***************************************************************************
*/
//
-// file: rbbi.c Contains the implementation of the rule based break iterator
+// file: rbbi.cpp Contains the implementation of the rule based break iterator
// runtime engine and the API implementation for
// class RuleBasedBreakIterator
//
#include "unicode/rbbi.h"
#include "unicode/schriter.h"
#include "unicode/uchriter.h"
-#include "unicode/udata.h"
#include "unicode/uclean.h"
-#include "rbbidata.h"
-#include "rbbirb.h"
+#include "unicode/udata.h"
+
+#include "brkeng.h"
+#include "ucln_cmn.h"
#include "cmemory.h"
#include "cstring.h"
-#include "umutex.h"
-#include "ucln_cmn.h"
-#include "brkeng.h"
-
+#include "rbbidata.h"
+#include "rbbi_cache.h"
+#include "rbbirb.h"
#include "uassert.h"
-#include "uvector.h"
+#include "umutex.h"
+#include "uvectr32.h"
// if U_LOCAL_SERVICE_HOOK is defined, then localsvc.cpp is expected to be included.
#if U_LOCAL_SERVICE_HOOK
#include "localsvc.h"
#endif
+// Apple specific
+//#include <os/log.h>
+
#ifdef RBBI_DEBUG
-static UBool fTrace = FALSE;
+static UBool gTrace = FALSE;
#endif
U_NAMESPACE_BEGIN
// The state number of the starting state
-#define START_STATE 1
+constexpr int32_t START_STATE = 1;
// The state-transition value indicating "stop"
-#define STOP_STATE 0
+constexpr int32_t STOP_STATE = 0;
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(RuleBasedBreakIterator)
* tables object that is passed in as a parameter.
*/
RuleBasedBreakIterator::RuleBasedBreakIterator(RBBIDataHeader* data, UErrorCode &status)
+ : fSCharIter(UnicodeString())
{
- init();
+ init(status);
fData = new RBBIDataWrapper(data, status); // status checked in constructor
if (U_FAILURE(status)) {return;}
if(fData == 0) {
}
}
-/**
- * Same as above but does not adopt memory
- * Open-source ICU eliminated this method in #12071, but Apple code needs it, so restore it.
- */
-RuleBasedBreakIterator::RuleBasedBreakIterator(const RBBIDataHeader* data, enum EDontAdopt, UErrorCode &status)
-{
- init();
- fData = new RBBIDataWrapper(data, RBBIDataWrapper::kDontAdopt, status); // status checked in constructor
- if (U_FAILURE(status)) {return;}
- if(fData == 0) {
- status = U_MEMORY_ALLOCATION_ERROR;
- return;
- }
-}
-
-
//
// Construct from precompiled binary rules (tables). This constructor is public API,
// taking the rules as a (const uint8_t *) to match the type produced by getBinaryRules().
//
RuleBasedBreakIterator::RuleBasedBreakIterator(const uint8_t *compiledRules,
uint32_t ruleLength,
- UErrorCode &status) {
- init();
+ UErrorCode &status)
+ : fSCharIter(UnicodeString())
+{
+ init(status);
if (U_FAILURE(status)) {
return;
}
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
- fData = new RBBIDataWrapper(data, RBBIDataWrapper::kDontAdopt, status);
+ fData = new RBBIDataWrapper(data, RBBIDataWrapper::kDontAdopt, status);
if (U_FAILURE(status)) {return;}
if(fData == 0) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
-}
+}
//-------------------------------------------------------------------------------
//
//-------------------------------------------------------------------------------
RuleBasedBreakIterator::RuleBasedBreakIterator(UDataMemory* udm, UErrorCode &status)
+ : fSCharIter(UnicodeString())
{
- init();
+ init(status);
fData = new RBBIDataWrapper(udm, status); // status checked in constructor
if (U_FAILURE(status)) {return;}
if(fData == 0) {
RuleBasedBreakIterator::RuleBasedBreakIterator( const UnicodeString &rules,
UParseError &parseError,
UErrorCode &status)
+ : fSCharIter(UnicodeString())
{
- init();
+ init(status);
if (U_FAILURE(status)) {return;}
RuleBasedBreakIterator *bi = (RuleBasedBreakIterator *)
RBBIRuleBuilder::createRuleBasedBreakIterator(rules, &parseError, status);
// Used when creating a RuleBasedBreakIterator from a set
// of rules.
//-------------------------------------------------------------------------------
-RuleBasedBreakIterator::RuleBasedBreakIterator() {
- init();
+RuleBasedBreakIterator::RuleBasedBreakIterator()
+ : fSCharIter(UnicodeString())
+{
+ UErrorCode status = U_ZERO_ERROR;
+ init(status);
}
//
//-------------------------------------------------------------------------------
RuleBasedBreakIterator::RuleBasedBreakIterator(const RuleBasedBreakIterator& other)
-: BreakIterator(other)
+: BreakIterator(other),
+ fSCharIter(UnicodeString())
{
- this->init();
+ UErrorCode status = U_ZERO_ERROR;
+ this->init(status);
*this = other;
}
* Destructor
*/
RuleBasedBreakIterator::~RuleBasedBreakIterator() {
- if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) {
+ if (fCharIter != &fSCharIter) {
// fCharIter was adopted from the outside.
delete fCharIter;
}
fCharIter = NULL;
- delete fSCharIter;
- fCharIter = NULL;
- delete fDCharIter;
- fDCharIter = NULL;
-
- utext_close(fText);
+
+ utext_close(&fText);
if (fData != NULL) {
fData->removeReference();
fData = NULL;
}
- if (fCachedBreakPositions) {
- uprv_free(fCachedBreakPositions);
- fCachedBreakPositions = NULL;
- }
- if (fLanguageBreakEngines) {
- delete fLanguageBreakEngines;
- fLanguageBreakEngines = NULL;
- }
- if (fUnhandledBreakEngine) {
- delete fUnhandledBreakEngine;
- fUnhandledBreakEngine = NULL;
- }
+ delete fBreakCache;
+ fBreakCache = NULL;
+
+ delete fDictionaryCache;
+ fDictionaryCache = NULL;
+
+ delete fLanguageBreakEngines;
+ fLanguageBreakEngines = NULL;
+
+ delete fUnhandledBreakEngine;
+ fUnhandledBreakEngine = NULL;
+
+ delete [] fLatin1Cat;
+ fLatin1Cat = NULL;
}
/**
if (this == &that) {
return *this;
}
- fKeepAll = that.fKeepAll;
- reset(); // Delete break cache information
- fBreakType = that.fBreakType;
+ BreakIterator::operator=(that);
+ fLineWordOpts = that.fLineWordOpts;
+
if (fLanguageBreakEngines != NULL) {
delete fLanguageBreakEngines;
fLanguageBreakEngines = NULL; // Just rebuild for now
}
// TODO: clone fLanguageBreakEngines from "that"
UErrorCode status = U_ZERO_ERROR;
- fText = utext_clone(fText, that.fText, FALSE, TRUE, &status);
+ utext_clone(&fText, &that.fText, FALSE, TRUE, &status);
- if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) {
+ if (fCharIter != &fSCharIter) {
delete fCharIter;
}
- fCharIter = NULL;
+ fCharIter = &fSCharIter;
- if (that.fCharIter != NULL ) {
+ if (that.fCharIter != NULL && that.fCharIter != &that.fSCharIter) {
// This is a little bit tricky - it will intially appear that
// this->fCharIter is adopted, even if that->fCharIter was
// not adopted. That's ok.
fCharIter = that.fCharIter->clone();
}
+ fSCharIter = that.fSCharIter;
+ if (fCharIter == NULL) {
+ fCharIter = &fSCharIter;
+ }
if (fData != NULL) {
fData->removeReference();
fData = that.fData->addReference();
}
+ delete [] fLatin1Cat;
+ fLatin1Cat = NULL;
+
+ fPosition = that.fPosition;
+ fRuleStatusIndex = that.fRuleStatusIndex;
+ fDone = that.fDone;
+
+ // TODO: both the dictionary and the main cache need to be copied.
+ // Current position could be within a dictionary range. Trying to continue
+ // the iteration without the caches present would go to the rules, with
+ // the assumption that the current position is on a rule boundary.
+ fBreakCache->reset(fPosition, fRuleStatusIndex);
+ fDictionaryCache->reset();
+
return *this;
}
// Initializes all fields, leaving the object in a consistent state.
