]>
Commit | Line | Data |
---|---|---|
9dae56ea A |
1 | /* |
2 | * Copyright (C) 2008 Apple Inc. All rights reserved. | |
3 | * | |
4 | * Redistribution and use in source and binary forms, with or without | |
5 | * modification, are permitted provided that the following conditions | |
6 | * are met: | |
7 | * 1. Redistributions of source code must retain the above copyright | |
8 | * notice, this list of conditions and the following disclaimer. | |
9 | * 2. Redistributions in binary form must reproduce the above copyright | |
10 | * notice, this list of conditions and the following disclaimer in the | |
11 | * documentation and/or other materials provided with the distribution. | |
12 | * | |
13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY | |
14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | |
16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR | |
17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | |
18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | |
19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | |
20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | |
21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
24 | */ | |
25 | ||
26 | #ifndef X86Assembler_h | |
27 | #define X86Assembler_h | |
28 | ||
f9bf01c6 | 29 | #if ENABLE(ASSEMBLER) && (CPU(X86) || CPU(X86_64)) |
9dae56ea A |
30 | |
31 | #include "AssemblerBuffer.h" | |
32 | #include <stdint.h> | |
33 | #include <wtf/Assertions.h> | |
34 | #include <wtf/Vector.h> | |
35 | ||
36 | namespace JSC { | |
37 | ||
38 | inline bool CAN_SIGN_EXTEND_8_32(int32_t value) { return value == (int32_t)(signed char)value; } | |
9dae56ea | 39 | |
f9bf01c6 | 40 | namespace X86Registers { |
9dae56ea A |
41 | typedef enum { |
42 | eax, | |
43 | ecx, | |
44 | edx, | |
45 | ebx, | |
46 | esp, | |
47 | ebp, | |
48 | esi, | |
49 | edi, | |
50 | ||
f9bf01c6 | 51 | #if CPU(X86_64) |
9dae56ea A |
52 | r8, |
53 | r9, | |
54 | r10, | |
55 | r11, | |
56 | r12, | |
57 | r13, | |
58 | r14, | |
59 | r15, | |
60 | #endif | |
61 | } RegisterID; | |
62 | ||
63 | typedef enum { | |
64 | xmm0, | |
65 | xmm1, | |
66 | xmm2, | |
67 | xmm3, | |
68 | xmm4, | |
69 | xmm5, | |
70 | xmm6, | |
71 | xmm7, | |
72 | } XMMRegisterID; | |
73 | } | |
74 | ||
75 | class X86Assembler { | |
76 | public: | |
f9bf01c6 A |
77 | typedef X86Registers::RegisterID RegisterID; |
78 | typedef X86Registers::XMMRegisterID XMMRegisterID; | |
ba379fdc | 79 | typedef XMMRegisterID FPRegisterID; |
9dae56ea | 80 | |
ba379fdc A |
81 | typedef enum { |
82 | ConditionO, | |
83 | ConditionNO, | |
84 | ConditionB, | |
85 | ConditionAE, | |
86 | ConditionE, | |
87 | ConditionNE, | |
88 | ConditionBE, | |
89 | ConditionA, | |
90 | ConditionS, | |
91 | ConditionNS, | |
92 | ConditionP, | |
93 | ConditionNP, | |
94 | ConditionL, | |
95 | ConditionGE, | |
96 | ConditionLE, | |
97 | ConditionG, | |
98 | ||
99 | ConditionC = ConditionB, | |
100 | ConditionNC = ConditionAE, | |
101 | } Condition; | |
102 | ||
103 | private: | |
9dae56ea A |
104 | typedef enum { |
105 | OP_ADD_EvGv = 0x01, | |
106 | OP_ADD_GvEv = 0x03, | |
107 | OP_OR_EvGv = 0x09, | |
108 | OP_OR_GvEv = 0x0B, | |
109 | OP_2BYTE_ESCAPE = 0x0F, | |
110 | OP_AND_EvGv = 0x21, | |
ba379fdc | 111 | OP_AND_GvEv = 0x23, |
9dae56ea A |
112 | OP_SUB_EvGv = 0x29, |
113 | OP_SUB_GvEv = 0x2B, | |
114 | PRE_PREDICT_BRANCH_NOT_TAKEN = 0x2E, | |
115 | OP_XOR_EvGv = 0x31, | |
ba379fdc | 116 | OP_XOR_GvEv = 0x33, |
9dae56ea A |
117 | OP_CMP_EvGv = 0x39, |
118 | OP_CMP_GvEv = 0x3B, | |
f9bf01c6 | 119 | #if CPU(X86_64) |
9dae56ea A |
120 | PRE_REX = 0x40, |
121 | #endif | |
122 | OP_PUSH_EAX = 0x50, | |
123 | OP_POP_EAX = 0x58, | |
f9bf01c6 | 124 | #if CPU(X86_64) |
9dae56ea A |
125 | OP_MOVSXD_GvEv = 0x63, |
126 | #endif | |
127 | PRE_OPERAND_SIZE = 0x66, | |
128 | PRE_SSE_66 = 0x66, | |
129 | OP_PUSH_Iz = 0x68, | |
130 | OP_IMUL_GvEvIz = 0x69, | |
4e4e5a6f | 131 | OP_GROUP1_EbIb = 0x80, |
9dae56ea A |
132 | OP_GROUP1_EvIz = 0x81, |
133 | OP_GROUP1_EvIb = 0x83, | |
14957cd0 | 134 | OP_TEST_EbGb = 0x84, |
9dae56ea A |
135 | OP_TEST_EvGv = 0x85, |
136 | OP_XCHG_EvGv = 0x87, | |
137 | OP_MOV_EvGv = 0x89, | |
138 | OP_MOV_GvEv = 0x8B, | |
139 | OP_LEA = 0x8D, | |
140 | OP_GROUP1A_Ev = 0x8F, | |
14957cd0 | 141 | OP_NOP = 0x90, |
9dae56ea A |
142 | OP_CDQ = 0x99, |
143 | OP_MOV_EAXOv = 0xA1, | |
144 | OP_MOV_OvEAX = 0xA3, | |
145 | OP_MOV_EAXIv = 0xB8, | |
146 | OP_GROUP2_EvIb = 0xC1, | |
147 | OP_RET = 0xC3, | |
148 | OP_GROUP11_EvIz = 0xC7, | |
149 | OP_INT3 = 0xCC, | |
150 | OP_GROUP2_Ev1 = 0xD1, | |
151 | OP_GROUP2_EvCL = 0xD3, | |
152 | OP_CALL_rel32 = 0xE8, | |
153 | OP_JMP_rel32 = 0xE9, | |
154 | PRE_SSE_F2 = 0xF2, | |
155 | OP_HLT = 0xF4, | |
156 | OP_GROUP3_EbIb = 0xF6, | |
157 | OP_GROUP3_Ev = 0xF7, | |
158 | OP_GROUP3_EvIz = 0xF7, // OP_GROUP3_Ev has an immediate, when instruction is a test. | |
159 | OP_GROUP5_Ev = 0xFF, | |
160 | } OneByteOpcodeID; | |
161 | ||
162 | typedef enum { | |
163 | OP2_MOVSD_VsdWsd = 0x10, | |
164 | OP2_MOVSD_WsdVsd = 0x11, | |
165 | OP2_CVTSI2SD_VsdEd = 0x2A, | |
166 | OP2_CVTTSD2SI_GdWsd = 0x2C, | |
167 | OP2_UCOMISD_VsdWsd = 0x2E, | |
168 | OP2_ADDSD_VsdWsd = 0x58, | |
169 | OP2_MULSD_VsdWsd = 0x59, | |
170 | OP2_SUBSD_VsdWsd = 0x5C, | |
ba379fdc | 171 | OP2_DIVSD_VsdWsd = 0x5E, |
4e4e5a6f | 172 | OP2_SQRTSD_VsdWsd = 0x51, |
ba379fdc | 173 | OP2_XORPD_VpdWpd = 0x57, |
9dae56ea A |
174 | OP2_MOVD_VdEd = 0x6E, |
175 | OP2_MOVD_EdVd = 0x7E, | |
ba379fdc A |
176 | OP2_JCC_rel32 = 0x80, |
177 | OP_SETCC = 0x90, | |
9dae56ea A |
178 | OP2_IMUL_GvEv = 0xAF, |
179 | OP2_MOVZX_GvEb = 0xB6, | |
180 | OP2_MOVZX_GvEw = 0xB7, | |
181 | OP2_PEXTRW_GdUdIb = 0xC5, | |
182 | } TwoByteOpcodeID; | |
183 | ||
ba379fdc A |
184 | TwoByteOpcodeID jccRel32(Condition cond) |
185 | { | |
186 | return (TwoByteOpcodeID)(OP2_JCC_rel32 + cond); | |
187 | } | |
188 | ||
189 | TwoByteOpcodeID setccOpcode(Condition cond) | |
190 | { | |
191 | return (TwoByteOpcodeID)(OP_SETCC + cond); | |
192 | } | |
193 | ||
9dae56ea A |
194 | typedef enum { |
195 | GROUP1_OP_ADD = 0, | |
196 | GROUP1_OP_OR = 1, | |
ba379fdc | 197 | GROUP1_OP_ADC = 2, |
9dae56ea A |
198 | GROUP1_OP_AND = 4, |
199 | GROUP1_OP_SUB = 5, | |
200 | GROUP1_OP_XOR = 6, | |
201 | GROUP1_OP_CMP = 7, | |
202 | ||
203 | GROUP1A_OP_POP = 0, | |
204 | ||
205 | GROUP2_OP_SHL = 4, | |
4e4e5a6f | 206 | GROUP2_OP_SHR = 5, |
9dae56ea A |
207 | GROUP2_OP_SAR = 7, |
208 | ||
209 | GROUP3_OP_TEST = 0, | |
210 | GROUP3_OP_NOT = 2, | |
ba379fdc | 211 | GROUP3_OP_NEG = 3, |
9dae56ea A |
212 | GROUP3_OP_IDIV = 7, |
213 | ||
214 | GROUP5_OP_CALLN = 2, | |
215 | GROUP5_OP_JMPN = 4, | |
216 | GROUP5_OP_PUSH = 6, | |
217 | ||
218 | GROUP11_MOV = 0, | |
219 | } GroupOpcodeID; | |
220 | ||
9dae56ea A |
221 | class X86InstructionFormatter; |
222 | public: | |
223 | ||
9dae56ea A |
224 | X86Assembler() |
225 | { | |
226 | } | |
227 | ||
9dae56ea A |
228 | // Stack operations: |
229 | ||
230 | void push_r(RegisterID reg) | |
231 | { | |
232 | m_formatter.oneByteOp(OP_PUSH_EAX, reg); | |
233 | } | |
234 | ||
235 | void pop_r(RegisterID reg) | |
236 | { | |
237 | m_formatter.oneByteOp(OP_POP_EAX, reg); | |
238 | } | |
239 | ||
240 | void push_i32(int imm) | |
241 | { | |
242 | m_formatter.oneByteOp(OP_PUSH_Iz); | |
243 | m_formatter.immediate32(imm); | |
244 | } | |
245 | ||
246 | void push_m(int offset, RegisterID base) | |
247 | { | |
248 | m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_PUSH, base, offset); | |
249 | } | |
250 | ||
251 | void pop_m(int offset, RegisterID base) | |
252 | { | |
253 | m_formatter.oneByteOp(OP_GROUP1A_Ev, GROUP1A_OP_POP, base, offset); | |
254 | } | |
255 | ||
256 | // Arithmetic operations: | |
257 | ||
f9bf01c6 | 258 | #if !CPU(X86_64) |
14957cd0 | 259 | void adcl_im(int imm, const void* addr) |
ba379fdc A |
260 | { |
261 | if (CAN_SIGN_EXTEND_8_32(imm)) { | |
262 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_ADC, addr); | |
263 | m_formatter.immediate8(imm); | |
264 | } else { | |
265 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_ADC, addr); | |
266 | m_formatter.immediate32(imm); | |
267 | } | |
268 | } | |
269 | #endif | |
270 | ||
9dae56ea A |
271 | void addl_rr(RegisterID src, RegisterID dst) |
272 | { | |
273 | m_formatter.oneByteOp(OP_ADD_EvGv, src, dst); | |
274 | } | |
275 | ||
276 | void addl_mr(int offset, RegisterID base, RegisterID dst) | |
277 | { | |
278 | m_formatter.oneByteOp(OP_ADD_GvEv, dst, base, offset); | |
279 | } | |
280 | ||
ba379fdc A |
281 | void addl_rm(RegisterID src, int offset, RegisterID base) |
282 | { | |
283 | m_formatter.oneByteOp(OP_ADD_EvGv, src, base, offset); | |
284 | } | |
285 | ||
9dae56ea A |
286 | void addl_ir(int imm, RegisterID dst) |
287 | { | |
288 | if (CAN_SIGN_EXTEND_8_32(imm)) { | |
289 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_ADD, dst); | |
290 | m_formatter.immediate8(imm); | |
291 | } else { | |
292 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_ADD, dst); | |
293 | m_formatter.immediate32(imm); | |
294 | } | |
295 | } | |
296 | ||
297 | void addl_im(int imm, int offset, RegisterID base) | |
298 | { | |
299 | if (CAN_SIGN_EXTEND_8_32(imm)) { | |
300 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_ADD, base, offset); | |
301 | m_formatter.immediate8(imm); | |
302 | } else { | |
303 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_ADD, base, offset); | |
304 | m_formatter.immediate32(imm); | |
305 | } | |
306 | } | |
307 | ||
f9bf01c6 | 308 | #if CPU(X86_64) |
9dae56ea A |
309 | void addq_rr(RegisterID src, RegisterID dst) |
