of heap objects. Protected by pageheap_lock. | |
2564 | static TCMalloc_ThreadCache* thread_heaps = NULL; | |
2565 | static int thread_heap_count = 0; | |
2566 | ||
2567 | // Overall thread cache size. Protected by pageheap_lock. | |
2568 | static size_t overall_thread_cache_size = kDefaultOverallThreadCacheSize; | |
2569 | ||
2570 | // Global per-thread cache size. Writes are protected by | |
2571 | // pageheap_lock. Reads are done without any locking, which should be | |
2572 | // fine as long as size_t can be written atomically and we don't place | |
2573 | // invariants between this variable and other pieces of state. | |
2574 | static volatile size_t per_thread_cache_size = kMaxThreadCacheSize; | |
2575 | ||
2576 | //------------------------------------------------------------------- | |
2577 | // Central cache implementation | |
2578 | //------------------------------------------------------------------- | |
2579 | ||
2580 | void TCMalloc_Central_FreeList::Init(size_t cl) { | |
2581 | lock_.Init(); | |
2582 | size_class_ = cl; | |
2583 | DLL_Init(&empty_); | |
2584 | DLL_Init(&nonempty_); | |
2585 | counter_ = 0; | |
2586 | ||
2587 | cache_size_ = 1; | |
2588 | used_slots_ = 0; | |
2589 | ASSERT(cache_size_ <= kNumTransferEntries); | |
2590 | } | |
2591 | ||
2592 | void TCMalloc_Central_FreeList::ReleaseListToSpans(void* start) { | |
2593 | while (start) { | |
2594 | void *next = SLL_Next(start); | |
2595 | ReleaseToSpans(start); | |
2596 | start = next; | |
2597 | } | |
2598 | } | |
2599 | ||
2600 | ALWAYS_INLINE void TCMalloc_Central_FreeList::ReleaseToSpans(void* object) { | |
2601 | const PageID p = reinterpret_cast<uintptr_t>(object) >> kPageShift; | |
2602 | Span* span = pageheap->GetDescriptor(p); | |
2603 | ASSERT(span != NULL); | |
2604 | ASSERT(span->refcount > 0); | |
2605 | ||
2606 | // If span is empty, move it to non-empty list | |
2607 | if (span->objects == NULL) { | |
2608 | DLL_Remove(span); | |
2609 | DLL_Prepend(&nonempty_, span); | |
2610 | Event(span, 'N', 0); | |
2611 | } | |
2612 | ||
2613 | // The following check is expensive, so it is disabled by default | |
2614 | if (false) { | |
2615 | // Check that object does not occur in list | |
f9bf01c6 | 2616 | unsigned got = 0; |
b37bf2e1 A |
2617 | for (void* p = span->objects; p != NULL; p = *((void**) p)) { |
2618 | ASSERT(p != object); | |
2619 | got++; | |
2620 | } | |
2621 | ASSERT(got + span->refcount == | |
2622 | (span->length<<kPageShift)/ByteSizeForClass(span->sizeclass)); | |
2623 | } | |
2624 | ||
2625 | counter_++; | |
2626 | span->refcount--; | |
2627 | if (span->refcount == 0) { | |
2628 | Event(span, '#', 0); | |
2629 | counter_ -= (span->length<<kPageShift) / ByteSizeForClass(span->sizeclass); | |
2630 | DLL_Remove(span); | |
2631 | ||
2632 | // Release central list lock while operating on pageheap | |
2633 | lock_.Unlock(); | |
2634 | { | |
2635 | SpinLockHolder h(&pageheap_lock); | |
2636 | pageheap->Delete(span); | |
2637 | } | |
2638 | lock_.Lock(); | |
2639 | } else { | |
2640 | *(reinterpret_cast<void**>(object)) = span->objects; | |
2641 | span->objects = object; | |
2642 | } | |
2643 | } | |
2644 | ||
2645 | ALWAYS_INLINE bool TCMalloc_Central_FreeList::EvictRandomSizeClass( | |
2646 | size_t locked_size_class, bool force) { | |
2647 | static int race_counter = 0; | |
2648 | int t = race_counter++; // Updated without a lock, but who cares. | |
2649 | if (t >= static_cast<int>(kNumClasses)) { | |
2650 | while (t >= static_cast<int>(kNumClasses)) { | |
2651 | t -= kNumClasses; | |
2652 | } | |
2653 | race_counter = t; | |
2654 | } | |
2655 | ASSERT(t >= 0); | |
2656 | ASSERT(t < static_cast<int>(kNumClasses)); | |
2657 | if (t == static_cast<int>(locked_size_class)) return false; | |
2658 | return central_cache[t].ShrinkCache(static_cast<int>(locked_size_class), force); | |
2659 | } | |
2660 | ||
2661 | bool TCMalloc_Central_FreeList::MakeCacheSpace() { | |
2662 | // Is there room in the cache? | |
2663 | if (used_slots_ < cache_size_) return true; | |
2664 | // Check if we can expand this cache? | |
2665 | if (cache_size_ == kNumTransferEntries) return false; | |
2666 | // Ok, we'll try to grab an entry from some other size class. | |
2667 | if (EvictRandomSizeClass(size_class_, false) || | |
2668 | EvictRandomSizeClass(size_class_, true)) { | |
2669 | // Succeeded in evicting, we're going to make our cache larger. | |
2670 | cache_size_++; | |
2671 | return true; | |
2672 | } | |
2673 | return false; | |
2674 | } | |
2675 | ||
2676 | ||
2677 | namespace { | |
2678 | class LockInverter { | |
2679 | private: | |
2680 | SpinLock *held_, *temp_; | |
2681 | public: | |
2682 | inline explicit LockInverter(SpinLock* held, SpinLock *temp) | |
2683 | : held_(held), temp_(temp) { held_->Unlock(); temp_->Lock(); } | |
2684 | inline ~LockInverter() { temp_->Unlock(); held_->Lock(); } | |
2685 | }; | |
2686 | } | |
2687 | ||
2688 | bool TCMalloc_Central_FreeList::ShrinkCache(int locked_size_class, bool force) { | |
2689 | // Start with a quick check without taking a lock. | |
2690 | if (cache_size_ == 0) return false; | |
2691 | // We don't evict from a full cache unless we are 'forcing'. | |
2692 | if (force == false && used_slots_ == cache_size_) return false; | |
2693 | ||
2694 | // Grab lock, but first release the other lock held by this thread. We use | |
2695 | // the lock inverter to ensure that we never hold two size class locks | |
2696 | // concurrently. That can create a deadlock because there is no well | |
2697 | // defined nesting order. | |
2698 | LockInverter li(¢ral_cache[locked_size_class].lock_, &lock_); | |
2699 | ASSERT(used_slots_ <= cache_size_); | |
2700 | ASSERT(0 <= cache_size_); | |
2701 | if (cache_size_ == 0) return false; | |
2702 | if (used_slots_ == cache_size_) { | |
2703 | if (force == false) return false; | |
2704 | // ReleaseListToSpans releases the lock, so we have to make all the | |
2705 | // updates to the central list before calling it. | |
2706 | cache_size_--; | |
2707 | used_slots_--; | |
2708 | ReleaseListToSpans(tc_slots_[used_slots_].head); | |
2709 | return true; | |
2710 | } | |
2711 | cache_size_--; | |
2712 | return true; | |
2713 | } | |
2714 | ||
2715 | void TCMalloc_Central_FreeList::InsertRange(void *start, void *end, int N) { | |
2716 | SpinLockHolder h(&lock_); | |
2717 | if (N == num_objects_to_move[size_class_] && | |
2718 | MakeCacheSpace()) { | |
2719 | int slot = used_slots_++; | |
2720 | ASSERT(slot >=0); | |
2721 | ASSERT(slot < kNumTransferEntries); | |
2722 | TCEntry *entry = &tc_slots_[slot]; | |
2723 | entry->head = start; | |
2724 | entry->tail = end; | |
2725 | return; | |
2726 | } | |
2727 | ReleaseListToSpans(start); | |
2728 | } | |
2729 | ||
2730 | void TCMalloc_Central_FreeList::RemoveRange(void **start, void **end, int *N) { | |
2731 | int num = *N; | |
2732 | ASSERT(num > 0); | |
2733 | ||
2734 | SpinLockHolder h(&lock_); | |
2735 | if (num == num_objects_to_move[size_class_] && used_slots_ > 0) { | |
2736 | int slot = --used_slots_; | |
2737 | ASSERT(slot >= 0); | |
2738 | TCEntry *entry = &tc_slots_[slot]; | |
2739 | *start = entry->head; | |
2740 | *end = entry->tail; | |
2741 | return; | |
2742 | } | |
2743 | ||
2744 | // TODO: Prefetch multiple TCEntries? | |
2745 | void *tail = FetchFromSpansSafe(); | |
2746 | if (!tail) { | |
2747 | // We are completely out of memory. | |
2748 | *start = *end = NULL; | |
2749 | *N = 0; | |
2750 | return; | |
2751 | } | |
2752 | ||
2753 | SLL_SetNext(tail, NULL); | |
2754 | void *head = tail; | |
2755 | int count = 1; | |
2756 | while (count < num) { | |
2757 | void *t = FetchFromSpans(); | |
2758 | if (!t) break; | |
2759 | SLL_Push(&head, t); | |
2760 | count++; | |
2761 | } | |
2762 | *start = head; | |
2763 | *end = tail; | |
2764 | *N = count; | |
2765 | } | |
2766 | ||
2767 | ||
2768 | void* TCMalloc_Central_FreeList::FetchFromSpansSafe() { | |
2769 | void *t = FetchFromSpans(); | |
2770 | if (!t) { | |
2771 | Populate(); | |
2772 | t = FetchFromSpans(); | |
2773 | } | |
2774 | return t; | |
2775 | } | |
2776 | ||
2777 | void* TCMalloc_Central_FreeList::FetchFromSpans() { | |
2778 | if (DLL_IsEmpty(&nonempty_)) return NULL; | |
2779 | Span* span = nonempty_.next; | |
2780 | ||
2781 | ASSERT(span->objects != NULL); | |
9dae56ea | 2782 | ASSERT_SPAN_COMMITTED(span); |
b37bf2e1 A |
2783 | span->refcount++; |
2784 | void* result = span->objects; | |
2785 | span->objects = *(reinterpret_cast<void**>(result)); | |
2786 | if (span->objects == NULL) { | |
2787 | // Move to empty list | |
2788 | DLL_Remove(span); | |
2789 | DLL_Prepend(&empty_, span); | |
2790 | Event(span, 'E', 0); | |
2791 | } | |
2792 | counter_--; | |
2793 | return result; | |
2794 | } | |
2795 | ||
2796 | // Fetch memory from the system and add to the central cache freelist. | |
2797 | ALWAYS_INLINE void TCMalloc_Central_FreeList::Populate() { | |
2798 | // Release central list lock while operating on pageheap | |
2799 | lock_.Unlock(); | |
2800 | const size_t npages = class_to_pages[size_class_]; | |
2801 | ||
2802 | Span* span; | |
2803 | { | |
2804 | SpinLockHolder h(&pageheap_lock); | |
2805 | span = pageheap->New(npages); | |
2806 | if (span) pageheap->RegisterSizeClass(span, size_class_); | |
2807 | } | |
2808 | if (span == NULL) { | |
14957cd0 | 2809 | #if HAVE(ERRNO_H) |
b37bf2e1 | 2810 | MESSAGE("allocation failed: %d\n", errno); |
14957cd0 A |
2811 | #elif OS(WINDOWS) |
2812 | MESSAGE("allocation failed: %d\n", ::GetLastError()); | |
2813 | #else | |
2814 | MESSAGE("allocation failed\n"); | |
2815 | #endif | |
b37bf2e1 A |
2816 | lock_.Lock(); |
2817 | return; | |
2818 | } | |
9dae56ea | 2819 | ASSERT_SPAN_COMMITTED(span); |
b37bf2e1 A |
2820 | ASSERT(span->length == npages); |
2821 | // Cache sizeclass info eagerly. Locking is not necessary. | |
2822 | // (Instead of being eager, we could just replace any stale info | |
2823 | // about this span, but that seems to be no better in practice.) | |
2824 | for (size_t i = 0; i < npages; i++) { | |
2825 | pageheap->CacheSizeClass(span->start + i, size_class_); | |
2826 | } | |
2827 | ||
2828 | // Split the block into pieces and add to the free-list | |
2829 | // TODO: coloring of objects to avoid cache conflicts? | |
2830 | void** tail = &span->objects; | |
2831 | char* ptr = reinterpret_cast<char*>(span->start << kPageShift); | |
2832 | char* limit = ptr + (npages << kPageShift); | |
2833 | const size_t size = ByteSizeForClass(size_class_); | |
