-
+// © 2016 and later: Unicode, Inc. and others.
+// License & terms of use: http://www.unicode.org/copyright.html
//
// file: regexcmp.cpp
//
-// Copyright (C) 2002-2003 International Business Machines Corporation and others.
+// Copyright (C) 2002-2016 International Business Machines Corporation and others.
// All Rights Reserved.
//
// This file contains the ICU regular expression compiler, which is responsible
#if !UCONFIG_NO_REGULAR_EXPRESSIONS
+#include "unicode/ustring.h"
#include "unicode/unistr.h"
#include "unicode/uniset.h"
#include "unicode/uchar.h"
#include "unicode/parsepos.h"
#include "unicode/parseerr.h"
#include "unicode/regex.h"
-#include "uprops.h"
+#include "unicode/utf.h"
+#include "unicode/utf16.h"
+#include "patternprops.h"
+#include "putilimp.h"
#include "cmemory.h"
+#include "cstr.h"
#include "cstring.h"
#include "uvectr32.h"
+#include "uvectr64.h"
#include "uassert.h"
-#include "ucln_in.h"
-#include "mutex.h"
+#include "uinvchar.h"
#include "regeximp.h"
#include "regexcst.h" // Contains state table for the regex pattern parser.
// generated by a Perl script.
#include "regexcmp.h"
#include "regexst.h"
+#include "regextxt.h"
U_NAMESPACE_BEGIN
-
-
-
-//----------------------------------------------------------------------------------------
+//------------------------------------------------------------------------------
//
// Constructor.
//
-//----------------------------------------------------------------------------------------
-RegexCompile::RegexCompile(RegexPattern *rxp, UErrorCode &status) : fParenStack(status)
+//------------------------------------------------------------------------------
+RegexCompile::RegexCompile(RegexPattern *rxp, UErrorCode &status) :
+ fParenStack(status), fSetStack(status), fSetOpStack(status)
{
+ // Lazy init of all shared global sets (needed for init()'s empty text)
+ RegexStaticSets::initGlobals(&status);
+
fStatus = &status;
fRXPat = rxp;
fScanIndex = 0;
- fNextIndex = 0;
+ fLastChar = -1;
fPeekChar = -1;
fLineNum = 1;
fCharNum = 0;
fQuoteMode = FALSE;
fInBackslashQuote = FALSE;
- fModeFlags = fRXPat->fFlags;
+ fModeFlags = fRXPat->fFlags | 0x80000000;
fEOLComments = TRUE;
fMatchOpenParen = -1;
fMatchCloseParen = -1;
- fStringOpStart = -1;
+ fCaptureName = NULL;
+ fLastSetLiteral = U_SENTINEL;
if (U_SUCCESS(status) && U_FAILURE(rxp->fDeferredStatus)) {
status = rxp->fDeferredStatus;
}
}
+static const UChar chAmp = 0x26; // '&'
+static const UChar chDash = 0x2d; // '-'
-//----------------------------------------------------------------------------------------
+//------------------------------------------------------------------------------
//
// Destructor
//
-//----------------------------------------------------------------------------------------
+//------------------------------------------------------------------------------
RegexCompile::~RegexCompile() {
+ delete fCaptureName; // Normally will be NULL, but can exist if pattern
+ // compilation stops with a syntax error.
}
-
-
-//----------------------------------------------------------------------------------------
-//
-// cleanup. Called (indirectly) by u_cleanup to free all cached memory
-//
-//----------------------------------------------------------------------------------------
-void RegexCompile::cleanup() {
- delete RegexStaticSets::gStaticSets;
- RegexStaticSets::gStaticSets = NULL;
+static inline void addCategory(UnicodeSet *set, int32_t value, UErrorCode& ec) {
+ set->addAll(UnicodeSet().applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, value, ec));
}
-
-//---------------------------------------------------------------------------------
+//------------------------------------------------------------------------------
//
// Compile regex pattern. The state machine for rexexp pattern parsing is here.
// The state tables are hand-written in the file regexcst.txt,
// and converted to the form used here by a perl
// script regexcst.pl
//
-//---------------------------------------------------------------------------------
+//------------------------------------------------------------------------------
void RegexCompile::compile(
const UnicodeString &pat, // Source pat to be compiled.
UParseError &pp, // Error position info
UErrorCode &e) // Error Code
+{
+ fRXPat->fPatternString = new UnicodeString(pat);
+ UText patternText = UTEXT_INITIALIZER;
+ utext_openConstUnicodeString(&patternText, fRXPat->fPatternString, &e);
+
+ if (U_SUCCESS(e)) {
+ compile(&patternText, pp, e);
+ utext_close(&patternText);
+ }
+}
+
+//
+// compile, UText mode
+// All the work is actually done here.
+//
+void RegexCompile::compile(
+ UText *pat, // Source pat to be compiled.
+ UParseError &pp, // Error position info
+ UErrorCode &e) // Error Code
{
fStatus = &e;
fParseErr = &pp;
}
// There should be no pattern stuff in the RegexPattern object. They can not be reused.
- U_ASSERT(fRXPat->fPattern.length() == 0);
+ U_ASSERT(fRXPat->fPattern == NULL || utext_nativeLength(fRXPat->fPattern) == 0);
// Prepare the RegexPattern object to receive the compiled pattern.
- // TODO: remove per-instance field, and just use globals directly. (But check perf)
- fRXPat->fPattern = pat;
+ fRXPat->fPattern = utext_clone(fRXPat->fPattern, pat, FALSE, TRUE, fStatus);
+ if (U_FAILURE(*fStatus)) {
+ return;
+ }
fRXPat->fStaticSets = RegexStaticSets::gStaticSets->fPropSets;
fRXPat->fStaticSets8 = RegexStaticSets::gStaticSets->fPropSets8;
// Initialize the pattern scanning state machine
- fPatternLength = pat.length();
+ fPatternLength = utext_nativeLength(pat);
uint16_t state = 1;
const RegexTableEl *tableEl;
+
+ // UREGEX_LITERAL force entire pattern to be treated as a literal string.
+ if (fModeFlags & UREGEX_LITERAL) {
+ fQuoteMode = TRUE;
+ }
+
nextChar(fC); // Fetch the first char from the pattern string.
//
// the search will stop there, if not before.
//
tableEl = &gRuleParseStateTable[state];
- REGEX_SCAN_DEBUG_PRINTF( "char, line, col = (\'%c\', %d, %d) state=%s ",
- fC.fChar, fLineNum, fCharNum, RegexStateNames[state]);
+ REGEX_SCAN_DEBUG_PRINTF(("char, line, col = (\'%c\', %d, %d) state=%s ",
+ fC.fChar, fLineNum, fCharNum, RegexStateNames[state]));
for (;;) { // loop through table rows belonging to this state, looking for one
// that matches the current input char.
- REGEX_SCAN_DEBUG_PRINTF( ".");
+ REGEX_SCAN_DEBUG_PRINTF(("."));
if (tableEl->fCharClass < 127 && fC.fQuoted == FALSE && tableEl->fCharClass == fC.fChar) {
// Table row specified an individual character, not a set, and
// the input character is not quoted, and
if (tableEl->fCharClass >= 128 && tableEl->fCharClass < 240 && // Table specs a char class &&
fC.fQuoted == FALSE && // char is not escaped &&
fC.fChar != (UChar32)-1) { // char is not EOF
- UnicodeSet *uniset = RegexStaticSets::gStaticSets->fRuleSets[tableEl->fCharClass-128];
- if (uniset->contains(fC.fChar)) {
+ U_ASSERT(tableEl->fCharClass <= 137);
+ if (RegexStaticSets::gStaticSets->fRuleSets[tableEl->fCharClass-128].contains(fC.fChar)) {
// Table row specified a character class, or set of characters,
// and the current char matches it.
break;
// No match on this row, advance to the next row for this state,
tableEl++;
}
- REGEX_SCAN_DEBUG_PRINTF("\n");
+ REGEX_SCAN_DEBUG_PRINTF(("\n"));
//
// We've found the row of the state table that matches the current input
// character from the rules string.
// Perform any action specified by this row in the state table.
- if (doParseActions((EParseAction)tableEl->fAction) == FALSE) {
+ if (doParseActions(tableEl->fAction) == FALSE) {
// Break out of the state machine loop if the
// the action signalled some kind of error, or
// the action was to exit, occurs on normal end-of-rules-input.
fStackPtr++;
if (fStackPtr >= kStackSize) {
error(U_REGEX_INTERNAL_ERROR);
- REGEX_SCAN_DEBUG_PRINTF( "RegexCompile::parse() - state stack overflow.\n");
+ REGEX_SCAN_DEBUG_PRINTF(("RegexCompile::parse() - state stack overflow.\n"));
fStackPtr--;
}
fStack[fStackPtr] = tableEl->fPushState;
// state stack underflow
// This will occur if the user pattern has mis-matched parentheses,
// with extra close parens.
- //
+ //
fStackPtr++;
error(U_REGEX_MISMATCHED_PAREN);
}
}
- //
- // The pattern has now been read and processed, and the compiled code generated.
- //
-
- // Back-reference fixup
- //
- int32_t loc;
- for (loc=0; loc<fRXPat->fCompiledPat->size(); loc++) {
- int32_t op = fRXPat->fCompiledPat->elementAti(loc);
- int32_t opType = URX_TYPE(op);
- if (opType == URX_BACKREF || opType == URX_BACKREF_I) {
- int32_t where = URX_VAL(op);
- if (where > fRXPat->fGroupMap->size()) {
- error(U_REGEX_INVALID_BACK_REF);
- break;
- }
- where = fRXPat->fGroupMap->elementAti(where-1);
- op = URX_BUILD(opType, where);
- fRXPat->fCompiledPat->setElementAt(op, loc);
+ if (U_FAILURE(*fStatus)) {
+ // Bail out if the pattern had errors.
+ // Set stack cleanup: a successful compile would have left it empty,
+ // but errors can leave temporary sets hanging around.
+ while (!fSetStack.empty()) {
+ delete (UnicodeSet *)fSetStack.pop();
}
+ return;
}
-
//
- // Compute the number of digits requried for the largest capture group number.
+ // The pattern has now been read and processed, and the compiled code generated.
//
- fRXPat->fMaxCaptureDigits = 1;
- int32_t n = 10;
- for (;;) {
- if (n > fRXPat->fGroupMap->size()) {
- break;
- }
- fRXPat->fMaxCaptureDigits++;
- n *= 10;
- }
//
// The pattern's fFrameSize so far has accumulated the requirements for
// storage for capture parentheses, counters, etc. that are encountered
// in the pattern. Add space for the two variables that are always
- // present in the saved state: the input string position and the
- // position in the compiled pattern.
+ // present in the saved state: the input string position (int64_t) and
+ // the position in the compiled pattern.
+ //
+ allocateStackData(RESTACKFRAME_HDRCOUNT);
+
+ //
+ // Optimization pass 1: NOPs, back-references, and case-folding
//
- fRXPat->fFrameSize+=2;
+ stripNOPs();
//
// Get bounds for the minimum and maximum length of a string that this
fRXPat->fMinMatchLen = minMatchLength(3, fRXPat->fCompiledPat->size()-1);
//
- // Optimization passes
- //
- matchStartType();
- OptDotStar();
- stripNOPs();
+ // Optimization pass 2: match start type
+ //
+ matchStartType();
//
// Set up fast latin-1 range sets
//
int32_t numSets = fRXPat->fSets->size();
fRXPat->fSets8 = new Regex8BitSet[numSets];
+ // Null pointer check.
+ if (fRXPat->fSets8 == NULL) {
+ e = *fStatus = U_MEMORY_ALLOCATION_ERROR;
+ return;
+ }
int32_t i;
for (i=0; i<numSets; i++) {
UnicodeSet *s = (UnicodeSet *)fRXPat->fSets->elementAt(i);
fRXPat->fSets8[i].init(s);
}
- //
- // A stupid bit of non-sense to prevent code coverage testing from complaining
- // about the pattern.dump() debug function. Go through the motions of dumping,
- // even though, without the #define set, it will do nothing.