310 | { | |
311 | m_formatter.oneByteOp64(OP_ADD_EvGv, src, dst); | |
312 | } | |
313 | ||
314 | void addq_ir(int imm, RegisterID dst) | |
315 | { | |
316 | if (CAN_SIGN_EXTEND_8_32(imm)) { | |
317 | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_ADD, dst); | |
318 | m_formatter.immediate8(imm); | |
319 | } else { | |
320 | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_ADD, dst); | |
321 | m_formatter.immediate32(imm); | |
322 | } | |
323 | } | |
ba379fdc A |
324 | |
325 | void addq_im(int imm, int offset, RegisterID base) | |
326 | { | |
327 | if (CAN_SIGN_EXTEND_8_32(imm)) { | |
328 | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_ADD, base, offset); | |
329 | m_formatter.immediate8(imm); | |
330 | } else { | |
331 | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_ADD, base, offset); | |
332 | m_formatter.immediate32(imm); | |
333 | } | |
334 | } | |
9dae56ea | 335 | #else |
14957cd0 | 336 | void addl_im(int imm, const void* addr) |
9dae56ea A |
337 | { |
338 | if (CAN_SIGN_EXTEND_8_32(imm)) { | |
339 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_ADD, addr); | |
340 | m_formatter.immediate8(imm); | |
341 | } else { | |
342 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_ADD, addr); | |
343 | m_formatter.immediate32(imm); | |
344 | } | |
345 | } | |
346 | #endif | |
347 | ||
348 | void andl_rr(RegisterID src, RegisterID dst) | |
349 | { | |
350 | m_formatter.oneByteOp(OP_AND_EvGv, src, dst); | |
351 | } | |
352 | ||
ba379fdc A |
353 | void andl_mr(int offset, RegisterID base, RegisterID dst) |
354 | { | |
355 | m_formatter.oneByteOp(OP_AND_GvEv, dst, base, offset); | |
356 | } | |
357 | ||
358 | void andl_rm(RegisterID src, int offset, RegisterID base) | |
359 | { | |
360 | m_formatter.oneByteOp(OP_AND_EvGv, src, base, offset); | |
361 | } | |
362 | ||
9dae56ea A |
363 | void andl_ir(int imm, RegisterID dst) |
364 | { | |
365 | if (CAN_SIGN_EXTEND_8_32(imm)) { | |
366 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_AND, dst); | |
367 | m_formatter.immediate8(imm); | |
368 | } else { | |
369 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_AND, dst); | |
370 | m_formatter.immediate32(imm); | |
371 | } | |
372 | } | |
373 | ||
ba379fdc A |
374 | void andl_im(int imm, int offset, RegisterID base) |
375 | { | |
376 | if (CAN_SIGN_EXTEND_8_32(imm)) { | |
377 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_AND, base, offset); | |
378 | m_formatter.immediate8(imm); | |
379 | } else { | |
380 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_AND, base, offset); | |
381 | m_formatter.immediate32(imm); | |
382 | } | |
383 | } | |
384 | ||
f9bf01c6 | 385 | #if CPU(X86_64) |
9dae56ea A |
386 | void andq_rr(RegisterID src, RegisterID dst) |
387 | { | |
388 | m_formatter.oneByteOp64(OP_AND_EvGv, src, dst); | |
389 | } | |
390 | ||
391 | void andq_ir(int imm, RegisterID dst) | |
392 | { | |
393 | if (CAN_SIGN_EXTEND_8_32(imm)) { | |
394 | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_AND, dst); | |
395 | m_formatter.immediate8(imm); | |
396 | } else { | |
397 | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_AND, dst); | |
398 | m_formatter.immediate32(imm); | |
399 | } | |
400 | } | |
ba379fdc | 401 | #else |
14957cd0 | 402 | void andl_im(int imm, const void* addr) |
ba379fdc A |
403 | { |
404 | if (CAN_SIGN_EXTEND_8_32(imm)) { | |
405 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_AND, addr); | |
406 | m_formatter.immediate8(imm); | |
407 | } else { | |
408 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_AND, addr); | |
409 | m_formatter.immediate32(imm); | |
410 | } | |
411 | } | |
9dae56ea A |
412 | #endif |
413 | ||
ba379fdc A |
414 | void negl_r(RegisterID dst) |
415 | { | |
416 | m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NEG, dst); | |
417 | } | |
418 | ||
419 | void negl_m(int offset, RegisterID base) | |
420 | { | |
421 | m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NEG, base, offset); | |
422 | } | |
423 | ||
9dae56ea A |
424 | void notl_r(RegisterID dst) |
425 | { | |
426 | m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NOT, dst); | |
427 | } | |
428 | ||
ba379fdc A |
429 | void notl_m(int offset, RegisterID base) |
430 | { | |
431 | m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NOT, base, offset); | |
432 | } | |
433 | ||
9dae56ea A |
434 | void orl_rr(RegisterID src, RegisterID dst) |
435 | { | |
436 | m_formatter.oneByteOp(OP_OR_EvGv, src, dst); | |
437 | } | |
438 | ||
439 | void orl_mr(int offset, RegisterID base, RegisterID dst) | |
440 | { | |
441 | m_formatter.oneByteOp(OP_OR_GvEv, dst, base, offset); | |
442 | } | |
443 | ||
ba379fdc A |
444 | void orl_rm(RegisterID src, int offset, RegisterID base) |
445 | { | |
446 | m_formatter.oneByteOp(OP_OR_EvGv, src, base, offset); | |
447 | } | |
448 | ||
9dae56ea A |
449 | void orl_ir(int imm, RegisterID dst) |
450 | { | |
451 | if (CAN_SIGN_EXTEND_8_32(imm)) { | |
452 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_OR, dst); | |
453 | m_formatter.immediate8(imm); | |
454 | } else { | |
455 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_OR, dst); | |
456 | m_formatter.immediate32(imm); | |
457 | } | |
458 | } | |
459 | ||
ba379fdc A |
460 | void orl_im(int imm, int offset, RegisterID base) |
461 | { | |
462 | if (CAN_SIGN_EXTEND_8_32(imm)) { | |
463 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_OR, base, offset); | |
464 | m_formatter.immediate8(imm); | |
465 | } else { | |
466 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_OR, base, offset); | |
467 | m_formatter.immediate32(imm); | |
468 | } | |
469 | } | |
470 | ||
f9bf01c6 | 471 | #if CPU(X86_64) |
9dae56ea A |
472 | void orq_rr(RegisterID src, RegisterID dst) |
473 | { | |
474 | m_formatter.oneByteOp64(OP_OR_EvGv, src, dst); | |
475 | } | |
476 | ||
477 | void orq_ir(int imm, RegisterID dst) | |
478 | { | |
479 | if (CAN_SIGN_EXTEND_8_32(imm)) { | |
480 | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_OR, dst); | |
481 | m_formatter.immediate8(imm); | |
482 | } else { | |
483 | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_OR, dst); | |
484 | m_formatter.immediate32(imm); | |
485 | } | |
486 | } | |
ba379fdc | 487 | #else |
14957cd0 | 488 | void orl_im(int imm, const void* addr) |
ba379fdc A |
489 | { |
490 | if (CAN_SIGN_EXTEND_8_32(imm)) { | |
491 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_OR, addr); | |
492 | m_formatter.immediate8(imm); | |
493 | } else { | |
494 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_OR, addr); | |
495 | m_formatter.immediate32(imm); | |
496 | } | |
497 | } | |
9dae56ea A |
498 | #endif |
499 | ||
500 | void subl_rr(RegisterID src, RegisterID dst) | |
501 | { | |
502 | m_formatter.oneByteOp(OP_SUB_EvGv, src, dst); | |
503 | } | |
504 | ||
505 | void subl_mr(int offset, RegisterID base, RegisterID dst) | |
506 | { | |
507 | m_formatter.oneByteOp(OP_SUB_GvEv, dst, base, offset); | |
508 | } | |
509 | ||
ba379fdc A |
510 | void subl_rm(RegisterID src, int offset, RegisterID base) |
511 | { | |
512 | m_formatter.oneByteOp(OP_SUB_EvGv, src, base, offset); | |
513 | } | |
514 | ||
9dae56ea A |
515 | void subl_ir(int imm, RegisterID dst) |
516 | { | |
517 | if (CAN_SIGN_EXTEND_8_32(imm)) { | |
518 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_SUB, dst); | |
519 | m_formatter.immediate8(imm); | |
520 | } else { | |
521 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_SUB, dst); | |
522 | m_formatter.immediate32(imm); | |
523 | } | |
524 | } | |
525 | ||
526 | void subl_im(int imm, int offset, RegisterID base) | |
527 | { | |
528 | if (CAN_SIGN_EXTEND_8_32(imm)) { | |
529 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_SUB, base, offset); | |
530 | m_formatter.immediate8(imm); | |
531 | } else { | |
532 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_SUB, base, offset); | |
533 | m_formatter.immediate32(imm); | |
534 | } | |
535 | } | |
536 | ||
f9bf01c6 | 537 | #if CPU(X86_64) |
9dae56ea A |
538 | void subq_rr(RegisterID src, RegisterID dst) |
539 | { | |
540 | m_formatter.oneByteOp64(OP_SUB_EvGv, src, dst); | |
541 | } | |
542 | ||
543 | void subq_ir(int imm, RegisterID dst) | |
544 | { | |
545 | if (CAN_SIGN_EXTEND_8_32(imm)) { | |
546 | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_SUB, dst); | |
547 | m_formatter.immediate8(imm); | |
548 | } else { | |
549 | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_SUB, dst); | |
550 | m_formatter.immediate32(imm); | |
551 | } | |
552 | } | |
553 | #else | |
14957cd0 | 554 | void subl_im(int imm, const void* addr) |
9dae56ea A |
555 | { |
556 | if (CAN_SIGN_EXTEND_8_32(imm)) { | |
557 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_SUB, addr); | |
558 | m_formatter.immediate8(imm); | |
559 | } else { | |
560 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_SUB, addr); | |
561 | m_formatter.immediate32(imm); | |
562 | } | |
563 | } | |
564 | #endif | |
565 | ||
566 | void xorl_rr(RegisterID src, RegisterID dst) | |
567 | { | |
568 | m_formatter.oneByteOp(OP_XOR_EvGv, src, dst); | |
569 | } | |
570 | ||
ba379fdc A |
571 | void xorl_mr(int offset, RegisterID base, RegisterID dst) |
572 | { | |
573 | m_formatter.oneByteOp(OP_XOR_GvEv, dst, base, offset); | |
574 | } | |
575 | ||
576 | void xorl_rm(RegisterID src, int offset, RegisterID base) | |
577 | { | |
578 | m_formatter.oneByteOp(OP_XOR_EvGv, src, base, offset); | |
579 | } | |
580 | ||
581 | void xorl_im(int imm, int offset, RegisterID base) | |
582 | { | |
583 | if (CAN_SIGN_EXTEND_8_32(imm)) { | |