2834 | int num = 0; | |
2835 | char* nptr; | |
2836 | while ((nptr = ptr + size) <= limit) { | |
2837 | *tail = ptr; | |
14957cd0 | 2838 | tail = reinterpret_cast_ptr<void**>(ptr); |
b37bf2e1 A |
2839 | ptr = nptr; |
2840 | num++; | |
2841 | } | |
2842 | ASSERT(ptr <= limit); | |
2843 | *tail = NULL; | |
2844 | span->refcount = 0; // No sub-object in use yet | |
2845 | ||
2846 | // Add span to list of non-empty spans | |
2847 | lock_.Lock(); | |
2848 | DLL_Prepend(&nonempty_, span); | |
2849 | counter_ += num; | |
2850 | } | |
2851 | ||
2852 | //------------------------------------------------------------------- | |
2853 | // TCMalloc_ThreadCache implementation | |
2854 | //------------------------------------------------------------------- | |
2855 | ||
2856 | inline bool TCMalloc_ThreadCache::SampleAllocation(size_t k) { | |
2857 | if (bytes_until_sample_ < k) { | |
2858 | PickNextSample(k); | |
2859 | return true; | |
2860 | } else { | |
2861 | bytes_until_sample_ -= k; | |
2862 | return false; | |
2863 | } | |
2864 | } | |
2865 | ||
2866 | void TCMalloc_ThreadCache::Init(ThreadIdentifier tid) { | |
2867 | size_ = 0; | |
2868 | next_ = NULL; | |
2869 | prev_ = NULL; | |
2870 | tid_ = tid; | |
2871 | in_setspecific_ = false; | |
2872 | for (size_t cl = 0; cl < kNumClasses; ++cl) { | |
2873 | list_[cl].Init(); | |
2874 | } | |
2875 | ||
2876 | // Initialize RNG -- run it for a bit to get to good values | |
2877 | bytes_until_sample_ = 0; | |
2878 | rnd_ = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(this)); | |
2879 | for (int i = 0; i < 100; i++) { | |
2880 | PickNextSample(static_cast<size_t>(FLAGS_tcmalloc_sample_parameter * 2)); | |
2881 | } | |
2882 | } | |
2883 | ||
2884 | void TCMalloc_ThreadCache::Cleanup() { | |
2885 | // Put unused memory back into central cache | |
2886 | for (size_t cl = 0; cl < kNumClasses; ++cl) { | |
2887 | if (list_[cl].length() > 0) { | |
2888 | ReleaseToCentralCache(cl, list_[cl].length()); | |
2889 | } | |
2890 | } | |
2891 | } | |
2892 | ||
2893 | ALWAYS_INLINE void* TCMalloc_ThreadCache::Allocate(size_t size) { | |
2894 | ASSERT(size <= kMaxSize); | |
2895 | const size_t cl = SizeClass(size); | |
2896 | FreeList* list = &list_[cl]; | |
2897 | size_t allocationSize = ByteSizeForClass(cl); | |
2898 | if (list->empty()) { | |
2899 | FetchFromCentralCache(cl, allocationSize); | |
2900 | if (list->empty()) return NULL; | |
2901 | } | |
2902 | size_ -= allocationSize; | |
2903 | return list->Pop(); | |
2904 | } | |
2905 | ||
2906 | inline void TCMalloc_ThreadCache::Deallocate(void* ptr, size_t cl) { | |
2907 | size_ += ByteSizeForClass(cl); | |
2908 | FreeList* list = &list_[cl]; | |
2909 | list->Push(ptr); | |
2910 | // If enough data is free, put back into central cache | |
2911 | if (list->length() > kMaxFreeListLength) { | |
2912 | ReleaseToCentralCache(cl, num_objects_to_move[cl]); | |
2913 | } | |
2914 | if (size_ >= per_thread_cache_size) Scavenge(); | |
2915 | } | |
2916 | ||
2917 | // Remove some objects of class "cl" from central cache and add to thread heap | |
2918 | ALWAYS_INLINE void TCMalloc_ThreadCache::FetchFromCentralCache(size_t cl, size_t allocationSize) { | |
2919 | int fetch_count = num_objects_to_move[cl]; | |
2920 | void *start, *end; | |
2921 | central_cache[cl].RemoveRange(&start, &end, &fetch_count); | |
2922 | list_[cl].PushRange(fetch_count, start, end); | |
2923 | size_ += allocationSize * fetch_count; | |
2924 | } | |
2925 | ||
2926 | // Remove some objects of class "cl" from thread heap and add to central cache | |
2927 | inline void TCMalloc_ThreadCache::ReleaseToCentralCache(size_t cl, int N) { | |
2928 | ASSERT(N > 0); | |
2929 | FreeList* src = &list_[cl]; | |
2930 | if (N > src->length()) N = src->length(); | |
2931 | size_ -= N*ByteSizeForClass(cl); | |
2932 | ||
2933 | // We return prepackaged chains of the correct size to the central cache. | |
2934 | // TODO: Use the same format internally in the thread caches? | |
2935 | int batch_size = num_objects_to_move[cl]; | |
2936 | while (N > batch_size) { | |
2937 | void *tail, *head; | |
2938 | src->PopRange(batch_size, &head, &tail); | |
2939 | central_cache[cl].InsertRange(head, tail, batch_size); | |
2940 | N -= batch_size; | |
2941 | } | |
2942 | void *tail, *head; | |
2943 | src->PopRange(N, &head, &tail); | |
2944 | central_cache[cl].InsertRange(head, tail, N); | |
2945 | } | |
2946 | ||
2947 | // Release idle memory to the central cache | |
2948 | inline void TCMalloc_ThreadCache::Scavenge() { | |
2949 | // If the low-water mark for the free list is L, it means we would | |
2950 | // not have had to allocate anything from the central cache even if | |
2951 | // we had reduced the free list size by L. We aim to get closer to | |
2952 | // that situation by dropping L/2 nodes from the free list. This | |
2953 | // may not release much memory, but if so we will call scavenge again | |
2954 | // pretty soon and the low-water marks will be high on that call. | |
2955 | //int64 start = CycleClock::Now(); | |
2956 | ||
2957 | for (size_t cl = 0; cl < kNumClasses; cl++) { | |
2958 | FreeList* list = &list_[cl]; | |
2959 | const int lowmark = list->lowwatermark(); | |
2960 | if (lowmark > 0) { | |
2961 | const int drop = (lowmark > 1) ? lowmark/2 : 1; | |
2962 | ReleaseToCentralCache(cl, drop); | |
2963 | } | |
2964 | list->clear_lowwatermark(); | |
2965 | } | |
2966 | ||
2967 | //int64 finish = CycleClock::Now(); | |
2968 | //CycleTimer ct; | |
2969 | //MESSAGE("GC: %.0f ns\n", ct.CyclesToUsec(finish-start)*1000.0); | |
2970 | } | |
2971 | ||
2972 | void TCMalloc_ThreadCache::PickNextSample(size_t k) { | |
2973 | // Make next "random" number | |
2974 | // x^32+x^22+x^2+x^1+1 is a primitive polynomial for random numbers | |
2975 | static const uint32_t kPoly = (1 << 22) | (1 << 2) | (1 << 1) | (1 << 0); | |
2976 | uint32_t r = rnd_; | |
2977 | rnd_ = (r << 1) ^ ((static_cast<int32_t>(r) >> 31) & kPoly); | |
2978 | ||
2979 | // Next point is "rnd_ % (sample_period)". I.e., average | |
2980 | // increment is "sample_period/2". | |
2981 | const int flag_value = static_cast<int>(FLAGS_tcmalloc_sample_parameter); | |
2982 | static int last_flag_value = -1; | |
2983 | ||
2984 | if (flag_value != last_flag_value) { | |
2985 | SpinLockHolder h(&sample_period_lock); | |
2986 | int i; | |
2987 | for (i = 0; i < (static_cast<int>(sizeof(primes_list)/sizeof(primes_list[0])) - 1); i++) { | |
2988 | if (primes_list[i] >= flag_value) { | |
2989 | break; | |
2990 | } | |
2991 | } | |
2992 | sample_period = primes_list[i]; | |
2993 | last_flag_value = flag_value; | |
2994 | } | |
2995 | ||
2996 | bytes_until_sample_ += rnd_ % sample_period; | |
2997 | ||
2998 | if (k > (static_cast<size_t>(-1) >> 2)) { | |
2999 | // If the user has asked for a huge allocation then it is possible | |
3000 | // for the code below to loop infinitely. Just return (note that | |
3001 | // this throws off the sampling accuracy somewhat, but a user who | |
3002 | // is allocating more than 1G of memory at a time can live with a | |
3003 | // minor inaccuracy in profiling of small allocations, and also | |
3004 | // would rather not wait for the loop below to terminate). | |
3005 | return; | |
3006 | } | |
3007 | ||
3008 | while (bytes_until_sample_ < k) { | |
3009 | // Increase bytes_until_sample_ by enough average sampling periods | |
3010 | // (sample_period >> 1) to allow us to sample past the current | |
3011 | // allocation. | |
3012 | bytes_until_sample_ += (sample_period >> 1); | |
3013 | } | |
3014 | ||
3015 | bytes_until_sample_ -= k; | |
3016 | } | |
3017 | ||
3018 | void TCMalloc_ThreadCache::InitModule() { | |
3019 | // There is a slight potential race here because of double-checked | |
3020 | // locking idiom. However, as long as the program does a small | |
3021 | // allocation before switching to multi-threaded mode, we will be | |
3022 | // fine. We increase the chances of doing such a small allocation | |
3023 | // by doing one in the constructor of the module_enter_exit_hook | |
3024 | // object declared below. | |
3025 | SpinLockHolder h(&pageheap_lock); | |
3026 | if (!phinited) { | |
3027 | #ifdef WTF_CHANGES | |
3028 | InitTSD(); | |
3029 | #endif | |
3030 | InitSizeClasses(); | |
3031 | threadheap_allocator.Init(); | |
3032 | span_allocator.Init(); | |
3033 | span_allocator.New(); // Reduce cache conflicts | |
3034 | span_allocator.New(); // Reduce cache conflicts | |
3035 | stacktrace_allocator.Init(); | |
3036 | DLL_Init(&sampled_objects); | |
3037 | for (size_t i = 0; i < kNumClasses; ++i) { | |
3038 | central_cache[i].Init(i); | |
3039 | } | |
3040 | pageheap->init(); | |
3041 | phinited = 1; | |
f9bf01c6 | 3042 | #if defined(WTF_CHANGES) && OS(DARWIN) |
b37bf2e1 A |
3043 | FastMallocZone::init(); |
3044 | #endif | |
3045 | } | |
3046 | } | |
3047 | ||
3048 | inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::NewHeap(ThreadIdentifier tid) { | |
3049 | // Create the heap and add it to the linked list | |
3050 | TCMalloc_ThreadCache *heap = threadheap_allocator.New(); | |
3051 | heap->Init(tid); | |
3052 | heap->next_ = thread_heaps; | |
3053 | heap->prev_ = NULL; | |
3054 | if (thread_heaps != NULL) thread_heaps->prev_ = heap; | |
3055 | thread_heaps = heap; | |
3056 | thread_heap_count++; | |
3057 | RecomputeThreadCacheSize(); | |
3058 | return heap; | |
3059 | } | |
3060 | ||
3061 | inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::GetThreadHeap() { | |
3062 | #ifdef HAVE_TLS | |
3063 | // __thread is faster, but only when the kernel supports it | |
3064 | if (KernelSupportsTLS()) | |
3065 | return threadlocal_heap; | |
14957cd0 | 3066 | #elif OS(WINDOWS) |
b37bf2e1 A |
3067 | return static_cast<TCMalloc_ThreadCache*>(TlsGetValue(tlsIndex)); |
3068 | #else | |
3069 | return static_cast<TCMalloc_ThreadCache*>(pthread_getspecific(heap_key)); | |
3070 | #endif | |
3071 | } | |
3072 | ||
3073 | inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::GetCache() { | |
3074 | TCMalloc_ThreadCache* ptr = NULL; | |
3075 | if (!tsd_inited) { | |
3076 | InitModule(); | |
3077 | } else { | |
3078 | ptr = GetThreadHeap(); | |
3079 | } | |
3080 | if (ptr == NULL) ptr = CreateCacheIfNecessary(); | |
3081 | return ptr; | |
3082 | } | |
3083 | ||
3084 | // In deletion paths, we do not try to create a thread-cache. This is | |
3085 | // because we may be in the thread destruction code and may have | |