//
//-----------------------------------------------------------------------------
-void RuleBasedBreakIterator::init() {
- UErrorCode status = U_ZERO_ERROR;
- fText = utext_openUChars(NULL, NULL, 0, &status);
+void RuleBasedBreakIterator::init(UErrorCode &status) {
fCharIter = NULL;
- fSCharIter = NULL;
- fDCharIter = NULL;
fData = NULL;
- fLastRuleStatusIndex = 0;
- fLastStatusIndexValid = TRUE;
+ fLatin1Cat = NULL;
+ fPosition = 0;
+ fRuleStatusIndex = 0;
+ fDone = false;
fDictionaryCharCount = 0;
- fBreakType = UBRK_WORD; // Defaulting BreakType to word gives reasonable
- // dictionary behavior for Break Iterators that are
- // built from rules. Even better would be the ability to
- // declare the type in the rules.
+ fLanguageBreakEngines = NULL;
+ fUnhandledBreakEngine = NULL;
+ fBreakCache = NULL;
+ fDictionaryCache = NULL;
- fCachedBreakPositions = NULL;
- fLanguageBreakEngines = NULL;
- fUnhandledBreakEngine = NULL;
- fNumCachedBreakPositions = 0;
- fPositionInCache = 0;
+ // Note: IBM xlC is unable to assign or initialize member fText from UTEXT_INITIALIZER.
+ // fText = UTEXT_INITIALIZER;
+ static const UText initializedUText = UTEXT_INITIALIZER;
+ uprv_memcpy(&fText, &initializedUText, sizeof(UText));
+
+ if (U_FAILURE(status)) {
+ return;
+ }
+
+ utext_openUChars(&fText, NULL, 0, &status);
+ fDictionaryCache = new DictionaryCache(this, status);
+ fBreakCache = new BreakCache(this, status);
+ if (U_SUCCESS(status) && (fDictionaryCache == NULL || fBreakCache == NULL)) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ }
#ifdef RBBI_DEBUG
static UBool debugInitDone = FALSE;
if (debugInitDone == FALSE) {
char *debugEnv = getenv("U_RBBIDEBUG");
if (debugEnv && uprv_strstr(debugEnv, "trace")) {
- fTrace = TRUE;
+ gTrace = TRUE;
}
debugInitDone = TRUE;
}
}
+void RuleBasedBreakIterator::initLatin1Cat(void) {
+ fLatin1Cat = new uint16_t[256];
+ for (UChar32 c = 0; c < 256; ++c) {
+ fLatin1Cat[c] = UTRIE2_GET16(fData->fTrie, c);
+ }
+}
//-----------------------------------------------------------------------------
//
if (typeid(*this) != typeid(that)) {
return FALSE;
}
+ if (this == &that) {
+ return TRUE;
+ }
+
+ // The base class BreakIterator carries no state that participates in equality,
+ // and does not implement an equality function that would otherwise be
+ // checked at this point.
const RuleBasedBreakIterator& that2 = (const RuleBasedBreakIterator&) that;
- if (that2.fKeepAll != fKeepAll) {
+ if (that2.fLineWordOpts != fLineWordOpts) {
return FALSE;
}
- if (!utext_equals(fText, that2.fText)) {
+ if (!utext_equals(&fText, &that2.fText)) {
// The two break iterators are operating on different text,
- // or have a different interation position.
+ // or have a different iteration position.
+ // Note that fText's position is always the same as the break iterator's position.
return FALSE;
};
- // TODO: need a check for when in a dictionary region at different offsets.
+ if (!(fPosition == that2.fPosition &&
+ fRuleStatusIndex == that2.fRuleStatusIndex &&
+ fDone == that2.fDone)) {
+ return FALSE;
+ }
if (that2.fData == fData ||
(fData != NULL && that2.fData != NULL && *that2.fData == *fData)) {
if (U_FAILURE(status)) {
return;
}
- reset();
- fText = utext_clone(fText, ut, FALSE, TRUE, &status);
+ fBreakCache->reset();
+ fDictionaryCache->reset();
+ utext_clone(&fText, ut, FALSE, TRUE, &status);
// Set up a dummy CharacterIterator to be returned if anyone
// calls getText(). With input from UText, there is no reasonable
// Return one over an empty string instead - this is the closest
// we can come to signaling a failure.
// (GetText() is obsolete, this failure is sort of OK)
- if (fDCharIter == NULL) {
- static const UChar c = 0;
- fDCharIter = new UCharCharacterIterator(&c, 0);
- if (fDCharIter == NULL) {
- status = U_MEMORY_ALLOCATION_ERROR;
- return;
- }
- }
+ fSCharIter.setText(UnicodeString());
- if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) {
+ if (fCharIter != &fSCharIter) {
// existing fCharIter was adopted from the outside. Delete it now.
delete fCharIter;
}
- fCharIter = fDCharIter;
+ fCharIter = &fSCharIter;
this->first();
}
UText *RuleBasedBreakIterator::getUText(UText *fillIn, UErrorCode &status) const {
- UText *result = utext_clone(fillIn, fText, FALSE, TRUE, &status);
+ UText *result = utext_clone(fillIn, &fText, FALSE, TRUE, &status);
return result;
}
-
-/**
- * Returns the description used to create this iterator
- */
-const UnicodeString&
-RuleBasedBreakIterator::getRules() const {
- if (fData != NULL) {
- return fData->getRuleSourceString();
- } else {
- static const UnicodeString *s;
- if (s == NULL) {
- // TODO: something more elegant here.
- // perhaps API should return the string by value.
- // Note: thread unsafe init & leak are semi-ok, better than
- // what was before. Sould be cleaned up, though.
- s = new UnicodeString;
- }
- return *s;
- }
-}
-
//=======================================================================
// BreakIterator overrides
//=======================================================================
/**
- * Return a CharacterIterator over the text being analyzed.
+ * Return a CharacterIterator over the text being analyzed.
*/
CharacterIterator&
RuleBasedBreakIterator::getText() const {
*/
void
RuleBasedBreakIterator::adoptText(CharacterIterator* newText) {
- // If we are holding a CharacterIterator adopted from a
+ // If we are holding a CharacterIterator adopted from a
// previous call to this function, delete it now.
- if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) {
+ if (fCharIter != &fSCharIter) {
delete fCharIter;
}
fCharIter = newText;
UErrorCode status = U_ZERO_ERROR;
- reset();
- if (newText==NULL || newText->startIndex() != 0) {
+ fBreakCache->reset();
+ fDictionaryCache->reset();
+ if (newText==NULL || newText->startIndex() != 0) {
// startIndex !=0 wants to be an error, but there's no way to report it.
// Make the iterator text be an empty string.
- fText = utext_openUChars(fText, NULL, 0, &status);
+ utext_openUChars(&fText, NULL, 0, &status);
} else {
- fText = utext_openCharacterIterator(fText, newText, &status);
+ utext_openCharacterIterator(&fText, newText, &status);
}
this->first();
}
void
RuleBasedBreakIterator::setText(const UnicodeString& newText) {
UErrorCode status = U_ZERO_ERROR;
- reset();
- fText = utext_openConstUnicodeString(fText, &newText, &status);
+ fBreakCache->reset();
+ fDictionaryCache->reset();
+ utext_openConstUnicodeString(&fText, &newText, &status);
- // Set up a character iterator on the string.
+ // Set up a character iterator on the string.
// Needed in case someone calls getText().
// Can not, unfortunately, do this lazily on the (probably never)
// call to getText(), because getText is const.
- if (fSCharIter == NULL) {
- fSCharIter = new StringCharacterIterator(newText);
- } else {
- fSCharIter->setText(newText);
- }
+ fSCharIter.setText(newText);
- if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) {
+ if (fCharIter != &fSCharIter) {
// old fCharIter was adopted from the outside. Delete it.
delete fCharIter;
}
- fCharIter = fSCharIter;
+ fCharIter = &fSCharIter;
this->first();
}
status = U_ILLEGAL_ARGUMENT_ERROR;
return *this;
}
- int64_t pos = utext_getNativeIndex(fText);
+ int64_t pos = utext_getNativeIndex(&fText);
// Shallow read-only clone of the new UText into the existing input UText
- fText = utext_clone(fText, input, FALSE, TRUE, &status);
+ utext_clone(&fText, input, FALSE, TRUE, &status);
if (U_FAILURE(status)) {
return *this;
}
- utext_setNativeIndex(fText, pos);
- if (utext_getNativeIndex(fText) != pos) {
+ utext_setNativeIndex(&fText, pos);
+ if (utext_getNativeIndex(&fText) != pos) {
// Sanity check. The new input utext is supposed to have the exact same
// contents as the old. If we can't set to the same position, it doesn't.
// The contents underlying the old utext might be invalid at this point,
* @return The new iterator position, which is zero.
