+// © 2016 and later: Unicode, Inc. and others.
+// License & terms of use: http://www.unicode.org/copyright.html
/*
*******************************************************************************
-* Copyright (C) 1997-2001, International Business Machines Corporation and *
-* others. All Rights Reserved. *
+* Copyright (C) 1997-2016, International Business Machines Corporation and
+* others. All Rights Reserved.
*******************************************************************************
*
* File FMTABLE.CPP
#if !UCONFIG_NO_FORMATTING
+#include <cstdlib>
+#include <math.h>
#include "unicode/fmtable.h"
+#include "unicode/ustring.h"
+#include "unicode/measure.h"
+#include "unicode/curramt.h"
+#include "unicode/uformattable.h"
+#include "charstr.h"
#include "cmemory.h"
+#include "cstring.h"
+#include "fmtableimp.h"
+#include "number_decimalquantity.h"
// *****************************************************************************
// class Formattable
U_NAMESPACE_BEGIN
-const char Formattable::fgClassID=0;
+UOBJECT_DEFINE_RTTI_IMPLEMENTATION(Formattable)
+
+using number::impl::DecimalQuantity;
+
+
+//-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.
+
+// NOTE: As of 3.0, there are limitations to the UObject API. It does
+// not (yet) support cloning, operator=, nor operator==. To
+// work around this, I implement some simple inlines here. Later
+// these can be modified or removed. [alan]
+
+// NOTE: These inlines assume that all fObjects are in fact instances
+// of the Measure class, which is true as of 3.0. [alan]
+
+// Return TRUE if *a == *b.
+static inline UBool objectEquals(const UObject* a, const UObject* b) {
+ // LATER: return *a == *b;
+ return *((const Measure*) a) == *((const Measure*) b);
+}
+
+// Return a clone of *a.
+static inline UObject* objectClone(const UObject* a) {
+ // LATER: return a->clone();
+ return ((const Measure*) a)->clone();
+}
+
+// Return TRUE if *a is an instance of Measure.
+static inline UBool instanceOfMeasure(const UObject* a) {
+ return dynamic_cast<const Measure*>(a) != NULL;
+}
+
+/**
+ * Creates a new Formattable array and copies the values from the specified
+ * original.
+ * @param array the original array
+ * @param count the original array count
+ * @return the new Formattable array.
+ */
+static Formattable* createArrayCopy(const Formattable* array, int32_t count) {
+ Formattable *result = new Formattable[count];
+ if (result != NULL) {
+ for (int32_t i=0; i<count; ++i)
+ result[i] = array[i]; // Don't memcpy!
+ }
+ return result;
+}
+
+//-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.
+
+/**
+ * Set 'ec' to 'err' only if 'ec' is not already set to a failing UErrorCode.
+ */
+static void setError(UErrorCode& ec, UErrorCode err) {
+ if (U_SUCCESS(ec)) {
+ ec = err;
+ }
+}
+
+//
+// Common initialization code, shared by constructors.
+// Put everything into a known state.
+//
+void Formattable::init() {
+ fValue.fInt64 = 0;
+ fType = kLong;
+ fDecimalStr = NULL;
+ fDecimalQuantity = NULL;
+ fBogus.setToBogus();
+}
// -------------------------------------
// default constructor.
// Creates a formattable object with a long value 0.
-Formattable::Formattable()
- : UObject(), fType(kLong)
-{
- fValue.fLong = 0;
+Formattable::Formattable() {
+ init();
}
// -------------------------------------
// Creates a formattable object with a Date instance.
Formattable::Formattable(UDate date, ISDATE /*isDate*/)
- : UObject(), fType(kDate)
{
+ init();
+ fType = kDate;
fValue.fDate = date;
}
// Creates a formattable object with a double value.
Formattable::Formattable(double value)
- : UObject(), fType(kDouble)
{
+ init();
+ fType = kDouble;
fValue.fDouble = value;
}
// -------------------------------------
-// Creates a formattable object with a long value.
+// Creates a formattable object with an int32_t value.
Formattable::Formattable(int32_t value)
- : UObject(), fType(kLong)
{
- fValue.fLong = value;
+ init();
+ fValue.fInt64 = value;
}
// -------------------------------------
-// Creates a formattable object with a char* string.
+// Creates a formattable object with an int64_t value.
-Formattable::Formattable(const char* stringToCopy)
- : UObject(), fType(kString)
+Formattable::Formattable(int64_t value)
{
- fValue.fString = new UnicodeString(stringToCopy);
+ init();
+ fType = kInt64;
+ fValue.fInt64 = value;
}
+// -------------------------------------
+// Creates a formattable object with a decimal number value from a string.