3086 | // already cleaned up the cache for this thread. | |
3087 | inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::GetCacheIfPresent() { | |
3088 | if (!tsd_inited) return NULL; | |
3089 | void* const p = GetThreadHeap(); | |
3090 | return reinterpret_cast<TCMalloc_ThreadCache*>(p); | |
3091 | } | |
3092 | ||
3093 | void TCMalloc_ThreadCache::InitTSD() { | |
3094 | ASSERT(!tsd_inited); | |
4e4e5a6f A |
3095 | #if USE(PTHREAD_GETSPECIFIC_DIRECT) |
3096 | pthread_key_init_np(heap_key, DestroyThreadCache); | |
3097 | #else | |
b37bf2e1 | 3098 | pthread_key_create(&heap_key, DestroyThreadCache); |
4e4e5a6f | 3099 | #endif |
14957cd0 | 3100 | #if OS(WINDOWS) |
b37bf2e1 A |
3101 | tlsIndex = TlsAlloc(); |
3102 | #endif | |
3103 | tsd_inited = true; | |
3104 | ||
14957cd0 | 3105 | #if !OS(WINDOWS) |
b37bf2e1 A |
3106 | // We may have used a fake pthread_t for the main thread. Fix it. |
3107 | pthread_t zero; | |
3108 | memset(&zero, 0, sizeof(zero)); | |
3109 | #endif | |
3110 | #ifndef WTF_CHANGES | |
3111 | SpinLockHolder h(&pageheap_lock); | |
3112 | #else | |
3113 | ASSERT(pageheap_lock.IsHeld()); | |
3114 | #endif | |
3115 | for (TCMalloc_ThreadCache* h = thread_heaps; h != NULL; h = h->next_) { | |
14957cd0 | 3116 | #if OS(WINDOWS) |
b37bf2e1 A |
3117 | if (h->tid_ == 0) { |
3118 | h->tid_ = GetCurrentThreadId(); | |
3119 | } | |
3120 | #else | |
3121 | if (pthread_equal(h->tid_, zero)) { | |
3122 | h->tid_ = pthread_self(); | |
3123 | } | |
3124 | #endif | |
3125 | } | |
3126 | } | |
3127 | ||
3128 | TCMalloc_ThreadCache* TCMalloc_ThreadCache::CreateCacheIfNecessary() { | |
3129 | // Initialize per-thread data if necessary | |
3130 | TCMalloc_ThreadCache* heap = NULL; | |
3131 | { | |
3132 | SpinLockHolder h(&pageheap_lock); | |
3133 | ||
14957cd0 | 3134 | #if OS(WINDOWS) |
b37bf2e1 A |
3135 | DWORD me; |
3136 | if (!tsd_inited) { | |
3137 | me = 0; | |
3138 | } else { | |
3139 | me = GetCurrentThreadId(); | |
3140 | } | |
3141 | #else | |
3142 | // Early on in glibc's life, we cannot even call pthread_self() | |
3143 | pthread_t me; | |
3144 | if (!tsd_inited) { | |
3145 | memset(&me, 0, sizeof(me)); | |
3146 | } else { | |
3147 | me = pthread_self(); | |
3148 | } | |
3149 | #endif | |
3150 | ||
3151 | // This may be a recursive malloc call from pthread_setspecific() | |
3152 | // In that case, the heap for this thread has already been created | |
3153 | // and added to the linked list. So we search for that first. | |
3154 | for (TCMalloc_ThreadCache* h = thread_heaps; h != NULL; h = h->next_) { | |
14957cd0 | 3155 | #if OS(WINDOWS) |
b37bf2e1 A |
3156 | if (h->tid_ == me) { |
3157 | #else | |
3158 | if (pthread_equal(h->tid_, me)) { | |
3159 | #endif | |
3160 | heap = h; | |
3161 | break; | |
3162 | } | |
3163 | } | |
3164 | ||
3165 | if (heap == NULL) heap = NewHeap(me); | |
3166 | } | |
3167 | ||
3168 | // We call pthread_setspecific() outside the lock because it may | |
3169 | // call malloc() recursively. The recursive call will never get | |
3170 | // here again because it will find the already allocated heap in the | |
3171 | // linked list of heaps. | |
3172 | if (!heap->in_setspecific_ && tsd_inited) { | |
3173 | heap->in_setspecific_ = true; | |
3174 | setThreadHeap(heap); | |
3175 | } | |
3176 | return heap; | |
3177 | } | |
3178 | ||
3179 | void TCMalloc_ThreadCache::BecomeIdle() { | |
3180 | if (!tsd_inited) return; // No caches yet | |
3181 | TCMalloc_ThreadCache* heap = GetThreadHeap(); | |
3182 | if (heap == NULL) return; // No thread cache to remove | |
3183 | if (heap->in_setspecific_) return; // Do not disturb the active caller | |
3184 | ||
3185 | heap->in_setspecific_ = true; | |
14957cd0 | 3186 | setThreadHeap(NULL); |
b37bf2e1 A |
3187 | #ifdef HAVE_TLS |
3188 | // Also update the copy in __thread | |
3189 | threadlocal_heap = NULL; | |
3190 | #endif | |
3191 | heap->in_setspecific_ = false; | |
3192 | if (GetThreadHeap() == heap) { | |
3193 | // Somehow heap got reinstated by a recursive call to malloc | |
3194 | // from pthread_setspecific. We give up in this case. | |
3195 | return; | |
3196 | } | |
3197 | ||
3198 | // We can now get rid of the heap | |
3199 | DeleteCache(heap); | |
3200 | } | |
3201 | ||
3202 | void TCMalloc_ThreadCache::DestroyThreadCache(void* ptr) { | |
3203 | // Note that "ptr" cannot be NULL since pthread promises not | |
3204 | // to invoke the destructor on NULL values, but for safety, | |
3205 | // we check anyway. | |
3206 | if (ptr == NULL) return; | |
3207 | #ifdef HAVE_TLS | |
3208 | // Prevent fast path of GetThreadHeap() from returning heap. | |
3209 | threadlocal_heap = NULL; | |
3210 | #endif | |
3211 | DeleteCache(reinterpret_cast<TCMalloc_ThreadCache*>(ptr)); | |
3212 | } | |
3213 | ||
3214 | void TCMalloc_ThreadCache::DeleteCache(TCMalloc_ThreadCache* heap) { | |
3215 | // Remove all memory from heap | |
3216 | heap->Cleanup(); | |
3217 | ||
3218 | // Remove from linked list | |
3219 | SpinLockHolder h(&pageheap_lock); | |
3220 | if (heap->next_ != NULL) heap->next_->prev_ = heap->prev_; | |
3221 | if (heap->prev_ != NULL) heap->prev_->next_ = heap->next_; | |
3222 | if (thread_heaps == heap) thread_heaps = heap->next_; | |
3223 | thread_heap_count--; | |
3224 | RecomputeThreadCacheSize(); | |
3225 | ||
3226 | threadheap_allocator.Delete(heap); | |
3227 | } | |
3228 | ||
3229 | void TCMalloc_ThreadCache::RecomputeThreadCacheSize() { | |
3230 | // Divide available space across threads | |
3231 | int n = thread_heap_count > 0 ? thread_heap_count : 1; | |
3232 | size_t space = overall_thread_cache_size / n; | |
3233 | ||
3234 | // Limit to allowed range | |
3235 | if (space < kMinThreadCacheSize) space = kMinThreadCacheSize; | |
3236 | if (space > kMaxThreadCacheSize) space = kMaxThreadCacheSize; | |
3237 | ||
3238 | per_thread_cache_size = space; | |
3239 | } | |
3240 | ||
3241 | void TCMalloc_ThreadCache::Print() const { | |
3242 | for (size_t cl = 0; cl < kNumClasses; ++cl) { | |
3243 | MESSAGE(" %5" PRIuS " : %4d len; %4d lo\n", | |
3244 | ByteSizeForClass(cl), | |
3245 | list_[cl].length(), | |
3246 | list_[cl].lowwatermark()); | |
3247 | } | |
3248 | } | |
3249 | ||
3250 | // Extract interesting stats | |
3251 | struct TCMallocStats { | |
3252 | uint64_t system_bytes; // Bytes alloced from system | |
3253 | uint64_t thread_bytes; // Bytes in thread caches | |
3254 | uint64_t central_bytes; // Bytes in central cache | |
3255 | uint64_t transfer_bytes; // Bytes in central transfer cache | |
3256 | uint64_t pageheap_bytes; // Bytes in page heap | |
3257 | uint64_t metadata_bytes; // Bytes alloced for metadata | |
3258 | }; | |
3259 | ||
3260 | #ifndef WTF_CHANGES | |
3261 | // Get stats into "r". Also get per-size-class counts if class_count != NULL | |
3262 | static void ExtractStats(TCMallocStats* r, uint64_t* class_count) { | |
3263 | r->central_bytes = 0; | |
3264 | r->transfer_bytes = 0; | |
3265 | for (int cl = 0; cl < kNumClasses; ++cl) { | |
3266 | const int length = central_cache[cl].length(); | |
3267 | const int tc_length = central_cache[cl].tc_length(); | |
3268 | r->central_bytes += static_cast<uint64_t>(ByteSizeForClass(cl)) * length; | |
3269 | r->transfer_bytes += | |
3270 | static_cast<uint64_t>(ByteSizeForClass(cl)) * tc_length; | |
3271 | if (class_count) class_count[cl] = length + tc_length; | |
3272 | } | |
3273 | ||
3274 | // Add stats from per-thread heaps | |
3275 | r->thread_bytes = 0; | |
3276 | { // scope | |
3277 | SpinLockHolder h(&pageheap_lock); | |
3278 | for (TCMalloc_ThreadCache* h = thread_heaps; h != NULL; h = h->next_) { | |
3279 | r->thread_bytes += h->Size(); | |
3280 | if (class_count) { | |
3281 | for (size_t cl = 0; cl < kNumClasses; ++cl) { | |
3282 | class_count[cl] += h->freelist_length(cl); | |
3283 | } | |
3284 | } | |
3285 | } | |
3286 | } | |
3287 | ||
3288 | { //scope | |
3289 | SpinLockHolder h(&pageheap_lock); | |
3290 | r->system_bytes = pageheap->SystemBytes(); | |
3291 | r->metadata_bytes = metadata_system_bytes; | |
3292 | r->pageheap_bytes = pageheap->FreeBytes(); | |
3293 | } | |
3294 | } | |
3295 | #endif | |
3296 | ||
3297 | #ifndef WTF_CHANGES | |
3298 | // WRITE stats to "out" | |
3299 | static void DumpStats(TCMalloc_Printer* out, int level) { | |
3300 | TCMallocStats stats; | |
3301 | uint64_t class_count[kNumClasses]; | |
3302 | ExtractStats(&stats, (level >= 2 ? class_count : NULL)); | |
3303 | ||
3304 | if (level >= 2) { | |
3305 | out->printf("------------------------------------------------\n"); | |
3306 | uint64_t cumulative = 0; | |
3307 | for (int cl = 0; cl < kNumClasses; ++cl) { | |
3308 | if (class_count[cl] > 0) { | |
3309 | uint64_t class_bytes = class_count[cl] * ByteSizeForClass(cl); | |
3310 | cumulative += class_bytes; | |
3311 | out->printf("class %3d [ %8" PRIuS " bytes ] : " | |
3312 | "%8" PRIu64 " objs; %5.1f MB; %5.1f cum MB\n", | |
3313 | cl, ByteSizeForClass(cl), | |
3314 | class_count[cl], | |
3315 | class_bytes / 1048576.0, | |
3316 | cumulative / 1048576.0); | |
3317 | } | |
3318 | } | |
3319 | ||
3320 | SpinLockHolder h(&pageheap_lock); | |
3321 | pageheap->Dump(out); | |
3322 | } | |
3323 | ||
3324 | const uint64_t bytes_in_use = stats.system_bytes | |
3325 | - stats.pageheap_bytes | |
3326 | - stats.central_bytes | |
3327 | - stats.transfer_bytes | |
3328 | - stats.thread_bytes; | |
3329 | ||
3330 | out->printf("------------------------------------------------\n" | |
3331 | "MALLOC: %12" PRIu64 " Heap size\n" | |
3332 | "MALLOC: %12" PRIu64 " Bytes in use by application\n" | |
3333 | "MALLOC: %12" PRIu64 " Bytes free in page heap\n" | |
3334 | "MALLOC: %12" PRIu64 " Bytes free in central cache\n" | |
3335 | "MALLOC: %12" PRIu64 " Bytes free in transfer cache\n" | |
3336 | "MALLOC: %12" PRIu64 " Bytes free in thread caches\n" | |
3337 | "MALLOC: %12" PRIu64 " Spans in use\n" | |
3338 | "MALLOC: %12" PRIu64 " Thread heaps in use\n" | |
3339 | "MALLOC: %12" PRIu64 " Metadata allocated\n" | |
3340 | "------------------------------------------------\n", | |
3341 | stats.system_bytes, | |
3342 | bytes_in_use, | |
3343 | stats.pageheap_bytes, | |
3344 | stats.central_bytes, | |
3345 | stats.transfer_bytes, | |
3346 | stats.thread_bytes, | |
3347 | uint64_t(span_allocator.inuse()), | |
3348 | uint64_t(threadheap_allocator.inuse()), | |
3349 | stats.metadata_bytes); | |
3350 | } | |
3351 | ||
3352 | static void PrintStats(int level) { | |
3353 | const int kBufferSize = 16 << 10; | |