584 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_XOR, base, offset); | |
585 | m_formatter.immediate8(imm); | |
586 | } else { | |
587 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_XOR, base, offset); | |
588 | m_formatter.immediate32(imm); | |
589 | } | |
590 | } | |
591 | ||
9dae56ea A |
592 | void xorl_ir(int imm, RegisterID dst) |
593 | { | |
594 | if (CAN_SIGN_EXTEND_8_32(imm)) { | |
595 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_XOR, dst); | |
596 | m_formatter.immediate8(imm); | |
597 | } else { | |
598 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_XOR, dst); | |
599 | m_formatter.immediate32(imm); | |
600 | } | |
601 | } | |
602 | ||
f9bf01c6 | 603 | #if CPU(X86_64) |
9dae56ea A |
604 | void xorq_rr(RegisterID src, RegisterID dst) |
605 | { | |
606 | m_formatter.oneByteOp64(OP_XOR_EvGv, src, dst); | |
607 | } | |
608 | ||
609 | void xorq_ir(int imm, RegisterID dst) | |
610 | { | |
611 | if (CAN_SIGN_EXTEND_8_32(imm)) { | |
612 | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_XOR, dst); | |
613 | m_formatter.immediate8(imm); | |
614 | } else { | |
615 | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_XOR, dst); | |
616 | m_formatter.immediate32(imm); | |
617 | } | |
618 | } | |
619 | #endif | |
620 | ||
621 | void sarl_i8r(int imm, RegisterID dst) | |
622 | { | |
623 | if (imm == 1) | |
624 | m_formatter.oneByteOp(OP_GROUP2_Ev1, GROUP2_OP_SAR, dst); | |
625 | else { | |
626 | m_formatter.oneByteOp(OP_GROUP2_EvIb, GROUP2_OP_SAR, dst); | |
627 | m_formatter.immediate8(imm); | |
628 | } | |
629 | } | |
630 | ||
631 | void sarl_CLr(RegisterID dst) | |
632 | { | |
633 | m_formatter.oneByteOp(OP_GROUP2_EvCL, GROUP2_OP_SAR, dst); | |
634 | } | |
4e4e5a6f A |
635 | |
636 | void shrl_i8r(int imm, RegisterID dst) | |
637 | { | |
638 | if (imm == 1) | |
639 | m_formatter.oneByteOp(OP_GROUP2_Ev1, GROUP2_OP_SHR, dst); | |
640 | else { | |
641 | m_formatter.oneByteOp(OP_GROUP2_EvIb, GROUP2_OP_SHR, dst); | |
642 | m_formatter.immediate8(imm); | |
643 | } | |
644 | } | |
645 | ||
646 | void shrl_CLr(RegisterID dst) | |
647 | { | |
648 | m_formatter.oneByteOp(OP_GROUP2_EvCL, GROUP2_OP_SHR, dst); | |
649 | } | |
9dae56ea A |
650 | |
651 | void shll_i8r(int imm, RegisterID dst) | |
652 | { | |
653 | if (imm == 1) | |
654 | m_formatter.oneByteOp(OP_GROUP2_Ev1, GROUP2_OP_SHL, dst); | |
655 | else { | |
656 | m_formatter.oneByteOp(OP_GROUP2_EvIb, GROUP2_OP_SHL, dst); | |
657 | m_formatter.immediate8(imm); | |
658 | } | |
659 | } | |
660 | ||
661 | void shll_CLr(RegisterID dst) | |
662 | { | |
663 | m_formatter.oneByteOp(OP_GROUP2_EvCL, GROUP2_OP_SHL, dst); | |
664 | } | |
665 | ||
f9bf01c6 | 666 | #if CPU(X86_64) |
9dae56ea A |
667 | void sarq_CLr(RegisterID dst) |
668 | { | |
669 | m_formatter.oneByteOp64(OP_GROUP2_EvCL, GROUP2_OP_SAR, dst); | |
670 | } | |
671 | ||
672 | void sarq_i8r(int imm, RegisterID dst) | |
673 | { | |
674 | if (imm == 1) | |
675 | m_formatter.oneByteOp64(OP_GROUP2_Ev1, GROUP2_OP_SAR, dst); | |
676 | else { | |
677 | m_formatter.oneByteOp64(OP_GROUP2_EvIb, GROUP2_OP_SAR, dst); | |
678 | m_formatter.immediate8(imm); | |
679 | } | |
680 | } | |
681 | #endif | |
682 | ||
683 | void imull_rr(RegisterID src, RegisterID dst) | |
684 | { | |
685 | m_formatter.twoByteOp(OP2_IMUL_GvEv, dst, src); | |
686 | } | |
ba379fdc A |
687 | |
688 | void imull_mr(int offset, RegisterID base, RegisterID dst) | |
689 | { | |
690 | m_formatter.twoByteOp(OP2_IMUL_GvEv, dst, base, offset); | |
691 | } | |
692 | ||
9dae56ea A |
693 | void imull_i32r(RegisterID src, int32_t value, RegisterID dst) |
694 | { | |
695 | m_formatter.oneByteOp(OP_IMUL_GvEvIz, dst, src); | |
696 | m_formatter.immediate32(value); | |
697 | } | |
698 | ||
699 | void idivl_r(RegisterID dst) | |
700 | { | |
701 | m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_IDIV, dst); | |
702 | } | |
703 | ||
704 | // Comparisons: | |
705 | ||
706 | void cmpl_rr(RegisterID src, RegisterID dst) | |
707 | { | |
708 | m_formatter.oneByteOp(OP_CMP_EvGv, src, dst); | |
709 | } | |
710 | ||
711 | void cmpl_rm(RegisterID src, int offset, RegisterID base) | |
712 | { | |
713 | m_formatter.oneByteOp(OP_CMP_EvGv, src, base, offset); | |
714 | } | |
715 | ||
716 | void cmpl_mr(int offset, RegisterID base, RegisterID src) | |
717 | { | |
718 | m_formatter.oneByteOp(OP_CMP_GvEv, src, base, offset); | |
719 | } | |
720 | ||
721 | void cmpl_ir(int imm, RegisterID dst) | |
722 | { | |
723 | if (CAN_SIGN_EXTEND_8_32(imm)) { | |
724 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, dst); | |
725 | m_formatter.immediate8(imm); | |
726 | } else { | |
727 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, dst); | |
728 | m_formatter.immediate32(imm); | |
729 | } | |
730 | } | |
731 | ||
732 | void cmpl_ir_force32(int imm, RegisterID dst) | |
733 | { | |
734 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, dst); | |
735 | m_formatter.immediate32(imm); | |
736 | } | |
4e4e5a6f | 737 | |
9dae56ea A |
738 | void cmpl_im(int imm, int offset, RegisterID base) |
739 | { | |
740 | if (CAN_SIGN_EXTEND_8_32(imm)) { | |
741 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, offset); | |
742 | m_formatter.immediate8(imm); | |
743 | } else { | |
744 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, offset); | |
745 | m_formatter.immediate32(imm); | |
746 | } | |
747 | } | |
4e4e5a6f A |
748 | |
749 | void cmpb_im(int imm, int offset, RegisterID base) | |
750 | { | |
751 | m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_CMP, base, offset); | |
752 | m_formatter.immediate8(imm); | |
753 | } | |
754 | ||
755 | void cmpb_im(int imm, int offset, RegisterID base, RegisterID index, int scale) | |
756 | { | |
757 | m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_CMP, base, index, scale, offset); | |
758 | m_formatter.immediate8(imm); | |
759 | } | |
9dae56ea A |
760 | |
761 | void cmpl_im(int imm, int offset, RegisterID base, RegisterID index, int scale) | |
762 | { | |
763 | if (CAN_SIGN_EXTEND_8_32(imm)) { | |
764 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, index, scale, offset); | |
765 | m_formatter.immediate8(imm); | |
766 | } else { | |
767 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, index, scale, offset); | |
768 | m_formatter.immediate32(imm); | |
769 | } | |
770 | } | |
771 | ||
772 | void cmpl_im_force32(int imm, int offset, RegisterID base) | |
773 | { | |
774 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, offset); | |
775 | m_formatter.immediate32(imm); | |
776 | } | |
777 | ||
f9bf01c6 | 778 | #if CPU(X86_64) |
9dae56ea A |
779 | void cmpq_rr(RegisterID src, RegisterID dst) |
780 | { | |
781 | m_formatter.oneByteOp64(OP_CMP_EvGv, src, dst); | |
782 | } | |
783 | ||
784 | void cmpq_rm(RegisterID src, int offset, RegisterID base) | |
785 | { | |
786 | m_formatter.oneByteOp64(OP_CMP_EvGv, src, base, offset); | |
787 | } | |
788 | ||
ba379fdc A |
789 | void cmpq_mr(int offset, RegisterID base, RegisterID src) |
790 | { | |
791 | m_formatter.oneByteOp64(OP_CMP_GvEv, src, base, offset); | |
792 | } | |
793 | ||
9dae56ea A |
794 | void cmpq_ir(int imm, RegisterID dst) |
795 | { | |
796 | if (CAN_SIGN_EXTEND_8_32(imm)) { | |
797 | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_CMP, dst); | |
798 | m_formatter.immediate8(imm); | |
799 | } else { | |
800 | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_CMP, dst); | |
801 | m_formatter.immediate32(imm); | |
802 | } | |
803 | } | |
804 | ||
805 | void cmpq_im(int imm, int offset, RegisterID base) | |
806 | { | |
807 | if (CAN_SIGN_EXTEND_8_32(imm)) { | |
808 | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, offset); | |
809 | m_formatter.immediate8(imm); | |
810 | } else { | |
811 | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, offset); | |
812 | m_formatter.immediate32(imm); | |
813 | } | |
814 | } | |
815 | ||
816 | void cmpq_im(int imm, int offset, RegisterID base, RegisterID index, int scale) | |
817 | { | |
818 | if (CAN_SIGN_EXTEND_8_32(imm)) { | |
819 | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, index, scale, offset); | |
820 | m_formatter.immediate8(imm); | |
821 | } else { | |
822 | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, index, scale, offset); | |
823 | m_formatter.immediate32(imm); | |
824 | } | |
825 | } | |
826 | #else | |
14957cd0 | 827 | void cmpl_rm(RegisterID reg, const void* addr) |
9dae56ea A |
828 | { |
829 | m_formatter.oneByteOp(OP_CMP_EvGv, reg, addr); | |
830 | } | |
831 | ||
14957cd0 | 832 | void cmpl_im(int imm, const void* addr) |
9dae56ea A |
833 | { |
834 | if (CAN_SIGN_EXTEND_8_32(imm)) { | |
835 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, addr); | |
836 | m_formatter.immediate8(imm); | |
837 | } else { | |
838 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, addr); | |
839 | m_formatter.immediate32(imm); | |
840 | } | |
841 | } | |
842 | #endif | |
843 | ||
844 | void cmpw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) | |
845 | { | |
846 | m_formatter.prefix(PRE_OPERAND_SIZE); | |
847 | m_formatter.oneByteOp(OP_CMP_EvGv, src, base, index, scale, offset); | |
848 | } | |
849 | ||
ba379fdc A |
850 | void cmpw_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
851 | { | |
852 | if (CAN_SIGN_EXTEND_8_32(imm)) { | |
853 | m_formatter.prefix(PRE_OPERAND_SIZE); | |
854 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, index, scale, offset); | |
855 | m_formatter.immediate8(imm); | |
856 | } else { | |
857 | m_formatter.prefix(PRE_OPERAND_SIZE); | |
858 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, index, scale, offset); | |