+
+Formattable::Formattable(StringPiece number, UErrorCode &status) {
+ init();
+ setDecimalNumber(number, status);
+}
+
+
// -------------------------------------
// Creates a formattable object with a UnicodeString instance.
Formattable::Formattable(const UnicodeString& stringToCopy)
- : UObject(), fType(kString)
{
+ init();
+ fType = kString;
fValue.fString = new UnicodeString(stringToCopy);
}
// (adopting symantics)
Formattable::Formattable(UnicodeString* stringToAdopt)
- : UObject(), fType(kString)
{
+ init();
+ fType = kString;
fValue.fString = stringToAdopt;
}
+Formattable::Formattable(UObject* objectToAdopt)
+{
+ init();
+ fType = kObject;
+ fValue.fObject = objectToAdopt;
+}
+
// -------------------------------------
Formattable::Formattable(const Formattable* arrayToCopy, int32_t count)
: UObject(), fType(kArray)
{
+ init();
+ fType = kArray;
fValue.fArrayAndCount.fArray = createArrayCopy(arrayToCopy, count);
fValue.fArrayAndCount.fCount = count;
}
// -------------------------------------
// copy constructor
+
Formattable::Formattable(const Formattable &source)
- : UObject(source), fType(kLong)
+ : UObject(*this)
{
+ init();
*this = source;
}
fValue.fDouble = source.fValue.fDouble;
break;
case kLong:
+ case kInt64:
// Sets the long value.
- fValue.fLong = source.fValue.fLong;
+ fValue.fInt64 = source.fValue.fInt64;
break;
case kDate:
// Sets the Date value.
fValue.fDate = source.fValue.fDate;
break;
+ case kObject:
+ fValue.fObject = objectClone(source.fValue.fObject);
+ break;
+ }
+
+ UErrorCode status = U_ZERO_ERROR;
+ if (source.fDecimalQuantity != NULL) {
+ fDecimalQuantity = new DecimalQuantity(*source.fDecimalQuantity);
+ }
+ if (source.fDecimalStr != NULL) {
+ fDecimalStr = new CharString(*source.fDecimalStr, status);
+ if (U_FAILURE(status)) {
+ delete fDecimalStr;
+ fDecimalStr = NULL;
+ }
}
}
return *this;
UBool
Formattable::operator==(const Formattable& that) const
{
- // Checks class ID.
+ int32_t i;
+
if (this == &that) return TRUE;
// Returns FALSE if the data types are different.
if (fType != that.fType) return FALSE;
// Compares the actual data values.
+ UBool equal = TRUE;
switch (fType) {
case kDate:
- return fValue.fDate == that.fValue.fDate;
+ equal = (fValue.fDate == that.fValue.fDate);
+ break;
case kDouble:
- return fValue.fDouble == that.fValue.fDouble;
+ equal = (fValue.fDouble == that.fValue.fDouble);
+ break;
case kLong:
- return fValue.fLong == that.fValue.fLong;
+ case kInt64:
+ equal = (fValue.fInt64 == that.fValue.fInt64);
+ break;
case kString:
- return *(fValue.fString) == *(that.fValue.fString);
+ equal = (*(fValue.fString) == *(that.fValue.fString));
+ break;
case kArray:
- if (fValue.fArrayAndCount.fCount != that.fValue.fArrayAndCount.fCount)
- return FALSE;
+ if (fValue.fArrayAndCount.fCount != that.fValue.fArrayAndCount.fCount) {
+ equal = FALSE;
+ break;
+ }
// Checks each element for equality.
- for (int32_t i=0; i<fValue.fArrayAndCount.fCount; ++i)
- if (fValue.fArrayAndCount.fArray[i] != that.fValue.fArrayAndCount.fArray[i])
- return FALSE;
+ for (i=0; i<fValue.fArrayAndCount.fCount; ++i) {
+ if (fValue.fArrayAndCount.fArray[i] != that.fValue.fArrayAndCount.fArray[i]) {
+ equal = FALSE;
+ break;
+ }
+ }
+ break;
+ case kObject:
+ if (fValue.fObject == NULL || that.fValue.fObject == NULL) {
+ equal = FALSE;
+ } else {
+ equal = objectEquals(fValue.fObject, that.fValue.fObject);
+ }
break;
}
- return TRUE;
+
+ // TODO: compare digit lists if numeric.