*/
int32_t RuleBasedBreakIterator::first(void) {
- reset();
- fLastRuleStatusIndex = 0;
- fLastStatusIndexValid = TRUE;
- //if (fText == NULL)
- // return BreakIterator::DONE;
-
- utext_setNativeIndex(fText, 0);
+ UErrorCode status = U_ZERO_ERROR;
+ if (!fBreakCache->seek(0)) {
+ fBreakCache->populateNear(0, status);
+ }
+ fBreakCache->current();
+ U_ASSERT(fPosition == 0);
return 0;
}
* @return The text's past-the-end offset.
*/
int32_t RuleBasedBreakIterator::last(void) {
- reset();
- if (fText == NULL) {
- fLastRuleStatusIndex = 0;
- fLastStatusIndexValid = TRUE;
- return BreakIterator::DONE;
- }
-
- fLastStatusIndexValid = FALSE;
- int32_t pos = (int32_t)utext_nativeLength(fText);
- utext_setNativeIndex(fText, pos);
- return pos;
+ int32_t endPos = (int32_t)utext_nativeLength(&fText);
+ UBool endShouldBeBoundary = isBoundary(endPos); // Has side effect of setting iterator position.
+ (void)endShouldBeBoundary;
+ U_ASSERT(endShouldBeBoundary);
+ U_ASSERT(fPosition == endPos);
+ return endPos;
}
/**
* the current one.
*/
int32_t RuleBasedBreakIterator::next(int32_t n) {
- int32_t result = current();
- while (n > 0) {
- result = next();
- --n;
- }
- while (n < 0) {
- result = previous();
- ++n;
+ int32_t result = 0;
+ if (n > 0) {
+ for (; n > 0 && result != UBRK_DONE; --n) {
+ result = next();
+ }
+ } else if (n < 0) {
+ for (; n < 0 && result != UBRK_DONE; ++n) {
+ result = previous();
+ }
+ } else {
+ result = current();
}
return result;
}
* @return The position of the first boundary after this one.
*/
int32_t RuleBasedBreakIterator::next(void) {
- // if we have cached break positions and we're still in the range
- // covered by them, just move one step forward in the cache
- if (fCachedBreakPositions != NULL) {
- if (fPositionInCache < fNumCachedBreakPositions - 1) {
- ++fPositionInCache;
- int32_t pos = fCachedBreakPositions[fPositionInCache];
- utext_setNativeIndex(fText, pos);
- return pos;
- }
- else {
- reset();
- }
- }
-
- int32_t startPos = current();
- fDictionaryCharCount = 0;
- int32_t result = handleNext(fData->fForwardTable);
- while (fKeepAll) {
- UChar32 prevChr = utext_char32At(fText, result-1);
- UChar32 currChr = utext_char32At(fText, result);
- if (currChr == U_SENTINEL || prevChr == U_SENTINEL || !u_isalpha(currChr) || !u_isalpha(prevChr)) {
- break;
- }
- int32_t nextResult = handleNext(fData->fForwardTable);
- if (nextResult <= result) {
- break;
- }
- result = nextResult;
- }
- if (fDictionaryCharCount > 0) {
- result = checkDictionary(startPos, result, FALSE);
- }
- return result;
+ fBreakCache->next();
+ return fDone ? UBRK_DONE : fPosition;
}
/**
- * Advances the iterator backwards, to the last boundary preceding this one.
- * @return The position of the last boundary position preceding this one.
+ * Move the iterator backwards, to the boundary preceding the current one.
+ *
+ * Starts from the current position within fText.
+ * Starting position need not be on a boundary.
+ *
+ * @return The position of the boundary position immediately preceding the starting position.
*/
int32_t RuleBasedBreakIterator::previous(void) {
- int32_t result;
- int32_t startPos;
-
- // if we have cached break positions and we're still in the range
- // covered by them, just move one step backward in the cache
- if (fCachedBreakPositions != NULL) {
- if (fPositionInCache > 0) {
- --fPositionInCache;
- // If we're at the beginning of the cache, need to reevaluate the
- // rule status
- if (fPositionInCache <= 0) {
- fLastStatusIndexValid = FALSE;
- }
- int32_t pos = fCachedBreakPositions[fPositionInCache];
- utext_setNativeIndex(fText, pos);
- return pos;
- }
- else {
- reset();
- }
- }
-
- // if we're already sitting at the beginning of the text, return DONE
- if (fText == NULL || (startPos = current()) == 0) {
- fLastRuleStatusIndex = 0;
- fLastStatusIndexValid = TRUE;
- return BreakIterator::DONE;
- }
-
- if (fData->fSafeRevTable != NULL || fData->fSafeFwdTable != NULL) {
- result = handlePrevious(fData->fReverseTable);
- while (fKeepAll) {
- UChar32 prevChr = utext_char32At(fText, result-1);
- UChar32 currChr = utext_char32At(fText, result);
- if (currChr == U_SENTINEL || prevChr == U_SENTINEL || !u_isalpha(currChr) || !u_isalpha(prevChr)) {
- break;
- }
- int32_t prevResult = handlePrevious(fData->fReverseTable);
- if (prevResult >= result) {
- break;
- }
- result = prevResult;
- }
- if (fDictionaryCharCount > 0) {
- result = checkDictionary(result, startPos, TRUE);
- }
- return result;
- }
-
- // old rule syntax
- // set things up. handlePrevious() will back us up to some valid
- // break position before the current position (we back our internal
- // iterator up one step to prevent handlePrevious() from returning
- // the current position), but not necessarily the last one before
- // where we started
-
- int32_t start = current();
-
- (void)UTEXT_PREVIOUS32(fText);
- int32_t lastResult = handlePrevious(fData->fReverseTable);
- if (lastResult == UBRK_DONE) {
- lastResult = 0;
- utext_setNativeIndex(fText, 0);
- }
- result = lastResult;
- int32_t lastTag = 0;
- UBool breakTagValid = FALSE;
-
- // iterate forward from the known break position until we pass our
- // starting point. The last break position before the starting
- // point is our return value
-
- for (;;) {
- result = next();
- if (result == BreakIterator::DONE || result >= start) {
- break;
- }
- lastResult = result;
- lastTag = fLastRuleStatusIndex;
- breakTagValid = TRUE;
- }
-
- // fLastBreakTag wants to have the value for section of text preceding
- // the result position that we are to return (in lastResult.) If
- // the backwards rules overshot and the above loop had to do two or more
- // next()s to move up to the desired return position, we will have a valid
- // tag value. But, if handlePrevious() took us to exactly the correct result position,
- // we wont have a tag value for that position, which is only set by handleNext().
-
- // Set the current iteration position to be the last break position
- // before where we started, and then return that value.
- utext_setNativeIndex(fText, lastResult);
- fLastRuleStatusIndex = lastTag; // for use by getRuleStatus()
- fLastStatusIndexValid = breakTagValid;
-
- // No need to check the dictionary; it will have been handled by
- // next()
-
- return lastResult;
+ UErrorCode status = U_ZERO_ERROR;
+ fBreakCache->previous(status);
+ return fDone ? UBRK_DONE : fPosition;
}
/**
* Sets the iterator to refer to the first boundary position following
* the specified position.
- * @offset The position from which to begin searching for a break position.
+ * @param startPos The position from which to begin searching for a break position.
* @return The position of the first break after the current position.
*/
-int32_t RuleBasedBreakIterator::following(int32_t offset) {
- // if the offset passed in is already past the end of the text,
- // just return DONE; if it's before the beginning, return the
+int32_t RuleBasedBreakIterator::following(int32_t startPos) {
+ // if the supplied position is before the beginning, return the
// text's starting offset
- if (fText == NULL || offset >= utext_nativeLength(fText)) {
- last();
- return next();
- }
- else if (offset < 0) {
+ if (startPos < 0) {
return first();
}
// Move requested offset to a code point start. It might be on a trail surrogate,
- // or on a trail byte if the input is UTF-8.
- utext_setNativeIndex(fText, offset);
- offset = (int32_t)utext_getNativeIndex(fText);
-
- // if we have cached break positions and offset is in the range
- // covered by them, use them
- // TODO: could use binary search
- // TODO: what if offset is outside range, but break is not?