859 | m_formatter.immediate16(imm); | |
860 | } | |
861 | } | |
862 | ||
9dae56ea A |
863 | void testl_rr(RegisterID src, RegisterID dst) |
864 | { | |
865 | m_formatter.oneByteOp(OP_TEST_EvGv, src, dst); | |
866 | } | |
867 | ||
868 | void testl_i32r(int imm, RegisterID dst) | |
869 | { | |
870 | m_formatter.oneByteOp(OP_GROUP3_EvIz, GROUP3_OP_TEST, dst); | |
871 | m_formatter.immediate32(imm); | |
872 | } | |
873 | ||
874 | void testl_i32m(int imm, int offset, RegisterID base) | |
875 | { | |
876 | m_formatter.oneByteOp(OP_GROUP3_EvIz, GROUP3_OP_TEST, base, offset); | |
877 | m_formatter.immediate32(imm); | |
878 | } | |
14957cd0 A |
879 | |
880 | void testb_rr(RegisterID src, RegisterID dst) | |
881 | { | |
882 | m_formatter.oneByteOp(OP_TEST_EbGb, src, dst); | |
883 | } | |
884 | ||
4e4e5a6f A |
885 | void testb_im(int imm, int offset, RegisterID base) |
886 | { | |
887 | m_formatter.oneByteOp(OP_GROUP3_EbIb, GROUP3_OP_TEST, base, offset); | |
888 | m_formatter.immediate8(imm); | |
889 | } | |
890 | ||
891 | void testb_im(int imm, int offset, RegisterID base, RegisterID index, int scale) | |
892 | { | |
893 | m_formatter.oneByteOp(OP_GROUP3_EbIb, GROUP3_OP_TEST, base, index, scale, offset); | |
894 | m_formatter.immediate8(imm); | |
895 | } | |
9dae56ea A |
896 | |
897 | void testl_i32m(int imm, int offset, RegisterID base, RegisterID index, int scale) | |
898 | { | |
899 | m_formatter.oneByteOp(OP_GROUP3_EvIz, GROUP3_OP_TEST, base, index, scale, offset); | |
900 | m_formatter.immediate32(imm); | |
901 | } | |
902 | ||
f9bf01c6 | 903 | #if CPU(X86_64) |
9dae56ea A |
904 | void testq_rr(RegisterID src, RegisterID dst) |
905 | { | |
906 | m_formatter.oneByteOp64(OP_TEST_EvGv, src, dst); | |
907 | } | |
908 | ||
909 | void testq_i32r(int imm, RegisterID dst) | |
910 | { | |
911 | m_formatter.oneByteOp64(OP_GROUP3_EvIz, GROUP3_OP_TEST, dst); | |
912 | m_formatter.immediate32(imm); | |
913 | } | |
914 | ||
915 | void testq_i32m(int imm, int offset, RegisterID base) | |
916 | { | |
917 | m_formatter.oneByteOp64(OP_GROUP3_EvIz, GROUP3_OP_TEST, base, offset); | |
918 | m_formatter.immediate32(imm); | |
919 | } | |
920 | ||
921 | void testq_i32m(int imm, int offset, RegisterID base, RegisterID index, int scale) | |
922 | { | |
923 | m_formatter.oneByteOp64(OP_GROUP3_EvIz, GROUP3_OP_TEST, base, index, scale, offset); | |
924 | m_formatter.immediate32(imm); | |
925 | } | |
926 | #endif | |
927 | ||
ba379fdc A |
928 | void testw_rr(RegisterID src, RegisterID dst) |
929 | { | |
930 | m_formatter.prefix(PRE_OPERAND_SIZE); | |
931 | m_formatter.oneByteOp(OP_TEST_EvGv, src, dst); | |
932 | } | |
933 | ||
9dae56ea A |
934 | void testb_i8r(int imm, RegisterID dst) |
935 | { | |
936 | m_formatter.oneByteOp8(OP_GROUP3_EbIb, GROUP3_OP_TEST, dst); | |
937 | m_formatter.immediate8(imm); | |
938 | } | |
939 | ||
ba379fdc A |
940 | void setCC_r(Condition cond, RegisterID dst) |
941 | { | |
942 | m_formatter.twoByteOp8(setccOpcode(cond), (GroupOpcodeID)0, dst); | |
943 | } | |
944 | ||
9dae56ea A |
945 | void sete_r(RegisterID dst) |
946 | { | |
ba379fdc | 947 | m_formatter.twoByteOp8(setccOpcode(ConditionE), (GroupOpcodeID)0, dst); |
9dae56ea A |
948 | } |
949 | ||
950 | void setz_r(RegisterID dst) | |
951 | { | |
952 | sete_r(dst); | |
953 | } | |
954 | ||
955 | void setne_r(RegisterID dst) | |
956 | { | |
ba379fdc | 957 | m_formatter.twoByteOp8(setccOpcode(ConditionNE), (GroupOpcodeID)0, dst); |
9dae56ea A |
958 | } |
959 | ||
960 | void setnz_r(RegisterID dst) | |
961 | { | |
962 | setne_r(dst); | |
963 | } | |
964 | ||
965 | // Various move ops: | |
966 | ||
967 | void cdq() | |
968 | { | |
969 | m_formatter.oneByteOp(OP_CDQ); | |
970 | } | |
971 | ||
972 | void xchgl_rr(RegisterID src, RegisterID dst) | |
973 | { | |
974 | m_formatter.oneByteOp(OP_XCHG_EvGv, src, dst); | |
975 | } | |
976 | ||
f9bf01c6 | 977 | #if CPU(X86_64) |
9dae56ea A |
978 | void xchgq_rr(RegisterID src, RegisterID dst) |
979 | { | |
980 | m_formatter.oneByteOp64(OP_XCHG_EvGv, src, dst); | |
981 | } | |
982 | #endif | |
983 | ||
984 | void movl_rr(RegisterID src, RegisterID dst) | |
985 | { | |
986 | m_formatter.oneByteOp(OP_MOV_EvGv, src, dst); | |
987 | } | |
988 | ||
989 | void movl_rm(RegisterID src, int offset, RegisterID base) | |
990 | { | |
991 | m_formatter.oneByteOp(OP_MOV_EvGv, src, base, offset); | |
992 | } | |
993 | ||
994 | void movl_rm_disp32(RegisterID src, int offset, RegisterID base) | |
995 | { | |
996 | m_formatter.oneByteOp_disp32(OP_MOV_EvGv, src, base, offset); | |
997 | } | |
998 | ||
999 | void movl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) | |
1000 | { | |
1001 | m_formatter.oneByteOp(OP_MOV_EvGv, src, base, index, scale, offset); | |
1002 | } | |
1003 | ||
14957cd0 | 1004 | void movl_mEAX(const void* addr) |
9dae56ea A |
1005 | { |
1006 | m_formatter.oneByteOp(OP_MOV_EAXOv); | |
f9bf01c6 | 1007 | #if CPU(X86_64) |
9dae56ea A |
1008 | m_formatter.immediate64(reinterpret_cast<int64_t>(addr)); |
1009 | #else | |
1010 | m_formatter.immediate32(reinterpret_cast<int>(addr)); | |
1011 | #endif | |
1012 | } | |
1013 | ||
1014 | void movl_mr(int offset, RegisterID base, RegisterID dst) | |
1015 | { | |
1016 | m_formatter.oneByteOp(OP_MOV_GvEv, dst, base, offset); | |
1017 | } | |
1018 | ||
1019 | void movl_mr_disp32(int offset, RegisterID base, RegisterID dst) | |
1020 | { | |
1021 | m_formatter.oneByteOp_disp32(OP_MOV_GvEv, dst, base, offset); | |
1022 | } | |
14957cd0 A |
1023 | |
1024 | void movl_mr_disp8(int offset, RegisterID base, RegisterID dst) | |
1025 | { | |
1026 | m_formatter.oneByteOp_disp8(OP_MOV_GvEv, dst, base, offset); | |
1027 | } | |
9dae56ea A |
1028 | |
1029 | void movl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) | |
1030 | { | |
1031 | m_formatter.oneByteOp(OP_MOV_GvEv, dst, base, index, scale, offset); | |
1032 | } | |
1033 | ||
1034 | void movl_i32r(int imm, RegisterID dst) | |
1035 | { | |
1036 | m_formatter.oneByteOp(OP_MOV_EAXIv, dst); | |
1037 | m_formatter.immediate32(imm); | |
1038 | } | |
1039 | ||
1040 | void movl_i32m(int imm, int offset, RegisterID base) | |
1041 | { | |
1042 | m_formatter.oneByteOp(OP_GROUP11_EvIz, GROUP11_MOV, base, offset); | |
1043 | m_formatter.immediate32(imm); | |
1044 | } | |
1045 | ||
14957cd0 | 1046 | void movl_EAXm(const void* addr) |
9dae56ea A |
1047 | { |
1048 | m_formatter.oneByteOp(OP_MOV_OvEAX); | |
f9bf01c6 | 1049 | #if CPU(X86_64) |
9dae56ea A |
1050 | m_formatter.immediate64(reinterpret_cast<int64_t>(addr)); |
1051 | #else | |
1052 | m_formatter.immediate32(reinterpret_cast<int>(addr)); | |
1053 | #endif | |
1054 | } | |
1055 | ||
f9bf01c6 | 1056 | #if CPU(X86_64) |
9dae56ea A |
1057 | void movq_rr(RegisterID src, RegisterID dst) |
1058 | { | |
1059 | m_formatter.oneByteOp64(OP_MOV_EvGv, src, dst); | |
1060 | } | |
1061 | ||
1062 | void movq_rm(RegisterID src, int offset, RegisterID base) | |
1063 | { | |
1064 | m_formatter.oneByteOp64(OP_MOV_EvGv, src, base, offset); | |
1065 | } | |
1066 | ||
1067 | void movq_rm_disp32(RegisterID src, int offset, RegisterID base) | |
1068 | { | |
1069 | m_formatter.oneByteOp64_disp32(OP_MOV_EvGv, src, base, offset); | |
1070 | } | |
1071 | ||
1072 | void movq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) | |
1073 | { | |
1074 | m_formatter.oneByteOp64(OP_MOV_EvGv, src, base, index, scale, offset); | |
1075 | } | |
1076 | ||
14957cd0 | 1077 | void movq_mEAX(const void* addr) |
9dae56ea A |
1078 | { |
1079 | m_formatter.oneByteOp64(OP_MOV_EAXOv); | |
1080 | m_formatter.immediate64(reinterpret_cast<int64_t>(addr)); | |
1081 | } | |
1082 | ||
14957cd0 | 1083 | void movq_EAXm(const void* addr) |
ba379fdc A |
1084 | { |
1085 | m_formatter.oneByteOp64(OP_MOV_OvEAX); | |
1086 | m_formatter.immediate64(reinterpret_cast<int64_t>(addr)); | |
1087 | } | |
1088 | ||
9dae56ea A |
1089 | void movq_mr(int offset, RegisterID base, RegisterID dst) |
1090 | { | |
1091 | m_formatter.oneByteOp64(OP_MOV_GvEv, dst, base, offset); | |
1092 | } | |
1093 | ||
1094 | void movq_mr_disp32(int offset, RegisterID base, RegisterID dst) | |
1095 | { | |
1096 | m_formatter.oneByteOp64_disp32(OP_MOV_GvEv, dst, base, offset); | |
1097 | } | |
1098 | ||
14957cd0 A |
1099 | void movq_mr_disp8(int offset, RegisterID base, RegisterID dst) |
1100 | { | |
1101 | m_formatter.oneByteOp64_disp8(OP_MOV_GvEv, dst, base, offset); | |
1102 | } | |
1103 | ||
9dae56ea A |
1104 | void movq_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
1105 | { | |
1106 | m_formatter.oneByteOp64(OP_MOV_GvEv, dst, base, index, scale, offset); | |
1107 | } | |
1108 | ||
ba379fdc A |
1109 | void movq_i32m(int imm, int offset, RegisterID base) |
1110 | { | |
1111 | m_formatter.oneByteOp64(OP_GROUP11_EvIz, GROUP11_MOV, base, offset); | |
1112 | m_formatter.immediate32(imm); | |
1113 | } | |
1114 | ||
9dae56ea A |
1115 | void movq_i64r(int64_t imm, RegisterID dst) |
1116 | { | |
1117 | m_formatter.oneByteOp64(OP_MOV_EAXIv, dst); | |
1118 | m_formatter.immediate64(imm); | |
1119 | } | |
1120 | ||
1121 | void movsxd_rr(RegisterID src, RegisterID dst) | |
1122 | { | |
1123 | m_formatter.oneByteOp64(OP_MOVSXD_GvEv, dst, src); | |
1124 | } | |
1125 | ||
1126 | ||
1127 | #else | |
14957cd0 | 1128 | void movl_rm(RegisterID src, const void* addr) |
ba379fdc | 1129 | { |
f9bf01c6 | 1130 | if (src == X86Registers::eax) |
ba379fdc A |
1131 | movl_EAXm(addr); |
1132 | else | |
1133 | m_formatter.oneByteOp(OP_MOV_EvGv, src, addr); | |
1134 | } | |
1135 | ||
14957cd0 | 1136 | void movl_mr(const void* addr, RegisterID dst) |