+ return equal;
}
// -------------------------------------
case kArray:
delete[] fValue.fArrayAndCount.fArray;
break;
- case kDate:
- case kDouble:
- case kLong:
+ case kObject:
+ delete fValue.fObject;
+ break;
+ default:
break;
}
+
+ fType = kLong;
+ fValue.fInt64 = 0;
+
+ delete fDecimalStr;
+ fDecimalStr = NULL;
+
+ delete fDecimalQuantity;
+ fDecimalQuantity = NULL;
+}
+
+Formattable *
+Formattable::clone() const {
+ return new Formattable(*this);
}
// -------------------------------------
return fType;
}
+UBool
+Formattable::isNumeric() const {
+ switch (fType) {
+ case kDouble:
+ case kLong:
+ case kInt64:
+ return TRUE;
+ default:
+ return FALSE;
+ }
+}
+
+// -------------------------------------
+int32_t
+//Formattable::getLong(UErrorCode* status) const
+Formattable::getLong(UErrorCode& status) const
+{
+ if (U_FAILURE(status)) {
+ return 0;
+ }
+
+ switch (fType) {
+ case Formattable::kLong:
+ return (int32_t)fValue.fInt64;
+ case Formattable::kInt64:
+ if (fValue.fInt64 > INT32_MAX) {
+ status = U_INVALID_FORMAT_ERROR;
+ return INT32_MAX;
+ } else if (fValue.fInt64 < INT32_MIN) {
+ status = U_INVALID_FORMAT_ERROR;
+ return INT32_MIN;
+ } else {
+ return (int32_t)fValue.fInt64;
+ }
+ case Formattable::kDouble:
+ if (fValue.fDouble > INT32_MAX) {
+ status = U_INVALID_FORMAT_ERROR;
+ return INT32_MAX;
+ } else if (fValue.fDouble < INT32_MIN) {
+ status = U_INVALID_FORMAT_ERROR;
+ return INT32_MIN;
+ } else {
+ return (int32_t)fValue.fDouble; // loses fraction
+ }
+ case Formattable::kObject:
+ if (fValue.fObject == NULL) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ return 0;
+ }
+ // TODO Later replace this with instanceof call
+ if (instanceOfMeasure(fValue.fObject)) {
+ return ((const Measure*) fValue.fObject)->
+ getNumber().getLong(status);
+ }
+ U_FALLTHROUGH;
+ default:
+ status = U_INVALID_FORMAT_ERROR;
+ return 0;
+ }
+}
+
+// -------------------------------------
+// Maximum int that can be represented exactly in a double. (53 bits)
+// Larger ints may be rounded to a near-by value as not all are representable.
+// TODO: move this constant elsewhere, possibly configure it for different
+// floating point formats, if any non-standard ones are still in use.
+static const int64_t U_DOUBLE_MAX_EXACT_INT = 9007199254740992LL;
+
+int64_t
+Formattable::getInt64(UErrorCode& status) const
+{
+ if (U_FAILURE(status)) {
+ return 0;
+ }
+
+ switch (fType) {
+ case Formattable::kLong:
+ case Formattable::kInt64:
+ return fValue.fInt64;
+ case Formattable::kDouble:
+ if (fValue.fDouble > (double)U_INT64_MAX) {
+ status = U_INVALID_FORMAT_ERROR;
+ return U_INT64_MAX;
+ } else if (fValue.fDouble < (double)U_INT64_MIN) {
+ status = U_INVALID_FORMAT_ERROR;
+ return U_INT64_MIN;
+ } else if (fabs(fValue.fDouble) > U_DOUBLE_MAX_EXACT_INT && fDecimalQuantity != NULL) {
+ if (fDecimalQuantity->fitsInLong(true)) {
+ return fDecimalQuantity->toLong();
+ } else {
+ // Unexpected
+ status = U_INVALID_FORMAT_ERROR;
+ return fDecimalQuantity->isNegative() ? U_INT64_MIN : U_INT64_MAX;
+ }
+ } else {
+ return (int64_t)fValue.fDouble;
+ }
+ case Formattable::kObject:
+ if (fValue.fObject == NULL) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ return 0;
+ }
+ if (instanceOfMeasure(fValue.fObject)) {
+ return ((const Measure*) fValue.fObject)->
+ getNumber().getInt64(status);
+ }
+ U_FALLTHROUGH;
+ default:
+ status = U_INVALID_FORMAT_ERROR;
+ return 0;
+ }
+}
+
+// -------------------------------------
+double
+Formattable::getDouble(UErrorCode& status) const
+{
+ if (U_FAILURE(status)) {
+ return 0;
+ }
+
+ switch (fType) {
+ case Formattable::kLong:
+ case Formattable::kInt64: // loses precision
+ return (double)fValue.fInt64;
+ case Formattable::kDouble:
+ return fValue.fDouble;
+ case Formattable::kObject:
+ if (fValue.fObject == NULL) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ return 0;
+ }
+ // TODO Later replace this with instanceof call
+ if (instanceOfMeasure(fValue.fObject)) {
+ return ((const Measure*) fValue.fObject)->
+ getNumber().getDouble(status);
+ }
+ U_FALLTHROUGH;
+ default:
+ status = U_INVALID_FORMAT_ERROR;
+ return 0;
+ }
+}
+
+const UObject*
+Formattable::getObject() const {
+ return (fType == kObject) ? fValue.fObject : NULL;
+}
+
// -------------------------------------
// Sets the value to a double value d.