- if (fCachedBreakPositions != NULL) {
- if (offset >= fCachedBreakPositions[0]
- && offset < fCachedBreakPositions[fNumCachedBreakPositions - 1]) {
- fPositionInCache = 0;
- // We are guaranteed not to leave the array due to range test above
- while (offset >= fCachedBreakPositions[fPositionInCache]) {
- ++fPositionInCache;
- }
- int32_t pos = fCachedBreakPositions[fPositionInCache];
- utext_setNativeIndex(fText, pos);
- return pos;
- }
- else {
- reset();
- }
- }
-
- // Set our internal iteration position (temporarily)
- // to the position passed in. If this is the _beginning_ position,
- // then we can just use next() to get our return value
+ // or on a trail byte if the input is UTF-8. Or it may be beyond the end of the text.
+ utext_setNativeIndex(&fText, startPos);
+ startPos = (int32_t)utext_getNativeIndex(&fText);
- int32_t result = 0;
-
- if (fData->fSafeRevTable != NULL) {
- // new rule syntax
- utext_setNativeIndex(fText, offset);
- // move forward one codepoint to prepare for moving back to a
- // safe point.
- // this handles offset being between a supplementary character
- // TODO: is this still needed, with move to code point boundary handled above?
- (void)UTEXT_NEXT32(fText);
- // handlePrevious will move most of the time to < 1 boundary away
- handlePrevious(fData->fSafeRevTable);
- int32_t result = next();
- while (result <= offset) {
- result = next();
- }
- return result;
- }
- if (fData->fSafeFwdTable != NULL) {
- // backup plan if forward safe table is not available
- utext_setNativeIndex(fText, offset);
- (void)UTEXT_PREVIOUS32(fText);
- // handle next will give result >= offset
- handleNext(fData->fSafeFwdTable);
- // previous will give result 0 or 1 boundary away from offset,
- // most of the time
- // we have to
- int32_t oldresult = previous();
- while (oldresult > offset) {
- int32_t result = previous();
- if (result <= offset) {
- return oldresult;
- }
- oldresult = result;
- }
- int32_t result = next();
- if (result <= offset) {
- return next();
- }
- return result;
- }
- // otherwise, we have to sync up first. Use handlePrevious() to back
- // up to a known break position before the specified position (if
- // we can determine that the specified position is a break position,
- // we don't back up at all). This may or may not be the last break
- // position at or before our starting position. Advance forward
- // from here until we've passed the starting position. The position
- // we stop on will be the first break position after the specified one.
- // old rule syntax
-
- utext_setNativeIndex(fText, offset);
- if (offset==0 ||
- (offset==1 && utext_getNativeIndex(fText)==0)) {
- return next();
- }
- result = previous();
-
- while (result != BreakIterator::DONE && result <= offset) {
- result = next();
- }
-
- return result;
+ UErrorCode status = U_ZERO_ERROR;
+ fBreakCache->following(startPos, status);
+ return fDone ? UBRK_DONE : fPosition;
}
/**
* Sets the iterator to refer to the last boundary position before the
* specified position.
- * @offset The position to begin searching for a break from.
+ * @param offset The position to begin searching for a break from.
* @return The position of the last boundary before the starting position.
*/
int32_t RuleBasedBreakIterator::preceding(int32_t offset) {
- // if the offset passed in is already past the end of the text,
- // just return DONE; if it's before the beginning, return the
- // text's starting offset
- if (fText == NULL || offset > utext_nativeLength(fText)) {
+ if (offset > utext_nativeLength(&fText)) {
return last();
}
- else if (offset < 0) {
- return first();
- }
// Move requested offset to a code point start. It might be on a trail surrogate,
// or on a trail byte if the input is UTF-8.
- utext_setNativeIndex(fText, offset);
- offset = (int32_t)utext_getNativeIndex(fText);
-
- // if we have cached break positions and offset is in the range
- // covered by them, use them
- if (fCachedBreakPositions != NULL) {
- // TODO: binary search?
- // TODO: What if offset is outside range, but break is not?
- if (offset > fCachedBreakPositions[0]
- && offset <= fCachedBreakPositions[fNumCachedBreakPositions - 1]) {
- fPositionInCache = 0;
- while (fPositionInCache < fNumCachedBreakPositions
- && offset > fCachedBreakPositions[fPositionInCache])
- ++fPositionInCache;
- --fPositionInCache;
- // If we're at the beginning of the cache, need to reevaluate the
- // rule status
- if (fPositionInCache <= 0) {
- fLastStatusIndexValid = FALSE;
- }
- utext_setNativeIndex(fText, fCachedBreakPositions[fPositionInCache]);
- return fCachedBreakPositions[fPositionInCache];
- }
- else {
- reset();
- }
- }
- // if we start by updating the current iteration position to the
- // position specified by the caller, we can just use previous()
- // to carry out this operation
-
- if (fData->fSafeFwdTable != NULL) {
- // new rule syntax
- utext_setNativeIndex(fText, offset);
- int32_t newOffset = (int32_t)UTEXT_GETNATIVEINDEX(fText);
- if (newOffset != offset) {
- // Will come here if specified offset was not a code point boundary AND
- // the underlying implmentation is using UText, which snaps any non-code-point-boundary
- // indices to the containing code point.
- // For breakitereator::preceding only, these non-code-point indices need to be moved
- // up to refer to the following codepoint.
- (void)UTEXT_NEXT32(fText);
- offset = (int32_t)UTEXT_GETNATIVEINDEX(fText);
- }
-
- // TODO: (synwee) would it be better to just check for being in the middle of a surrogate pair,
- // rather than adjusting the position unconditionally?
- // (Change would interact with safe rules.)
- // TODO: change RBBI behavior for off-boundary indices to match that of UText?
- // affects only preceding(), seems cleaner, but is slightly different.
- (void)UTEXT_PREVIOUS32(fText);
- handleNext(fData->fSafeFwdTable);
- int32_t result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
- while (result >= offset) {
- result = previous();
- }
- return result;
- }
- if (fData->fSafeRevTable != NULL) {
- // backup plan if forward safe table is not available
- // TODO: check whether this path can be discarded
- // It's probably OK to say that rules must supply both safe tables
- // if they use safe tables at all. We have certainly never described
- // to anyone how to work with just one safe table.
- utext_setNativeIndex(fText, offset);
- (void)UTEXT_NEXT32(fText);
-
- // handle previous will give result <= offset
- handlePrevious(fData->fSafeRevTable);
-
- // next will give result 0 or 1 boundary away from offset,
- // most of the time
- // we have to
- int32_t oldresult = next();
- while (oldresult < offset) {
- int32_t result = next();
- if (result >= offset) {
- return oldresult;
- }
- oldresult = result;
- }
- int32_t result = previous();
- if (result >= offset) {
- return previous();
- }
- return result;
- }
+ utext_setNativeIndex(&fText, offset);
+ int32_t adjustedOffset = utext_getNativeIndex(&fText);
- // old rule syntax
- utext_setNativeIndex(fText, offset);
- return previous();
+ UErrorCode status = U_ZERO_ERROR;
+ fBreakCache->preceding(adjustedOffset, status);
+ return fDone ? UBRK_DONE : fPosition;
}
/**
* Returns true if the specfied position is a boundary position. As a side
* effect, leaves the iterator pointing to the first boundary position at
* or after "offset".
+ *
* @param offset the offset to check.
* @return True if "offset" is a boundary position.
*/
UBool RuleBasedBreakIterator::isBoundary(int32_t offset) {
- // the beginning index of the iterator is always a boundary position by definition
- if (offset == 0) {
- first(); // For side effects on current position, tag values.
- return TRUE;
- }
-
- if (offset == (int32_t)utext_nativeLength(fText)) {
- last(); // For side effects on current position, tag values.
- return TRUE;
- }
-
// out-of-range indexes are never boundary positions
if (offset < 0) {
first(); // For side effects on current position, tag values.
return FALSE;
}
- if (offset > utext_nativeLength(fText)) {
- last(); // For side effects on current position, tag values.
- return FALSE;
+ // Adjust offset to be on a code point boundary and not beyond the end of the text.
+ // Note that isBoundary() is always false for offsets that are not on code point boundaries.
+ // But we still need the side effect of leaving iteration at the following boundary.
+
+ utext_setNativeIndex(&fText, offset);
+ int32_t adjustedOffset = utext_getNativeIndex(&fText);
+
+ bool result = false;
+ UErrorCode status = U_ZERO_ERROR;
+ if (fBreakCache->seek(adjustedOffset) || fBreakCache->populateNear(adjustedOffset, status)) {
+ result = (fBreakCache->current() == offset);
}
- // otherwise, we can use following() on the position before the specified
- // one and return true if the position we get back is the one the user
- // specified
- utext_previous32From(fText, offset);
- int32_t backOne = (int32_t)UTEXT_GETNATIVEINDEX(fText);
- UBool result = following(backOne) == offset;
+ if (result && adjustedOffset < offset && utext_char32At(&fText, offset) == U_SENTINEL) {
+ // Original offset is beyond the end of the text. Return FALSE, it's not a boundary,
+ // but the iteration position remains set to the end of the text, which is a boundary.