9dae56ea | 1137 | { |
f9bf01c6 | 1138 | if (dst == X86Registers::eax) |
9dae56ea A |
1139 | movl_mEAX(addr); |
1140 | else | |
1141 | m_formatter.oneByteOp(OP_MOV_GvEv, dst, addr); | |
1142 | } | |
1143 | ||
14957cd0 | 1144 | void movl_i32m(int imm, const void* addr) |
9dae56ea A |
1145 | { |
1146 | m_formatter.oneByteOp(OP_GROUP11_EvIz, GROUP11_MOV, addr); | |
1147 | m_formatter.immediate32(imm); | |
1148 | } | |
1149 | #endif | |
1150 | ||
1151 | void movzwl_mr(int offset, RegisterID base, RegisterID dst) | |
1152 | { | |
1153 | m_formatter.twoByteOp(OP2_MOVZX_GvEw, dst, base, offset); | |
1154 | } | |
1155 | ||
1156 | void movzwl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) | |
1157 | { | |
1158 | m_formatter.twoByteOp(OP2_MOVZX_GvEw, dst, base, index, scale, offset); | |
1159 | } | |
1160 | ||
1161 | void movzbl_rr(RegisterID src, RegisterID dst) | |
1162 | { | |
1163 | // In 64-bit, this may cause an unnecessary REX to be planted (if the dst register | |
1164 | // is in the range ESP-EDI, and the src would not have required a REX). Unneeded | |
1165 | // REX prefixes are defined to be silently ignored by the processor. | |
1166 | m_formatter.twoByteOp8(OP2_MOVZX_GvEb, dst, src); | |
1167 | } | |
1168 | ||
1169 | void leal_mr(int offset, RegisterID base, RegisterID dst) | |
1170 | { | |
1171 | m_formatter.oneByteOp(OP_LEA, dst, base, offset); | |
1172 | } | |
f9bf01c6 | 1173 | #if CPU(X86_64) |
ba379fdc A |
1174 | void leaq_mr(int offset, RegisterID base, RegisterID dst) |
1175 | { | |
1176 | m_formatter.oneByteOp64(OP_LEA, dst, base, offset); | |
1177 | } | |
1178 | #endif | |
9dae56ea A |
1179 | |
1180 | // Flow control: | |
1181 | ||
14957cd0 | 1182 | AssemblerLabel call() |
9dae56ea A |
1183 | { |
1184 | m_formatter.oneByteOp(OP_CALL_rel32); | |
1185 | return m_formatter.immediateRel32(); | |
1186 | } | |
1187 | ||
14957cd0 | 1188 | AssemblerLabel call(RegisterID dst) |
9dae56ea A |
1189 | { |
1190 | m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_CALLN, dst); | |
14957cd0 | 1191 | return m_formatter.label(); |
9dae56ea | 1192 | } |
ba379fdc A |
1193 | |
1194 | void call_m(int offset, RegisterID base) | |
1195 | { | |
1196 | m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_CALLN, base, offset); | |
1197 | } | |
9dae56ea | 1198 | |
14957cd0 | 1199 | AssemblerLabel jmp() |
9dae56ea A |
1200 | { |
1201 | m_formatter.oneByteOp(OP_JMP_rel32); | |
1202 | return m_formatter.immediateRel32(); | |
1203 | } | |
1204 | ||
14957cd0 | 1205 | // Return a AssemblerLabel so we have a label to the jump, so we can use this |
ba379fdc A |
1206 | // To make a tail recursive call on x86-64. The MacroAssembler |
1207 | // really shouldn't wrap this as a Jump, since it can't be linked. :-/ | |
14957cd0 | 1208 | AssemblerLabel jmp_r(RegisterID dst) |
9dae56ea A |
1209 | { |
1210 | m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_JMPN, dst); | |
14957cd0 | 1211 | return m_formatter.label(); |
9dae56ea A |
1212 | } |
1213 | ||
1214 | void jmp_m(int offset, RegisterID base) | |
1215 | { | |
1216 | m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_JMPN, base, offset); | |
1217 | } | |
1218 | ||
14957cd0 | 1219 | AssemblerLabel jne() |
9dae56ea | 1220 | { |
ba379fdc | 1221 | m_formatter.twoByteOp(jccRel32(ConditionNE)); |
9dae56ea A |
1222 | return m_formatter.immediateRel32(); |
1223 | } | |
1224 | ||
14957cd0 | 1225 | AssemblerLabel jnz() |
9dae56ea A |
1226 | { |
1227 | return jne(); | |
1228 | } | |
1229 | ||
14957cd0 | 1230 | AssemblerLabel je() |
9dae56ea | 1231 | { |
ba379fdc | 1232 | m_formatter.twoByteOp(jccRel32(ConditionE)); |
9dae56ea A |
1233 | return m_formatter.immediateRel32(); |
1234 | } | |
1235 | ||
14957cd0 | 1236 | AssemblerLabel jz() |
ba379fdc A |
1237 | { |
1238 | return je(); | |
1239 | } | |
1240 | ||
14957cd0 | 1241 | AssemblerLabel jl() |
9dae56ea | 1242 | { |
ba379fdc | 1243 | m_formatter.twoByteOp(jccRel32(ConditionL)); |
9dae56ea A |
1244 | return m_formatter.immediateRel32(); |
1245 | } | |
1246 | ||
14957cd0 | 1247 | AssemblerLabel jb() |
9dae56ea | 1248 | { |
ba379fdc | 1249 | m_formatter.twoByteOp(jccRel32(ConditionB)); |
9dae56ea A |
1250 | return m_formatter.immediateRel32(); |
1251 | } | |
1252 | ||
14957cd0 | 1253 | AssemblerLabel jle() |
9dae56ea | 1254 | { |
ba379fdc | 1255 | m_formatter.twoByteOp(jccRel32(ConditionLE)); |
9dae56ea A |
1256 | return m_formatter.immediateRel32(); |
1257 | } | |
1258 | ||
14957cd0 | 1259 | AssemblerLabel jbe() |
9dae56ea | 1260 | { |
ba379fdc | 1261 | m_formatter.twoByteOp(jccRel32(ConditionBE)); |
9dae56ea A |
1262 | return m_formatter.immediateRel32(); |
1263 | } | |
1264 | ||
14957cd0 | 1265 | AssemblerLabel jge() |
9dae56ea | 1266 | { |
ba379fdc | 1267 | m_formatter.twoByteOp(jccRel32(ConditionGE)); |
9dae56ea A |
1268 | return m_formatter.immediateRel32(); |
1269 | } | |
1270 | ||
14957cd0 | 1271 | AssemblerLabel jg() |
9dae56ea | 1272 | { |
ba379fdc | 1273 | m_formatter.twoByteOp(jccRel32(ConditionG)); |
9dae56ea A |
1274 | return m_formatter.immediateRel32(); |
1275 | } | |
1276 | ||
14957cd0 | 1277 | AssemblerLabel ja() |
9dae56ea | 1278 | { |
ba379fdc | 1279 | m_formatter.twoByteOp(jccRel32(ConditionA)); |
9dae56ea A |
1280 | return m_formatter.immediateRel32(); |
1281 | } | |
1282 | ||
14957cd0 | 1283 | AssemblerLabel jae() |
9dae56ea | 1284 | { |
ba379fdc | 1285 | m_formatter.twoByteOp(jccRel32(ConditionAE)); |
9dae56ea A |
1286 | return m_formatter.immediateRel32(); |
1287 | } | |
1288 | ||
14957cd0 | 1289 | AssemblerLabel jo() |
9dae56ea | 1290 | { |
ba379fdc | 1291 | m_formatter.twoByteOp(jccRel32(ConditionO)); |
9dae56ea A |
1292 | return m_formatter.immediateRel32(); |
1293 | } | |
1294 | ||
14957cd0 | 1295 | AssemblerLabel jp() |
9dae56ea | 1296 | { |
ba379fdc | 1297 | m_formatter.twoByteOp(jccRel32(ConditionP)); |
9dae56ea A |
1298 | return m_formatter.immediateRel32(); |
1299 | } | |
1300 | ||
14957cd0 | 1301 | AssemblerLabel js() |
9dae56ea | 1302 | { |
ba379fdc A |
1303 | m_formatter.twoByteOp(jccRel32(ConditionS)); |
1304 | return m_formatter.immediateRel32(); | |
1305 | } | |
1306 | ||
14957cd0 | 1307 | AssemblerLabel jCC(Condition cond) |
ba379fdc A |
1308 | { |
1309 | m_formatter.twoByteOp(jccRel32(cond)); | |
9dae56ea A |
1310 | return m_formatter.immediateRel32(); |
1311 | } | |
1312 | ||
1313 | // SSE operations: | |
1314 | ||
1315 | void addsd_rr(XMMRegisterID src, XMMRegisterID dst) | |
1316 | { | |
1317 | m_formatter.prefix(PRE_SSE_F2); | |
1318 | m_formatter.twoByteOp(OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)src); | |
1319 | } | |
1320 | ||
1321 | void addsd_mr(int offset, RegisterID base, XMMRegisterID dst) | |
1322 | { | |
1323 | m_formatter.prefix(PRE_SSE_F2); | |
1324 | m_formatter.twoByteOp(OP2_ADDSD_VsdWsd, (RegisterID)dst, base, offset); | |
1325 | } | |
1326 | ||
1327 | void cvtsi2sd_rr(RegisterID src, XMMRegisterID dst) | |
1328 | { | |
1329 | m_formatter.prefix(PRE_SSE_F2); | |
1330 | m_formatter.twoByteOp(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, src); | |
1331 | } | |
1332 | ||
ba379fdc A |
1333 | void cvtsi2sd_mr(int offset, RegisterID base, XMMRegisterID dst) |
1334 | { | |
1335 | m_formatter.prefix(PRE_SSE_F2); | |
1336 | m_formatter.twoByteOp(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, base, offset); | |
1337 | } | |
1338 | ||
f9bf01c6 | 1339 | #if !CPU(X86_64) |
14957cd0 | 1340 | void cvtsi2sd_mr(const void* address, XMMRegisterID dst) |
ba379fdc A |
1341 | { |
1342 | m_formatter.prefix(PRE_SSE_F2); | |
1343 | m_formatter.twoByteOp(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, address); | |
1344 | } | |
1345 | #endif | |
1346 | ||
9dae56ea A |
1347 | void cvttsd2si_rr(XMMRegisterID src, RegisterID dst) |
1348 | { | |
1349 | m_formatter.prefix(PRE_SSE_F2); | |
1350 | m_formatter.twoByteOp(OP2_CVTTSD2SI_GdWsd, dst, (RegisterID)src); | |
1351 | } | |
1352 | ||
1353 | void movd_rr(XMMRegisterID src, RegisterID dst) | |
1354 | { | |
1355 | m_formatter.prefix(PRE_SSE_66); | |
1356 | m_formatter.twoByteOp(OP2_MOVD_EdVd, (RegisterID)src, dst); | |
1357 | } | |
1358 | ||
f9bf01c6 | 1359 | #if CPU(X86_64) |
9dae56ea A |
1360 | void movq_rr(XMMRegisterID src, RegisterID dst) |
1361 | { | |
1362 | m_formatter.prefix(PRE_SSE_66); | |
1363 | m_formatter.twoByteOp64(OP2_MOVD_EdVd, (RegisterID)src, dst); | |
1364 | } | |
1365 | ||
1366 | void movq_rr(RegisterID src, XMMRegisterID dst) | |
1367 | { | |
1368 | m_formatter.prefix(PRE_SSE_66); | |
1369 | m_formatter.twoByteOp64(OP2_MOVD_VdEd, (RegisterID)dst, src); | |
1370 | } | |
1371 | #endif | |
1372 | ||
14957cd0 A |
1373 | void movsd_rr(XMMRegisterID src, XMMRegisterID dst) |
1374 | { | |
1375 | m_formatter.prefix(PRE_SSE_F2); | |
1376 | m_formatter.twoByteOp(OP2_MOVSD_VsdWsd, (RegisterID)dst, (RegisterID)src); | |
1377 | } | |
1378 | ||
9dae56ea A |
1379 | void movsd_rm(XMMRegisterID src, int offset, RegisterID base) |
1380 | { | |
1381 | m_formatter.prefix(PRE_SSE_F2); | |
1382 | m_formatter.twoByteOp(OP2_MOVSD_WsdVsd, (RegisterID)src, base, offset); | |
1383 | } | |
1384 | ||
1385 | void movsd_mr(int offset, RegisterID base, XMMRegisterID dst) | |
1386 | { | |
1387 | m_formatter.prefix(PRE_SSE_F2); | |
1388 | m_formatter.twoByteOp(OP2_MOVSD_VsdWsd, (RegisterID)dst, base, offset); | |
1389 | } | |
1390 | ||
f9bf01c6 | 1391 | #if !CPU(X86_64) |
4e4e5a6f | 1392 | void movsd_mr(const void* address, XMMRegisterID dst) |
ba379fdc A |
1393 | { |
1394 | m_formatter.prefix(PRE_SSE_F2); | |
1395 | m_formatter.twoByteOp(OP2_MOVSD_VsdWsd, (RegisterID)dst, address); | |