3354 | char* buffer = new char[kBufferSize]; | |
3355 | TCMalloc_Printer printer(buffer, kBufferSize); | |
3356 | DumpStats(&printer, level); | |
3357 | write(STDERR_FILENO, buffer, strlen(buffer)); | |
3358 | delete[] buffer; | |
3359 | } | |
3360 | ||
3361 | static void** DumpStackTraces() { | |
3362 | // Count how much space we need | |
3363 | int needed_slots = 0; | |
3364 | { | |
3365 | SpinLockHolder h(&pageheap_lock); | |
3366 | for (Span* s = sampled_objects.next; s != &sampled_objects; s = s->next) { | |
3367 | StackTrace* stack = reinterpret_cast<StackTrace*>(s->objects); | |
3368 | needed_slots += 3 + stack->depth; | |
3369 | } | |
3370 | needed_slots += 100; // Slop in case sample grows | |
3371 | needed_slots += needed_slots/8; // An extra 12.5% slop | |
3372 | } | |
3373 | ||
3374 | void** result = new void*[needed_slots]; | |
3375 | if (result == NULL) { | |
3376 | MESSAGE("tcmalloc: could not allocate %d slots for stack traces\n", | |
3377 | needed_slots); | |
3378 | return NULL; | |
3379 | } | |
3380 | ||
3381 | SpinLockHolder h(&pageheap_lock); | |
3382 | int used_slots = 0; | |
3383 | for (Span* s = sampled_objects.next; s != &sampled_objects; s = s->next) { | |
3384 | ASSERT(used_slots < needed_slots); // Need to leave room for terminator | |
3385 | StackTrace* stack = reinterpret_cast<StackTrace*>(s->objects); | |
3386 | if (used_slots + 3 + stack->depth >= needed_slots) { | |
3387 | // No more room | |
3388 | break; | |
3389 | } | |
3390 | ||
3391 | result[used_slots+0] = reinterpret_cast<void*>(static_cast<uintptr_t>(1)); | |
3392 | result[used_slots+1] = reinterpret_cast<void*>(stack->size); | |
3393 | result[used_slots+2] = reinterpret_cast<void*>(stack->depth); | |
3394 | for (int d = 0; d < stack->depth; d++) { | |
3395 | result[used_slots+3+d] = stack->stack[d]; | |
3396 | } | |
3397 | used_slots += 3 + stack->depth; | |
3398 | } | |
3399 | result[used_slots] = reinterpret_cast<void*>(static_cast<uintptr_t>(0)); | |
3400 | return result; | |
3401 | } | |
3402 | #endif | |
3403 | ||
3404 | #ifndef WTF_CHANGES | |
3405 | ||
3406 | // TCMalloc's support for extra malloc interfaces | |
3407 | class TCMallocImplementation : public MallocExtension { | |
3408 | public: | |
3409 | virtual void GetStats(char* buffer, int buffer_length) { | |
3410 | ASSERT(buffer_length > 0); | |
3411 | TCMalloc_Printer printer(buffer, buffer_length); | |
3412 | ||
3413 | // Print level one stats unless lots of space is available | |
3414 | if (buffer_length < 10000) { | |
3415 | DumpStats(&printer, 1); | |
3416 | } else { | |
3417 | DumpStats(&printer, 2); | |
3418 | } | |
3419 | } | |
3420 | ||
3421 | virtual void** ReadStackTraces() { | |
3422 | return DumpStackTraces(); | |
3423 | } | |
3424 | ||
3425 | virtual bool GetNumericProperty(const char* name, size_t* value) { | |
3426 | ASSERT(name != NULL); | |
3427 | ||
3428 | if (strcmp(name, "generic.current_allocated_bytes") == 0) { | |
3429 | TCMallocStats stats; | |
3430 | ExtractStats(&stats, NULL); | |
3431 | *value = stats.system_bytes | |
3432 | - stats.thread_bytes | |
3433 | - stats.central_bytes | |
3434 | - stats.pageheap_bytes; | |
3435 | return true; | |
3436 | } | |
3437 | ||
3438 | if (strcmp(name, "generic.heap_size") == 0) { | |
3439 | TCMallocStats stats; | |
3440 | ExtractStats(&stats, NULL); | |
3441 | *value = stats.system_bytes; | |
3442 | return true; | |
3443 | } | |
3444 | ||
3445 | if (strcmp(name, "tcmalloc.slack_bytes") == 0) { | |
3446 | // We assume that bytes in the page heap are not fragmented too | |
3447 | // badly, and are therefore available for allocation. | |
3448 | SpinLockHolder l(&pageheap_lock); | |
3449 | *value = pageheap->FreeBytes(); | |
3450 | return true; | |
3451 | } | |
3452 | ||
3453 | if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) { | |
3454 | SpinLockHolder l(&pageheap_lock); | |
3455 | *value = overall_thread_cache_size; | |
3456 | return true; | |
3457 | } | |
3458 | ||
3459 | if (strcmp(name, "tcmalloc.current_total_thread_cache_bytes") == 0) { | |
3460 | TCMallocStats stats; | |
3461 | ExtractStats(&stats, NULL); | |
3462 | *value = stats.thread_bytes; | |
3463 | return true; | |
3464 | } | |
3465 | ||
3466 | return false; | |
3467 | } | |
3468 | ||
3469 | virtual bool SetNumericProperty(const char* name, size_t value) { | |
3470 | ASSERT(name != NULL); | |
3471 | ||
3472 | if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) { | |
3473 | // Clip the value to a reasonable range | |
3474 | if (value < kMinThreadCacheSize) value = kMinThreadCacheSize; | |
3475 | if (value > (1<<30)) value = (1<<30); // Limit to 1GB | |
3476 | ||
3477 | SpinLockHolder l(&pageheap_lock); | |
3478 | overall_thread_cache_size = static_cast<size_t>(value); | |
3479 | TCMalloc_ThreadCache::RecomputeThreadCacheSize(); | |
3480 | return true; | |
3481 | } | |
3482 | ||
3483 | return false; | |
3484 | } | |
3485 | ||
3486 | virtual void MarkThreadIdle() { | |
3487 | TCMalloc_ThreadCache::BecomeIdle(); | |
3488 | } | |
3489 | ||
3490 | virtual void ReleaseFreeMemory() { | |
3491 | SpinLockHolder h(&pageheap_lock); | |
3492 | pageheap->ReleaseFreePages(); | |
3493 | } | |
3494 | }; | |
3495 | #endif | |
3496 | ||
3497 | // The constructor allocates an object to ensure that initialization | |
3498 | // runs before main(), and therefore we do not have a chance to become | |
3499 | // multi-threaded before initialization. We also create the TSD key | |
3500 | // here. Presumably by the time this constructor runs, glibc is in | |
3501 | // good enough shape to handle pthread_key_create(). | |
3502 | // | |
3503 | // The constructor also takes the opportunity to tell STL to use | |
3504 | // tcmalloc. We want to do this early, before construct time, so | |
3505 | // all user STL allocations go through tcmalloc (which works really | |
3506 | // well for STL). | |
3507 | // | |
3508 | // The destructor prints stats when the program exits. | |
3509 | class TCMallocGuard { | |
3510 | public: | |
3511 | ||
3512 | TCMallocGuard() { | |
3513 | #ifdef HAVE_TLS // this is true if the cc/ld/libc combo support TLS | |
3514 | // Check whether the kernel also supports TLS (needs to happen at runtime) | |
3515 | CheckIfKernelSupportsTLS(); | |
3516 | #endif | |
3517 | #ifndef WTF_CHANGES | |
3518 | #ifdef WIN32 // patch the windows VirtualAlloc, etc. | |
3519 | PatchWindowsFunctions(); // defined in windows/patch_functions.cc | |
3520 | #endif | |
3521 | #endif | |
3522 | free(malloc(1)); | |
3523 | TCMalloc_ThreadCache::InitTSD(); | |
3524 | free(malloc(1)); | |
3525 | #ifndef WTF_CHANGES | |
3526 | MallocExtension::Register(new TCMallocImplementation); | |
3527 | #endif | |
3528 | } | |
3529 | ||
3530 | #ifndef WTF_CHANGES | |
3531 | ~TCMallocGuard() { | |
3532 | const char* env = getenv("MALLOCSTATS"); | |
3533 | if (env != NULL) { | |
3534 | int level = atoi(env); | |
3535 | if (level < 1) level = 1; | |
3536 | PrintStats(level); | |
3537 | } | |
3538 | #ifdef WIN32 | |
3539 | UnpatchWindowsFunctions(); | |
3540 | #endif | |
3541 | } | |
3542 | #endif | |
3543 | }; | |
3544 | ||
3545 | #ifndef WTF_CHANGES | |
3546 | static TCMallocGuard module_enter_exit_hook; | |
3547 | #endif | |
3548 | ||
3549 | ||
3550 | //------------------------------------------------------------------- | |
3551 | // Helpers for the exported routines below | |
3552 | //------------------------------------------------------------------- | |
3553 | ||
3554 | #ifndef WTF_CHANGES | |
3555 | ||
3556 | static Span* DoSampledAllocation(size_t size) { | |
3557 | ||
3558 | // Grab the stack trace outside the heap lock | |
3559 | StackTrace tmp; | |
3560 | tmp.depth = GetStackTrace(tmp.stack, kMaxStackDepth, 1); | |
3561 | tmp.size = size; | |
3562 | ||
3563 | SpinLockHolder h(&pageheap_lock); | |
3564 | // Allocate span | |
3565 | Span *span = pageheap->New(pages(size == 0 ? 1 : size)); | |
3566 | if (span == NULL) { | |
3567 | return NULL; | |
3568 | } | |
3569 | ||
3570 | // Allocate stack trace | |
3571 | StackTrace *stack = stacktrace_allocator.New(); | |
3572 | if (stack == NULL) { | |
3573 | // Sampling failed because of lack of memory | |
3574 | return span; | |
3575 | } | |
3576 | ||
3577 | *stack = tmp; | |
3578 | span->sample = 1; | |
3579 | span->objects = stack; | |
3580 | DLL_Prepend(&sampled_objects, span); | |
3581 | ||
3582 | return span; | |
3583 | } | |
3584 | #endif | |
3585 | ||
3586 | static inline bool CheckCachedSizeClass(void *ptr) { | |
3587 | PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift; | |
3588 | size_t cached_value = pageheap->GetSizeClassIfCached(p); | |
3589 | return cached_value == 0 || | |
3590 | cached_value == pageheap->GetDescriptor(p)->sizeclass; | |
3591 | } | |
3592 | ||
3593 | static inline void* CheckedMallocResult(void *result) | |
3594 | { | |
3595 | ASSERT(result == 0 || CheckCachedSizeClass(result)); | |
3596 | return result; | |
3597 | } | |
3598 | ||
3599 | static inline void* SpanToMallocResult(Span *span) { | |
9dae56ea | 3600 | ASSERT_SPAN_COMMITTED(span); |
b37bf2e1 A |
3601 | pageheap->CacheSizeClass(span->start, 0); |
3602 | return | |
3603 | CheckedMallocResult(reinterpret_cast<void*>(span->start << kPageShift)); | |
3604 | } | |
3605 | ||
9dae56ea A |
3606 | #ifdef WTF_CHANGES |
3607 | template <bool crashOnFailure> | |
3608 | #endif | |
b37bf2e1 A |
3609 | static ALWAYS_INLINE void* do_malloc(size_t size) { |
3610 | void* ret = NULL; | |
3611 | ||
3612 | #ifdef WTF_CHANGES | |
3613 | ASSERT(!isForbidden()); | |
3614 | #endif | |
3615 | ||
3616 | // The following call forces module initialization | |
3617 | TCMalloc_ThreadCache* heap = TCMalloc_ThreadCache::GetCache(); | |
3618 | #ifndef WTF_CHANGES | |
3619 | if ((FLAGS_tcmalloc_sample_parameter > 0) && heap->SampleAllocation(size)) { | |
3620 | Span* span = DoSampledAllocation(size); | |
3621 | if (span != NULL) { | |
3622 | ret = SpanToMallocResult(span); | |
3623 | } | |
3624 | } else | |
3625 | #endif | |
3626 | if (size > kMaxSize) { | |
3627 | // Use page-level allocator | |
3628 | SpinLockHolder h(&pageheap_lock); | |
3629 | Span* span = pageheap->New(pages(size)); | |
3630 | if (span != NULL) { | |
3631 | ret = SpanToMallocResult(span); | |
3632 | } | |
3633 | } else { | |
3634 | // The common case, and also the simplest. This just pops the | |
3635 | // size-appropriate freelist, afer replenishing it if it's empty. | |
3636 | ret = CheckedMallocResult(heap->Allocate(size)); | |
3637 | } | |
9dae56ea A |