{
dispose();
fType = kLong;
- fValue.fLong = l;
+ fValue.fInt64 = l;
+}
+
+// -------------------------------------
+// Sets the value to an int64 value ll.
+
+void
+Formattable::setInt64(int64_t ll)
+{
+ dispose();
+ fType = kInt64;
+ fValue.fInt64 = ll;
}
// -------------------------------------
fValue.fArrayAndCount.fCount = count;
}
+void
+Formattable::adoptObject(UObject* objectToAdopt) {
+ dispose();
+ fType = kObject;
+ fValue.fObject = objectToAdopt;
+}
+
+// -------------------------------------
+UnicodeString&
+Formattable::getString(UnicodeString& result, UErrorCode& status) const
+{
+ if (fType != kString) {
+ setError(status, U_INVALID_FORMAT_ERROR);
+ result.setToBogus();
+ } else {
+ if (fValue.fString == NULL) {
+ setError(status, U_MEMORY_ALLOCATION_ERROR);
+ } else {
+ result = *fValue.fString;
+ }
+ }
+ return result;
+}
+
+// -------------------------------------
+const UnicodeString&
+Formattable::getString(UErrorCode& status) const
+{
+ if (fType != kString) {
+ setError(status, U_INVALID_FORMAT_ERROR);
+ return *getBogus();
+ }
+ if (fValue.fString == NULL) {
+ setError(status, U_MEMORY_ALLOCATION_ERROR);
+ return *getBogus();
+ }
+ return *fValue.fString;
+}
+
+// -------------------------------------
+UnicodeString&
+Formattable::getString(UErrorCode& status)
+{
+ if (fType != kString) {
+ setError(status, U_INVALID_FORMAT_ERROR);
+ return *getBogus();
+ }
+ if (fValue.fString == NULL) {
+ setError(status, U_MEMORY_ALLOCATION_ERROR);
+ return *getBogus();
+ }
+ return *fValue.fString;
+}
+
+// -------------------------------------
+const Formattable*
+Formattable::getArray(int32_t& count, UErrorCode& status) const
+{
+ if (fType != kArray) {
+ setError(status, U_INVALID_FORMAT_ERROR);
+ count = 0;
+ return NULL;
+ }
+ count = fValue.fArrayAndCount.fCount;
+ return fValue.fArrayAndCount.fArray;
+}
+
+// -------------------------------------
+// Gets the bogus string, ensures mondo bogosity.
+
+UnicodeString*
+Formattable::getBogus() const
+{
+ return (UnicodeString*)&fBogus; /* cast away const :-( */
+}
+
+
+// --------------------------------------
+StringPiece Formattable::getDecimalNumber(UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return "";
+ }
+ if (fDecimalStr != NULL) {
+ return fDecimalStr->toStringPiece();
+ }
+
+ CharString *decimalStr = internalGetCharString(status);
+ if(decimalStr == NULL) {
+ return ""; // getDecimalNumber returns "" for error cases
+ } else {
+ return decimalStr->toStringPiece();
+ }
+}
+
+CharString *Formattable::internalGetCharString(UErrorCode &status) {
+ if(fDecimalStr == NULL) {
+ if (fDecimalQuantity == NULL) {
+ // No decimal number for the formattable yet. Which means the value was
+ // set directly by the user as an int, int64 or double. If the value came
+ // from parsing, or from the user setting a decimal number, fDecimalNum
+ // would already be set.