- //
-#ifndef REGEX_DUMP_DEBUG
- static UBool phonyDumpDone = FALSE;
- if (phonyDumpDone==FALSE) {
- fRXPat->dump();
- phonyDumpDone = TRUE;
- }
-#endif
-
}
-//----------------------------------------------------------------------------------------
+//------------------------------------------------------------------------------
//
// doParseAction Do some action during regex pattern parsing.
// Called by the parse state machine.
// in functions called from the parse actions defined here.
//
//
-//----------------------------------------------------------------------------------------
-UBool RegexCompile::doParseActions(EParseAction action)
+//------------------------------------------------------------------------------
+UBool RegexCompile::doParseActions(int32_t action)
{
UBool returnVal = TRUE;
// the start of an ( grouping.
//4 NOP Resreved, will be replaced by a save if there are
// OR | operators at the top level
- fRXPat->fCompiledPat->addElement(URX_BUILD(URX_STATE_SAVE, 2), *fStatus);
- fRXPat->fCompiledPat->addElement(URX_BUILD(URX_JMP, 3), *fStatus);
- fRXPat->fCompiledPat->addElement(URX_BUILD(URX_FAIL, 0), *fStatus);
- fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
- fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
+ appendOp(URX_STATE_SAVE, 2);
+ appendOp(URX_JMP, 3);
+ appendOp(URX_FAIL, 0);
- fParenStack.push(-1, *fStatus); // Begin a Paren Stack Frame
- fParenStack.push( 3, *fStatus); // Push location of first NOP
+ // Standard open nonCapture paren action emits the two NOPs and
+ // sets up the paren stack frame.
+ doParseActions(doOpenNonCaptureParen);
break;
case doPatFinish:
}
// add the END operation to the compiled pattern.
- fRXPat->fCompiledPat->addElement(URX_BUILD(URX_END, 0), *fStatus);
+ appendOp(URX_END, 0);
// Terminate the pattern compilation state machine.
returnVal = FALSE;
case doOrOperator:
// Scanning a '|', as in (A|B)
{
+ // Generate code for any pending literals preceding the '|'
+ fixLiterals(FALSE);
+
// Insert a SAVE operation at the start of the pattern section preceding
// this OR at this level. This SAVE will branch the match forward
// to the right hand side of the OR in the event that the left hand
// side fails to match and backtracks. Locate the position for the
// save from the location on the top of the parentheses stack.
int32_t savePosition = fParenStack.popi();
- int32_t op = fRXPat->fCompiledPat->elementAti(savePosition);
+ int32_t op = (int32_t)fRXPat->fCompiledPat->elementAti(savePosition);
U_ASSERT(URX_TYPE(op) == URX_NOP); // original contents of reserved location
- op = URX_BUILD(URX_STATE_SAVE, fRXPat->fCompiledPat->size()+1);
+ op = buildOp(URX_STATE_SAVE, fRXPat->fCompiledPat->size()+1);
fRXPat->fCompiledPat->setElementAt(op, savePosition);
// Append an JMP operation into the compiled pattern. The operand for
// the JMP will eventually be the location following the ')' for the
// group. This will be patched in later, when the ')' is encountered.
- op = URX_BUILD(URX_JMP, 0);
- fRXPat->fCompiledPat->addElement(op, *fStatus);
+ appendOp(URX_JMP, 0);
// Push the position of the newly added JMP op onto the parentheses stack.
// This registers if for fixup when this block's close paren is encountered.
// Append a NOP to the compiled pattern. This is the slot reserved
// for a SAVE in the event that there is yet another '|' following
// this one.
- fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
+ appendOp(URX_NOP, 0);
fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus);
}
break;
+ case doBeginNamedCapture:
+ // Scanning (?<letter.
+ // The first letter of the name will come through again under doConinueNamedCapture.
+ fCaptureName = new UnicodeString();
+ if (fCaptureName == NULL) {
+ error(U_MEMORY_ALLOCATION_ERROR);
+ }
+ break;
+
+ case doContinueNamedCapture:
+ fCaptureName->append(fC.fChar);
+ break;
+
+ case doBadNamedCapture:
+ error(U_REGEX_INVALID_CAPTURE_GROUP_NAME);
+ break;
+
case doOpenCaptureParen:
- // Open Paren.
+ // Open Capturing Paren, possibly named.
// Compile to a
// - NOP, which later may be replaced by a save-state if the
// parenthesized group gets a * quantifier, followed by
// is an '|' alternation within the parens.
//
// Each capture group gets three slots in the save stack frame:
- // 0: Capture Group start position (in input string being matched.)
- // 1: Capture Group end positino.
- // 2: Start of Match-in-progress.
+ // 0: Capture Group start position (in input string being matched.)
+ // 1: Capture Group end position.
+ // 2: Start of Match-in-progress.
// The first two locations are for a completed capture group, and are
// referred to by back references and the like.
// The third location stores the capture start position when an START_CAPTURE is
// encountered. This will be promoted to a completed capture when (and if) the corresponding
- // END_CAPure is encountered.
+ // END_CAPTURE is encountered.
{
- fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
- int32_t varsLoc = fRXPat->fFrameSize; // Reserve three slots in match stack frame.
- fRXPat->fFrameSize += 3;
- int32_t cop = URX_BUILD(URX_START_CAPTURE, varsLoc);
- fRXPat->fCompiledPat->addElement(cop, *fStatus);
- fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
+ fixLiterals();
+ appendOp(URX_NOP, 0);
+ int32_t varsLoc = allocateStackData(3); // Reserve three slots in match stack frame.
+ appendOp(URX_START_CAPTURE, varsLoc);
+ appendOp(URX_NOP, 0);
// On the Parentheses stack, start a new frame and add the postions
// of the two NOPs. Depending on what follows in the pattern, the
// Save the mapping from group number to stack frame variable position.
fRXPat->fGroupMap->addElement(varsLoc, *fStatus);
+
+ // If this is a named capture group, add the name->group number mapping.
+ if (fCaptureName != NULL) {
+ if (!fRXPat->initNamedCaptureMap()) {
+ if (U_SUCCESS(*fStatus)) {
+ error(fRXPat->fDeferredStatus);
+ }
+ break;
+ }
+ int32_t groupNumber = fRXPat->fGroupMap->size();
+ int32_t previousMapping = uhash_puti(fRXPat->fNamedCaptureMap, fCaptureName, groupNumber, fStatus);
+ fCaptureName = NULL; // hash table takes ownership of the name (key) string.
+ if (previousMapping > 0 && U_SUCCESS(*fStatus)) {
+ error(U_REGEX_INVALID_CAPTURE_GROUP_NAME);
+ }
+ }
}
- break;
+ break;
case doOpenNonCaptureParen:
// Open non-caputuring (grouping only) Paren.
// - NOP, which may later be replaced by a save-state if there
// is an '|' alternation within the parens.
{
- fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
- fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
+ fixLiterals();
+ appendOp(URX_NOP, 0);
+ appendOp(URX_NOP, 0);
// On the Parentheses stack, start a new frame and add the postions
// of the two NOPs.
case doOpenAtomicParen:
// Open Atomic Paren. (?>
// Compile to a
- // - NOP, which later may be replaced if the parenthesized group
+ // - NOP, which later may be replaced if the parenthesized group
// has a quantifier, followed by
// - STO_SP save state stack position, so it can be restored at the ")"
// - NOP, which may later be replaced by a save-state if there
// is an '|' alternation within the parens.
{
- fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
- int32_t varLoc = fRXPat->fDataSize; // Reserve a data location for saving the
- fRXPat->fDataSize += 1; // state stack ptr.
- int32_t stoOp = URX_BUILD(URX_STO_SP, varLoc);
- fRXPat->fCompiledPat->addElement(stoOp, *fStatus);
- fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
+ fixLiterals();
+ appendOp(URX_NOP, 0);
+ int32_t varLoc = allocateData(1); // Reserve a data location for saving the state stack ptr.
+ appendOp(URX_STO_SP, varLoc);
+ appendOp(URX_NOP, 0);
// On the Parentheses stack, start a new frame and add the postions
// of the two NOPs. Depending on what follows in the pattern, the
case doOpenLookAhead:
// Positive Look-ahead (?= stuff )
+ //
+ // Note: Addition of transparent input regions, with the need to
+ // restore the original regions when failing out of a lookahead
+ // block, complicated this sequence. Some conbined opcodes
+ // might make sense - or might not, lookahead aren't that common.
+ //
+ // Caution: min match length optimization knows about this
+ // sequence; don't change without making updates there too.
+ //
// Compiles to
- // 1 START_LA dataLoc
- // 2. NOP reserved for use by quantifiers on the block.
+ // 1 LA_START dataLoc Saves SP, Input Pos, Active input region.
+ // 2. STATE_SAVE 4 on failure of lookahead, goto 4
+ // 3 JMP 6 continue ...
+ //
+ // 4. LA_END Look Ahead failed. Restore regions.
+ // 5. BACKTRACK and back track again.
+ //
+ // 6. NOP reserved for use by quantifiers on the block.
// Look-ahead can't have quantifiers, but paren stack
// compile time conventions require the slot anyhow.
- // 3. NOP may be replaced if there is are '|' ops in the block.
- // 4. code for parenthesized stuff.
- // 5. ENDLA
- //
- // Two data slots are reserved, for saving the stack ptr and the input position.
+ // 7. NOP may be replaced if there is are '|' ops in the block.
+ // 8. code for parenthesized stuff.
+ // 9. LA_END
+ //
+ // Four data slots are reserved, for saving state on entry to the look-around
+ // 0: stack pointer on entry.
+ // 1: input position on entry.
+ // 2: fActiveStart, the active bounds start on entry.
+ // 3: fActiveLimit, the active bounds limit on entry.
{
- int32_t dataLoc = fRXPat->fDataSize;
- fRXPat->fDataSize += 2;
- int32_t op = URX_BUILD(URX_LA_START, dataLoc);
- fRXPat->fCompiledPat->addElement(op, *fStatus);
-
- op = URX_BUILD(URX_NOP, 0);
- fRXPat->fCompiledPat->addElement(op, *fStatus);
- fRXPat->fCompiledPat->addElement(op, *fStatus);
+ fixLiterals();
+ int32_t dataLoc = allocateData(4);
+ appendOp(URX_LA_START, dataLoc);
+ appendOp(URX_STATE_SAVE, fRXPat->fCompiledPat->size()+ 2);
+ appendOp(URX_JMP, fRXPat->fCompiledPat->size()+ 3);
+ appendOp(URX_LA_END, dataLoc);
+ appendOp(URX_BACKTRACK, 0);
+ appendOp(URX_NOP, 0);
+ appendOp(URX_NOP, 0);
// On the Parentheses stack, start a new frame and add the postions
- // of the NOPs.
+ // of the NOPs.
fParenStack.push(fModeFlags, *fStatus); // Match mode state
fParenStack.push(lookAhead, *fStatus); // Frame type.
fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location
case doOpenLookAheadNeg:
// Negated Lookahead. (?! stuff )
// Compiles to
- // 1. START_LA dataloc
+ // 1. LA_START dataloc
// 2. SAVE_STATE 7 // Fail within look-ahead block restores to this state,
// // which continues with the match.
// 3. NOP // Std. Open Paren sequence, for possible '|'
// 4. code for parenthesized stuff.
- // 5. END_LA // Cut back stack, remove saved state from step 2.
- // 6. FAIL // code in block succeeded, so neg. lookahead fails.
- // 7. ...
+ // 5. LA_END // Cut back stack, remove saved state from step 2.
+ // 6. BACKTRACK // code in block succeeded, so neg. lookahead fails.
+ // 7. END_LA // Restore match region, in case look-ahead was using
+ // an alternate (transparent) region.
+ // Four data slots are reserved, for saving state on entry to the look-around
+ // 0: stack pointer on entry.
+ // 1: input position on entry.
+ // 2: fActiveStart, the active bounds start on entry.
+ // 3: fActiveLimit, the active bounds limit on entry.