3638 | if (!ret) { |
3639 | #ifdef WTF_CHANGES | |
3640 | if (crashOnFailure) // This branch should be optimized out by the compiler. | |
3641 | CRASH(); | |
3642 | #else | |
3643 | errno = ENOMEM; | |
3644 | #endif | |
3645 | } | |
b37bf2e1 A |
3646 | return ret; |
3647 | } | |
3648 | ||
3649 | static ALWAYS_INLINE void do_free(void* ptr) { | |
3650 | if (ptr == NULL) return; | |
3651 | ASSERT(pageheap != NULL); // Should not call free() before malloc() | |
3652 | const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift; | |
3653 | Span* span = NULL; | |
3654 | size_t cl = pageheap->GetSizeClassIfCached(p); | |
3655 | ||
3656 | if (cl == 0) { | |
3657 | span = pageheap->GetDescriptor(p); | |
3658 | cl = span->sizeclass; | |
3659 | pageheap->CacheSizeClass(p, cl); | |
3660 | } | |
3661 | if (cl != 0) { | |
9dae56ea | 3662 | #ifndef NO_TCMALLOC_SAMPLES |
b37bf2e1 | 3663 | ASSERT(!pageheap->GetDescriptor(p)->sample); |
9dae56ea | 3664 | #endif |
b37bf2e1 A |
3665 | TCMalloc_ThreadCache* heap = TCMalloc_ThreadCache::GetCacheIfPresent(); |
3666 | if (heap != NULL) { | |
3667 | heap->Deallocate(ptr, cl); | |
3668 | } else { | |
3669 | // Delete directly into central cache | |
3670 | SLL_SetNext(ptr, NULL); | |
3671 | central_cache[cl].InsertRange(ptr, ptr, 1); | |
3672 | } | |
3673 | } else { | |
3674 | SpinLockHolder h(&pageheap_lock); | |
3675 | ASSERT(reinterpret_cast<uintptr_t>(ptr) % kPageSize == 0); | |
3676 | ASSERT(span != NULL && span->start == p); | |
9dae56ea | 3677 | #ifndef NO_TCMALLOC_SAMPLES |
b37bf2e1 A |
3678 | if (span->sample) { |
3679 | DLL_Remove(span); | |
3680 | stacktrace_allocator.Delete(reinterpret_cast<StackTrace*>(span->objects)); | |
3681 | span->objects = NULL; | |
3682 | } | |
9dae56ea | 3683 | #endif |
b37bf2e1 A |
3684 | pageheap->Delete(span); |
3685 | } | |
3686 | } | |
3687 | ||
3688 | #ifndef WTF_CHANGES | |
3689 | // For use by exported routines below that want specific alignments | |
3690 | // | |
3691 | // Note: this code can be slow, and can significantly fragment memory. | |
3692 | // The expectation is that memalign/posix_memalign/valloc/pvalloc will | |
3693 | // not be invoked very often. This requirement simplifies our | |
3694 | // implementation and allows us to tune for expected allocation | |
3695 | // patterns. | |
3696 | static void* do_memalign(size_t align, size_t size) { | |
3697 | ASSERT((align & (align - 1)) == 0); | |
3698 | ASSERT(align > 0); | |
3699 | if (pageheap == NULL) TCMalloc_ThreadCache::InitModule(); | |
3700 | ||
3701 | // Allocate at least one byte to avoid boundary conditions below | |
3702 | if (size == 0) size = 1; | |
3703 | ||
3704 | if (size <= kMaxSize && align < kPageSize) { | |
3705 | // Search through acceptable size classes looking for one with | |
3706 | // enough alignment. This depends on the fact that | |
3707 | // InitSizeClasses() currently produces several size classes that | |
3708 | // are aligned at powers of two. We will waste time and space if | |
3709 | // we miss in the size class array, but that is deemed acceptable | |
3710 | // since memalign() should be used rarely. | |
3711 | size_t cl = SizeClass(size); | |
3712 | while (cl < kNumClasses && ((class_to_size[cl] & (align - 1)) != 0)) { | |
3713 | cl++; | |
3714 | } | |
3715 | if (cl < kNumClasses) { | |
3716 | TCMalloc_ThreadCache* heap = TCMalloc_ThreadCache::GetCache(); | |
3717 | return CheckedMallocResult(heap->Allocate(class_to_size[cl])); | |
3718 | } | |
3719 | } | |
3720 | ||
3721 | // We will allocate directly from the page heap | |
3722 | SpinLockHolder h(&pageheap_lock); | |
3723 | ||
3724 | if (align <= kPageSize) { | |
3725 | // Any page-level allocation will be fine | |
3726 | // TODO: We could put the rest of this page in the appropriate | |
3727 | // TODO: cache but it does not seem worth it. | |
3728 | Span* span = pageheap->New(pages(size)); | |
3729 | return span == NULL ? NULL : SpanToMallocResult(span); | |
3730 | } | |
3731 | ||
3732 | // Allocate extra pages and carve off an aligned portion | |
3733 | const Length alloc = pages(size + align); | |
3734 | Span* span = pageheap->New(alloc); | |
3735 | if (span == NULL) return NULL; | |
3736 | ||
3737 | // Skip starting portion so that we end up aligned | |
3738 | Length skip = 0; | |
3739 | while ((((span->start+skip) << kPageShift) & (align - 1)) != 0) { | |
3740 | skip++; | |
3741 | } | |
3742 | ASSERT(skip < alloc); | |
3743 | if (skip > 0) { | |
3744 | Span* rest = pageheap->Split(span, skip); | |
3745 | pageheap->Delete(span); | |
3746 | span = rest; | |
3747 | } | |
3748 | ||
3749 | // Skip trailing portion that we do not need to return | |
3750 | const Length needed = pages(size); | |
3751 | ASSERT(span->length >= needed); | |
3752 | if (span->length > needed) { | |
3753 | Span* trailer = pageheap->Split(span, needed); | |
3754 | pageheap->Delete(trailer); | |
3755 | } | |
3756 | return SpanToMallocResult(span); | |
3757 | } | |
3758 | #endif | |
3759 | ||
3760 | // Helpers for use by exported routines below: | |
3761 | ||
3762 | #ifndef WTF_CHANGES | |
3763 | static inline void do_malloc_stats() { | |
3764 | PrintStats(1); | |
3765 | } | |
3766 | #endif | |
3767 | ||
3768 | static inline int do_mallopt(int, int) { | |
3769 | return 1; // Indicates error | |
3770 | } | |
3771 | ||
3772 | #ifdef HAVE_STRUCT_MALLINFO // mallinfo isn't defined on freebsd, for instance | |
3773 | static inline struct mallinfo do_mallinfo() { | |
3774 | TCMallocStats stats; | |
3775 | ExtractStats(&stats, NULL); | |
3776 | ||
3777 | // Just some of the fields are filled in. | |
3778 | struct mallinfo info; | |
3779 | memset(&info, 0, sizeof(info)); | |
3780 | ||
3781 | // Unfortunately, the struct contains "int" field, so some of the | |
3782 | // size values will be truncated. | |
3783 | info.arena = static_cast<int>(stats.system_bytes); | |
3784 | info.fsmblks = static_cast<int>(stats.thread_bytes | |
3785 | + stats.central_bytes | |
3786 | + stats.transfer_bytes); | |
3787 | info.fordblks = static_cast<int>(stats.pageheap_bytes); | |
3788 | info.uordblks = static_cast<int>(stats.system_bytes | |
3789 | - stats.thread_bytes | |
3790 | - stats.central_bytes | |
3791 | - stats.transfer_bytes | |
3792 | - stats.pageheap_bytes); | |
3793 | ||
3794 | return info; | |
3795 | } | |
3796 | #endif | |
3797 | ||
3798 | //------------------------------------------------------------------- | |
3799 | // Exported routines | |
3800 | //------------------------------------------------------------------- | |
3801 | ||
3802 | // CAVEAT: The code structure below ensures that MallocHook methods are always | |
3803 | // called from the stack frame of the invoked allocation function. | |
3804 | // heap-checker.cc depends on this to start a stack trace from | |
3805 | // the call to the (de)allocation function. | |
3806 | ||
3807 | #ifndef WTF_CHANGES | |
3808 | extern "C" | |
9dae56ea A |
3809 | #else |
3810 | #define do_malloc do_malloc<crashOnFailure> | |
3811 | ||
3812 | template <bool crashOnFailure> | |
4e4e5a6f | 3813 | ALWAYS_INLINE void* malloc(size_t); |
9dae56ea A |
3814 | |
3815 | void* fastMalloc(size_t size) | |
3816 | { | |
3817 | return malloc<true>(size); | |
3818 | } | |
3819 | ||
f9bf01c6 | 3820 | TryMallocReturnValue tryFastMalloc(size_t size) |
9dae56ea A |
3821 | { |
3822 | return malloc<false>(size); | |
3823 | } | |
3824 | ||
3825 | template <bool crashOnFailure> | |
3826 | ALWAYS_INLINE | |
b37bf2e1 A |
3827 | #endif |
3828 | void* malloc(size_t size) { | |
14957cd0 A |
3829 | #if ENABLE(WTF_MALLOC_VALIDATION) |
3830 | if (std::numeric_limits<size_t>::max() - Internal::ValidationBufferSize <= size) // If overflow would occur... | |
ba379fdc | 3831 | return 0; |
14957cd0 | 3832 | void* result = do_malloc(size + Internal::ValidationBufferSize); |
ba379fdc A |
3833 | if (!result) |
3834 | return 0; | |
3835 | ||
14957cd0 A |
3836 | Internal::ValidationHeader* header = static_cast<Internal::ValidationHeader*>(result); |
3837 | header->m_size = size; | |
3838 | header->m_type = Internal::AllocTypeMalloc; | |
3839 | header->m_prefix = static_cast<unsigned>(Internal::ValidationPrefix); | |
3840 | result = header + 1; | |
3841 | *Internal::fastMallocValidationSuffix(result) = Internal::ValidationSuffix; | |
3842 | fastMallocValidate(result); | |
ba379fdc A |
3843 | #else |
3844 | void* result = do_malloc(size); | |
3845 | #endif | |
3846 | ||
b37bf2e1 A |
3847 | #ifndef WTF_CHANGES |
3848 | MallocHook::InvokeNewHook(result, size); | |
3849 | #endif | |
3850 | return result; | |
3851 | } | |
3852 | ||
3853 | #ifndef WTF_CHANGES | |
3854 | extern "C" | |
3855 | #endif | |
3856 | void free(void* ptr) { | |
3857 | #ifndef WTF_CHANGES | |
3858 | MallocHook::InvokeDeleteHook(ptr); | |
3859 | #endif | |
ba379fdc | 3860 | |
14957cd0 | 3861 | #if ENABLE(WTF_MALLOC_VALIDATION) |
ba379fdc A |
3862 | if (!ptr) |
3863 | return; | |
3864 | ||
14957cd0 A |
3865 | fastMallocValidate(ptr); |
3866 | Internal::ValidationHeader* header = Internal::fastMallocValidationHeader(ptr); | |
3867 | memset(ptr, 0xCC, header->m_size); | |
ba379fdc A |
3868 | do_free(header); |
3869 | #else | |
3870 | do_free(ptr); | |
3871 | #endif | |
b37bf2e1 A |
3872 | } |
3873 | ||
3874 | #ifndef WTF_CHANGES | |
3875 | extern "C" | |
9dae56ea A |
3876 | #else |
3877 | template <bool crashOnFailure> | |
4e4e5a6f | 3878 | ALWAYS_INLINE void* calloc(size_t, size_t); |
9dae56ea A |
3879 | |
3880 | void* fastCalloc(size_t n, size_t elem_size) | |
3881 | { | |
14957cd0 A |
3882 | void* result = calloc<true>(n, elem_size); |
3883 | #if ENABLE(WTF_MALLOC_VALIDATION) | |
3884 | fastMallocValidate(result); | |
3885 | #endif | |
3886 | return result; | |
9dae56ea A |
3887 | } |
3888 | ||
f9bf01c6 | 3889 | TryMallocReturnValue tryFastCalloc(size_t n, size_t elem_size) |
9dae56ea | 3890 | { |
14957cd0 A |
3891 | void* result = calloc<false>(n, elem_size); |
3892 | #if ENABLE(WTF_MALLOC_VALIDATION) | |
3893 | fastMallocValidate(result); | |
3894 | #endif | |
3895 | return result; | |
9dae56ea A |
3896 | } |
3897 | ||
3898 | template <bool crashOnFailure> | |
3899 | ALWAYS_INLINE | |
b37bf2e1 A |
3900 | #endif |
3901 | void* calloc(size_t n, size_t elem_size) { | |
ba379fdc | 3902 | size_t totalBytes = n * elem_size; |
b37bf2e1 A |
3903 | |
3904 | // Protect against overflow | |
3905 | if (n > 1 && elem_size && (totalBytes / elem_size) != n) | |
3906 | return 0; | |
ba379fdc | 3907 | |
14957cd0 A |