+ //
+ LocalPointer<DecimalQuantity> dq(new DecimalQuantity(), status);
+ if (U_FAILURE(status)) { return nullptr; }
+ populateDecimalQuantity(*dq, status);
+ if (U_FAILURE(status)) { return nullptr; }
+ fDecimalQuantity = dq.orphan();
+ }
+
+ fDecimalStr = new CharString();
+ if (fDecimalStr == NULL) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ return NULL;
+ }
+ // Older ICUs called uprv_decNumberToString here, which is not exactly the same as
+ // DecimalQuantity::toScientificString(). The biggest difference is that uprv_decNumberToString does
+ // not print scientific notation for magnitudes greater than -5 and smaller than some amount (+5?).
+ if (fDecimalQuantity->isInfinite()) {
+ fDecimalStr->append("Infinity", status);
+ } else if (fDecimalQuantity->isNaN()) {
+ fDecimalStr->append("NaN", status);
+ } else if (fDecimalQuantity->isZero()) {
+ fDecimalStr->append("0", -1, status);
+ } else if (fType==kLong || fType==kInt64 || // use toPlainString for integer types
+ (fDecimalQuantity->getMagnitude() != INT32_MIN && std::abs(fDecimalQuantity->getMagnitude()) < 5)) {
+ fDecimalStr->appendInvariantChars(fDecimalQuantity->toPlainString(), status);
+ } else {
+ fDecimalStr->appendInvariantChars(fDecimalQuantity->toScientificString(), status);
+ }
+ }
+ return fDecimalStr;
+}
+
+void
+Formattable::populateDecimalQuantity(number::impl::DecimalQuantity& output, UErrorCode& status) const {
+ if (fDecimalQuantity != nullptr) {
+ output = *fDecimalQuantity;
+ return;
+ }
+
+ switch (fType) {
+ case kDouble:
+ output.setToDouble(this->getDouble());
+ output.roundToInfinity();
+ break;
+ case kLong:
+ output.setToInt(this->getLong());
+ break;
+ case kInt64:
+ output.setToLong(this->getInt64());
+ break;
+ default:
+ // The formattable's value is not a numeric type.
+ status = U_INVALID_STATE_ERROR;
+ }
+}
+
+// ---------------------------------------
+void
+Formattable::adoptDecimalQuantity(DecimalQuantity *dq) {
+ if (fDecimalQuantity != NULL) {
+ delete fDecimalQuantity;
+ }
+ fDecimalQuantity = dq;
+ if (dq == NULL) { // allow adoptDigitList(NULL) to clear
+ return;
+ }
+
+ // Set the value into the Union of simple type values.
+ // Cannot use the set() functions because they would delete the fDecimalNum value.
+ if (fDecimalQuantity->fitsInLong()) {
+ fValue.fInt64 = fDecimalQuantity->toLong();
+ if (fValue.fInt64 <= INT32_MAX && fValue.fInt64 >= INT32_MIN) {
+ fType = kLong;
+ } else {
+ fType = kInt64;
+ }
+ } else {
+ fType = kDouble;
+ fValue.fDouble = fDecimalQuantity->toDouble();
+ }
+}
+
+
+// ---------------------------------------
+void
+Formattable::setDecimalNumber(StringPiece numberString, UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return;
+ }
+ dispose();
+
+ auto* dq = new DecimalQuantity();
+ dq->setToDecNumber(numberString, status);
+ adoptDecimalQuantity(dq);
+
+ // Note that we do not hang on to the caller's input string.
+ // If we are asked for the string, we will regenerate one from fDecimalQuantity.