{
- int32_t dataLoc = fRXPat->fDataSize;
- fRXPat->fDataSize += 2;
- int32_t op = URX_BUILD(URX_LA_START, dataLoc);
- fRXPat->fCompiledPat->addElement(op, *fStatus);
-
- op = URX_BUILD(URX_STATE_SAVE, 0); // dest address will be patched later.
- fRXPat->fCompiledPat->addElement(op, *fStatus);
-
- op = URX_BUILD(URX_NOP, 0);
- fRXPat->fCompiledPat->addElement(op, *fStatus);
+ fixLiterals();
+ int32_t dataLoc = allocateData(4);
+ appendOp(URX_LA_START, dataLoc);
+ appendOp(URX_STATE_SAVE, 0); // dest address will be patched later.
+ appendOp(URX_NOP, 0);
// On the Parentheses stack, start a new frame and add the postions
- // of the StateSave and NOP.
+ // of the StateSave and NOP.
fParenStack.push(fModeFlags, *fStatus); // Match mode state
- fParenStack.push( negLookAhead, *fStatus); // Frame type
+ fParenStack.push(negLookAhead, *fStatus); // Frame type
fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The STATE_SAVE location
fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP location
-
- // Instructions #5 and #6 will be added when the ')' is encountered.
+
+ // Instructions #5 - #7 will be added when the ')' is encountered.
}
break;
// Allocate a block of matcher data, to contain (when running a match)
// 0: Stack ptr on entry
// 1: Input Index on entry
- // 2: Start index of match current match attempt.
- // 3: Original Input String len.
+ // 2: fActiveStart, the active bounds start on entry.
+ // 3: fActiveLimit, the active bounds limit on entry.
+ // 4: Start index of match current match attempt.
+ // The first four items must match the layout of data for LA_START / LA_END
+
+ // Generate match code for any pending literals.
+ fixLiterals();
// Allocate data space
- int32_t dataLoc = fRXPat->fDataSize;
- fRXPat->fDataSize += 4;
-
+ int32_t dataLoc = allocateData(5);
+
// Emit URX_LB_START
- int32_t op = URX_BUILD(URX_LB_START, dataLoc);
- fRXPat->fCompiledPat->addElement(op, *fStatus);
-
+ appendOp(URX_LB_START, dataLoc);
+
// Emit URX_LB_CONT
- op = URX_BUILD(URX_LB_CONT, dataLoc);
- fRXPat->fCompiledPat->addElement(op, *fStatus);
- fRXPat->fCompiledPat->addElement(0, *fStatus); // MinMatchLength. To be filled later.
- fRXPat->fCompiledPat->addElement(0, *fStatus); // MaxMatchLength. To be filled later.
-
- // Emit the NOP
- op = URX_BUILD(URX_NOP, 0);
- fRXPat->fCompiledPat->addElement(op, *fStatus);
- fRXPat->fCompiledPat->addElement(op, *fStatus);
-
+ appendOp(URX_LB_CONT, dataLoc);
+ appendOp(URX_RESERVED_OP, 0); // MinMatchLength. To be filled later.
+ appendOp(URX_RESERVED_OP, 0); // MaxMatchLength. To be filled later.
+
+ // Emit the NOPs
+ appendOp(URX_NOP, 0);
+ appendOp(URX_NOP, 0);
+
// On the Parentheses stack, start a new frame and add the postions
- // of the URX_LB_CONT and the NOP.
+ // of the URX_LB_CONT and the NOP.
fParenStack.push(fModeFlags, *fStatus); // Match mode state
fParenStack.push(lookBehind, *fStatus); // Frame type
fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location
fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The 2nd NOP location
-
+
// The final two instructions will be added when the ')' is encountered.
}
// Allocate a block of matcher data, to contain (when running a match)
// 0: Stack ptr on entry
// 1: Input Index on entry
- // 2: Start index of match current match attempt.
- // 3: Original Input String len.
+ // 2: fActiveStart, the active bounds start on entry.
+ // 3: fActiveLimit, the active bounds limit on entry.
+ // 4: Start index of match current match attempt.
+ // The first four items must match the layout of data for LA_START / LA_END
+
+ // Generate match code for any pending literals.
+ fixLiterals();
// Allocate data space
- int32_t dataLoc = fRXPat->fDataSize;
- fRXPat->fDataSize += 4;
-
+ int32_t dataLoc = allocateData(5);
+
// Emit URX_LB_START
- int32_t op = URX_BUILD(URX_LB_START, dataLoc);
- fRXPat->fCompiledPat->addElement(op, *fStatus);
-
+ appendOp(URX_LB_START, dataLoc);
+
// Emit URX_LBN_CONT
- op = URX_BUILD(URX_LBN_CONT, dataLoc);
- fRXPat->fCompiledPat->addElement(op, *fStatus);
- fRXPat->fCompiledPat->addElement(0, *fStatus); // MinMatchLength. To be filled later.
- fRXPat->fCompiledPat->addElement(0, *fStatus); // MaxMatchLength. To be filled later.
- fRXPat->fCompiledPat->addElement(0, *fStatus); // Continue Loc. To be filled later.
-
- // Emit the NOP
- op = URX_BUILD(URX_NOP, 0);
- fRXPat->fCompiledPat->addElement(op, *fStatus);
- fRXPat->fCompiledPat->addElement(op, *fStatus);
-
+ appendOp(URX_LBN_CONT, dataLoc);
+ appendOp(URX_RESERVED_OP, 0); // MinMatchLength. To be filled later.
+ appendOp(URX_RESERVED_OP, 0); // MaxMatchLength. To be filled later.
+ appendOp(URX_RESERVED_OP, 0); // Continue Loc. To be filled later.
+
+ // Emit the NOPs
+ appendOp(URX_NOP, 0);
+ appendOp(URX_NOP, 0);
+
// On the Parentheses stack, start a new frame and add the postions
- // of the URX_LB_CONT and the NOP.
+ // of the URX_LB_CONT and the NOP.
fParenStack.push(fModeFlags, *fStatus); // Match mode state
fParenStack.push(lookBehindN, *fStatus); // Frame type
fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location
fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The 2nd NOP location
-
+
// The final two instructions will be added when the ')' is encountered.
}
break;
// Check for simple constructs, which may get special optimized code.
if (topLoc == fRXPat->fCompiledPat->size() - 1) {
- int32_t repeatedOp = fRXPat->fCompiledPat->elementAti(topLoc);
+ int32_t repeatedOp = (int32_t)fRXPat->fCompiledPat->elementAti(topLoc);
if (URX_TYPE(repeatedOp) == URX_SETREF) {
// Emit optimized code for [char set]+
- int32_t loopOpI = URX_BUILD(URX_LOOP_SR_I, URX_VAL(repeatedOp));
- fRXPat->fCompiledPat->addElement(loopOpI, *fStatus);
- frameLoc = fRXPat->fFrameSize;
- fRXPat->fFrameSize++;
- int32_t loopOpC = URX_BUILD(URX_LOOP_C, frameLoc);
- fRXPat->fCompiledPat->addElement(loopOpC, *fStatus);
+ appendOp(URX_LOOP_SR_I, URX_VAL(repeatedOp));
+ frameLoc = allocateStackData(1);
+ appendOp(URX_LOOP_C, frameLoc);
break;
}
if (URX_TYPE(repeatedOp) == URX_DOTANY ||
- URX_TYPE(repeatedOp) == URX_DOTANY_ALL) {
+ URX_TYPE(repeatedOp) == URX_DOTANY_ALL ||
+ URX_TYPE(repeatedOp) == URX_DOTANY_UNIX) {
// Emit Optimized code for .+ operations.
- int32_t loopOpI = URX_BUILD(URX_LOOP_DOT_I, 0);
+ int32_t loopOpI = buildOp(URX_LOOP_DOT_I, 0);
if (URX_TYPE(repeatedOp) == URX_DOTANY_ALL) {
- // URX_LOOP_DOT_I operand is a flag indicating . matches any mode.
+ // URX_LOOP_DOT_I operand is a flag indicating ". matches any" mode.
loopOpI |= 1;
}
- fRXPat->fCompiledPat->addElement(loopOpI, *fStatus);
- frameLoc = fRXPat->fFrameSize;
- fRXPat->fFrameSize++;
- int32_t loopOpC = URX_BUILD(URX_LOOP_C, frameLoc);
- fRXPat->fCompiledPat->addElement(loopOpC, *fStatus);
+ if (fModeFlags & UREGEX_UNIX_LINES) {
+ loopOpI |= 2;
+ }
+ appendOp(loopOpI);
+ frameLoc = allocateStackData(1);
+ appendOp(URX_LOOP_C, frameLoc);
break;
}
// Zero length match is possible.
// Emit the code sequence that can handle it.
insertOp(topLoc);
- frameLoc = fRXPat->fFrameSize;
- fRXPat->fFrameSize++;
+ frameLoc = allocateStackData(1);
- int32_t op = URX_BUILD(URX_STO_INP_LOC, frameLoc);
+ int32_t op = buildOp(URX_STO_INP_LOC, frameLoc);
fRXPat->fCompiledPat->setElementAt(op, topLoc);
- op = URX_BUILD(URX_JMP_SAV_X, topLoc+1);
- fRXPat->fCompiledPat->addElement(op, *fStatus);
+ appendOp(URX_JMP_SAV_X, topLoc+1);
} else {
// Simpler code when the repeated body must match something non-empty
- int32_t jmpOp = URX_BUILD(URX_JMP_SAV, topLoc);
- fRXPat->fCompiledPat->addElement(jmpOp, *fStatus);
+ appendOp(URX_JMP_SAV, topLoc);
}
}
break;
// 3. ...
{
int32_t topLoc = blockTopLoc(FALSE);
- int32_t saveStateOp = URX_BUILD(URX_STATE_SAVE, topLoc);
- fRXPat->fCompiledPat->addElement(saveStateOp, *fStatus);
+ appendOp(URX_STATE_SAVE, topLoc);
}
break;
// Insert the state save into the compiled pattern, and we're done.
{
int32_t saveStateLoc = blockTopLoc(TRUE);
- int32_t saveStateOp = URX_BUILD(URX_STATE_SAVE, fRXPat->fCompiledPat->size());
+ int32_t saveStateOp = buildOp(URX_STATE_SAVE, fRXPat->fCompiledPat->size());
fRXPat->fCompiledPat->setElementAt(saveStateOp, saveStateLoc);
}
break;
int32_t jmp1_loc = blockTopLoc(TRUE);
int32_t jmp2_loc = fRXPat->fCompiledPat->size();
- int32_t jmp1_op = URX_BUILD(URX_JMP, jmp2_loc+1);
+ int32_t jmp1_op = buildOp(URX_JMP, jmp2_loc+1);
fRXPat->fCompiledPat->setElementAt(jmp1_op, jmp1_loc);
- int32_t jmp2_op = URX_BUILD(URX_JMP, jmp2_loc+2);
- fRXPat->fCompiledPat->addElement(jmp2_op, *fStatus);
+ appendOp(URX_JMP, jmp2_loc+2);
- int32_t save_op = URX_BUILD(URX_STATE_SAVE, jmp1_loc+1);
- fRXPat->fCompiledPat->addElement(save_op, *fStatus);
+ appendOp(URX_STATE_SAVE, jmp1_loc+1);
}
break;
// 2. LOOP_C stack location
// ...
//
- // Or if this is a .*
+ // Or if this is a .*
// 1. LOOP_DOT_I (. matches all mode flag)
// 2. LOOP_C stack location
//
// Check for simple *, where the construct being repeated
// compiled to single opcode, and might be optimizable.
if (topLoc == fRXPat->fCompiledPat->size() - 1) {
- int32_t repeatedOp = fRXPat->fCompiledPat->elementAti(topLoc);
+ int32_t repeatedOp = (int32_t)fRXPat->fCompiledPat->elementAti(topLoc);
if (URX_TYPE(repeatedOp) == URX_SETREF) {
- // Emit optimized code for a [char set]*
- int32_t loopOpI = URX_BUILD(URX_LOOP_SR_I, URX_VAL(repeatedOp));
+ // Emit optimized code for a [char set]*
+ int32_t loopOpI = buildOp(URX_LOOP_SR_I, URX_VAL(repeatedOp));
fRXPat->fCompiledPat->setElementAt(loopOpI, topLoc);
- dataLoc = fRXPat->fFrameSize;
- fRXPat->fFrameSize++;
- int32_t loopOpC = URX_BUILD(URX_LOOP_C, dataLoc);
- fRXPat->fCompiledPat->addElement(loopOpC, *fStatus);
+ dataLoc = allocateStackData(1);
+ appendOp(URX_LOOP_C, dataLoc);
break;
}
if (URX_TYPE(repeatedOp) == URX_DOTANY ||
- URX_TYPE(repeatedOp) == URX_DOTANY_ALL) {
+ URX_TYPE(repeatedOp) == URX_DOTANY_ALL ||
+ URX_TYPE(repeatedOp) == URX_DOTANY_UNIX) {
// Emit Optimized code for .* operations.