3908 | #if ENABLE(WTF_MALLOC_VALIDATION) |
3909 | void* result = malloc<crashOnFailure>(totalBytes); | |
ba379fdc A |
3910 | if (!result) |
3911 | return 0; | |
3912 | ||
b37bf2e1 | 3913 | memset(result, 0, totalBytes); |
14957cd0 | 3914 | fastMallocValidate(result); |
ba379fdc A |
3915 | #else |
3916 | void* result = do_malloc(totalBytes); | |
3917 | if (result != NULL) { | |
3918 | memset(result, 0, totalBytes); | |
3919 | } | |
3920 | #endif | |
3921 | ||
b37bf2e1 A |
3922 | #ifndef WTF_CHANGES |
3923 | MallocHook::InvokeNewHook(result, totalBytes); | |
3924 | #endif | |
3925 | return result; | |
3926 | } | |
3927 | ||
9dae56ea A |
3928 | // Since cfree isn't used anywhere, we don't compile it in. |
3929 | #ifndef WTF_CHANGES | |
b37bf2e1 A |
3930 | #ifndef WTF_CHANGES |
3931 | extern "C" | |
3932 | #endif | |
3933 | void cfree(void* ptr) { | |
3934 | #ifndef WTF_CHANGES | |
3935 | MallocHook::InvokeDeleteHook(ptr); | |
3936 | #endif | |
3937 | do_free(ptr); | |
3938 | } | |
9dae56ea | 3939 | #endif |
b37bf2e1 A |
3940 | |
3941 | #ifndef WTF_CHANGES | |
3942 | extern "C" | |
9dae56ea A |
3943 | #else |
3944 | template <bool crashOnFailure> | |
4e4e5a6f | 3945 | ALWAYS_INLINE void* realloc(void*, size_t); |
9dae56ea A |
3946 | |
3947 | void* fastRealloc(void* old_ptr, size_t new_size) | |
3948 | { | |
14957cd0 A |
3949 | #if ENABLE(WTF_MALLOC_VALIDATION) |
3950 | fastMallocValidate(old_ptr); | |
3951 | #endif | |
3952 | void* result = realloc<true>(old_ptr, new_size); | |
3953 | #if ENABLE(WTF_MALLOC_VALIDATION) | |
3954 | fastMallocValidate(result); | |
3955 | #endif | |
3956 | return result; | |
9dae56ea A |
3957 | } |
3958 | ||
f9bf01c6 | 3959 | TryMallocReturnValue tryFastRealloc(void* old_ptr, size_t new_size) |
9dae56ea | 3960 | { |
14957cd0 A |
3961 | #if ENABLE(WTF_MALLOC_VALIDATION) |
3962 | fastMallocValidate(old_ptr); | |
3963 | #endif | |
3964 | void* result = realloc<false>(old_ptr, new_size); | |
3965 | #if ENABLE(WTF_MALLOC_VALIDATION) | |
3966 | fastMallocValidate(result); | |
3967 | #endif | |
3968 | return result; | |
9dae56ea A |
3969 | } |
3970 | ||
3971 | template <bool crashOnFailure> | |
3972 | ALWAYS_INLINE | |
b37bf2e1 A |
3973 | #endif |
3974 | void* realloc(void* old_ptr, size_t new_size) { | |
3975 | if (old_ptr == NULL) { | |
14957cd0 A |
3976 | #if ENABLE(WTF_MALLOC_VALIDATION) |
3977 | void* result = malloc<crashOnFailure>(new_size); | |
ba379fdc | 3978 | #else |
b37bf2e1 A |
3979 | void* result = do_malloc(new_size); |
3980 | #ifndef WTF_CHANGES | |
3981 | MallocHook::InvokeNewHook(result, new_size); | |
ba379fdc | 3982 | #endif |
b37bf2e1 A |
3983 | #endif |
3984 | return result; | |
3985 | } | |
3986 | if (new_size == 0) { | |
3987 | #ifndef WTF_CHANGES | |
3988 | MallocHook::InvokeDeleteHook(old_ptr); | |
3989 | #endif | |
3990 | free(old_ptr); | |
3991 | return NULL; | |
3992 | } | |
3993 | ||
14957cd0 A |
3994 | #if ENABLE(WTF_MALLOC_VALIDATION) |
3995 | if (std::numeric_limits<size_t>::max() - Internal::ValidationBufferSize <= new_size) // If overflow would occur... | |
ba379fdc | 3996 | return 0; |
14957cd0 A |
3997 | Internal::ValidationHeader* header = Internal::fastMallocValidationHeader(old_ptr); |
3998 | fastMallocValidate(old_ptr); | |
ba379fdc | 3999 | old_ptr = header; |
14957cd0 A |
4000 | header->m_size = new_size; |
4001 | new_size += Internal::ValidationBufferSize; | |
ba379fdc A |
4002 | #endif |
4003 | ||
b37bf2e1 A |
4004 | // Get the size of the old entry |
4005 | const PageID p = reinterpret_cast<uintptr_t>(old_ptr) >> kPageShift; | |
4006 | size_t cl = pageheap->GetSizeClassIfCached(p); | |
4007 | Span *span = NULL; | |
4008 | size_t old_size; | |
4009 | if (cl == 0) { | |
4010 | span = pageheap->GetDescriptor(p); | |
4011 | cl = span->sizeclass; | |
4012 | pageheap->CacheSizeClass(p, cl); | |
4013 | } | |
4014 | if (cl != 0) { | |
4015 | old_size = ByteSizeForClass(cl); | |
4016 | } else { | |
4017 | ASSERT(span != NULL); | |
4018 | old_size = span->length << kPageShift; | |
4019 | } | |
4020 | ||
4021 | // Reallocate if the new size is larger than the old size, | |
4022 | // or if the new size is significantly smaller than the old size. | |
4023 | if ((new_size > old_size) || (AllocationSize(new_size) < old_size)) { | |
4024 | // Need to reallocate | |
4025 | void* new_ptr = do_malloc(new_size); | |
4026 | if (new_ptr == NULL) { | |
4027 | return NULL; | |
4028 | } | |
4029 | #ifndef WTF_CHANGES | |
4030 | MallocHook::InvokeNewHook(new_ptr, new_size); | |
4031 | #endif | |
4032 | memcpy(new_ptr, old_ptr, ((old_size < new_size) ? old_size : new_size)); | |
4033 | #ifndef WTF_CHANGES | |
4034 | MallocHook::InvokeDeleteHook(old_ptr); | |
4035 | #endif | |
4036 | // We could use a variant of do_free() that leverages the fact | |
4037 | // that we already know the sizeclass of old_ptr. The benefit | |
4038 | // would be small, so don't bother. | |
4039 | do_free(old_ptr); | |
14957cd0 A |
4040 | #if ENABLE(WTF_MALLOC_VALIDATION) |
4041 | new_ptr = static_cast<Internal::ValidationHeader*>(new_ptr) + 1; | |
4042 | *Internal::fastMallocValidationSuffix(new_ptr) = Internal::ValidationSuffix; | |
ba379fdc | 4043 | #endif |
b37bf2e1 A |
4044 | return new_ptr; |
4045 | } else { | |
14957cd0 A |
4046 | #if ENABLE(WTF_MALLOC_VALIDATION) |
4047 | old_ptr = static_cast<Internal::ValidationHeader*>(old_ptr) + 1; // Set old_ptr back to the user pointer. | |
4048 | *Internal::fastMallocValidationSuffix(old_ptr) = Internal::ValidationSuffix; | |
ba379fdc | 4049 | #endif |
b37bf2e1 A |
4050 | return old_ptr; |
4051 | } | |
4052 | } | |
4053 | ||
9dae56ea A |
4054 | #ifdef WTF_CHANGES |
4055 | #undef do_malloc | |
4056 | #else | |
b37bf2e1 A |
4057 | |
4058 | static SpinLock set_new_handler_lock = SPINLOCK_INITIALIZER; | |
4059 | ||
4060 | static inline void* cpp_alloc(size_t size, bool nothrow) { | |
4061 | for (;;) { | |
4062 | void* p = do_malloc(size); | |
4063 | #ifdef PREANSINEW | |
4064 | return p; | |
4065 | #else | |
4066 | if (p == NULL) { // allocation failed | |
4067 | // Get the current new handler. NB: this function is not | |
4068 | // thread-safe. We make a feeble stab at making it so here, but | |
4069 | // this lock only protects against tcmalloc interfering with | |
4070 | // itself, not with other libraries calling set_new_handler. | |
4071 | std::new_handler nh; | |
4072 | { | |
4073 | SpinLockHolder h(&set_new_handler_lock); | |
4074 | nh = std::set_new_handler(0); | |
4075 | (void) std::set_new_handler(nh); | |
4076 | } | |
4077 | // If no new_handler is established, the allocation failed. | |
4078 | if (!nh) { | |
4079 | if (nothrow) return 0; | |
4080 | throw std::bad_alloc(); | |
4081 | } | |
4082 | // Otherwise, try the new_handler. If it returns, retry the | |
4083 | // allocation. If it throws std::bad_alloc, fail the allocation. | |
4084 | // if it throws something else, don't interfere. | |
4085 | try { | |
4086 | (*nh)(); | |
4087 | } catch (const std::bad_alloc&) { | |
4088 | if (!nothrow) throw; | |
4089 | return p; | |
4090 | } | |
4091 | } else { // allocation success | |
4092 | return p; | |
4093 | } | |
4094 | #endif | |
4095 | } | |
4096 | } | |
4097 | ||
4e4e5a6f A |
4098 | #if ENABLE(GLOBAL_FASTMALLOC_NEW) |
4099 | ||
b37bf2e1 A |
4100 | void* operator new(size_t size) { |
4101 | void* p = cpp_alloc(size, false); | |
4102 | // We keep this next instruction out of cpp_alloc for a reason: when | |
4103 | // it's in, and new just calls cpp_alloc, the optimizer may fold the | |
4104 | // new call into cpp_alloc, which messes up our whole section-based | |
4105 | // stacktracing (see ATTRIBUTE_SECTION, above). This ensures cpp_alloc | |
4106 | // isn't the last thing this fn calls, and prevents the folding. | |
4107 | MallocHook::InvokeNewHook(p, size); | |
4108 | return p; | |
4109 | } | |
4110 | ||
4111 | void* operator new(size_t size, const std::nothrow_t&) __THROW { | |
4112 | void* p = cpp_alloc(size, true); | |
4113 | MallocHook::InvokeNewHook(p, size); | |
4114 | return p; | |
4115 | } | |
4116 | ||
4117 | void operator delete(void* p) __THROW { | |
4118 | MallocHook::InvokeDeleteHook(p); | |
4119 | do_free(p); | |
4120 | } | |
4121 | ||
4122 | void operator delete(void* p, const std::nothrow_t&) __THROW { | |
4123 | MallocHook::InvokeDeleteHook(p); | |
4124 | do_free(p); | |
4125 | } | |
4126 | ||
4127 | void* operator new[](size_t size) { | |
4128 | void* p = cpp_alloc(size, false); | |
4129 | // We keep this next instruction out of cpp_alloc for a reason: when | |
4130 | // it's in, and new just calls cpp_alloc, the optimizer may fold the | |
4131 | // new call into cpp_alloc, which messes up our whole section-based | |
4132 | // stacktracing (see ATTRIBUTE_SECTION, above). This ensures cpp_alloc | |
4133 | // isn't the last thing this fn calls, and prevents the folding. | |
4134 | MallocHook::InvokeNewHook(p, size); | |
4135 | return p; | |
4136 | } | |
4137 | ||
4138 | void* operator new[](size_t size, const std::nothrow_t&) __THROW { | |
4139 | void* p = cpp_alloc(size, true); | |
4140 | MallocHook::InvokeNewHook(p, size); | |
4141 | return p; | |
4142 | } | |
4143 | ||
4144 | void operator delete[](void* p) __THROW { | |
4145 | MallocHook::InvokeDeleteHook(p); | |
4146 | do_free(p); | |
4147 | } | |
4148 | ||
4149 | void operator delete[](void* p, const std::nothrow_t&) __THROW { | |
4150 | MallocHook::InvokeDeleteHook(p); | |
4151 | do_free(p); | |
4152 | } | |
4153 | ||
4e4e5a6f A |
4154 | #endif |
4155 | ||
b37bf2e1 A |
4156 | extern "C" void* memalign(size_t align, size_t size) __THROW { |
4157 | void* result = do_memalign(align, size); | |
4158 | MallocHook::InvokeNewHook(result, size); | |
4159 | return result; | |
4160 | } | |
4161 | ||
4162 | extern "C" int posix_memalign(void** result_ptr, size_t align, size_t size) | |
4163 | __THROW { | |
4164 | if (((align % sizeof(void*)) != 0) || | |
4165 | ((align & (align - 1)) != 0) || | |
4166 | (align == 0)) { | |
4167 | return EINVAL; | |
4168 | } | |
4169 | ||
4170 | void* result = do_memalign(align, size); | |
4171 | MallocHook::InvokeNewHook(result, size); | |
4172 | if (result == NULL) { | |
4173 | return ENOMEM; | |
4174 | } else { | |
4175 | *result_ptr = result; | |
4176 | return 0; | |
4177 | } | |
4178 | } | |
4179 | ||
4180 | static size_t pagesize = 0; | |
4181 | ||
4182 | extern "C" void* valloc(size_t size) __THROW { | |
4183 | // Allocate page-aligned object of length >= size bytes | |