+ return FALSE;
+ }
+ if (!result) {
+ // Not on a boundary. isBoundary() must leave iterator on the following boundary.
+ // Cache->seek(), above, left us on the preceding boundary, so advance one.
+ next();
+ }
return result;
}
+
/**
* Returns the current iteration position.
* @return The current iteration position.
*/
int32_t RuleBasedBreakIterator::current(void) const {
- int32_t pos = (int32_t)UTEXT_GETNATIVEINDEX(fText);
- return pos;
+ return fPosition;
}
-
+
+
//=======================================================================
// implementation
//=======================================================================
return fPositions[i];
}
}
- U_ASSERT(FALSE);
+ // with NLLT source rules, Latn sample and ubrk_next, we see a request for key 79 here
+ // near the end of text, when setPosition has only ever set positions for key 80 or 82.
+ //U_ASSERT(FALSE);
return -1;
}
//-----------------------------------------------------------------------------------
//
-// handleNext(stateTable)
-// This method is the actual implementation of the rbbi next() method.
-// This method initializes the state machine to state 1
-// and advances through the text character by character until we reach the end
-// of the text or the state machine transitions to state 0. We update our return
-// value every time the state machine passes through an accepting state.
+// handleNext()
+// Run the state machine to find a boundary
//
//-----------------------------------------------------------------------------------
-int32_t RuleBasedBreakIterator::handleNext(const RBBIStateTable *statetable) {
+// Route handleNext calls through the following to handleNextInternal,
+// in order to handle fLineWordOpts.
+int32_t RuleBasedBreakIterator::handleNext() {
+ int32_t result = handleNextInternal();
+ while (fLineWordOpts != UBRK_LINEWORD_NORMAL) {
+ UChar32 prevChr = utext_char32At(&fText, result-1);
+ UChar32 currChr = utext_char32At(&fText, result);
+ if (currChr == U_SENTINEL || prevChr == U_SENTINEL) {
+ break;
+ }
+ if (fLineWordOpts == UBRK_LINEWORD_KEEP_HANGUL) {
+ UErrorCode status = U_ZERO_ERROR;
+ if (uscript_getScript(currChr, &status) != USCRIPT_HANGUL || uscript_getScript(prevChr, &status) != USCRIPT_HANGUL) {
+ break;
+ }
+ } else {
+ if (!u_isalpha(currChr) || !u_isalpha(prevChr)) {
+ break;
+ }
+ }
+ int32_t nextResult = handleNextInternal();
+ if (nextResult <= result) {
+ break;
+ }
+ result = nextResult;
+ }
+ return result;
+}
+
+int32_t RuleBasedBreakIterator::handleNextInternal() {
int32_t state;
uint16_t category = 0;
RBBIRunMode mode;
-
+
RBBIStateTableRow *row;
UChar32 c;
LookAheadResults lookAheadMatches;
int32_t result = 0;
int32_t initialPosition = 0;
+ const RBBIStateTable *statetable = fData->fForwardTable;
const char *tableData = statetable->fTableData;
uint32_t tableRowLen = statetable->fRowLen;
-
#ifdef RBBI_DEBUG
- if (fTrace) {
+ if (gTrace) {
RBBIDebugPuts("Handle Next pos char state category");
}
#endif
- // No matter what, handleNext alway correctly sets the break tag value.
- fLastStatusIndexValid = TRUE;
- fLastRuleStatusIndex = 0;
+ // handleNext alway sets the break tag value.
+ // Set the default for it.
+ fRuleStatusIndex = 0;
+
+ fDictionaryCharCount = 0;
// if we're already at the end of the text, return DONE.
- initialPosition = (int32_t)UTEXT_GETNATIVEINDEX(fText);
+ initialPosition = fPosition;
+ UTEXT_SETNATIVEINDEX(&fText, initialPosition);
result = initialPosition;
- c = UTEXT_NEXT32(fText);
- if (fData == NULL || c==U_SENTINEL) {
- return BreakIterator::DONE;
+ c = UTEXT_NEXT32(&fText);
+ if (c==U_SENTINEL) {
+ fDone = TRUE;
+ return UBRK_DONE;
}
// Set the initial state for the state machine
row = (RBBIStateTableRow *)
//(statetable->fTableData + (statetable->fRowLen * state));
(tableData + tableRowLen * state);
-
-
+
+
mode = RBBI_RUN;
if (statetable->fFlags & RBBI_BOF_REQUIRED) {
category = 2;
if (c == U_SENTINEL) {
// Reached end of input string.
if (mode == RBBI_END) {
- // We have already run the loop one last time with the
+ // We have already run the loop one last time with the
// character set to the psueudo {eof} value. Now it is time
// to unconditionally bail out.
break;
// Note: the 16 in UTRIE_GET16 refers to the size of the data being returned,
// not the size of the character going in, which is a UChar32.
//
- UTRIE_GET16(&fData->fTrie, c, category);
+ category = (fLatin1Cat!=NULL && c<0x100)? fLatin1Cat[c]: UTRIE2_GET16(fData->fTrie, c);
// Check the dictionary bit in the character's category.
- // Counter is only used by dictionary based iterators (subclasses).
+ // Counter is only used by dictionary based iteration.
// Chars that need to be handled by a dictionary have a flag bit set
// in their category values.
//
}
#ifdef RBBI_DEBUG
- if (fTrace) {
- RBBIDebugPrintf(" %4lld ", utext_getNativeIndex(fText));
+ if (gTrace) {
+ RBBIDebugPrintf(" %4ld ", utext_getNativeIndex(&fText));
if (0x20<=c && c<0x7f) {
RBBIDebugPrintf("\"%c\" ", c);
} else {
// State Transition - move machine to its next state
//
- // Note: fNextState is defined as uint16_t[2], but we are casting
- // a generated RBBI table to RBBIStateTableRow and some tables
- // actually have more than 2 categories.
+ // fNextState is a variable-length array.
U_ASSERT(category<fData->fHeader->fCatCount);
state = row->fNextState[category]; /*Not accessing beyond memory*/
row = (RBBIStateTableRow *)
if (row->fAccepting == -1) {
// Match found, common case.
if (mode != RBBI_START) {
- result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
+ result = (int32_t)UTEXT_GETNATIVEINDEX(&fText);
}
- fLastRuleStatusIndex = row->fTagIdx; // Remember the break status (tag) values.
+ fRuleStatusIndex = row->fTagIdx; // Remember the break status (tag) values.
}
int16_t completedRule = row->fAccepting;
if (completedRule > 0) {
- // Lookahead match is completed.
+ // Lookahead match is completed.
int32_t lookaheadResult = lookAheadMatches.getPosition(completedRule);
if (lookaheadResult >= 0) {
- fLastRuleStatusIndex = row->fTagIdx;
- UTEXT_SETNATIVEINDEX(fText, lookaheadResult);
+ fRuleStatusIndex = row->fTagIdx;
+ fPosition = lookaheadResult;
return lookaheadResult;
}
}
int16_t rule = row->fLookAhead;
if (rule != 0) {
// At the position of a '/' in a look-ahead match. Record it.
- int32_t pos = (int32_t)UTEXT_GETNATIVEINDEX(fText);
+ int32_t pos = (int32_t)UTEXT_GETNATIVEINDEX(&fText);
lookAheadMatches.setPosition(rule, pos);
}
// longer match is possible, no matter what characters follow.
break;
}
-
- // Advance to the next character.
+
+ // Advance to the next character.
// If this is a beginning-of-input loop iteration, don't advance
// the input position. The next iteration will be processing the
// first real input character.
if (mode == RBBI_RUN) {
- c = UTEXT_NEXT32(fText);
+ c = UTEXT_NEXT32(&fText);
} else {
if (mode == RBBI_START) {
mode = RBBI_RUN;
}
}
-
-
}
// The state machine is done. Check whether it found a match...
// (This really indicates a defect in the break rules. They should always match
// at least one character.)
if (result == initialPosition) {
- UTEXT_SETNATIVEINDEX(fText, initialPosition);
- UTEXT_NEXT32(fText);
- result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
+ utext_setNativeIndex(&fText, initialPosition);
+ utext_next32(&fText);
+ result = (int32_t)utext_getNativeIndex(&fText);
+ fRuleStatusIndex = 0;
}
// Leave the iterator at our result position.