- int32_t loopOpI = URX_BUILD(URX_LOOP_DOT_I, 0);
+ int32_t loopOpI = buildOp(URX_LOOP_DOT_I, 0);
if (URX_TYPE(repeatedOp) == URX_DOTANY_ALL) {
// URX_LOOP_DOT_I operand is a flag indicating . matches any mode.
loopOpI |= 1;
}
+ if ((fModeFlags & UREGEX_UNIX_LINES) != 0) {
+ loopOpI |= 2;
+ }
fRXPat->fCompiledPat->setElementAt(loopOpI, topLoc);
- dataLoc = fRXPat->fFrameSize;
- fRXPat->fFrameSize++;
- int32_t loopOpC = URX_BUILD(URX_LOOP_C, dataLoc);
- fRXPat->fCompiledPat->addElement(loopOpC, *fStatus);
+ dataLoc = allocateStackData(1);
+ appendOp(URX_LOOP_C, dataLoc);
break;
}
}
// The optimizations did not apply.
int32_t saveStateLoc = blockTopLoc(TRUE);
- int32_t jmpOp = URX_BUILD(URX_JMP_SAV, saveStateLoc+1);
+ int32_t jmpOp = buildOp(URX_JMP_SAV, saveStateLoc+1);
// Check for minimum match length of zero, which requires
// extra loop-breaking code.
if (minMatchLength(saveStateLoc, fRXPat->fCompiledPat->size()-1) == 0) {
insertOp(saveStateLoc);
- dataLoc = fRXPat->fFrameSize;
- fRXPat->fFrameSize++;
+ dataLoc = allocateStackData(1);
- int32_t op = URX_BUILD(URX_STO_INP_LOC, dataLoc);
+ int32_t op = buildOp(URX_STO_INP_LOC, dataLoc);
fRXPat->fCompiledPat->setElementAt(op, saveStateLoc+1);
- jmpOp = URX_BUILD(URX_JMP_SAV_X, saveStateLoc+2);
+ jmpOp = buildOp(URX_JMP_SAV_X, saveStateLoc+2);
}
-
+
// Locate the position in the compiled pattern where the match will continue
// after completing the *. (4 or 5 in the comment above)
int32_t continueLoc = fRXPat->fCompiledPat->size()+1;
- // Put together the save state op store it into the compiled code.
- int32_t saveStateOp = URX_BUILD(URX_STATE_SAVE, continueLoc);
+ // Put together the save state op and store it into the compiled code.
+ int32_t saveStateOp = buildOp(URX_STATE_SAVE, continueLoc);
fRXPat->fCompiledPat->setElementAt(saveStateOp, saveStateLoc);
// Append the URX_JMP_SAV or URX_JMPX operation to the compiled pattern.
- fRXPat->fCompiledPat->addElement(jmpOp, *fStatus);
+ appendOp(jmpOp);
}
break;
{
int32_t jmpLoc = blockTopLoc(TRUE); // loc 1.
int32_t saveLoc = fRXPat->fCompiledPat->size(); // loc 3.
- int32_t jmpOp = URX_BUILD(URX_JMP, saveLoc);
- int32_t stateSaveOp = URX_BUILD(URX_STATE_SAVE, jmpLoc+1);
+ int32_t jmpOp = buildOp(URX_JMP, saveLoc);
fRXPat->fCompiledPat->setElementAt(jmpOp, jmpLoc);
- fRXPat->fCompiledPat->addElement(stateSaveOp, *fStatus);
+ appendOp(URX_STATE_SAVE, jmpLoc+1);
}
break;
{
int32_t digitValue = u_charDigitValue(fC.fChar);
U_ASSERT(digitValue >= 0);
- fIntervalLow = fIntervalLow*10 + digitValue;
- if (fIntervalLow < 0) {
+ int64_t val = (int64_t)fIntervalLow*10 + digitValue;
+ if (val > INT32_MAX) {
error(U_REGEX_NUMBER_TOO_BIG);
+ } else {
+ fIntervalLow = (int32_t)val;
}
}
break;
}
int32_t digitValue = u_charDigitValue(fC.fChar);
U_ASSERT(digitValue >= 0);
- fIntervalUpper = fIntervalUpper*10 + digitValue;
- if (fIntervalLow < 0) {
+ int64_t val = (int64_t)fIntervalUpper*10 + digitValue;
+ if (val > INT32_MAX) {
error(U_REGEX_NUMBER_TOO_BIG);
+ } else {
+ fIntervalUpper = (int32_t)val;
}
}
break;
// Finished scanning a Possessive {lower,upper}+ interval. Generate the code for it.
{
// Remember the loc for the top of the block being looped over.
- // (Can not reserve a slot in the compiled pattern at this time, becuase
- // compileInterval needs to reserve also, and blockTopLoc can only reserve
+ // (Can not reserve a slot in the compiled pattern at this time, because
+ // compileInterval needs to reserve also, and blockTopLoc can only reserve
// once per block.)
int32_t topLoc = blockTopLoc(FALSE);
// First the STO_SP before the start of the loop
insertOp(topLoc);
- int32_t varLoc = fRXPat->fDataSize; // Reserve a data location for saving the
- fRXPat->fDataSize += 1; // state stack ptr.
- int32_t op = URX_BUILD(URX_STO_SP, varLoc);
+
+ int32_t varLoc = allocateData(1); // Reserve a data location for saving the
+ int32_t op = buildOp(URX_STO_SP, varLoc);
fRXPat->fCompiledPat->setElementAt(op, topLoc);
- int32_t loopOp = fRXPat->fCompiledPat->popi();
+ int32_t loopOp = (int32_t)fRXPat->fCompiledPat->popi();
U_ASSERT(URX_TYPE(loopOp) == URX_CTR_LOOP && URX_VAL(loopOp) == topLoc);
loopOp++; // point LoopOp after the just-inserted STO_SP
fRXPat->fCompiledPat->push(loopOp, *fStatus);
// Then the LD_SP after the end of the loop
- op = URX_BUILD(URX_LD_SP, varLoc);
- fRXPat->fCompiledPat->addElement(op, *fStatus);
+ appendOp(URX_LD_SP, varLoc);
}
break;
break;
case doLiteralChar:
- // We've just scanned a "normal" character from the pattern,
+ // We've just scanned a "normal" character from the pattern,
literalChar(fC.fChar);
break;
+ case doEscapedLiteralChar:
+ // We've just scanned an backslashed escaped character with no
+ // special meaning. It represents itself.
+ if ((fModeFlags & UREGEX_ERROR_ON_UNKNOWN_ESCAPES) != 0 &&
+ ((fC.fChar >= 0x41 && fC.fChar<= 0x5A) || // in [A-Z]
+ (fC.fChar >= 0x61 && fC.fChar <= 0x7a))) { // in [a-z]
+ error(U_REGEX_BAD_ESCAPE_SEQUENCE);
+ }
+ literalChar(fC.fChar);
+ break;
+
case doDotAny:
// scanned a ".", match any single character.
{
- int32_t op;
+ fixLiterals(FALSE);
if (fModeFlags & UREGEX_DOTALL) {
- op = URX_BUILD(URX_DOTANY_ALL, 0);
+ appendOp(URX_DOTANY_ALL, 0);
+ } else if (fModeFlags & UREGEX_UNIX_LINES) {
+ appendOp(URX_DOTANY_UNIX, 0);
} else {
- op = URX_BUILD(URX_DOTANY, 0);
+ appendOp(URX_DOTANY, 0);
}
- fRXPat->fCompiledPat->addElement(op, *fStatus);
}
break;
- case doCaret:
+ case doCaret:
{
- int32_t op = (fModeFlags & UREGEX_MULTILINE)? URX_CARET_M : URX_CARET;
- fRXPat->fCompiledPat->addElement(URX_BUILD(op, 0), *fStatus);
+ fixLiterals(FALSE);
+ if ( (fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) {
+ appendOp(URX_CARET, 0);
+ } else if ((fModeFlags & UREGEX_MULTILINE) != 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) {
+ appendOp(URX_CARET_M, 0);
+ } else if ((fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) != 0) {
+ appendOp(URX_CARET, 0); // Only testing true start of input.
+ } else if ((fModeFlags & UREGEX_MULTILINE) != 0 && (fModeFlags & UREGEX_UNIX_LINES) != 0) {
+ appendOp(URX_CARET_M_UNIX, 0);
+ }
}
break;
-
- case doDollar:
+ case doDollar:
{
- int32_t op = (fModeFlags & UREGEX_MULTILINE)? URX_DOLLAR_M : URX_DOLLAR;
- fRXPat->fCompiledPat->addElement(URX_BUILD(op, 0), *fStatus);
+ fixLiterals(FALSE);
+ if ( (fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) {
+ appendOp(URX_DOLLAR, 0);
+ } else if ((fModeFlags & UREGEX_MULTILINE) != 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) {
+ appendOp(URX_DOLLAR_M, 0);
+ } else if ((fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) != 0) {
+ appendOp(URX_DOLLAR_D, 0);
+ } else if ((fModeFlags & UREGEX_MULTILINE) != 0 && (fModeFlags & UREGEX_UNIX_LINES) != 0) {
+ appendOp(URX_DOLLAR_MD, 0);
+ }
}
break;
case doBackslashA:
- fRXPat->fCompiledPat->addElement(URX_BUILD(URX_CARET, 0), *fStatus);
+ fixLiterals(FALSE);
+ appendOp(URX_CARET, 0);
break;
case doBackslashB:
- fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_B, 1), *fStatus);
+ {
+ #if UCONFIG_NO_BREAK_ITERATION==1
+ if (fModeFlags & UREGEX_UWORD) {
+ error(U_UNSUPPORTED_ERROR);
+ }
+ #endif
+ fixLiterals(FALSE);
+ int32_t op = (fModeFlags & UREGEX_UWORD)? URX_BACKSLASH_BU : URX_BACKSLASH_B;
+ appendOp(op, 1);
+ }
break;
case doBackslashb:
- fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_B, 0), *fStatus);
+ {
+ #if UCONFIG_NO_BREAK_ITERATION==1
+ if (fModeFlags & UREGEX_UWORD) {
+ error(U_UNSUPPORTED_ERROR);
+ }
+ #endif
+ fixLiterals(FALSE);
+ int32_t op = (fModeFlags & UREGEX_UWORD)? URX_BACKSLASH_BU : URX_BACKSLASH_B;
+ appendOp(op, 0);
+ }
break;
case doBackslashD:
- fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_D, 1), *fStatus);
+ fixLiterals(FALSE);
+ appendOp(URX_BACKSLASH_D, 1);
break;
case doBackslashd:
- fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_D, 0), *fStatus);
+ fixLiterals(FALSE);
+ appendOp(URX_BACKSLASH_D, 0);
break;
case doBackslashG:
- fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_G, 0), *fStatus);
+ fixLiterals(FALSE);
+ appendOp(URX_BACKSLASH_G, 0);
+ break;
+
+ case doBackslashH:
+ fixLiterals(FALSE);
+ appendOp(URX_BACKSLASH_H, 1);
+ break;
+
+ case doBackslashh:
+ fixLiterals(FALSE);
+ appendOp(URX_BACKSLASH_H, 0);
+ break;
+
+ case doBackslashR:
+ fixLiterals(FALSE);
+ appendOp(URX_BACKSLASH_R, 0);
break;
case doBackslashS:
- fRXPat->fCompiledPat->addElement(
- URX_BUILD(URX_STAT_SETREF_N, URX_ISSPACE_SET), *fStatus);
+ fixLiterals(FALSE);
+ appendOp(URX_STAT_SETREF_N, URX_ISSPACE_SET);
break;
case doBackslashs:
- fRXPat->fCompiledPat->addElement(
- URX_BUILD(URX_STATIC_SETREF, URX_ISSPACE_SET), *fStatus);
+ fixLiterals(FALSE);
+ appendOp(URX_STATIC_SETREF, URX_ISSPACE_SET);
+ break;
+
+ case doBackslashV:
+ fixLiterals(FALSE);
+ appendOp(URX_BACKSLASH_V, 1);
+ break;
+
+ case doBackslashv:
+ fixLiterals(FALSE);
+ appendOp(URX_BACKSLASH_V, 0);
break;
case doBackslashW:
- fRXPat->fCompiledPat->addElement(
- URX_BUILD(URX_STAT_SETREF_N, URX_ISWORD_SET), *fStatus);
+ fixLiterals(FALSE);
+ appendOp(URX_STAT_SETREF_N, URX_ISWORD_SET);
break;
case doBackslashw:
- fRXPat->fCompiledPat->addElement(
- URX_BUILD(URX_STATIC_SETREF, URX_ISWORD_SET), *fStatus);
+ fixLiterals(FALSE);
+ appendOp(URX_STATIC_SETREF, URX_ISWORD_SET);
break;
case doBackslashX:
- fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_X, 0), *fStatus);
+ fixLiterals(FALSE);
+ appendOp(URX_BACKSLASH_X, 0);
break;
case doBackslashZ:
- fRXPat->fCompiledPat->addElement(URX_BUILD(URX_DOLLAR, 0), *fStatus);
+ fixLiterals(FALSE);
+ appendOp(URX_DOLLAR, 0);
break;
case doBackslashz:
- fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_Z, 0), *fStatus);
+ fixLiterals(FALSE);
+ appendOp(URX_BACKSLASH_Z, 0);
break;
case doEscapeError:
break;
case doExit:
+ fixLiterals(FALSE);
returnVal = FALSE;
break;
case doProperty:
{
+ fixLiterals(FALSE);
UnicodeSet *theSet = scanProp();
compileSet(theSet);
}
break;
-
- case doScanUnicodeSet:
+ case doNamedChar:
{
- UnicodeSet *theSet = scanSet();
- compileSet(theSet);
+ UChar32 c = scanNamedChar();
+ literalChar(c);
}
break;
- case doEnterQuoteMode:
- // Just scanned a \Q. Put character scanner into quote mode.