1396 | } | |
1397 | #endif | |
1398 | ||
9dae56ea A |
1399 | void mulsd_rr(XMMRegisterID src, XMMRegisterID dst) |
1400 | { | |
1401 | m_formatter.prefix(PRE_SSE_F2); | |
1402 | m_formatter.twoByteOp(OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)src); | |
1403 | } | |
1404 | ||
1405 | void mulsd_mr(int offset, RegisterID base, XMMRegisterID dst) | |
1406 | { | |
1407 | m_formatter.prefix(PRE_SSE_F2); | |
1408 | m_formatter.twoByteOp(OP2_MULSD_VsdWsd, (RegisterID)dst, base, offset); | |
1409 | } | |
1410 | ||
1411 | void pextrw_irr(int whichWord, XMMRegisterID src, RegisterID dst) | |
1412 | { | |
1413 | m_formatter.prefix(PRE_SSE_66); | |
1414 | m_formatter.twoByteOp(OP2_PEXTRW_GdUdIb, (RegisterID)dst, (RegisterID)src); | |
1415 | m_formatter.immediate8(whichWord); | |
1416 | } | |
1417 | ||
1418 | void subsd_rr(XMMRegisterID src, XMMRegisterID dst) | |
1419 | { | |
1420 | m_formatter.prefix(PRE_SSE_F2); | |
1421 | m_formatter.twoByteOp(OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)src); | |
1422 | } | |
1423 | ||
1424 | void subsd_mr(int offset, RegisterID base, XMMRegisterID dst) | |
1425 | { | |
1426 | m_formatter.prefix(PRE_SSE_F2); | |
1427 | m_formatter.twoByteOp(OP2_SUBSD_VsdWsd, (RegisterID)dst, base, offset); | |
1428 | } | |
1429 | ||
1430 | void ucomisd_rr(XMMRegisterID src, XMMRegisterID dst) | |
1431 | { | |
1432 | m_formatter.prefix(PRE_SSE_66); | |
1433 | m_formatter.twoByteOp(OP2_UCOMISD_VsdWsd, (RegisterID)dst, (RegisterID)src); | |
1434 | } | |
1435 | ||
ba379fdc A |
1436 | void ucomisd_mr(int offset, RegisterID base, XMMRegisterID dst) |
1437 | { | |
1438 | m_formatter.prefix(PRE_SSE_66); | |
1439 | m_formatter.twoByteOp(OP2_UCOMISD_VsdWsd, (RegisterID)dst, base, offset); | |
1440 | } | |
1441 | ||
1442 | void divsd_rr(XMMRegisterID src, XMMRegisterID dst) | |
1443 | { | |
1444 | m_formatter.prefix(PRE_SSE_F2); | |
1445 | m_formatter.twoByteOp(OP2_DIVSD_VsdWsd, (RegisterID)dst, (RegisterID)src); | |
1446 | } | |
1447 | ||
1448 | void divsd_mr(int offset, RegisterID base, XMMRegisterID dst) | |
1449 | { | |
1450 | m_formatter.prefix(PRE_SSE_F2); | |
1451 | m_formatter.twoByteOp(OP2_DIVSD_VsdWsd, (RegisterID)dst, base, offset); | |
1452 | } | |
1453 | ||
1454 | void xorpd_rr(XMMRegisterID src, XMMRegisterID dst) | |
1455 | { | |
1456 | m_formatter.prefix(PRE_SSE_66); | |
1457 | m_formatter.twoByteOp(OP2_XORPD_VpdWpd, (RegisterID)dst, (RegisterID)src); | |
1458 | } | |
1459 | ||
4e4e5a6f A |
1460 | void sqrtsd_rr(XMMRegisterID src, XMMRegisterID dst) |
1461 | { | |
1462 | m_formatter.prefix(PRE_SSE_F2); | |
1463 | m_formatter.twoByteOp(OP2_SQRTSD_VsdWsd, (RegisterID)dst, (RegisterID)src); | |
1464 | } | |
1465 | ||
9dae56ea A |
1466 | // Misc instructions: |
1467 | ||
1468 | void int3() | |
1469 | { | |
1470 | m_formatter.oneByteOp(OP_INT3); | |
1471 | } | |
1472 | ||
1473 | void ret() | |
1474 | { | |
1475 | m_formatter.oneByteOp(OP_RET); | |
1476 | } | |
1477 | ||
1478 | void predictNotTaken() | |
1479 | { | |
1480 | m_formatter.prefix(PRE_PREDICT_BRANCH_NOT_TAKEN); | |
1481 | } | |
1482 | ||
1483 | // Assembler admin methods: | |
1484 | ||
14957cd0 | 1485 | size_t codeSize() const |
9dae56ea | 1486 | { |
14957cd0 | 1487 | return m_formatter.codeSize(); |
9dae56ea | 1488 | } |
14957cd0 A |
1489 | |
1490 | AssemblerLabel label() | |
ba379fdc | 1491 | { |
14957cd0 | 1492 | return m_formatter.label(); |
ba379fdc | 1493 | } |
14957cd0 A |
1494 | |
1495 | AssemblerLabel align(int alignment) | |
9dae56ea A |
1496 | { |
1497 | while (!m_formatter.isAligned(alignment)) | |
1498 | m_formatter.oneByteOp(OP_HLT); | |
1499 | ||
1500 | return label(); | |
1501 | } | |
1502 | ||
1503 | // Linking & patching: | |
ba379fdc A |
1504 | // |
1505 | // 'link' and 'patch' methods are for use on unprotected code - such as the code | |
1506 | // within the AssemblerBuffer, and code being patched by the patch buffer. Once | |
1507 | // code has been finalized it is (platform support permitting) within a non- | |
1508 | // writable region of memory; to modify the code in an execute-only execuable | |
1509 | // pool the 'repatch' and 'relink' methods should be used. | |
9dae56ea | 1510 | |
14957cd0 | 1511 | void linkJump(AssemblerLabel from, AssemblerLabel to) |
9dae56ea | 1512 | { |
14957cd0 A |
1513 | ASSERT(from.isSet()); |
1514 | ASSERT(to.isSet()); | |
ba379fdc A |
1515 | |
1516 | char* code = reinterpret_cast<char*>(m_formatter.data()); | |
14957cd0 | 1517 | ASSERT(!reinterpret_cast<int32_t*>(code + from.m_offset)[-1]); |
ba379fdc | 1518 | setRel32(code + from.m_offset, code + to.m_offset); |
9dae56ea A |
1519 | } |
1520 | ||
14957cd0 | 1521 | static void linkJump(void* code, AssemblerLabel from, void* to) |
9dae56ea | 1522 | { |
14957cd0 | 1523 | ASSERT(from.isSet()); |
ba379fdc A |
1524 | |
1525 | setRel32(reinterpret_cast<char*>(code) + from.m_offset, to); | |
9dae56ea | 1526 | } |
ba379fdc | 1527 | |
14957cd0 | 1528 | static void linkCall(void* code, AssemblerLabel from, void* to) |
9dae56ea | 1529 | { |
14957cd0 | 1530 | ASSERT(from.isSet()); |
ba379fdc A |
1531 | |
1532 | setRel32(reinterpret_cast<char*>(code) + from.m_offset, to); | |
1533 | } | |
1534 | ||
14957cd0 | 1535 | static void linkPointer(void* code, AssemblerLabel where, void* value) |
ba379fdc | 1536 | { |
14957cd0 | 1537 | ASSERT(where.isSet()); |
ba379fdc A |
1538 | |
1539 | setPointer(reinterpret_cast<char*>(code) + where.m_offset, value); | |
1540 | } | |
1541 | ||
1542 | static void relinkJump(void* from, void* to) | |
1543 | { | |
1544 | setRel32(from, to); | |
1545 | } | |
1546 | ||
1547 | static void relinkCall(void* from, void* to) | |
1548 | { | |
1549 | setRel32(from, to); | |
1550 | } | |
14957cd0 A |
1551 | |
1552 | static void repatchCompact(void* where, int32_t value) | |
1553 | { | |
1554 | ASSERT(value >= 0); | |
1555 | ASSERT(value <= std::numeric_limits<int8_t>::max()); | |
1556 | setInt8(where, value); | |
1557 | } | |
ba379fdc A |
1558 | |
1559 | static void repatchInt32(void* where, int32_t value) | |
1560 | { | |
1561 | setInt32(where, value); | |
1562 | } | |
1563 | ||
1564 | static void repatchPointer(void* where, void* value) | |
1565 | { | |
1566 | setPointer(where, value); | |
1567 | } | |
9dae56ea | 1568 | |
14957cd0 | 1569 | static void* readPointer(void* where) |
ba379fdc | 1570 | { |
14957cd0 | 1571 | return reinterpret_cast<void**>(where)[-1]; |
ba379fdc A |
1572 | } |
1573 | ||
14957cd0 | 1574 | static unsigned getCallReturnOffset(AssemblerLabel call) |
9dae56ea | 1575 | { |
14957cd0 A |
1576 | ASSERT(call.isSet()); |
1577 | return call.m_offset; | |
9dae56ea | 1578 | } |
9dae56ea | 1579 | |
14957cd0 | 1580 | static void* getRelocatedAddress(void* code, AssemblerLabel label) |
9dae56ea | 1581 | { |
14957cd0 A |
1582 | ASSERT(label.isSet()); |
1583 | return reinterpret_cast<void*>(reinterpret_cast<ptrdiff_t>(code) + label.m_offset); | |
9dae56ea A |
1584 | } |
1585 | ||
14957cd0 | 1586 | static int getDifferenceBetweenLabels(AssemblerLabel a, AssemblerLabel b) |
9dae56ea | 1587 | { |
14957cd0 | 1588 | return b.m_offset - a.m_offset; |
9dae56ea A |
1589 | } |
1590 | ||
14957cd0 | 1591 | void* executableCopy(JSGlobalData& globalData, ExecutablePool* allocator) |
9dae56ea | 1592 | { |
14957cd0 | 1593 | return m_formatter.executableCopy(globalData, allocator); |
9dae56ea | 1594 | } |
14957cd0 A |
1595 | |
1596 | void rewindToLabel(AssemblerLabel rewindTo) { m_formatter.rewindToLabel(rewindTo); } | |
1597 | ||
1598 | #ifndef NDEBUG | |
1599 | unsigned debugOffset() { return m_formatter.debugOffset(); } | |
1600 | #endif | |
1601 | ||
1602 | void nop() | |
9dae56ea | 1603 | { |
14957cd0 | 1604 | m_formatter.oneByteOp(OP_NOP); |
9dae56ea A |
1605 | } |
1606 | ||
1607 | private: | |
1608 | ||
ba379fdc A |
1609 | static void setPointer(void* where, void* value) |
1610 | { | |
1611 | reinterpret_cast<void**>(where)[-1] = value; | |
1612 | } | |
1613 | ||
1614 | static void setInt32(void* where, int32_t value) | |
1615 | { | |
1616 | reinterpret_cast<int32_t*>(where)[-1] = value; | |
1617 | } | |
14957cd0 A |
1618 | |
1619 | static void setInt8(void* where, int8_t value) | |
1620 | { | |
1621 | reinterpret_cast<int8_t*>(where)[-1] = value; | |
1622 | } | |
ba379fdc A |
1623 | |
1624 | static void setRel32(void* from, void* to) | |
1625 | { | |
1626 | intptr_t offset = reinterpret_cast<intptr_t>(to) - reinterpret_cast<intptr_t>(from); | |
1627 | ASSERT(offset == static_cast<int32_t>(offset)); | |
1628 | ||
1629 | setInt32(from, offset); | |
1630 | } | |
1631 | ||
9dae56ea A |
1632 | class X86InstructionFormatter { |
1633 | ||
1634 | static const int maxInstructionSize = 16; | |
1635 | ||
1636 | public: | |
1637 | ||
1638 | // Legacy prefix bytes: | |
1639 | // | |
1640 | // These are emmitted prior to the instruction. | |
1641 | ||
1642 | void prefix(OneByteOpcodeID pre) | |
1643 | { | |
1644 | m_buffer.putByte(pre); | |
1645 | } | |
1646 | ||
1647 | // Word-sized operands / no operand instruction formatters. | |
1648 | // | |
1649 | // In addition to the opcode, the following operand permutations are supported: | |
1650 | // * None - instruction takes no operands. | |
1651 | // * One register - the low three bits of the RegisterID are added into the opcode. | |
1652 | // * Two registers - encode a register form ModRm (for all ModRm formats, the reg field is passed first, and a GroupOpcodeID may be passed in its place). | |
1653 | // * Three argument ModRM - a register, and a register and an offset describing a memory operand. | |