- UTEXT_SETNATIVEINDEX(fText, result);
+ fPosition = result;
#ifdef RBBI_DEBUG
- if (fTrace) {
+ if (gTrace) {
RBBIDebugPrintf("result = %d\n\n", result);
}
#endif
}
-
//-----------------------------------------------------------------------------------
//
-// handlePrevious()
-//
-// Iterate backwards, according to the logic of the reverse rules.
-// This version handles the exact style backwards rules.
+// handleSafePrevious()
//
-// The logic of this function is very similar to handleNext(), above.
+// Iterate backwards using the safe reverse rules.
+// The logic of this function is similar to handleNext(), but simpler
+// because the safe table does not require as many options.
//
//-----------------------------------------------------------------------------------
-int32_t RuleBasedBreakIterator::handlePrevious(const RBBIStateTable *statetable) {
+int32_t RuleBasedBreakIterator::handleSafePrevious(int32_t fromPosition) {
int32_t state;
uint16_t category = 0;
- RBBIRunMode mode;
RBBIStateTableRow *row;
UChar32 c;
- LookAheadResults lookAheadMatches;
int32_t result = 0;
- int32_t initialPosition = 0;
+ const RBBIStateTable *stateTable = fData->fReverseTable;
+ UTEXT_SETNATIVEINDEX(&fText, fromPosition);
#ifdef RBBI_DEBUG
- if (fTrace) {
+ if (gTrace) {
RBBIDebugPuts("Handle Previous pos char state category");
}
#endif
- // handlePrevious() never gets the rule status.
- // Flag the status as invalid; if the user ever asks for status, we will need
- // to back up, then re-find the break position using handleNext(), which does
- // get the status value.
- fLastStatusIndexValid = FALSE;
- fLastRuleStatusIndex = 0;
-
// if we're already at the start of the text, return DONE.
- if (fText == NULL || fData == NULL || UTEXT_GETNATIVEINDEX(fText)==0) {
+ if (fData == NULL || UTEXT_GETNATIVEINDEX(&fText)==0) {
return BreakIterator::DONE;
}
- // Set up the starting char.
- initialPosition = (int32_t)UTEXT_GETNATIVEINDEX(fText);
- result = initialPosition;
- c = UTEXT_PREVIOUS32(fText);
-
// Set the initial state for the state machine
+ c = UTEXT_PREVIOUS32(&fText);
state = START_STATE;
row = (RBBIStateTableRow *)
- (statetable->fTableData + (statetable->fRowLen * state));
- category = 3;
- mode = RBBI_RUN;
- if (statetable->fFlags & RBBI_BOF_REQUIRED) {
- category = 2;
- mode = RBBI_START;
- }
-
+ (stateTable->fTableData + (stateTable->fRowLen * state));
// loop until we reach the start of the text or transition to state 0
//
- for (;;) {
- if (c == U_SENTINEL) {
- // Reached end of input string.
- if (mode == RBBI_END) {
- // We have already run the loop one last time with the
- // character set to the psueudo {eof} value. Now it is time
- // to unconditionally bail out.
- if (result == initialPosition) {
- // Ran off start, no match found.
- // move one index one (towards the start, since we are doing a previous())
- UTEXT_SETNATIVEINDEX(fText, initialPosition);
- (void)UTEXT_PREVIOUS32(fText); // TODO: shouldn't be necessary. We're already at beginning. Check.
- }
- break;
- }
- // Run the loop one last time with the fake end-of-input character category.
- mode = RBBI_END;
- category = 1;
- }
+ for (; c != U_SENTINEL; c = UTEXT_PREVIOUS32(&fText)) {
+ // look up the current character's character category, which tells us
+ // which column in the state table to look at.
+ // Note: the 16 in UTRIE_GET16 refers to the size of the data being returned,
+ // not the size of the character going in, which is a UChar32.
//
- // Get the char category. An incoming category of 1 or 2 means that
- // we are preset for doing the beginning or end of input, and
- // that we shouldn't get a category from an actual text input character.
- //
- if (mode == RBBI_RUN) {
- // look up the current character's character category, which tells us
- // which column in the state table to look at.
- // Note: the 16 in UTRIE_GET16 refers to the size of the data being returned,
- // not the size of the character going in, which is a UChar32.
- //
- UTRIE_GET16(&fData->fTrie, c, category);
-
- // Check the dictionary bit in the character's category.
- // Counter is only used by dictionary based iterators (subclasses).
- // Chars that need to be handled by a dictionary have a flag bit set
- // in their category values.
- //
- if ((category & 0x4000) != 0) {
- fDictionaryCharCount++;
- // And off the dictionary flag bit.
- category &= ~0x4000;
- }
- }
+ // And off the dictionary flag bit. For reverse iteration it is not used.
+ category = UTRIE2_GET16(fData->fTrie, c);
+ category &= ~0x4000;
#ifdef RBBI_DEBUG
- if (fTrace) {
- RBBIDebugPrintf(" %4d ", (int32_t)utext_getNativeIndex(fText));
+ if (gTrace) {
+ RBBIDebugPrintf(" %4d ", (int32_t)utext_getNativeIndex(&fText));
if (0x20<=c && c<0x7f) {
RBBIDebugPrintf("\"%c\" ", c);
} else {
// State Transition - move machine to its next state
//
-
- // Note: fNextState is defined as uint16_t[2], but we are casting
- // a generated RBBI table to RBBIStateTableRow and some tables
- // actually have more than 2 categories.
+ // fNextState is a variable-length array.
U_ASSERT(category<fData->fHeader->fCatCount);
state = row->fNextState[category]; /*Not accessing beyond memory*/
row = (RBBIStateTableRow *)
- (statetable->fTableData + (statetable->fRowLen * state));
-
- if (row->fAccepting == -1) {
- // Match found, common case.
- result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
- }
-
- int16_t completedRule = row->fAccepting;
- if (completedRule > 0) {
- // Lookahead match is completed.
- int32_t lookaheadResult = lookAheadMatches.getPosition(completedRule);
- if (lookaheadResult >= 0) {
- UTEXT_SETNATIVEINDEX(fText, lookaheadResult);
- return lookaheadResult;
- }
- }
- int16_t rule = row->fLookAhead;
- if (rule != 0) {
- // At the position of a '/' in a look-ahead match. Record it.
- int32_t pos = (int32_t)UTEXT_GETNATIVEINDEX(fText);
- lookAheadMatches.setPosition(rule, pos);
- }
+ (stateTable->fTableData + (stateTable->fRowLen * state));
if (state == STOP_STATE) {
// This is the normal exit from the lookup state machine.
- // We have advanced through the string until it is certain that no
- // longer match is possible, no matter what characters follow.
+ // Transistion to state zero means we have found a safe point.
break;
}
-
- // Move (backwards) to the next character to process.
- // If this is a beginning-of-input loop iteration, don't advance
- // the input position. The next iteration will be processing the
- // first real input character.
- if (mode == RBBI_RUN) {
- c = UTEXT_PREVIOUS32(fText);
- } else {
- if (mode == RBBI_START) {
- mode = RBBI_RUN;
- }
- }
}
// The state machine is done. Check whether it found a match...
-
- // If the iterator failed to advance in the match engine, force it ahead by one.
- // (This really indicates a defect in the break rules. They should always match
- // at least one character.)
- if (result == initialPosition) {
- UTEXT_SETNATIVEINDEX(fText, initialPosition);
- UTEXT_PREVIOUS32(fText);
- result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
- }
-
- // Leave the iterator at our result position.
- UTEXT_SETNATIVEINDEX(fText, result);
+ result = (int32_t)UTEXT_GETNATIVEINDEX(&fText);
#ifdef RBBI_DEBUG
- if (fTrace) {
+ if (gTrace) {
RBBIDebugPrintf("result = %d\n\n", result);
}
#endif
return result;
}
-
-void
-RuleBasedBreakIterator::reset()
-{
- if (fCachedBreakPositions) {
- uprv_free(fCachedBreakPositions);
- }
- fCachedBreakPositions = NULL;
- fNumCachedBreakPositions = 0;
- fDictionaryCharCount = 0;
- fPositionInCache = 0;
-}
-
-
-
//-------------------------------------------------------------------------------
//
// getRuleStatus() Return the break rule tag associated with the current
// position by iterating forwards, the value will have been
// cached by the handleNext() function.
//
-// If no cached status value is available, the status is
-// found by doing a previous() followed by a next(), which
-// leaves the iterator where it started, and computes the
-// status while doing the next().
-//
//-------------------------------------------------------------------------------
-void RuleBasedBreakIterator::makeRuleStatusValid() {
- if (fLastStatusIndexValid == FALSE) {
- // No cached status is available.