- fQuoteMode = TRUE;
- break;
case doBackRef:
// BackReference. Somewhat unusual in that the front-end can not completely parse
break;
}
c = peekCharLL();
- if (RegexStaticSets::gStaticSets->fRuleDigits->contains(c) == FALSE) {
+ if (RegexStaticSets::gStaticSets->fRuleDigitsAlias->contains(c) == FALSE) {
break;
}
nextCharLL();
}
// Scan of the back reference in the source regexp is complete. Now generate
- // the compiled code for it.
+ // the compiled code for it.
// Because capture groups can be forward-referenced by back-references,
// we fill the operand with the capture group number. At the end
- // of compilation, it will be changed to the variables location.
- U_ASSERT(groupNum > 0);
- int32_t op;
+ // of compilation, it will be changed to the variable's location.
+ U_ASSERT(groupNum > 0); // Shouldn't happen. '\0' begins an octal escape sequence,
+ // and shouldn't enter this code path at all.
+ fixLiterals(FALSE);
if (fModeFlags & UREGEX_CASE_INSENSITIVE) {
- op = URX_BUILD(URX_BACKREF_I, groupNum);
+ appendOp(URX_BACKREF_I, groupNum);
} else {
- op = URX_BUILD(URX_BACKREF, groupNum);
+ appendOp(URX_BACKREF, groupNum);
}
- fRXPat->fCompiledPat->addElement(op, *fStatus);
}
break;
-
- case doOctal:
- error(U_REGEX_UNIMPLEMENTED);
+ case doBeginNamedBackRef:
+ U_ASSERT(fCaptureName == NULL);
+ fCaptureName = new UnicodeString;
+ if (fCaptureName == NULL) {
+ error(U_MEMORY_ALLOCATION_ERROR);
+ }
+ break;
+
+ case doContinueNamedBackRef:
+ fCaptureName->append(fC.fChar);
break;
-
-
+ case doCompleteNamedBackRef:
+ {
+ int32_t groupNumber =
+ fRXPat->fNamedCaptureMap ? uhash_geti(fRXPat->fNamedCaptureMap, fCaptureName) : 0;
+ if (groupNumber == 0) {
+ // Group name has not been defined.
+ // Could be a forward reference. If we choose to support them at some
+ // future time, extra mechanism will be required at this point.
+ error(U_REGEX_INVALID_CAPTURE_GROUP_NAME);
+ } else {
+ // Given the number, handle identically to a \n numbered back reference.
+ // See comments above, under doBackRef
+ fixLiterals(FALSE);
+ if (fModeFlags & UREGEX_CASE_INSENSITIVE) {
+ appendOp(URX_BACKREF_I, groupNumber);
+ } else {
+ appendOp(URX_BACKREF, groupNumber);
+ }
+ }
+ delete fCaptureName;
+ fCaptureName = NULL;
+ break;
+ }
+
case doPossessivePlus:
// Possessive ++ quantifier.
// Compiles to
// 6. ...
//
// Note: TODO: This is pretty inefficient. A mass of saved state is built up
- // then unconditionally discarded. Perhaps introduce a new opcode
+ // then unconditionally discarded. Perhaps introduce a new opcode. Ticket 6056
//
{
// Emit the STO_SP
int32_t topLoc = blockTopLoc(TRUE);
- int32_t stoLoc = fRXPat->fDataSize;
- fRXPat->fDataSize++; // Reserve the data location for storing save stack ptr.
- int32_t op = URX_BUILD(URX_STO_SP, stoLoc);
+ int32_t stoLoc = allocateData(1); // Reserve the data location for storing save stack ptr.
+ int32_t op = buildOp(URX_STO_SP, stoLoc);
fRXPat->fCompiledPat->setElementAt(op, topLoc);
// Emit the STATE_SAVE
- op = URX_BUILD(URX_STATE_SAVE, fRXPat->fCompiledPat->size()+2);
- fRXPat->fCompiledPat->addElement(op, *fStatus);
-
+ appendOp(URX_STATE_SAVE, fRXPat->fCompiledPat->size()+2);
+
// Emit the JMP
- op = URX_BUILD(URX_JMP, topLoc+1);
- fRXPat->fCompiledPat->addElement(op, *fStatus);
+ appendOp(URX_JMP, topLoc+1);
// Emit the LD_SP
- op = URX_BUILD(URX_LD_SP, stoLoc);
- fRXPat->fCompiledPat->addElement(op, *fStatus);
+ appendOp(URX_LD_SP, stoLoc);
}
break;
insertOp(topLoc);
// emit STO_SP loc
- int32_t stoLoc = fRXPat->fDataSize;
- fRXPat->fDataSize++; // Reserve the data location for storing save stack ptr.
- int32_t op = URX_BUILD(URX_STO_SP, stoLoc);
+ int32_t stoLoc = allocateData(1); // Reserve the data location for storing save stack ptr.
+ int32_t op = buildOp(URX_STO_SP, stoLoc);
fRXPat->fCompiledPat->setElementAt(op, topLoc);
// Emit the SAVE_STATE 5
int32_t L7 = fRXPat->fCompiledPat->size()+1;
- op = URX_BUILD(URX_STATE_SAVE, L7);
+ op = buildOp(URX_STATE_SAVE, L7);
fRXPat->fCompiledPat->setElementAt(op, topLoc+1);
- // Append the JMP operation.
- op = URX_BUILD(URX_JMP, topLoc+1);
- fRXPat->fCompiledPat->addElement(op, *fStatus);
+ // Append the JMP operation.
+ appendOp(URX_JMP, topLoc+1);
// Emit the LD_SP loc
- op = URX_BUILD(URX_LD_SP, stoLoc);
- fRXPat->fCompiledPat->addElement(op, *fStatus);
+ appendOp(URX_LD_SP, stoLoc);
}
break;
insertOp(topLoc);
// Emit the STO_SP
- int32_t stoLoc = fRXPat->fDataSize;
- fRXPat->fDataSize++; // Reserve the data location for storing save stack ptr.
- int32_t op = URX_BUILD(URX_STO_SP, stoLoc);
+ int32_t stoLoc = allocateData(1); // Reserve the data location for storing save stack ptr.
+ int32_t op = buildOp(URX_STO_SP, stoLoc);
fRXPat->fCompiledPat->setElementAt(op, topLoc);
// Emit the SAVE_STATE
int32_t continueLoc = fRXPat->fCompiledPat->size()+1;
- op = URX_BUILD(URX_STATE_SAVE, continueLoc);
+ op = buildOp(URX_STATE_SAVE, continueLoc);
fRXPat->fCompiledPat->setElementAt(op, topLoc+1);
// Emit the LD_SP
- op = URX_BUILD(URX_LD_SP, stoLoc);
- fRXPat->fCompiledPat->addElement(op, *fStatus);
+ appendOp(URX_LD_SP, stoLoc);
}
break;
int32_t bit = 0;
switch (fC.fChar) {
case 0x69: /* 'i' */ bit = UREGEX_CASE_INSENSITIVE; break;
+ case 0x64: /* 'd' */ bit = UREGEX_UNIX_LINES; break;
case 0x6d: /* 'm' */ bit = UREGEX_MULTILINE; break;
case 0x73: /* 's' */ bit = UREGEX_DOTALL; break;
+ case 0x75: /* 'u' */ bit = 0; /* Unicode casing */ break;
+ case 0x77: /* 'w' */ bit = UREGEX_UWORD; break;
case 0x78: /* 'x' */ bit = UREGEX_COMMENTS; break;
case 0x2d: /* '-' */ fSetModeFlag = FALSE; break;
default:
- U_ASSERT(FALSE); // Should never happen. Other chars are filtered out
+ UPRV_UNREACHABLE; // Should never happen. Other chars are filtered out
// by the scanner.
}
if (fSetModeFlag) {
break;
case doSetMatchMode:
+ // Emit code to match any pending literals, using the not-yet changed match mode.
+ fixLiterals();
+
// We've got a (?i) or similar. The match mode is being changed, but
// the change is not scoped to a parenthesized block.
+ U_ASSERT(fNewModeFlags < 0);
fModeFlags = fNewModeFlags;
- // Prevent any string from spanning across the change of match mode.
- // Otherwise the pattern "abc(?i)def" would make a single string of "abcdef"
- fixLiterals();
break;
// - NOP, which may later be replaced by a save-state if there
// is an '|' alternation within the parens.
{
- fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
- fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
+ fixLiterals(FALSE);
+ appendOp(URX_NOP, 0);
+ appendOp(URX_NOP, 0);
// On the Parentheses stack, start a new frame and add the postions
// of the two NOPs (a normal non-capturing () frame, except for the
fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP
// Set the current mode flags to the new values.
+ U_ASSERT(fNewModeFlags < 0);
fModeFlags = fNewModeFlags;
}
break;
+ case doBadModeFlag:
+ error(U_REGEX_INVALID_FLAG);
+ break;
+
case doSuppressComments:
// We have just scanned a '(?'. We now need to prevent the character scanner from
// treating a '#' as a to-the-end-of-line comment.
break;
+ case doSetAddAmp:
+ {
+ UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
+ set->add(chAmp);
+ }
+ break;
- default:
- U_ASSERT(FALSE);
- error(U_REGEX_INTERNAL_ERROR);
+ case doSetAddDash:
+ {
+ UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
+ set->add(chDash);
+ }
break;
- }
- if (U_FAILURE(*fStatus)) {
- returnVal = FALSE;
- }
+ case doSetBackslash_s:
+ {
+ UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
+ set->addAll(*RegexStaticSets::gStaticSets->fPropSets[URX_ISSPACE_SET]);
+ break;
+ }
- return returnVal;
-};
+ case doSetBackslash_S:
+ {
+ UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
+ UnicodeSet SSet(*RegexStaticSets::gStaticSets->fPropSets[URX_ISSPACE_SET]);
+ SSet.complement();
+ set->addAll(SSet);
+ break;
+ }
+ case doSetBackslash_d:
+ {
+ UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
+ // TODO - make a static set, ticket 6058.