4184 | if (pagesize == 0) pagesize = getpagesize(); | |
4185 | void* result = do_memalign(pagesize, size); | |
4186 | MallocHook::InvokeNewHook(result, size); | |
4187 | return result; | |
4188 | } | |
4189 | ||
4190 | extern "C" void* pvalloc(size_t size) __THROW { | |
4191 | // Round up size to a multiple of pagesize | |
4192 | if (pagesize == 0) pagesize = getpagesize(); | |
4193 | size = (size + pagesize - 1) & ~(pagesize - 1); | |
4194 | void* result = do_memalign(pagesize, size); | |
4195 | MallocHook::InvokeNewHook(result, size); | |
4196 | return result; | |
4197 | } | |
4198 | ||
4199 | extern "C" void malloc_stats(void) { | |
4200 | do_malloc_stats(); | |
4201 | } | |
4202 | ||
4203 | extern "C" int mallopt(int cmd, int value) { | |
4204 | return do_mallopt(cmd, value); | |
4205 | } | |
4206 | ||
4207 | #ifdef HAVE_STRUCT_MALLINFO | |
4208 | extern "C" struct mallinfo mallinfo(void) { | |
4209 | return do_mallinfo(); | |
4210 | } | |
4211 | #endif | |
4212 | ||
4213 | //------------------------------------------------------------------- | |
4214 | // Some library routines on RedHat 9 allocate memory using malloc() | |
4215 | // and free it using __libc_free() (or vice-versa). Since we provide | |
4216 | // our own implementations of malloc/free, we need to make sure that | |
4217 | // the __libc_XXX variants (defined as part of glibc) also point to | |
4218 | // the same implementations. | |
4219 | //------------------------------------------------------------------- | |
4220 | ||
4221 | #if defined(__GLIBC__) | |
4222 | extern "C" { | |
ba379fdc | 4223 | #if COMPILER(GCC) && !defined(__MACH__) && defined(HAVE___ATTRIBUTE__) |
b37bf2e1 A |
4224 | // Potentially faster variants that use the gcc alias extension. |
4225 | // Mach-O (Darwin) does not support weak aliases, hence the __MACH__ check. | |
4226 | # define ALIAS(x) __attribute__ ((weak, alias (x))) | |
4227 | void* __libc_malloc(size_t size) ALIAS("malloc"); | |
4228 | void __libc_free(void* ptr) ALIAS("free"); | |
4229 | void* __libc_realloc(void* ptr, size_t size) ALIAS("realloc"); | |
4230 | void* __libc_calloc(size_t n, size_t size) ALIAS("calloc"); | |
4231 | void __libc_cfree(void* ptr) ALIAS("cfree"); | |
4232 | void* __libc_memalign(size_t align, size_t s) ALIAS("memalign"); | |
4233 | void* __libc_valloc(size_t size) ALIAS("valloc"); | |
4234 | void* __libc_pvalloc(size_t size) ALIAS("pvalloc"); | |
4235 | int __posix_memalign(void** r, size_t a, size_t s) ALIAS("posix_memalign"); | |
4236 | # undef ALIAS | |
4237 | # else /* not __GNUC__ */ | |
4238 | // Portable wrappers | |
4239 | void* __libc_malloc(size_t size) { return malloc(size); } | |
4240 | void __libc_free(void* ptr) { free(ptr); } | |
4241 | void* __libc_realloc(void* ptr, size_t size) { return realloc(ptr, size); } | |
4242 | void* __libc_calloc(size_t n, size_t size) { return calloc(n, size); } | |
4243 | void __libc_cfree(void* ptr) { cfree(ptr); } | |
4244 | void* __libc_memalign(size_t align, size_t s) { return memalign(align, s); } | |
4245 | void* __libc_valloc(size_t size) { return valloc(size); } | |
4246 | void* __libc_pvalloc(size_t size) { return pvalloc(size); } | |
4247 | int __posix_memalign(void** r, size_t a, size_t s) { | |
4248 | return posix_memalign(r, a, s); | |
4249 | } | |
4250 | # endif /* __GNUC__ */ | |
4251 | } | |
4252 | #endif /* __GLIBC__ */ | |
4253 | ||
4254 | // Override __libc_memalign in libc on linux boxes specially. | |
4255 | // They have a bug in libc that causes them to (very rarely) allocate | |
4256 | // with __libc_memalign() yet deallocate with free() and the | |
4257 | // definitions above don't catch it. | |
4258 | // This function is an exception to the rule of calling MallocHook method | |
4259 | // from the stack frame of the allocation function; | |
4260 | // heap-checker handles this special case explicitly. | |
4261 | static void *MemalignOverride(size_t align, size_t size, const void *caller) | |
4262 | __THROW { | |
4263 | void* result = do_memalign(align, size); | |
4264 | MallocHook::InvokeNewHook(result, size); | |
4265 | return result; | |
4266 | } | |
4267 | void *(*__memalign_hook)(size_t, size_t, const void *) = MemalignOverride; | |
4268 | ||
4269 | #endif | |
4270 | ||
4e4e5a6f A |
4271 | #ifdef WTF_CHANGES |
4272 | void releaseFastMallocFreeMemory() | |
4273 | { | |
4274 | // Flush free pages in the current thread cache back to the page heap. | |
4275 | // Low watermark mechanism in Scavenge() prevents full return on the first pass. | |
4276 | // The second pass flushes everything. | |
4277 | if (TCMalloc_ThreadCache* threadCache = TCMalloc_ThreadCache::GetCacheIfPresent()) { | |
4278 | threadCache->Scavenge(); | |
4279 | threadCache->Scavenge(); | |
4280 | } | |
4281 | ||
4282 | SpinLockHolder h(&pageheap_lock); | |
4283 | pageheap->ReleaseFreePages(); | |
4284 | } | |
4285 | ||
4286 | FastMallocStatistics fastMallocStatistics() | |
4287 | { | |
4288 | FastMallocStatistics statistics; | |
4289 | ||
4290 | SpinLockHolder lockHolder(&pageheap_lock); | |
4291 | statistics.reservedVMBytes = static_cast<size_t>(pageheap->SystemBytes()); | |
4292 | statistics.committedVMBytes = statistics.reservedVMBytes - pageheap->ReturnedBytes(); | |
4293 | ||
4294 | statistics.freeListBytes = 0; | |
4295 | for (unsigned cl = 0; cl < kNumClasses; ++cl) { | |
4296 | const int length = central_cache[cl].length(); | |
4297 | const int tc_length = central_cache[cl].tc_length(); | |
4298 | ||
4299 | statistics.freeListBytes += ByteSizeForClass(cl) * (length + tc_length); | |
4300 | } | |
4301 | for (TCMalloc_ThreadCache* threadCache = thread_heaps; threadCache ; threadCache = threadCache->next_) | |
4302 | statistics.freeListBytes += threadCache->Size(); | |
4303 | ||
4304 | return statistics; | |
4305 | } | |
4306 | ||
4307 | size_t fastMallocSize(const void* ptr) | |
4308 | { | |
14957cd0 A |
4309 | #if ENABLE(WTF_MALLOC_VALIDATION) |
4310 | return Internal::fastMallocValidationHeader(const_cast<void*>(ptr))->m_size; | |
4311 | #else | |
4e4e5a6f A |
4312 | const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift; |
4313 | Span* span = pageheap->GetDescriptorEnsureSafe(p); | |
4314 | ||
4315 | if (!span || span->free) | |
4316 | return 0; | |
4317 | ||
4318 | for (void* free = span->objects; free != NULL; free = *((void**) free)) { | |
4319 | if (ptr == free) | |
4320 | return 0; | |
4321 | } | |
4322 | ||
4323 | if (size_t cl = span->sizeclass) | |
4324 | return ByteSizeForClass(cl); | |
4325 | ||
4326 | return span->length << kPageShift; | |
14957cd0 | 4327 | #endif |
4e4e5a6f A |
4328 | } |
4329 | ||
4330 | #if OS(DARWIN) | |
b37bf2e1 A |
4331 | |
4332 | class FreeObjectFinder { | |
4333 | const RemoteMemoryReader& m_reader; | |
4334 | HashSet<void*> m_freeObjects; | |
4335 | ||
4336 | public: | |
4337 | FreeObjectFinder(const RemoteMemoryReader& reader) : m_reader(reader) { } | |
4338 | ||
4339 | void visit(void* ptr) { m_freeObjects.add(ptr); } | |
4340 | bool isFreeObject(void* ptr) const { return m_freeObjects.contains(ptr); } | |
ba379fdc | 4341 | bool isFreeObject(vm_address_t ptr) const { return isFreeObject(reinterpret_cast<void*>(ptr)); } |
b37bf2e1 A |
4342 | size_t freeObjectCount() const { return m_freeObjects.size(); } |
4343 | ||
4344 | void findFreeObjects(TCMalloc_ThreadCache* threadCache) | |
4345 | { | |
4346 | for (; threadCache; threadCache = (threadCache->next_ ? m_reader(threadCache->next_) : 0)) | |
4347 | threadCache->enumerateFreeObjects(*this, m_reader); | |
4348 | } | |
4349 | ||
9dae56ea | 4350 | void findFreeObjects(TCMalloc_Central_FreeListPadded* centralFreeList, size_t numSizes, TCMalloc_Central_FreeListPadded* remoteCentralFreeList) |
b37bf2e1 A |
4351 | { |
4352 | for (unsigned i = 0; i < numSizes; i++) | |
9dae56ea | 4353 | centralFreeList[i].enumerateFreeObjects(*this, m_reader, remoteCentralFreeList + i); |
b37bf2e1 A |
4354 | } |
4355 | }; | |
4356 | ||
4357 | class PageMapFreeObjectFinder { | |
4358 | const RemoteMemoryReader& m_reader; | |
4359 | FreeObjectFinder& m_freeObjectFinder; | |
4360 | ||
4361 | public: | |
4362 | PageMapFreeObjectFinder(const RemoteMemoryReader& reader, FreeObjectFinder& freeObjectFinder) | |
4363 | : m_reader(reader) | |
4364 | , m_freeObjectFinder(freeObjectFinder) | |
4365 | { } | |
4366 | ||
4367 | int visit(void* ptr) const | |
4368 | { | |
4369 | if (!ptr) | |
4370 | return 1; | |
4371 | ||
4372 | Span* span = m_reader(reinterpret_cast<Span*>(ptr)); | |
14957cd0 A |
4373 | if (!span) |
4374 | return 1; | |
4375 | ||
b37bf2e1 A |
4376 | if (span->free) { |
4377 | void* ptr = reinterpret_cast<void*>(span->start << kPageShift); | |
4378 | m_freeObjectFinder.visit(ptr); | |
4379 | } else if (span->sizeclass) { | |
4380 | // Walk the free list of the small-object span, keeping track of each object seen | |
14957cd0 | 4381 | for (void* nextObject = span->objects; nextObject; nextObject = m_reader.nextEntryInLinkedList(reinterpret_cast<void**>(nextObject))) |
b37bf2e1 A |
4382 | m_freeObjectFinder.visit(nextObject); |
4383 | } | |
4384 | return span->length; | |
4385 | } | |
4386 | }; | |
4387 | ||
4388 | class PageMapMemoryUsageRecorder { | |
4389 | task_t m_task; | |
4390 | void* m_context; | |
4391 | unsigned m_typeMask; | |
4392 | vm_range_recorder_t* m_recorder; | |
4393 | const RemoteMemoryReader& m_reader; | |
4394 | const FreeObjectFinder& m_freeObjectFinder; | |
ba379fdc A |
4395 | |
4396 | HashSet<void*> m_seenPointers; | |
4397 | Vector<Span*> m_coalescedSpans; | |
b37bf2e1 A |
4398 | |
4399 | public: | |
4400 | PageMapMemoryUsageRecorder(task_t task, void* context, unsigned typeMask, vm_range_recorder_t* recorder, const RemoteMemoryReader& reader, const FreeObjectFinder& freeObjectFinder) | |
4401 | : m_task(task) | |
4402 | , m_context(context) | |
4403 | , m_typeMask(typeMask) | |
4404 | , m_recorder(recorder) | |
4405 | , m_reader(reader) | |
4406 | , m_freeObjectFinder(freeObjectFinder) | |
4407 | { } | |
4408 | ||
ba379fdc A |
4409 | ~PageMapMemoryUsageRecorder() |
4410 | { | |
4411 | ASSERT(!m_coalescedSpans.size()); | |
4412 | } | |
4413 | ||
4414 | void recordPendingRegions() | |
4415 | { | |
4416 | Span* lastSpan = m_coalescedSpans[m_coalescedSpans.size() - 1]; | |
4417 | vm_range_t ptrRange = { m_coalescedSpans[0]->start << kPageShift, 0 }; | |
4418 | ptrRange.size = (lastSpan->start << kPageShift) - ptrRange.address + (lastSpan->length * kPageSize); | |
4419 | ||