- if (fText == NULL || current() == 0) {
- // At start of text, or there is no text. Status is always zero.
- fLastRuleStatusIndex = 0;
- fLastStatusIndexValid = TRUE;
- } else {
- // Not at start of text. Find status the tedious way.
- int32_t pa = current();
- previous();
- if (fNumCachedBreakPositions > 0) {
- reset(); // Blow off the dictionary cache
- }
- int32_t pb = next();
- if (pa != pb) {
- // note: the if (pa != pb) test is here only to eliminate warnings for
- // unused local variables on gcc. Logically, it isn't needed.
- U_ASSERT(pa == pb);
- }
- }
- }
- U_ASSERT(fLastRuleStatusIndex >= 0 && fLastRuleStatusIndex < fData->fStatusMaxIdx);
-}
-
int32_t RuleBasedBreakIterator::getRuleStatus() const {
- RuleBasedBreakIterator *nonConstThis = (RuleBasedBreakIterator *)this;
- nonConstThis->makeRuleStatusValid();
// fLastRuleStatusIndex indexes to the start of the appropriate status record
// (the number of status values.)
// This function returns the last (largest) of the array of status values.
- int32_t idx = fLastRuleStatusIndex + fData->fRuleStatusTable[fLastRuleStatusIndex];
+ int32_t idx = fRuleStatusIndex + fData->fRuleStatusTable[fRuleStatusIndex];
int32_t tagVal = fData->fRuleStatusTable[idx];
return tagVal;
}
-
-
int32_t RuleBasedBreakIterator::getRuleStatusVec(
- int32_t *fillInVec, int32_t capacity, UErrorCode &status)
-{
+ int32_t *fillInVec, int32_t capacity, UErrorCode &status) {
if (U_FAILURE(status)) {
return 0;
}
- RuleBasedBreakIterator *nonConstThis = (RuleBasedBreakIterator *)this;
- nonConstThis->makeRuleStatusValid();
- int32_t numVals = fData->fRuleStatusTable[fLastRuleStatusIndex];
+ int32_t numVals = fData->fRuleStatusTable[fRuleStatusIndex];
int32_t numValsToCopy = numVals;
if (numVals > capacity) {
status = U_BUFFER_OVERFLOW_ERROR;
}
int i;
for (i=0; i<numValsToCopy; i++) {
- fillInVec[i] = fData->fRuleStatusTable[fLastRuleStatusIndex + i + 1];
+ fillInVec[i] = fData->fRuleStatusTable[fRuleStatusIndex + i + 1];
}
return numVals;
}
-
+// Apple custom addition
+int32_t RuleBasedBreakIterator::tokenize(int32_t maxTokens, RuleBasedTokenRange *outTokenRanges, unsigned long *outTokenFlags)
+{
+ //os_log(OS_LOG_DEFAULT, "# tokenize 0: maxT %d; txt idx %lld, len %lld", maxTokens, utext_getNativeIndex(fText), utext_nativeLength(fText));
+ if (fDone) {
+ return 0;
+ }
+ RuleBasedTokenRange *outTokenLimit = outTokenRanges + maxTokens;
+ RuleBasedTokenRange *outTokenP = outTokenRanges;
+ int32_t lastOffset = fPosition;
+ //os_log(OS_LOG_DEFAULT, "# tokenize 1");
+ while (outTokenP < outTokenLimit) {
+ // start portion from inlining populateFollowing()
+ int32_t pos = 0;
+ int32_t ruleStatusIdx = 0;
+ int32_t startPos = fPosition;
+
+ if (fDictionaryCache->following(startPos, &pos, &ruleStatusIdx)) {
+ fPosition = pos;
+ fRuleStatusIndex = ruleStatusIdx;
+ } else {
+ pos = handleNextInternal(); // sets fRuleStatusIndex for the pos it returns, updates fPosition
+ if (pos == UBRK_DONE) {
+ // fDone = TRUE; already set by handleNextInternal
+ break;
+ }
+ // Use current result from handleNextInternal(), including fRuleStatusIndex,
+ // unless overridden by dictionary subdivisions
+ fPosition = pos;
+ if (fDictionaryCharCount > 0) {
+ // The text segment obtained from the rules includes dictionary characters.
+ // Subdivide it, with subdivided results going into the dictionary cache.
+ fDictionaryCache->populateDictionary(startPos, pos, fRuleStatusIndex, fRuleStatusIndex);
+ if (fDictionaryCache->following(startPos, &pos, &ruleStatusIdx)) {
+ fPosition = pos;
+ fRuleStatusIndex = ruleStatusIdx;
+ }
+ }
+ }
+ // end portion from inlining populateFollowing()
+ int32_t flagCount = fData->fRuleStatusTable[fRuleStatusIndex];
+ const int32_t* flagPtr = fData->fRuleStatusTable + fRuleStatusIndex + flagCount;
+ int32_t flagSet = *flagPtr; // if -1 then skip token
+ if (flagSet != -1) {
+ outTokenP->location = lastOffset;
+ outTokenP++->length = fPosition - lastOffset;
+ if (outTokenFlags) {
+ // flagSet should be the OR of all flags returned by getRuleStatusVec;
+ // here we collect from high-order to low-order.
+ while (--flagCount > 0) {
+ flagSet |= *--flagPtr;
+ }
+ *outTokenFlags++ = (unsigned long)flagSet;
+ }
+ }
+ lastOffset = fPosition;
+ }
+ return (outTokenP - outTokenRanges);
+}
//-------------------------------------------------------------------------------
//
return (RuleBasedBreakIterator *)clonedBI;
}
-
-//-------------------------------------------------------------------------------
-//
-// isDictionaryChar Return true if the category lookup for this char
-// indicates that it is in the set of dictionary lookup
-// chars.
-//
-// This function is intended for use by dictionary based
-// break iterators.
-//
-//-------------------------------------------------------------------------------
-/*UBool RuleBasedBreakIterator::isDictionaryChar(UChar32 c) {
- if (fData == NULL) {
- return FALSE;
- }
- uint16_t category;
- UTRIE_GET16(&fData->fTrie, c, category);
- return (category & 0x4000) != 0;
-}*/
-
-
-//-------------------------------------------------------------------------------
-//
-// checkDictionary This function handles all processing of characters in
-// the "dictionary" set. It will determine the appropriate
-// course of action, and possibly set up a cache in the
-// process.
-//
-//-------------------------------------------------------------------------------
-int32_t RuleBasedBreakIterator::checkDictionary(int32_t startPos,
- int32_t endPos,
- UBool reverse) {
- // Reset the old break cache first.
- reset();
-
- // note: code segment below assumes that dictionary chars are in the
- // startPos-endPos range
- // value returned should be next character in sequence
- if ((endPos - startPos) <= 1) {
- return (reverse ? startPos : endPos);
- }
-
- // Starting from the starting point, scan towards the proposed result,
- // looking for the first dictionary character (which may be the one
- // we're on, if we're starting in the middle of a range).
- utext_setNativeIndex(fText, reverse ? endPos : startPos);
- if (reverse) {
- UTEXT_PREVIOUS32(fText);
- }
-
- int32_t rangeStart = startPos;
- int32_t rangeEnd = endPos;
-
- uint16_t category;
- int32_t current;
- UErrorCode status = U_ZERO_ERROR;
- UStack breaks(status);
- int32_t foundBreakCount = 0;
- UChar32 c = utext_current32(fText);
-
- UTRIE_GET16(&fData->fTrie, c, category);
-
- // Is the character we're starting on a dictionary character? If so, we
- // need to back up to include the entire run; otherwise the results of
- // the break algorithm will differ depending on where we start. Since
- // the result is cached and there is typically a non-dictionary break
- // within a small number of words, there should be little performance impact.
- if (category & 0x4000) {
- if (reverse) {
- do {
- utext_next32(fText); // TODO: recast to work directly with postincrement.
- c = utext_current32(fText);
- UTRIE_GET16(&fData->fTrie, c, category);
- } while (c != U_SENTINEL && (category & 0x4000));
- // Back up to the last dictionary character
- rangeEnd = (int32_t)UTEXT_GETNATIVEINDEX(fText);
- if (c == U_SENTINEL) {
- // c = fText->last32();
- // TODO: why was this if needed?