1654 | // * Five argument ModRM - a register, and a base register, an index, scale, and offset describing a memory operand. | |
1655 | // | |
1656 | // For 32-bit x86 targets, the address operand may also be provided as a void*. | |
1657 | // On 64-bit targets REX prefixes will be planted as necessary, where high numbered registers are used. | |
1658 | // | |
1659 | // The twoByteOp methods plant two-byte Intel instructions sequences (first opcode byte 0x0F). | |
1660 | ||
1661 | void oneByteOp(OneByteOpcodeID opcode) | |
1662 | { | |
1663 | m_buffer.ensureSpace(maxInstructionSize); | |
1664 | m_buffer.putByteUnchecked(opcode); | |
1665 | } | |
1666 | ||
1667 | void oneByteOp(OneByteOpcodeID opcode, RegisterID reg) | |
1668 | { | |
1669 | m_buffer.ensureSpace(maxInstructionSize); | |
1670 | emitRexIfNeeded(0, 0, reg); | |
1671 | m_buffer.putByteUnchecked(opcode + (reg & 7)); | |
1672 | } | |
1673 | ||
1674 | void oneByteOp(OneByteOpcodeID opcode, int reg, RegisterID rm) | |
1675 | { | |
1676 | m_buffer.ensureSpace(maxInstructionSize); | |
1677 | emitRexIfNeeded(reg, 0, rm); | |
1678 | m_buffer.putByteUnchecked(opcode); | |
1679 | registerModRM(reg, rm); | |
1680 | } | |
1681 | ||
1682 | void oneByteOp(OneByteOpcodeID opcode, int reg, RegisterID base, int offset) | |
1683 | { | |
1684 | m_buffer.ensureSpace(maxInstructionSize); | |
1685 | emitRexIfNeeded(reg, 0, base); | |
1686 | m_buffer.putByteUnchecked(opcode); | |
1687 | memoryModRM(reg, base, offset); | |
1688 | } | |
1689 | ||
1690 | void oneByteOp_disp32(OneByteOpcodeID opcode, int reg, RegisterID base, int offset) | |
1691 | { | |
1692 | m_buffer.ensureSpace(maxInstructionSize); | |
1693 | emitRexIfNeeded(reg, 0, base); | |
1694 | m_buffer.putByteUnchecked(opcode); | |
1695 | memoryModRM_disp32(reg, base, offset); | |
1696 | } | |
14957cd0 A |
1697 | |
1698 | void oneByteOp_disp8(OneByteOpcodeID opcode, int reg, RegisterID base, int offset) | |
1699 | { | |
1700 | m_buffer.ensureSpace(maxInstructionSize); | |
1701 | emitRexIfNeeded(reg, 0, base); | |
1702 | m_buffer.putByteUnchecked(opcode); | |
1703 | memoryModRM_disp8(reg, base, offset); | |
1704 | } | |
9dae56ea A |
1705 | |
1706 | void oneByteOp(OneByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset) | |
1707 | { | |
1708 | m_buffer.ensureSpace(maxInstructionSize); | |
1709 | emitRexIfNeeded(reg, index, base); | |
1710 | m_buffer.putByteUnchecked(opcode); | |
1711 | memoryModRM(reg, base, index, scale, offset); | |
1712 | } | |
1713 | ||
f9bf01c6 | 1714 | #if !CPU(X86_64) |
14957cd0 | 1715 | void oneByteOp(OneByteOpcodeID opcode, int reg, const void* address) |
9dae56ea A |
1716 | { |
1717 | m_buffer.ensureSpace(maxInstructionSize); | |
1718 | m_buffer.putByteUnchecked(opcode); | |
1719 | memoryModRM(reg, address); | |
1720 | } | |
1721 | #endif | |
1722 | ||
1723 | void twoByteOp(TwoByteOpcodeID opcode) | |
1724 | { | |
1725 | m_buffer.ensureSpace(maxInstructionSize); | |
1726 | m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); | |
1727 | m_buffer.putByteUnchecked(opcode); | |
1728 | } | |
1729 | ||
1730 | void twoByteOp(TwoByteOpcodeID opcode, int reg, RegisterID rm) | |
1731 | { | |
1732 | m_buffer.ensureSpace(maxInstructionSize); | |
1733 | emitRexIfNeeded(reg, 0, rm); | |
1734 | m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); | |
1735 | m_buffer.putByteUnchecked(opcode); | |
1736 | registerModRM(reg, rm); | |
1737 | } | |
1738 | ||
1739 | void twoByteOp(TwoByteOpcodeID opcode, int reg, RegisterID base, int offset) | |
1740 | { | |
1741 | m_buffer.ensureSpace(maxInstructionSize); | |
1742 | emitRexIfNeeded(reg, 0, base); | |
1743 | m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); | |
1744 | m_buffer.putByteUnchecked(opcode); | |
1745 | memoryModRM(reg, base, offset); | |
1746 | } | |
1747 | ||
1748 | void twoByteOp(TwoByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset) | |
1749 | { | |
1750 | m_buffer.ensureSpace(maxInstructionSize); | |
1751 | emitRexIfNeeded(reg, index, base); | |
1752 | m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); | |
1753 | m_buffer.putByteUnchecked(opcode); | |
1754 | memoryModRM(reg, base, index, scale, offset); | |
1755 | } | |
1756 | ||
f9bf01c6 | 1757 | #if !CPU(X86_64) |
4e4e5a6f | 1758 | void twoByteOp(TwoByteOpcodeID opcode, int reg, const void* address) |
ba379fdc A |
1759 | { |
1760 | m_buffer.ensureSpace(maxInstructionSize); | |
1761 | m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); | |
1762 | m_buffer.putByteUnchecked(opcode); | |
1763 | memoryModRM(reg, address); | |
1764 | } | |
1765 | #endif | |
1766 | ||
f9bf01c6 | 1767 | #if CPU(X86_64) |
9dae56ea A |
1768 | // Quad-word-sized operands: |
1769 | // | |
1770 | // Used to format 64-bit operantions, planting a REX.w prefix. | |
1771 | // When planting d64 or f64 instructions, not requiring a REX.w prefix, | |
1772 | // the normal (non-'64'-postfixed) formatters should be used. | |
1773 | ||
1774 | void oneByteOp64(OneByteOpcodeID opcode) | |
1775 | { | |
1776 | m_buffer.ensureSpace(maxInstructionSize); | |
1777 | emitRexW(0, 0, 0); | |
1778 | m_buffer.putByteUnchecked(opcode); | |
1779 | } | |
1780 | ||
1781 | void oneByteOp64(OneByteOpcodeID opcode, RegisterID reg) | |
1782 | { | |
1783 | m_buffer.ensureSpace(maxInstructionSize); | |
1784 | emitRexW(0, 0, reg); | |
1785 | m_buffer.putByteUnchecked(opcode + (reg & 7)); | |
1786 | } | |
1787 | ||
1788 | void oneByteOp64(OneByteOpcodeID opcode, int reg, RegisterID rm) | |
1789 | { | |
1790 | m_buffer.ensureSpace(maxInstructionSize); | |
1791 | emitRexW(reg, 0, rm); | |
1792 | m_buffer.putByteUnchecked(opcode); | |
1793 | registerModRM(reg, rm); | |
1794 | } | |
1795 | ||
1796 | void oneByteOp64(OneByteOpcodeID opcode, int reg, RegisterID base, int offset) | |
1797 | { | |
1798 | m_buffer.ensureSpace(maxInstructionSize); | |
1799 | emitRexW(reg, 0, base); | |
1800 | m_buffer.putByteUnchecked(opcode); | |
1801 | memoryModRM(reg, base, offset); | |
1802 | } | |
1803 | ||
1804 | void oneByteOp64_disp32(OneByteOpcodeID opcode, int reg, RegisterID base, int offset) | |
1805 | { | |
1806 | m_buffer.ensureSpace(maxInstructionSize); | |
1807 | emitRexW(reg, 0, base); | |
1808 | m_buffer.putByteUnchecked(opcode); | |
1809 | memoryModRM_disp32(reg, base, offset); | |
1810 | } | |
14957cd0 A |
1811 | |
1812 | void oneByteOp64_disp8(OneByteOpcodeID opcode, int reg, RegisterID base, int offset) | |
1813 | { | |
1814 | m_buffer.ensureSpace(maxInstructionSize); | |
1815 | emitRexW(reg, 0, base); | |
1816 | m_buffer.putByteUnchecked(opcode); | |
1817 | memoryModRM_disp8(reg, base, offset); | |
1818 | } | |
9dae56ea A |
1819 | |
1820 | void oneByteOp64(OneByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset) | |
1821 | { | |
1822 | m_buffer.ensureSpace(maxInstructionSize); | |
1823 | emitRexW(reg, index, base); | |
1824 | m_buffer.putByteUnchecked(opcode); | |
1825 | memoryModRM(reg, base, index, scale, offset); | |
1826 | } | |
1827 | ||
1828 | void twoByteOp64(TwoByteOpcodeID opcode, int reg, RegisterID rm) | |
1829 | { | |
1830 | m_buffer.ensureSpace(maxInstructionSize); | |
1831 | emitRexW(reg, 0, rm); | |
1832 | m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); | |
1833 | m_buffer.putByteUnchecked(opcode); | |
1834 | registerModRM(reg, rm); | |
1835 | } | |
1836 | #endif | |
1837 | ||
1838 | // Byte-operands: | |
1839 | // | |
1840 | // These methods format byte operations. Byte operations differ from the normal | |
1841 | // formatters in the circumstances under which they will decide to emit REX prefixes. | |
1842 | // These should be used where any register operand signifies a byte register. | |
1843 | // | |
1844 | // The disctinction is due to the handling of register numbers in the range 4..7 on | |
1845 | // x86-64. These register numbers may either represent the second byte of the first | |
1846 | // four registers (ah..bh) or the first byte of the second four registers (spl..dil). | |
1847 | // | |
1848 | // Since ah..bh cannot be used in all permutations of operands (specifically cannot | |
1849 | // be accessed where a REX prefix is present), these are likely best treated as | |
1850 | // deprecated. In order to ensure the correct registers spl..dil are selected a | |
1851 | // REX prefix will be emitted for any byte register operand in the range 4..15. | |
1852 | // | |
1853 | // These formatters may be used in instructions where a mix of operand sizes, in which | |
1854 | // case an unnecessary REX will be emitted, for example: | |
1855 | // movzbl %al, %edi | |
1856 | // In this case a REX will be planted since edi is 7 (and were this a byte operand | |
1857 | // a REX would be required to specify dil instead of bh). Unneeded REX prefixes will | |
1858 | // be silently ignored by the processor. | |
1859 | // | |
1860 | // Address operands should still be checked using regRequiresRex(), while byteRegRequiresRex() | |
1861 | // is provided to check byte register operands. | |
1862 | ||
1863 | void oneByteOp8(OneByteOpcodeID opcode, GroupOpcodeID groupOp, RegisterID rm) | |
1864 | { | |
1865 | m_buffer.ensureSpace(maxInstructionSize); | |
1866 | emitRexIf(byteRegRequiresRex(rm), 0, 0, rm); | |
1867 | m_buffer.putByteUnchecked(opcode); | |
1868 | registerModRM(groupOp, rm); | |
1869 | } | |
1870 | ||
1871 | void twoByteOp8(TwoByteOpcodeID opcode, RegisterID reg, RegisterID rm) | |
1872 | { | |
1873 | m_buffer.ensureSpace(maxInstructionSize); | |
1874 | emitRexIf(byteRegRequiresRex(reg)|byteRegRequiresRex(rm), reg, 0, rm); | |