+ addCategory(set, U_GC_ND_MASK, *fStatus);
+ break;
+ }
+ case doSetBackslash_D:
+ {
+ UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
+ UnicodeSet digits;
+ // TODO - make a static set, ticket 6058.
+ digits.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, U_GC_ND_MASK, *fStatus);
+ digits.complement();
+ set->addAll(digits);
+ break;
+ }
-//------------------------------------------------------------------------------
-//
-// literalChar We've encountered a literal character from the pattern,
-// or an escape sequence that reduces to a character.
-// Add it to the string containing all literal chars/strings from
-// the pattern.
-// If we are in a pattern string already, add the new char to it.
-// If we aren't in a pattern string, begin one now.
-//
-//------------------------------------------------------------------------------
-void RegexCompile::literalChar(UChar32 c) {
- int32_t op; // An operation in the compiled pattern.
- int32_t opType;
- int32_t patternLoc; // A position in the compiled pattern.
- int32_t stringLen;
+ case doSetBackslash_h:
+ {
+ UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
+ UnicodeSet h;
+ h.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, U_GC_ZS_MASK, *fStatus);
+ h.add((UChar32)9); // Tab
+ set->addAll(h);
+ break;
+ }
+ case doSetBackslash_H:
+ {
+ UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
+ UnicodeSet h;
+ h.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, U_GC_ZS_MASK, *fStatus);
+ h.add((UChar32)9); // Tab
+ h.complement();
+ set->addAll(h);
+ break;
+ }
- // If the last thing compiled into the pattern was not a literal char,
- // force this new literal char to begin a new string, and not append to the previous.
- op = fRXPat->fCompiledPat->lastElementi();
- opType = URX_TYPE(op);
- if (!(opType == URX_STRING_LEN || opType == URX_ONECHAR || opType == URX_ONECHAR_I)) {
- fixLiterals();
- }
+ case doSetBackslash_v:
+ {
+ UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
+ set->add((UChar32)0x0a, (UChar32)0x0d); // add range
+ set->add((UChar32)0x85);
+ set->add((UChar32)0x2028, (UChar32)0x2029);
+ break;
+ }
- if (fStringOpStart == -1) {
- // First char of a string in the pattern.
- // Emit a OneChar op into the compiled pattern.
- emitONE_CHAR(c);
+ case doSetBackslash_V:
+ {
+ UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
+ UnicodeSet v;
+ v.add((UChar32)0x0a, (UChar32)0x0d); // add range
+ v.add((UChar32)0x85);
+ v.add((UChar32)0x2028, (UChar32)0x2029);
+ v.complement();
+ set->addAll(v);
+ break;
+ }
- // Also add it to the string pool, in case we get a second adjacent literal
- // and want to change form ONE_CHAR to STRING
- fStringOpStart = fRXPat->fLiteralText.length();
- fRXPat->fLiteralText.append(c);
- return;
- }
-
- // We are adding onto an existing string
- fRXPat->fLiteralText.append(c);
-
- op = fRXPat->fCompiledPat->lastElementi();
- opType = URX_TYPE(op);
- U_ASSERT(opType == URX_ONECHAR || opType == URX_ONECHAR_I || opType == URX_STRING_LEN);
-
- // If the most recently emitted op is a URX_ONECHAR,
- if (opType == URX_ONECHAR || opType == URX_ONECHAR_I) {
- if (U16_IS_TRAIL(c) && U16_IS_LEAD(URX_VAL(op))) {
- // The most recently emitted op is a ONECHAR that was the first half
- // of a surrogate pair. Update the ONECHAR's operand to be the
- // supplementary code point resulting from both halves of the pair.
- c = U16_GET_SUPPLEMENTARY(URX_VAL(op), c);
- op = URX_BUILD(opType, c);
- patternLoc = fRXPat->fCompiledPat->size() - 1;
- fRXPat->fCompiledPat->setElementAt(op, patternLoc);
- return;
+ case doSetBackslash_w:
+ {
+ UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
+ set->addAll(*RegexStaticSets::gStaticSets->fPropSets[URX_ISWORD_SET]);
+ break;
}
-
- // The most recently emitted op is a ONECHAR.
- // We've now received another adjacent char. Change the ONECHAR op
- // to a string op.
- if (fModeFlags & UREGEX_CASE_INSENSITIVE) {
- op = URX_BUILD(URX_STRING_I, fStringOpStart);
- } else {
- op = URX_BUILD(URX_STRING, fStringOpStart);
- }
- patternLoc = fRXPat->fCompiledPat->size() - 1;
- fRXPat->fCompiledPat->setElementAt(op, patternLoc);
- op = URX_BUILD(URX_STRING_LEN, 0);
- fRXPat->fCompiledPat->addElement(op, *fStatus);
- }
-
- // The pattern contains a URX_SRING / URX_STRING_LEN. Update the
- // string length to reflect the new char we just added to the string.
- stringLen = fRXPat->fLiteralText.length() - fStringOpStart;
- op = URX_BUILD(URX_STRING_LEN, stringLen);
- patternLoc = fRXPat->fCompiledPat->size() - 1;
- fRXPat->fCompiledPat->setElementAt(op, patternLoc);
-}
+ case doSetBackslash_W:
+ {
+ UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
+ UnicodeSet SSet(*RegexStaticSets::gStaticSets->fPropSets[URX_ISWORD_SET]);
+ SSet.complement();
+ set->addAll(SSet);
+ break;
+ }
+ case doSetBegin:
+ fixLiterals(FALSE);
+ fSetStack.push(new UnicodeSet(), *fStatus);
+ fSetOpStack.push(setStart, *fStatus);
+ if ((fModeFlags & UREGEX_CASE_INSENSITIVE) != 0) {
+ fSetOpStack.push(setCaseClose, *fStatus);
+ }
+ break;
-//------------------------------------------------------------------------------
-//
-// emitONE_CHAR emit a ONE_CHAR op into the generated code.
-// Choose cased or uncased version, depending on the
-// match mode and whether the character itself is cased.
-//
-//------------------------------------------------------------------------------
-void RegexCompile::emitONE_CHAR(UChar32 c) {
- int32_t op;
- if ((fModeFlags & UREGEX_CASE_INSENSITIVE) &&
- u_hasBinaryProperty(c, UCHAR_CASE_SENSITIVE)) {
- // We have a cased character, and are in case insensitive matching mode.
- c = u_foldCase(c, U_FOLD_CASE_DEFAULT);
- op = URX_BUILD(URX_ONECHAR_I, c);
- } else {
- // Uncased char, or case sensitive match mode.
- // Either way, just generate a literal compare of the char.
- op = URX_BUILD(URX_ONECHAR, c);
- }
- fRXPat->fCompiledPat->addElement(op, *fStatus);
-}
+ case doSetBeginDifference1:
+ // We have scanned something like [[abc]-[
+ // Set up a new UnicodeSet for the set beginning with the just-scanned '['
+ // Push a Difference operator, which will cause the new set to be subtracted from what
+ // went before once it is created.
+ setPushOp(setDifference1);
+ fSetOpStack.push(setStart, *fStatus);
+ if ((fModeFlags & UREGEX_CASE_INSENSITIVE) != 0) {
+ fSetOpStack.push(setCaseClose, *fStatus);
+ }
+ break;
+ case doSetBeginIntersection1:
+ // We have scanned something like [[abc]&[
+ // Need both the '&' operator and the open '[' operator.
+ setPushOp(setIntersection1);
+ fSetOpStack.push(setStart, *fStatus);
+ if ((fModeFlags & UREGEX_CASE_INSENSITIVE) != 0) {
+ fSetOpStack.push(setCaseClose, *fStatus);
+ }
+ break;
-//------------------------------------------------------------------------------
-//
-// fixLiterals When compiling something that can follow a literal
-// string in a pattern, we need to "fix" any preceding
-// string, which will cause any subsequent literals to
-// begin a new string, rather than appending to the
-// old one.
-//
-// Optionally, split the last char of the string off into
-// a single "ONE_CHAR" operation, so that quantifiers can
-// apply to that char alone. Example: abc*
-// The * must apply to the 'c' only.
-//
-//------------------------------------------------------------------------------
-void RegexCompile::fixLiterals(UBool split) {
- int32_t stringStart = fStringOpStart; // start index of the current literal string
- int32_t op; // An op from/for the compiled pattern.
- int32_t opType; // An opcode type from the compiled pattern.
- int32_t stringLastCharIdx;
- UChar32 lastChar;
- int32_t stringNextToLastCharIdx;
- UChar32 nextToLastChar;
- int32_t stringLen;
-
- fStringOpStart = -1;
- if (!split) {
- return;
- }
+ case doSetBeginUnion:
+ // We have scanned something like [[abc][
+ // Need to handle the union operation explicitly [[abc] | [
+ setPushOp(setUnion);
+ fSetOpStack.push(setStart, *fStatus);
+ if ((fModeFlags & UREGEX_CASE_INSENSITIVE) != 0) {
+ fSetOpStack.push(setCaseClose, *fStatus);
+ }
+ break;
- // Split: We need to ensure that the last item in the compiled pattern does
- // not refer to a literal string of more than one char. If it does,
- // separate the last char from the rest of the string.
+ case doSetDifference2:
+ // We have scanned something like [abc--
+ // Consider this to unambiguously be a set difference operator.
+ setPushOp(setDifference2);
+ break;
- // If the last operation from the compiled pattern is not a string,
- // nothing needs to be done
- op = fRXPat->fCompiledPat->lastElementi();
- opType = URX_TYPE(op);
- if (opType != URX_STRING_LEN) {
+ case doSetEnd:
+ // Have encountered the ']' that closes a set.
+ // Force the evaluation of any pending operations within this set,
+ // leave the completed set on the top of the set stack.
+ setEval(setEnd);
+ U_ASSERT(fSetOpStack.peeki()==setStart);
+ fSetOpStack.popi();
+ break;
+
+ case doSetFinish:
+ {
+ // Finished a complete set expression, including all nested sets.
+ // The close bracket has already triggered clearing out pending set operators,
+ // the operator stack should be empty and the operand stack should have just
+ // one entry, the result set.
+ U_ASSERT(fSetOpStack.empty());
+ UnicodeSet *theSet = (UnicodeSet *)fSetStack.pop();
+ U_ASSERT(fSetStack.empty());
+ compileSet(theSet);
+ break;
+ }
+
+ case doSetIntersection2:
+ // Have scanned something like [abc&&
+ setPushOp(setIntersection2);
+ break;
+
+ case doSetLiteral:
+ // Union the just-scanned literal character into the set being built.
+ // This operation is the highest precedence set operation, so we can always do
+ // it immediately, without waiting to see what follows. It is necessary to perform
+ // any pending '-' or '&' operation first, because these have the same precedence
+ // as union-ing in a literal'
+ {
+ setEval(setUnion);
+ UnicodeSet *s = (UnicodeSet *)fSetStack.peek();
+ s->add(fC.fChar);
+ fLastSetLiteral = fC.fChar;
+ break;
+ }
+
+ case doSetLiteralEscaped:
+ // A back-slash escaped literal character was encountered.
+ // Processing is the same as with setLiteral, above, with the addition of
+ // the optional check for errors on escaped ASCII letters.