+}
+
#if 0
//----------------------------------------------------
// console I/O
//----------------------------------------------------
#ifdef _DEBUG
-#if U_IOSTREAM_SOURCE >= 199711
#include <iostream>
using namespace std;
-#elif U_IOSTREAM_SOURCE >= 198506
-#include <iostream.h>
-#endif
#include "unicode/datefmt.h"
#include "unistrm.h"
U_NAMESPACE_END
+/* ---- UFormattable implementation ---- */
+
+U_NAMESPACE_USE
+
+U_DRAFT UFormattable* U_EXPORT2
+ufmt_open(UErrorCode *status) {
+ if( U_FAILURE(*status) ) {
+ return NULL;
+ }
+ UFormattable *fmt = (new Formattable())->toUFormattable();
+
+ if( fmt == NULL ) {
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ }
+ return fmt;
+}
+
+U_DRAFT void U_EXPORT2
+ufmt_close(UFormattable *fmt) {
+ Formattable *obj = Formattable::fromUFormattable(fmt);
+
+ delete obj;
+}
+
+U_INTERNAL UFormattableType U_EXPORT2
+ufmt_getType(const UFormattable *fmt, UErrorCode *status) {
+ if(U_FAILURE(*status)) {
+ return (UFormattableType)UFMT_COUNT;
+ }
+ const Formattable *obj = Formattable::fromUFormattable(fmt);
+ return (UFormattableType)obj->getType();
+}
+
+
+U_INTERNAL UBool U_EXPORT2
+ufmt_isNumeric(const UFormattable *fmt) {
+ const Formattable *obj = Formattable::fromUFormattable(fmt);
+ return obj->isNumeric();
+}
+
+U_DRAFT UDate U_EXPORT2
+ufmt_getDate(const UFormattable *fmt, UErrorCode *status) {
+ const Formattable *obj = Formattable::fromUFormattable(fmt);
+
+ return obj->getDate(*status);
+}
+
+U_DRAFT double U_EXPORT2
+ufmt_getDouble(UFormattable *fmt, UErrorCode *status) {
+ Formattable *obj = Formattable::fromUFormattable(fmt);
+
+ return obj->getDouble(*status);
+}
+
+U_DRAFT int32_t U_EXPORT2
+ufmt_getLong(UFormattable *fmt, UErrorCode *status) {
+ Formattable *obj = Formattable::fromUFormattable(fmt);
+
+ return obj->getLong(*status);
+}
+
+
+U_DRAFT const void *U_EXPORT2
+ufmt_getObject(const UFormattable *fmt, UErrorCode *status) {
+ const Formattable *obj = Formattable::fromUFormattable(fmt);
+
+ const void *ret = obj->getObject();
+ if( ret==NULL &&
+ (obj->getType() != Formattable::kObject) &&
+ U_SUCCESS( *status )) {
+ *status = U_INVALID_FORMAT_ERROR;
+ }
+ return ret;
+}
+
+U_DRAFT const UChar* U_EXPORT2
+ufmt_getUChars(UFormattable *fmt, int32_t *len, UErrorCode *status) {
+ Formattable *obj = Formattable::fromUFormattable(fmt);
+
+ // avoid bogosity by checking the type first.
+ if( obj->getType() != Formattable::kString ) {
+ if( U_SUCCESS(*status) ){
+ *status = U_INVALID_FORMAT_ERROR;
+ }
+ return NULL;
+ }
+
+ // This should return a valid string
+ UnicodeString &str = obj->getString(*status);
+ if( U_SUCCESS(*status) && len != NULL ) {
+ *len = str.length();
+ }
+ return str.getTerminatedBuffer();
+}
+
+U_DRAFT int32_t U_EXPORT2
+ufmt_getArrayLength(const UFormattable* fmt, UErrorCode *status) {
+ const Formattable *obj = Formattable::fromUFormattable(fmt);
+
+ int32_t count;
+ (void)obj->getArray(count, *status);
+ return count;
+}
+
+U_DRAFT UFormattable * U_EXPORT2
+ufmt_getArrayItemByIndex(UFormattable* fmt, int32_t n, UErrorCode *status) {
+ Formattable *obj = Formattable::fromUFormattable(fmt);
+ int32_t count;
+ (void)obj->getArray(count, *status);
+ if(U_FAILURE(*status)) {
+ return NULL;
+ } else if(n<0 || n>=count) {
+ setError(*status, U_INDEX_OUTOFBOUNDS_ERROR);
+ return NULL;
+ } else {
+ return (*obj)[n].toUFormattable(); // returns non-const Formattable
+ }
+}
+
+U_DRAFT const char * U_EXPORT2
+ufmt_getDecNumChars(UFormattable *fmt, int32_t *len, UErrorCode *status) {
+ if(U_FAILURE(*status)) {
+ return "";
+ }
+ Formattable *obj = Formattable::fromUFormattable(fmt);
+ CharString *charString = obj->internalGetCharString(*status);
+ if(U_FAILURE(*status)) {
+ return "";
+ }
+ if(charString == NULL) {
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ return "";
+ } else {
+ if(len!=NULL) {
+ *len = charString->length();
+ }
+ return charString->data();
+ }
+}
+
+U_DRAFT int64_t U_EXPORT2
+ufmt_getInt64(UFormattable *fmt, UErrorCode *status) {
+ Formattable *obj = Formattable::fromUFormattable(fmt);
+ return obj->getInt64(*status);
+}
+
#endif /* #if !UCONFIG_NO_FORMATTING */
//eof