4420 | // Mark the memory region the spans represent as a candidate for containing pointers | |
4421 | if (m_typeMask & MALLOC_PTR_REGION_RANGE_TYPE) | |
4422 | (*m_recorder)(m_task, m_context, MALLOC_PTR_REGION_RANGE_TYPE, &ptrRange, 1); | |
4423 | ||
4424 | if (!(m_typeMask & MALLOC_PTR_IN_USE_RANGE_TYPE)) { | |
4425 | m_coalescedSpans.clear(); | |
4426 | return; | |
4427 | } | |
4428 | ||
4429 | Vector<vm_range_t, 1024> allocatedPointers; | |
4430 | for (size_t i = 0; i < m_coalescedSpans.size(); ++i) { | |
4431 | Span *theSpan = m_coalescedSpans[i]; | |
4432 | if (theSpan->free) | |
4433 | continue; | |
4434 | ||
4435 | vm_address_t spanStartAddress = theSpan->start << kPageShift; | |
4436 | vm_size_t spanSizeInBytes = theSpan->length * kPageSize; | |
4437 | ||
4438 | if (!theSpan->sizeclass) { | |
4439 | // If it's an allocated large object span, mark it as in use | |
4440 | if (!m_freeObjectFinder.isFreeObject(spanStartAddress)) | |
4441 | allocatedPointers.append((vm_range_t){spanStartAddress, spanSizeInBytes}); | |
4442 | } else { | |
4443 | const size_t objectSize = ByteSizeForClass(theSpan->sizeclass); | |
4444 | ||
4445 | // Mark each allocated small object within the span as in use | |
4446 | const vm_address_t endOfSpan = spanStartAddress + spanSizeInBytes; | |
4447 | for (vm_address_t object = spanStartAddress; object + objectSize <= endOfSpan; object += objectSize) { | |
4448 | if (!m_freeObjectFinder.isFreeObject(object)) | |
4449 | allocatedPointers.append((vm_range_t){object, objectSize}); | |
4450 | } | |
4451 | } | |
4452 | } | |
4453 | ||
4454 | (*m_recorder)(m_task, m_context, MALLOC_PTR_IN_USE_RANGE_TYPE, allocatedPointers.data(), allocatedPointers.size()); | |
4455 | ||
4456 | m_coalescedSpans.clear(); | |
4457 | } | |
4458 | ||
4459 | int visit(void* ptr) | |
b37bf2e1 A |
4460 | { |
4461 | if (!ptr) | |
4462 | return 1; | |
4463 | ||
4464 | Span* span = m_reader(reinterpret_cast<Span*>(ptr)); | |
14957cd0 | 4465 | if (!span || !span->start) |
ba379fdc A |
4466 | return 1; |
4467 | ||
b37bf2e1 A |
4468 | if (m_seenPointers.contains(ptr)) |
4469 | return span->length; | |
4470 | m_seenPointers.add(ptr); | |
4471 | ||
ba379fdc A |
4472 | if (!m_coalescedSpans.size()) { |
4473 | m_coalescedSpans.append(span); | |
4474 | return span->length; | |
4475 | } | |
b37bf2e1 | 4476 | |
ba379fdc A |
4477 | Span* previousSpan = m_coalescedSpans[m_coalescedSpans.size() - 1]; |
4478 | vm_address_t previousSpanStartAddress = previousSpan->start << kPageShift; | |
4479 | vm_size_t previousSpanSizeInBytes = previousSpan->length * kPageSize; | |
b37bf2e1 | 4480 | |
ba379fdc A |
4481 | // If the new span is adjacent to the previous span, do nothing for now. |
4482 | vm_address_t spanStartAddress = span->start << kPageShift; | |
4483 | if (spanStartAddress == previousSpanStartAddress + previousSpanSizeInBytes) { | |
4484 | m_coalescedSpans.append(span); | |
4485 | return span->length; | |
4486 | } | |
b37bf2e1 | 4487 | |
ba379fdc A |
4488 | // New span is not adjacent to previous span, so record the spans coalesced so far. |
4489 | recordPendingRegions(); | |
4490 | m_coalescedSpans.append(span); | |
b37bf2e1 | 4491 | |
ba379fdc A |
4492 | return span->length; |
4493 | } | |
4494 | }; | |
b37bf2e1 | 4495 | |
ba379fdc A |
4496 | class AdminRegionRecorder { |
4497 | task_t m_task; | |
4498 | void* m_context; | |
4499 | unsigned m_typeMask; | |
4500 | vm_range_recorder_t* m_recorder; | |
4501 | const RemoteMemoryReader& m_reader; | |
4502 | ||
4503 | Vector<vm_range_t, 1024> m_pendingRegions; | |
4504 | ||
4505 | public: | |
4506 | AdminRegionRecorder(task_t task, void* context, unsigned typeMask, vm_range_recorder_t* recorder, const RemoteMemoryReader& reader) | |
4507 | : m_task(task) | |
4508 | , m_context(context) | |
4509 | , m_typeMask(typeMask) | |
4510 | , m_recorder(recorder) | |
4511 | , m_reader(reader) | |
4512 | { } | |
4513 | ||
4514 | void recordRegion(vm_address_t ptr, size_t size) | |
4515 | { | |
4516 | if (m_typeMask & MALLOC_ADMIN_REGION_RANGE_TYPE) | |
4517 | m_pendingRegions.append((vm_range_t){ ptr, size }); | |
4518 | } | |
4519 | ||
4520 | void visit(void *ptr, size_t size) | |
4521 | { | |
4522 | recordRegion(reinterpret_cast<vm_address_t>(ptr), size); | |
4523 | } | |
4524 | ||
4525 | void recordPendingRegions() | |
4526 | { | |
4527 | if (m_pendingRegions.size()) { | |
4528 | (*m_recorder)(m_task, m_context, MALLOC_ADMIN_REGION_RANGE_TYPE, m_pendingRegions.data(), m_pendingRegions.size()); | |
4529 | m_pendingRegions.clear(); | |
b37bf2e1 | 4530 | } |
ba379fdc | 4531 | } |
b37bf2e1 | 4532 | |
ba379fdc A |
4533 | ~AdminRegionRecorder() |
4534 | { | |
4535 | ASSERT(!m_pendingRegions.size()); | |
b37bf2e1 A |
4536 | } |
4537 | }; | |
4538 | ||
4539 | kern_return_t FastMallocZone::enumerate(task_t task, void* context, unsigned typeMask, vm_address_t zoneAddress, memory_reader_t reader, vm_range_recorder_t recorder) | |
4540 | { | |
4541 | RemoteMemoryReader memoryReader(task, reader); | |
4542 | ||
4543 | InitSizeClasses(); | |
4544 | ||
4545 | FastMallocZone* mzone = memoryReader(reinterpret_cast<FastMallocZone*>(zoneAddress)); | |
4546 | TCMalloc_PageHeap* pageHeap = memoryReader(mzone->m_pageHeap); | |
4547 | TCMalloc_ThreadCache** threadHeapsPointer = memoryReader(mzone->m_threadHeaps); | |
4548 | TCMalloc_ThreadCache* threadHeaps = memoryReader(*threadHeapsPointer); | |
4549 | ||
4550 | TCMalloc_Central_FreeListPadded* centralCaches = memoryReader(mzone->m_centralCaches, sizeof(TCMalloc_Central_FreeListPadded) * kNumClasses); | |
4551 | ||
4552 | FreeObjectFinder finder(memoryReader); | |
4553 | finder.findFreeObjects(threadHeaps); | |
9dae56ea | 4554 | finder.findFreeObjects(centralCaches, kNumClasses, mzone->m_centralCaches); |
b37bf2e1 A |
4555 | |
4556 | TCMalloc_PageHeap::PageMap* pageMap = &pageHeap->pagemap_; | |
4557 | PageMapFreeObjectFinder pageMapFinder(memoryReader, finder); | |
ba379fdc | 4558 | pageMap->visitValues(pageMapFinder, memoryReader); |
b37bf2e1 A |
4559 | |
4560 | PageMapMemoryUsageRecorder usageRecorder(task, context, typeMask, recorder, memoryReader, finder); | |
ba379fdc A |
4561 | pageMap->visitValues(usageRecorder, memoryReader); |
4562 | usageRecorder.recordPendingRegions(); | |
4563 | ||
4564 | AdminRegionRecorder adminRegionRecorder(task, context, typeMask, recorder, memoryReader); | |
4565 | pageMap->visitAllocations(adminRegionRecorder, memoryReader); | |
4566 | ||
4567 | PageHeapAllocator<Span>* spanAllocator = memoryReader(mzone->m_spanAllocator); | |
4568 | PageHeapAllocator<TCMalloc_ThreadCache>* pageHeapAllocator = memoryReader(mzone->m_pageHeapAllocator); | |
4569 | ||
4570 | spanAllocator->recordAdministrativeRegions(adminRegionRecorder, memoryReader); | |
4571 | pageHeapAllocator->recordAdministrativeRegions(adminRegionRecorder, memoryReader); | |
4572 | ||
4573 | adminRegionRecorder.recordPendingRegions(); | |
b37bf2e1 A |
4574 | |
4575 | return 0; | |
4576 | } | |
4577 | ||
4578 | size_t FastMallocZone::size(malloc_zone_t*, const void*) | |
4579 | { | |
4580 | return 0; | |
4581 | } | |
4582 | ||
4583 | void* FastMallocZone::zoneMalloc(malloc_zone_t*, size_t) | |
4584 | { | |
4585 | return 0; | |
4586 | } | |
4587 | ||
4588 | void* FastMallocZone::zoneCalloc(malloc_zone_t*, size_t, size_t) | |
4589 | { | |
4590 | return 0; | |
4591 | } | |
4592 | ||
4593 | void FastMallocZone::zoneFree(malloc_zone_t*, void* ptr) | |
4594 | { | |
4595 | // Due to <rdar://problem/5671357> zoneFree may be called by the system free even if the pointer | |
4596 | // is not in this zone. When this happens, the pointer being freed was not allocated by any | |
4597 | // zone so we need to print a useful error for the application developer. | |
4598 | malloc_printf("*** error for object %p: pointer being freed was not allocated\n", ptr); | |
4599 | } | |
4600 | ||
4601 | void* FastMallocZone::zoneRealloc(malloc_zone_t*, void*, size_t) | |
4602 | { | |
4603 | return 0; | |
4604 | } | |
4605 | ||
4606 | ||
4607 | #undef malloc | |
4608 | #undef free | |
4609 | #undef realloc | |
4610 | #undef calloc | |
4611 | ||
4612 | extern "C" { | |
4613 | malloc_introspection_t jscore_fastmalloc_introspection = { &FastMallocZone::enumerate, &FastMallocZone::goodSize, &FastMallocZone::check, &FastMallocZone::print, | |
9bcd318d | 4614 | &FastMallocZone::log, &FastMallocZone::forceLock, &FastMallocZone::forceUnlock, &FastMallocZone::statistics |
14957cd0 | 4615 | |
ba379fdc | 4616 | , 0 // zone_locked will not be called on the zone unless it advertises itself as version five or higher. |
b80e6193 | 4617 | , 0, 0, 0, 0 // These members will not be used unless the zone advertises itself as version seven or higher. |
14957cd0 | 4618 | |
9bcd318d | 4619 | }; |
b37bf2e1 A |
4620 | } |
4621 | ||
ba379fdc | 4622 | FastMallocZone::FastMallocZone(TCMalloc_PageHeap* pageHeap, TCMalloc_ThreadCache** threadHeaps, TCMalloc_Central_FreeListPadded* centralCaches, PageHeapAllocator<Span>* spanAllocator, PageHeapAllocator<TCMalloc_ThreadCache>* pageHeapAllocator) |
b37bf2e1 A |
4623 | : m_pageHeap(pageHeap) |
4624 | , m_threadHeaps(threadHeaps) | |
4625 | , m_centralCaches(centralCaches) | |
ba379fdc A |
4626 | , m_spanAllocator(spanAllocator) |
4627 | , m_pageHeapAllocator(pageHeapAllocator) | |
b37bf2e1 A |
4628 | { |
4629 | memset(&m_zone, 0, sizeof(m_zone)); | |
9bcd318d | 4630 | m_zone.version = 4; |
b37bf2e1 A |
4631 | m_zone.zone_name = "JavaScriptCore FastMalloc"; |
4632 | m_zone.size = &FastMallocZone::size; | |
4633 | m_zone.malloc = &FastMallocZone::zoneMalloc; | |
4634 | m_zone.calloc = &FastMallocZone::zoneCalloc; | |
4635 | m_zone.realloc = &FastMallocZone::zoneRealloc; | |
4636 | m_zone.free = &FastMallocZone::zoneFree; | |
4637 | m_zone.valloc = &FastMallocZone::zoneValloc; | |
4638 | m_zone.destroy = &FastMallocZone::zoneDestroy; | |
4639 | m_zone.introspect = &jscore_fastmalloc_introspection; | |
4640 | malloc_zone_register(&m_zone); | |
4641 | } | |
4642 | ||
4643 | ||
4644 | void FastMallocZone::init() | |
4645 | { | |
ba379fdc | 4646 | static FastMallocZone zone(pageheap, &thread_heaps, static_cast<TCMalloc_Central_FreeListPadded*>(central_cache), &span_allocator, &threadheap_allocator); |
b37bf2e1 A |
4647 | } |
4648 | ||
4e4e5a6f | 4649 | #endif // OS(DARWIN) |
b37bf2e1 | 4650 | |
b37bf2e1 | 4651 | } // namespace WTF |
4e4e5a6f | 4652 | #endif // WTF_CHANGES |
b37bf2e1 | 4653 | |
f4e78d34 | 4654 | #endif // FORCE_SYSTEM_MALLOC |