+ {
+ if ((fModeFlags & UREGEX_ERROR_ON_UNKNOWN_ESCAPES) != 0 &&
+ ((fC.fChar >= 0x41 && fC.fChar<= 0x5A) || // in [A-Z]
+ (fC.fChar >= 0x61 && fC.fChar <= 0x7a))) { // in [a-z]
+ error(U_REGEX_BAD_ESCAPE_SEQUENCE);
+ }
+ setEval(setUnion);
+ UnicodeSet *s = (UnicodeSet *)fSetStack.peek();
+ s->add(fC.fChar);
+ fLastSetLiteral = fC.fChar;
+ break;
+ }
+
+ case doSetNamedChar:
+ // Scanning a \N{UNICODE CHARACTER NAME}
+ // Aside from the source of the character, the processing is identical to doSetLiteral,
+ // above.
+ {
+ UChar32 c = scanNamedChar();
+ setEval(setUnion);
+ UnicodeSet *s = (UnicodeSet *)fSetStack.peek();
+ s->add(c);
+ fLastSetLiteral = c;
+ break;
+ }
+
+ case doSetNamedRange:
+ // We have scanned literal-\N{CHAR NAME}. Add the range to the set.
+ // The left character is already in the set, and is saved in fLastSetLiteral.
+ // The right side needs to be picked up, the scan is at the 'N'.
+ // Lower Limit > Upper limit being an error matches both Java
+ // and ICU UnicodeSet behavior.
+ {
+ UChar32 c = scanNamedChar();
+ if (U_SUCCESS(*fStatus) && (fLastSetLiteral == U_SENTINEL || fLastSetLiteral > c)) {
+ error(U_REGEX_INVALID_RANGE);
+ }
+ UnicodeSet *s = (UnicodeSet *)fSetStack.peek();
+ s->add(fLastSetLiteral, c);
+ fLastSetLiteral = c;
+ break;
+ }
+
+
+ case doSetNegate:
+ // Scanned a '^' at the start of a set.
+ // Push the negation operator onto the set op stack.
+ // A twist for case-insensitive matching:
+ // the case closure operation must happen _before_ negation.
+ // But the case closure operation will already be on the stack if it's required.
+ // This requires checking for case closure, and swapping the stack order
+ // if it is present.
+ {
+ int32_t tosOp = fSetOpStack.peeki();
+ if (tosOp == setCaseClose) {
+ fSetOpStack.popi();
+ fSetOpStack.push(setNegation, *fStatus);
+ fSetOpStack.push(setCaseClose, *fStatus);
+ } else {
+ fSetOpStack.push(setNegation, *fStatus);
+ }
+ }
+ break;
+
+ case doSetNoCloseError:
+ error(U_REGEX_MISSING_CLOSE_BRACKET);
+ break;
+
+ case doSetOpError:
+ error(U_REGEX_RULE_SYNTAX); // -- or && at the end of a set. Illegal.
+ break;
+
+ case doSetPosixProp:
+ {
+ UnicodeSet *s = scanPosixProp();
+ if (s != NULL) {
+ UnicodeSet *tos = (UnicodeSet *)fSetStack.peek();
+ tos->addAll(*s);
+ delete s;
+ } // else error. scanProp() reported the error status already.
+ }
+ break;
+
+ case doSetProp:
+ // Scanned a \p \P within [brackets].
+ {
+ UnicodeSet *s = scanProp();
+ if (s != NULL) {
+ UnicodeSet *tos = (UnicodeSet *)fSetStack.peek();
+ tos->addAll(*s);
+ delete s;
+ } // else error. scanProp() reported the error status already.
+ }
+ break;
+
+
+ case doSetRange:
+ // We have scanned literal-literal. Add the range to the set.
+ // The left character is already in the set, and is saved in fLastSetLiteral.
+ // The right side is the current character.
+ // Lower Limit > Upper limit being an error matches both Java
+ // and ICU UnicodeSet behavior.
+ {
+
+ if (fLastSetLiteral == U_SENTINEL || fLastSetLiteral > fC.fChar) {
+ error(U_REGEX_INVALID_RANGE);
+ }
+ UnicodeSet *s = (UnicodeSet *)fSetStack.peek();
+ s->add(fLastSetLiteral, fC.fChar);
+ break;
+ }
+
+ default:
+ UPRV_UNREACHABLE;
+ }
+
+ if (U_FAILURE(*fStatus)) {
+ returnVal = FALSE;
+ }
+
+ return returnVal;
+}
+
+
+
+//------------------------------------------------------------------------------
+//
+// literalChar We've encountered a literal character from the pattern,
+// or an escape sequence that reduces to a character.
+// Add it to the string containing all literal chars/strings from
+// the pattern.
+//
+//------------------------------------------------------------------------------
+void RegexCompile::literalChar(UChar32 c) {
+ fLiteralChars.append(c);
+}
+
+
+//------------------------------------------------------------------------------
+//
+// fixLiterals When compiling something that can follow a literal
+// string in a pattern, emit the code to match the
+// accumulated literal string.
+//
+// Optionally, split the last char of the string off into
+// a single "ONE_CHAR" operation, so that quantifiers can
+// apply to that char alone. Example: abc*
+// The * must apply to the 'c' only.
+//
+//------------------------------------------------------------------------------
+void RegexCompile::fixLiterals(UBool split) {
+
+ // If no literal characters have been scanned but not yet had code generated
+ // for them, nothing needs to be done.
+ if (fLiteralChars.length() == 0) {
return;
}
- stringLen = URX_VAL(op);
- //
- // Find the position of the last code point in the string (might be a surrogate pair)
- //
- stringLastCharIdx = fRXPat->fLiteralText.length();
- stringLastCharIdx = fRXPat->fLiteralText.moveIndex32(stringLastCharIdx, -1);
- lastChar = fRXPat->fLiteralText.char32At(stringLastCharIdx);
-
- // The string should always be at least two code points long, meaning that there
- // should be something before the last char position that we just found.
- U_ASSERT(stringLastCharIdx > stringStart);
- stringNextToLastCharIdx = fRXPat->fLiteralText.moveIndex32(stringLastCharIdx, -1);
- U_ASSERT(stringNextToLastCharIdx >= stringStart);
- nextToLastChar = fRXPat->fLiteralText.char32At(stringNextToLastCharIdx);
-
- if (stringNextToLastCharIdx > stringStart) {
- // The length of string remaining after removing one char is two or more.
- // Leave the string in the compiled pattern, shorten it by one char,
- // and append a URX_ONECHAR op for the last char.
- stringLen -= (fRXPat->fLiteralText.length() - stringLastCharIdx);
- op = URX_BUILD(URX_STRING_LEN, stringLen);
- fRXPat->fCompiledPat->setElementAt(op, fRXPat->fCompiledPat->size() -1);
- emitONE_CHAR(lastChar);
+ int32_t indexOfLastCodePoint = fLiteralChars.moveIndex32(fLiteralChars.length(), -1);
+ UChar32 lastCodePoint = fLiteralChars.char32At(indexOfLastCodePoint);
+
+ // Split: We need to ensure that the last item in the compiled pattern
+ // refers only to the last literal scanned in the pattern, so that
+ // quantifiers (*, +, etc.) affect only it, and not a longer string.
+ // Split before case folding for case insensitive matches.
+
+ if (split) {
+ fLiteralChars.truncate(indexOfLastCodePoint);
+ fixLiterals(FALSE); // Recursive call, emit code to match the first part of the string.
+ // Note that the truncated literal string may be empty, in which case
+ // nothing will be emitted.
+
+ literalChar(lastCodePoint); // Re-add the last code point as if it were a new literal.
+ fixLiterals(FALSE); // Second recursive call, code for the final code point.
+ return;
+ }
+
+ // If we are doing case-insensitive matching, case fold the string. This may expand
+ // the string, e.g. the German sharp-s turns into "ss"
+ if (fModeFlags & UREGEX_CASE_INSENSITIVE) {
+ fLiteralChars.foldCase();
+ indexOfLastCodePoint = fLiteralChars.moveIndex32(fLiteralChars.length(), -1);
+ lastCodePoint = fLiteralChars.char32At(indexOfLastCodePoint);
+ }
+
+ if (indexOfLastCodePoint == 0) {
+ // Single character, emit a URX_ONECHAR op to match it.
+ if ((fModeFlags & UREGEX_CASE_INSENSITIVE) &&
+ u_hasBinaryProperty(lastCodePoint, UCHAR_CASE_SENSITIVE)) {
+ appendOp(URX_ONECHAR_I, lastCodePoint);
+ } else {
+ appendOp(URX_ONECHAR, lastCodePoint);
+ }
} else {
- // The original string consisted of exactly two characters. Replace
- // the existing compiled URX_STRING/URX_STRING_LEN ops with a pair
- // of URX_ONECHARs.
- fRXPat->fCompiledPat->setSize(fRXPat->fCompiledPat->size() -2);
- emitONE_CHAR(nextToLastChar);
- emitONE_CHAR(lastChar);
+ // Two or more chars, emit a URX_STRING to match them.
+ if (fLiteralChars.length() > 0x00ffffff || fRXPat->fLiteralText.length() > 0x00ffffff) {
+ error(U_REGEX_PATTERN_TOO_BIG);
+ }
+ if (fModeFlags & UREGEX_CASE_INSENSITIVE) {
+ appendOp(URX_STRING_I, fRXPat->fLiteralText.length());
+ } else {
+ // TODO here: add optimization to split case sensitive strings of length two
+ // into two single char ops, for efficiency.
+ appendOp(URX_STRING, fRXPat->fLiteralText.length());
+ }
+ appendOp(URX_STRING_LEN, fLiteralChars.length());
+
+ // Add this string into the accumulated strings of the compiled pattern.
+ fRXPat->fLiteralText.append(fLiteralChars);
}
+
+ fLiteralChars.remove();
}
+int32_t RegexCompile::buildOp(int32_t type, int32_t val) {
+ if (U_FAILURE(*fStatus)) {
+ return 0;
+ }
+ if (type < 0 || type > 255) {
+ UPRV_UNREACHABLE;
+ }
+ if (val > 0x00ffffff) {
+ UPRV_UNREACHABLE;
+ }
+ if (val < 0) {
+ if (!(type == URX_RESERVED_OP_N || type == URX_RESERVED_OP)) {
+ UPRV_UNREACHABLE;
+ }
+ if (URX_TYPE(val) != 0xff) {
+ UPRV_UNREACHABLE;
+ }
+ type = URX_RESERVED_OP_N;
+ }
+ return (type << 24) | val;
+}
+
+//------------------------------------------------------------------------------
+//
+// appendOp() Append a new instruction onto the compiled pattern
+// Includes error checking, limiting the size of the
+// pattern to lengths that can be represented in the
+// 24 bit operand field of an instruction.
+//
+//------------------------------------------------------------------------------
+void RegexCompile::appendOp(int32_t op) {
+ if (U_FAILURE(*fStatus)) {
+ return;
+ }
+ fRXPat->fCompiledPat->addElement(op, *fStatus);
+ if ((fRXPat->fCompiledPat->size() > 0x00fffff0) && U_SUCCESS(*fStatus)) {
+ error(U_REGEX_PATTERN_TOO_BIG);
+ }
+}
+void RegexCompile::appendOp(int32_t type, int32_t val) {
+ appendOp(buildOp(type, val));
+}
//------------------------------------------------------------------------------
//
//------------------------------------------------------------------------------
void RegexCompile::insertOp(int32_t where) {
- UVector32 *code = fRXPat->fCompiledPat;
+ UVector64 *code = fRXPat->fCompiledPat;
U_ASSERT(where>0 && where < code->size());
- int32_t nop = URX_BUILD(URX_NOP, 0);
+ int32_t nop = buildOp(URX_NOP, 0);
code->insertElementAt(nop, where, *fStatus);
// Walk through the pattern, looking for any ops with targets that
// were moved down by the insert. Fix them.
int32_t loc;
for (loc=0; loc<code->size(); loc++) {
- int32_t op = code->elementAti(loc);
+ int32_t op = (int32_t)code->elementAti(loc);
int32_t opType = URX_TYPE(op);
int32_t opValue = URX_VAL(op);
if ((opType == URX_JMP ||
opType == URX_CTR_LOOP ||
opType == URX_CTR_LOOP_NG ||
opType == URX_JMP_SAV ||
+ opType == URX_JMP_SAV_X ||
opType == URX_RELOC_OPRND) && opValue > where) {
// Target location for this opcode is after the insertion point and
// needs to be incremented to adjust for the insertion.
opValue++;
- op = URX_BUILD(opType, opValue);
+ op = buildOp(opType, opValue);
code->setElementAt(op, loc);
}
}
// the compiled pattern. (Negative values are frame boundaries, and don't need fixing.)
for (loc=0; loc<fParenStack.size(); loc++) {
int32_t x = fParenStack.elementAti(loc);
+ U_ASSERT(x < code->size());
if (x>where) {
x++;
fParenStack.setElementAt(x, loc);
}
+//------------------------------------------------------------------------------
+//
+// allocateData() Allocate storage in the matcher's static data area.