1875 | m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); | |
1876 | m_buffer.putByteUnchecked(opcode); | |
1877 | registerModRM(reg, rm); | |
1878 | } | |
1879 | ||
1880 | void twoByteOp8(TwoByteOpcodeID opcode, GroupOpcodeID groupOp, RegisterID rm) | |
1881 | { | |
1882 | m_buffer.ensureSpace(maxInstructionSize); | |
1883 | emitRexIf(byteRegRequiresRex(rm), 0, 0, rm); | |
1884 | m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); | |
1885 | m_buffer.putByteUnchecked(opcode); | |
1886 | registerModRM(groupOp, rm); | |
1887 | } | |
1888 | ||
1889 | // Immediates: | |
1890 | // | |
1891 | // An immedaite should be appended where appropriate after an op has been emitted. | |
1892 | // The writes are unchecked since the opcode formatters above will have ensured space. | |
1893 | ||
1894 | void immediate8(int imm) | |
1895 | { | |
1896 | m_buffer.putByteUnchecked(imm); | |
1897 | } | |
1898 | ||
ba379fdc A |
1899 | void immediate16(int imm) |
1900 | { | |
1901 | m_buffer.putShortUnchecked(imm); | |
1902 | } | |
1903 | ||
9dae56ea A |
1904 | void immediate32(int imm) |
1905 | { | |
1906 | m_buffer.putIntUnchecked(imm); | |
1907 | } | |
1908 | ||
1909 | void immediate64(int64_t imm) | |
1910 | { | |
1911 | m_buffer.putInt64Unchecked(imm); | |
1912 | } | |
1913 | ||
14957cd0 | 1914 | AssemblerLabel immediateRel32() |
9dae56ea A |
1915 | { |
1916 | m_buffer.putIntUnchecked(0); | |
14957cd0 | 1917 | return label(); |
9dae56ea A |
1918 | } |
1919 | ||
1920 | // Administrative methods: | |
1921 | ||
14957cd0 A |
1922 | size_t codeSize() const { return m_buffer.codeSize(); } |
1923 | AssemblerLabel label() const { return m_buffer.label(); } | |
9dae56ea A |
1924 | bool isAligned(int alignment) const { return m_buffer.isAligned(alignment); } |
1925 | void* data() const { return m_buffer.data(); } | |
14957cd0 A |
1926 | |
1927 | void* executableCopy(JSGlobalData& globalData, ExecutablePool* allocator) | |
1928 | { | |
1929 | return m_buffer.executableCopy(globalData, allocator); | |
1930 | } | |
1931 | ||
1932 | void rewindToLabel(AssemblerLabel rewindTo) { m_buffer.rewindToLabel(rewindTo); } | |
1933 | ||
1934 | #ifndef NDEBUG | |
1935 | unsigned debugOffset() { return m_buffer.debugOffset(); } | |
1936 | #endif | |
9dae56ea A |
1937 | |
1938 | private: | |
1939 | ||
1940 | // Internals; ModRm and REX formatters. | |
1941 | ||
f9bf01c6 A |
1942 | static const RegisterID noBase = X86Registers::ebp; |
1943 | static const RegisterID hasSib = X86Registers::esp; | |
1944 | static const RegisterID noIndex = X86Registers::esp; | |
1945 | #if CPU(X86_64) | |
1946 | static const RegisterID noBase2 = X86Registers::r13; | |
1947 | static const RegisterID hasSib2 = X86Registers::r12; | |
9dae56ea A |
1948 | |
1949 | // Registers r8 & above require a REX prefixe. | |
1950 | inline bool regRequiresRex(int reg) | |
1951 | { | |
f9bf01c6 | 1952 | return (reg >= X86Registers::r8); |
9dae56ea A |
1953 | } |
1954 | ||
1955 | // Byte operand register spl & above require a REX prefix (to prevent the 'H' registers be accessed). | |
1956 | inline bool byteRegRequiresRex(int reg) | |
1957 | { | |
f9bf01c6 | 1958 | return (reg >= X86Registers::esp); |
9dae56ea A |
1959 | } |
1960 | ||
1961 | // Format a REX prefix byte. | |
1962 | inline void emitRex(bool w, int r, int x, int b) | |
1963 | { | |
1964 | m_buffer.putByteUnchecked(PRE_REX | ((int)w << 3) | ((r>>3)<<2) | ((x>>3)<<1) | (b>>3)); | |
1965 | } | |
1966 | ||
1967 | // Used to plant a REX byte with REX.w set (for 64-bit operations). | |
1968 | inline void emitRexW(int r, int x, int b) | |
1969 | { | |
1970 | emitRex(true, r, x, b); | |
1971 | } | |
1972 | ||
1973 | // Used for operations with byte operands - use byteRegRequiresRex() to check register operands, | |
1974 | // regRequiresRex() to check other registers (i.e. address base & index). | |
1975 | inline void emitRexIf(bool condition, int r, int x, int b) | |
1976 | { | |
1977 | if (condition) emitRex(false, r, x, b); | |
1978 | } | |
1979 | ||
1980 | // Used for word sized operations, will plant a REX prefix if necessary (if any register is r8 or above). | |
1981 | inline void emitRexIfNeeded(int r, int x, int b) | |
1982 | { | |
1983 | emitRexIf(regRequiresRex(r) || regRequiresRex(x) || regRequiresRex(b), r, x, b); | |
1984 | } | |
1985 | #else | |
1986 | // No REX prefix bytes on 32-bit x86. | |
1987 | inline bool regRequiresRex(int) { return false; } | |
1988 | inline bool byteRegRequiresRex(int) { return false; } | |
1989 | inline void emitRexIf(bool, int, int, int) {} | |
1990 | inline void emitRexIfNeeded(int, int, int) {} | |
1991 | #endif | |
1992 | ||
1993 | enum ModRmMode { | |
1994 | ModRmMemoryNoDisp, | |
1995 | ModRmMemoryDisp8, | |
1996 | ModRmMemoryDisp32, | |
1997 | ModRmRegister, | |
1998 | }; | |
1999 | ||
2000 | void putModRm(ModRmMode mode, int reg, RegisterID rm) | |
2001 | { | |
2002 | m_buffer.putByteUnchecked((mode << 6) | ((reg & 7) << 3) | (rm & 7)); | |
2003 | } | |
2004 | ||
2005 | void putModRmSib(ModRmMode mode, int reg, RegisterID base, RegisterID index, int scale) | |
2006 | { | |
2007 | ASSERT(mode != ModRmRegister); | |
2008 | ||
9dae56ea | 2009 | putModRm(mode, reg, hasSib); |
ba379fdc | 2010 | m_buffer.putByteUnchecked((scale << 6) | ((index & 7) << 3) | (base & 7)); |
9dae56ea A |
2011 | } |
2012 | ||
2013 | void registerModRM(int reg, RegisterID rm) | |
2014 | { | |
2015 | putModRm(ModRmRegister, reg, rm); | |
2016 | } | |
2017 | ||
2018 | void memoryModRM(int reg, RegisterID base, int offset) | |
2019 | { | |
2020 | // A base of esp or r12 would be interpreted as a sib, so force a sib with no index & put the base in there. | |
f9bf01c6 | 2021 | #if CPU(X86_64) |
9dae56ea A |
2022 | if ((base == hasSib) || (base == hasSib2)) { |
2023 | #else | |
2024 | if (base == hasSib) { | |
2025 | #endif | |
2026 | if (!offset) // No need to check if the base is noBase, since we know it is hasSib! | |
2027 | putModRmSib(ModRmMemoryNoDisp, reg, base, noIndex, 0); | |
2028 | else if (CAN_SIGN_EXTEND_8_32(offset)) { | |
2029 | putModRmSib(ModRmMemoryDisp8, reg, base, noIndex, 0); | |
2030 | m_buffer.putByteUnchecked(offset); | |
2031 | } else { | |
2032 | putModRmSib(ModRmMemoryDisp32, reg, base, noIndex, 0); | |
2033 | m_buffer.putIntUnchecked(offset); | |
2034 | } | |
2035 | } else { | |
f9bf01c6 | 2036 | #if CPU(X86_64) |
9dae56ea A |
2037 | if (!offset && (base != noBase) && (base != noBase2)) |
2038 | #else | |
2039 | if (!offset && (base != noBase)) | |
2040 | #endif | |
2041 | putModRm(ModRmMemoryNoDisp, reg, base); | |
2042 | else if (CAN_SIGN_EXTEND_8_32(offset)) { | |
2043 | putModRm(ModRmMemoryDisp8, reg, base); | |
2044 | m_buffer.putByteUnchecked(offset); | |
2045 | } else { | |
2046 | putModRm(ModRmMemoryDisp32, reg, base); | |
2047 | m_buffer.putIntUnchecked(offset); | |
2048 | } | |
2049 | } | |
2050 | } | |
14957cd0 A |
2051 | |
2052 | void memoryModRM_disp8(int reg, RegisterID base, int offset) | |
2053 | { | |
2054 | // A base of esp or r12 would be interpreted as a sib, so force a sib with no index & put the base in there. | |
2055 | ASSERT(CAN_SIGN_EXTEND_8_32(offset)); | |
2056 | #if CPU(X86_64) | |
2057 | if ((base == hasSib) || (base == hasSib2)) { | |
2058 | #else | |
2059 | if (base == hasSib) { | |
2060 | #endif | |
2061 | putModRmSib(ModRmMemoryDisp8, reg, base, noIndex, 0); | |
2062 | m_buffer.putByteUnchecked(offset); | |
2063 | } else { | |
2064 | putModRm(ModRmMemoryDisp8, reg, base); | |
2065 | m_buffer.putByteUnchecked(offset); | |
2066 | } | |
2067 | } | |
2068 | ||
9dae56ea A |
2069 | void memoryModRM_disp32(int reg, RegisterID base, int offset) |
2070 | { | |
2071 | // A base of esp or r12 would be interpreted as a sib, so force a sib with no index & put the base in there. | |
f9bf01c6 | 2072 | #if CPU(X86_64) |
9dae56ea A |
2073 | if ((base == hasSib) || (base == hasSib2)) { |
2074 | #else | |
2075 | if (base == hasSib) { | |
2076 | #endif | |
2077 | putModRmSib(ModRmMemoryDisp32, reg, base, noIndex, 0); | |
2078 | m_buffer.putIntUnchecked(offset); | |
2079 | } else { | |
2080 | putModRm(ModRmMemoryDisp32, reg, base); | |
2081 | m_buffer.putIntUnchecked(offset); | |
2082 | } | |
2083 | } | |
2084 | ||
2085 | void memoryModRM(int reg, RegisterID base, RegisterID index, int scale, int offset) | |
2086 | { | |
2087 | ASSERT(index != noIndex); | |
2088 | ||
f9bf01c6 | 2089 | #if CPU(X86_64) |
9dae56ea A |
2090 | if (!offset && (base != noBase) && (base != noBase2)) |
2091 | #else | |
2092 | if (!offset && (base != noBase)) | |
2093 | #endif | |
2094 | putModRmSib(ModRmMemoryNoDisp, reg, base, index, scale); | |
2095 | else if (CAN_SIGN_EXTEND_8_32(offset)) { | |
2096 | putModRmSib(ModRmMemoryDisp8, reg, base, index, scale); | |
2097 | m_buffer.putByteUnchecked(offset); | |
2098 | } else { | |
2099 | putModRmSib(ModRmMemoryDisp32, reg, base, index, scale); | |
2100 | m_buffer.putIntUnchecked(offset); | |
2101 | } | |
2102 | } | |
2103 | ||
f9bf01c6 | 2104 | #if !CPU(X86_64) |
4e4e5a6f | 2105 | void memoryModRM(int reg, const void* address) |
9dae56ea A |
2106 | { |
2107 | // noBase + ModRmMemoryNoDisp means noBase + ModRmMemoryDisp32! | |
2108 | putModRm(ModRmMemoryNoDisp, reg, noBase); | |
2109 | m_buffer.putIntUnchecked(reinterpret_cast<int32_t>(address)); | |
2110 | } | |
2111 | #endif | |
2112 | ||
2113 | AssemblerBuffer m_buffer; | |
2114 | } m_formatter; | |
2115 | }; | |
2116 | ||
2117 | } // namespace JSC | |
2118 | ||
f9bf01c6 | 2119 | #endif // ENABLE(ASSEMBLER) && CPU(X86) |
9dae56ea A |
2120 | |
2121 | #endif // X86Assembler_h |