- c = UTEXT_PREVIOUS32(fText);
- }
- else {
- c = UTEXT_PREVIOUS32(fText);
- }
- }
- else {
- do {
- c = UTEXT_PREVIOUS32(fText);
- UTRIE_GET16(&fData->fTrie, c, category);
- }
- while (c != U_SENTINEL && (category & 0x4000));
- // Back up to the last dictionary character
- if (c == U_SENTINEL) {
- // c = fText->first32();
- c = utext_current32(fText);
- }
- else {
- utext_next32(fText);
- c = utext_current32(fText);
- }
- rangeStart = (int32_t)UTEXT_GETNATIVEINDEX(fText);;
- }
- UTRIE_GET16(&fData->fTrie, c, category);
- }
-
- // Loop through the text, looking for ranges of dictionary characters.
- // For each span, find the appropriate break engine, and ask it to find
- // any breaks within the span.
- // Note: we always do this in the forward direction, so that the break
- // cache is built in the right order.
- if (reverse) {
- utext_setNativeIndex(fText, rangeStart);
- c = utext_current32(fText);
- UTRIE_GET16(&fData->fTrie, c, category);
- }
- while(U_SUCCESS(status)) {
- while((current = (int32_t)UTEXT_GETNATIVEINDEX(fText)) < rangeEnd && (category & 0x4000) == 0) {
- utext_next32(fText); // TODO: tweak for post-increment operation
- c = utext_current32(fText);
- UTRIE_GET16(&fData->fTrie, c, category);
- }
- if (current >= rangeEnd) {
- break;
- }
-
- // We now have a dictionary character. Get the appropriate language object
- // to deal with it.
- const LanguageBreakEngine *lbe = getLanguageBreakEngine(c);
-
- // Ask the language object if there are any breaks. It will leave the text
- // pointer on the other side of its range, ready to search for the next one.
- if (lbe != NULL) {
- foundBreakCount += lbe->findBreaks(fText, rangeStart, rangeEnd, FALSE, fBreakType, breaks);
- }
-
- // Reload the loop variables for the next go-round
- c = utext_current32(fText);
- UTRIE_GET16(&fData->fTrie, c, category);
- }
-
- // If we found breaks, build a new break cache. The first and last entries must
- // be the original starting and ending position.
- if (foundBreakCount > 0) {
- U_ASSERT(foundBreakCount == breaks.size());
- int32_t totalBreaks = foundBreakCount;
- if (startPos < breaks.elementAti(0)) {
- totalBreaks += 1;
- }
- if (endPos > breaks.peeki()) {
- totalBreaks += 1;
- }
- fCachedBreakPositions = (int32_t *)uprv_malloc(totalBreaks * sizeof(int32_t));
- if (fCachedBreakPositions != NULL) {
- int32_t out = 0;
- fNumCachedBreakPositions = totalBreaks;
- if (startPos < breaks.elementAti(0)) {
- fCachedBreakPositions[out++] = startPos;
- }
- for (int32_t i = 0; i < foundBreakCount; ++i) {
- fCachedBreakPositions[out++] = breaks.elementAti(i);
- }
- if (endPos > fCachedBreakPositions[out-1]) {
- fCachedBreakPositions[out] = endPos;
- }
- // If there are breaks, then by definition, we are replacing the original
- // proposed break by one of the breaks we found. Use following() and
- // preceding() to do the work. They should never recurse in this case.
- if (reverse) {
- return preceding(endPos);
- }
- else {
- return following(startPos);
- }
- }
- // If the allocation failed, just fall through to the "no breaks found" case.
- }
-
- // If we get here, there were no language-based breaks. Set the text pointer
- // to the original proposed break.
- utext_setNativeIndex(fText, reverse ? startPos : endPos);
- return (reverse ? startPos : endPos);
-}
-
U_NAMESPACE_END
-static icu::UStack *gLanguageBreakFactories = NULL;
+static icu::UStack *gLanguageBreakFactories = nullptr;
+static const icu::UnicodeString *gEmptyString = nullptr;
static icu::UInitOnce gLanguageBreakFactoriesInitOnce = U_INITONCE_INITIALIZER;
+static icu::UInitOnce gRBBIInitOnce = U_INITONCE_INITIALIZER;
/**
- * Release all static memory held by breakiterator.
+ * Release all static memory held by breakiterator.
*/
U_CDECL_BEGIN
-static UBool U_CALLCONV breakiterator_cleanup_dict(void) {
- if (gLanguageBreakFactories) {
- delete gLanguageBreakFactories;
- gLanguageBreakFactories = NULL;
- }
+static UBool U_CALLCONV rbbi_cleanup(void) {
+ delete gLanguageBreakFactories;
+ gLanguageBreakFactories = nullptr;
+ delete gEmptyString;
+ gEmptyString = nullptr;
gLanguageBreakFactoriesInitOnce.reset();
+ gRBBIInitOnce.reset();
return TRUE;
}
U_CDECL_END
U_CDECL_END
U_NAMESPACE_BEGIN
+static void U_CALLCONV rbbiInit() {
+ gEmptyString = new UnicodeString();
+ ucln_common_registerCleanup(UCLN_COMMON_RBBI, rbbi_cleanup);
+}
+
static void U_CALLCONV initLanguageFactories() {
UErrorCode status = U_ZERO_ERROR;
U_ASSERT(gLanguageBreakFactories == NULL);
}
#endif
}
- ucln_common_registerCleanup(UCLN_COMMON_BREAKITERATOR_DICT, breakiterator_cleanup_dict);
+ ucln_common_registerCleanup(UCLN_COMMON_RBBI, rbbi_cleanup);
}
static const LanguageBreakEngine*
-getLanguageBreakEngineFromFactory(UChar32 c, int32_t breakType)
+getLanguageBreakEngineFromFactory(UChar32 c)
{
umtx_initOnce(gLanguageBreakFactoriesInitOnce, &initLanguageFactories);
if (gLanguageBreakFactories == NULL) {
return NULL;
}
-
+
int32_t i = gLanguageBreakFactories->size();
const LanguageBreakEngine *lbe = NULL;
while (--i >= 0) {
LanguageBreakFactory *factory = (LanguageBreakFactory *)(gLanguageBreakFactories->elementAt(i));
- lbe = factory->getEngineFor(c, breakType);
+ lbe = factory->getEngineFor(c);
if (lbe != NULL) {
break;
}
RuleBasedBreakIterator::getLanguageBreakEngine(UChar32 c) {
const LanguageBreakEngine *lbe = NULL;
UErrorCode status = U_ZERO_ERROR;
-
+
if (fLanguageBreakEngines == NULL) {
fLanguageBreakEngines = new UStack(status);
if (fLanguageBreakEngines == NULL || U_FAILURE(status)) {
return NULL;
}
}
-
+
int32_t i = fLanguageBreakEngines->size();
while (--i >= 0) {
lbe = (const LanguageBreakEngine *)(fLanguageBreakEngines->elementAt(i));
- if (lbe->handles(c, fBreakType)) {
+ if (lbe->handles(c)) {
return lbe;
}
}
-
+
// No existing dictionary took the character. See if a factory wants to
// give us a new LanguageBreakEngine for this character.
- lbe = getLanguageBreakEngineFromFactory(c, fBreakType);
-
+ lbe = getLanguageBreakEngineFromFactory(c);
+
// If we got one, use it and push it on our stack.
if (lbe != NULL) {
fLanguageBreakEngines->push((void *)lbe, status);
// return it even if the push fails.
return lbe;
}
-
+
// No engine is forthcoming for this character. Add it to the
// reject set. Create the reject break engine if needed.
if (fUnhandledBreakEngine == NULL) {
fUnhandledBreakEngine = new UnhandledEngine(status);
if (U_SUCCESS(status) && fUnhandledBreakEngine == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
+ return nullptr;
}
// Put it last so that scripts for which we have an engine get tried
// first.
return NULL;
}
}
-
+
// Tell the reject engine about the character; at its discretion, it may
// add more than just the one character.
- fUnhandledBreakEngine->handleCharacter(c, fBreakType);
-
+ fUnhandledBreakEngine->handleCharacter(c);
+
return fUnhandledBreakEngine;
}
+void RuleBasedBreakIterator::dumpCache() {
+ fBreakCache->dumpCache();
+}
+void RuleBasedBreakIterator::dumpTables() {
+ fData->printData();
+}
-/*int32_t RuleBasedBreakIterator::getBreakType() const {
- return fBreakType;
-}*/
+/**
+ * Returns the description used to create this iterator
+ */
-void RuleBasedBreakIterator::setBreakType(int32_t type) {
- fBreakType = type;
- reset();
+const UnicodeString&
+RuleBasedBreakIterator::getRules() const {
+ if (fData != NULL) {
+ return fData->getRuleSourceString();
+ } else {
+ umtx_initOnce(gRBBIInitOnce, &rbbiInit);
+ return *gEmptyString;
+ }
}
U_NAMESPACE_END