+// Return the index for the newly allocated data.
+// The storage won't actually exist until we are running a match
+// operation, but the storage indexes are inserted into various
+// opcodes while compiling the pattern.
+//
+//------------------------------------------------------------------------------
+int32_t RegexCompile::allocateData(int32_t size) {
+ if (U_FAILURE(*fStatus)) {
+ return 0;
+ }
+ if (size <= 0 || size > 0x100 || fRXPat->fDataSize < 0) {
+ error(U_REGEX_INTERNAL_ERROR);
+ return 0;
+ }
+ int32_t dataIndex = fRXPat->fDataSize;
+ fRXPat->fDataSize += size;
+ if (fRXPat->fDataSize >= 0x00fffff0) {
+ error(U_REGEX_INTERNAL_ERROR);
+ }
+ return dataIndex;
+}
+
+
+//------------------------------------------------------------------------------
+//
+// allocateStackData() Allocate space in the back-tracking stack frame.
+// Return the index for the newly allocated data.
+// The frame indexes are inserted into various
+// opcodes while compiling the pattern, meaning that frame
+// size must be restricted to the size that will fit
+// as an operand (24 bits).
+//
+//------------------------------------------------------------------------------
+int32_t RegexCompile::allocateStackData(int32_t size) {
+ if (U_FAILURE(*fStatus)) {
+ return 0;
+ }
+ if (size <= 0 || size > 0x100 || fRXPat->fFrameSize < 0) {
+ error(U_REGEX_INTERNAL_ERROR);
+ return 0;
+ }
+ int32_t dataIndex = fRXPat->fFrameSize;
+ fRXPat->fFrameSize += size;
+ if (fRXPat->fFrameSize >= 0x00fffff0) {
+ error(U_REGEX_PATTERN_TOO_BIG);
+ }
+ return dataIndex;
+}
+
//------------------------------------------------------------------------------
//
//
// parameter reserveLoc : TRUE - ensure that there is space to add an opcode
// at the returned location.
-// FALSE - just return the address,
+// FALSE - just return the address,
// do not reserve a location there.
//
//------------------------------------------------------------------------------
int32_t RegexCompile::blockTopLoc(UBool reserveLoc) {
int32_t theLoc;
+ fixLiterals(TRUE); // Emit code for any pending literals.
+ // If last item was a string, emit separate op for the its last char.
if (fRXPat->fCompiledPat->size() == fMatchCloseParen)
{
// The item just processed is a parenthesized block.
theLoc = fMatchOpenParen; // A slot is already reserved for us.
U_ASSERT(theLoc > 0);
- uint32_t opAtTheLoc = fRXPat->fCompiledPat->elementAti(theLoc);
- U_ASSERT(URX_TYPE(opAtTheLoc) == URX_NOP);
+ U_ASSERT(URX_TYPE(((uint32_t)fRXPat->fCompiledPat->elementAti(theLoc))) == URX_NOP);
}
else {
- // Item just compiled is a single thing, a ".", or a single char, or a set reference.
+ // Item just compiled is a single thing, a ".", or a single char, a string or a set reference.
// No slot for STATE_SAVE was pre-reserved in the compiled code.
// We need to make space now.
- fixLiterals(TRUE); // If last item was a string, separate the last char.
theLoc = fRXPat->fCompiledPat->size()-1;
+ int32_t opAtTheLoc = (int32_t)fRXPat->fCompiledPat->elementAti(theLoc);
+ if (URX_TYPE(opAtTheLoc) == URX_STRING_LEN) {
+ // Strings take two opcode, we want the position of the first one.
+ // We can have a string at this point if a single character case-folded to two.
+ theLoc--;
+ }
if (reserveLoc) {
- int32_t opAtTheLoc = fRXPat->fCompiledPat->elementAti(theLoc);
- int32_t nop = URX_BUILD(URX_NOP, 0);
+ int32_t nop = buildOp(URX_NOP, 0);
fRXPat->fCompiledPat->insertElementAt(nop, theLoc, *fStatus);
}
}
// This function is called both when encountering a
// real ) and at the end of the pattern.
//
-//-------------------------------------------------------------------------------
+//------------------------------------------------------------------------------
void RegexCompile::handleCloseParen() {
int32_t patIdx;
int32_t patOp;
return;
}
- // Force any literal chars that may follow the close paren to start a new string,
- // and not attach to any preceding it.
+ // Emit code for any pending literals.
fixLiterals(FALSE);
// Fixup any operations within the just-closed parenthesized group
break;
}
U_ASSERT(patIdx>0 && patIdx <= fRXPat->fCompiledPat->size());
- patOp = fRXPat->fCompiledPat->elementAti(patIdx);
+ patOp = (int32_t)fRXPat->fCompiledPat->elementAti(patIdx);
U_ASSERT(URX_VAL(patOp) == 0); // Branch target for JMP should not be set.
patOp |= fRXPat->fCompiledPat->size(); // Set it now.
fRXPat->fCompiledPat->setElementAt(patOp, patIdx);
// At the close of any parenthesized block, restore the match mode flags to
// the value they had at the open paren. Saved value is
- // at the top of the paren stack.
+ // at the top of the paren stack.
fModeFlags = fParenStack.popi();
-
+ U_ASSERT(fModeFlags < 0);
+
// DO any additional fixups, depending on the specific kind of
// parentesized grouping this is
// The frame offset of the variables for this cg is obtained from the
// start capture op and put it into the end-capture op.
{
- int32_t captureOp = fRXPat->fCompiledPat->elementAti(fMatchOpenParen+1);
+ int32_t captureOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen+1);
U_ASSERT(URX_TYPE(captureOp) == URX_START_CAPTURE);
int32_t frameVarLocation = URX_VAL(captureOp);
- int32_t endCaptureOp = URX_BUILD(URX_END_CAPTURE, frameVarLocation);
- fRXPat->fCompiledPat->addElement(endCaptureOp, *fStatus);
+ appendOp(URX_END_CAPTURE, frameVarLocation);
}
break;
case atomic:
// Insert a LD_SP operation to restore the state stack to the position
// it was when the atomic parens were entered.
{
- int32_t stoOp = fRXPat->fCompiledPat->elementAti(fMatchOpenParen+1);
+ int32_t stoOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen+1);
U_ASSERT(URX_TYPE(stoOp) == URX_STO_SP);
int32_t stoLoc = URX_VAL(stoOp);
- int32_t ldOp = URX_BUILD(URX_LD_SP, stoLoc);
- fRXPat->fCompiledPat->addElement(ldOp, *fStatus);
+ appendOp(URX_LD_SP, stoLoc);
}
break;
case lookAhead:
{
- int32_t startOp = fRXPat->fCompiledPat->elementAti(fMatchOpenParen-1);
+ int32_t startOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen-5);
U_ASSERT(URX_TYPE(startOp) == URX_LA_START);
int32_t dataLoc = URX_VAL(startOp);
- int32_t op = URX_BUILD(URX_LA_END, dataLoc);
- fRXPat->fCompiledPat->addElement(op, *fStatus);
+ appendOp(URX_LA_END, dataLoc);
}
break;
case negLookAhead:
{
// See comment at doOpenLookAheadNeg
- int32_t startOp = fRXPat->fCompiledPat->elementAti(fMatchOpenParen-1);
+ int32_t startOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen-1);
U_ASSERT(URX_TYPE(startOp) == URX_LA_START);
int32_t dataLoc = URX_VAL(startOp);
- int32_t op = URX_BUILD(URX_LA_END, dataLoc);
- fRXPat->fCompiledPat->addElement(op, *fStatus);
- op = URX_BUILD(URX_FAIL, 0);
- fRXPat->fCompiledPat->addElement(op, *fStatus);
+ appendOp(URX_LA_END, dataLoc);
+ appendOp(URX_BACKTRACK, 0);
+ appendOp(URX_LA_END, dataLoc);
// Patch the URX_SAVE near the top of the block.
- int32_t saveOp = fRXPat->fCompiledPat->elementAti(fMatchOpenParen);
+ // The destination of the SAVE is the final LA_END that was just added.
+ int32_t saveOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen);
U_ASSERT(URX_TYPE(saveOp) == URX_STATE_SAVE);
- int32_t dest = fRXPat->fCompiledPat->size();
- saveOp = URX_BUILD(URX_STATE_SAVE, dest);
+ int32_t dest = fRXPat->fCompiledPat->size()-1;
+ saveOp = buildOp(URX_STATE_SAVE, dest);
fRXPat->fCompiledPat->setElementAt(saveOp, fMatchOpenParen);
}
break;
case lookBehind:
{
// See comment at doOpenLookBehind.
-
+
// Append the URX_LB_END and URX_LA_END to the compiled pattern.
- int32_t startOp = fRXPat->fCompiledPat->elementAti(fMatchOpenParen-4);
+ int32_t startOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen-4);
U_ASSERT(URX_TYPE(startOp) == URX_LB_START);
int32_t dataLoc = URX_VAL(startOp);
- int32_t op = URX_BUILD(URX_LB_END, dataLoc);
- fRXPat->fCompiledPat->addElement(op, *fStatus);
- op = URX_BUILD(URX_LA_END, dataLoc);
- fRXPat->fCompiledPat->addElement(op, *fStatus);
+ appendOp(URX_LB_END, dataLoc);
+ appendOp(URX_LA_END, dataLoc);
// Determine the min and max bounds for the length of the
// string that the pattern can match.
int32_t patEnd = fRXPat->fCompiledPat->size() - 1;
int32_t minML = minMatchLength(fMatchOpenParen, patEnd);
int32_t maxML = maxMatchLength(fMatchOpenParen, patEnd);
+ if (URX_TYPE(maxML) != 0) {
+ error(U_REGEX_LOOK_BEHIND_LIMIT);
+ break;
+ }
if (maxML == INT32_MAX) {
error(U_REGEX_LOOK_BEHIND_LIMIT);
break;
}
+ if (minML == INT32_MAX) {
+ // This condition happens when no match is possible, such as with a
+ // [set] expression containing no elements.
+ // In principle, the generated code to evaluate the expression could be deleted,
+ // but it's probably not worth the complication.
+ minML = 0;
+ }
U_ASSERT(minML <= maxML);
// Insert the min and max match len bounds into the URX_LB_CONT op that
case lookBehindN:
{
// See comment at doOpenLookBehindNeg.
-
+
// Append the URX_LBN_END to the compiled pattern.
- int32_t startOp = fRXPat->fCompiledPat->elementAti(fMatchOpenParen-5);
+ int32_t startOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen-5);
U_ASSERT(URX_TYPE(startOp) == URX_LB_START);
int32_t dataLoc = URX_VAL(startOp);
- int32_t op = URX_BUILD(URX_LBN_END, dataLoc);
- fRXPat->fCompiledPat->addElement(op, *fStatus);
+ appendOp(URX_LBN_END, dataLoc);
// Determine the min and max bounds for the length of the
// string that the pattern can match.
int32_t patEnd = fRXPat->fCompiledPat->size() - 1;
int32_t minML = minMatchLength(fMatchOpenParen, patEnd);
int32_t maxML = maxMatchLength(fMatchOpenParen, patEnd);
+ if (URX_TYPE(maxML) != 0) {
+ error(U_REGEX_LOOK_BEHIND_LIMIT);
+ break;
+ }
if (maxML == INT32_MAX) {
error(U_REGEX_LOOK_BEHIND_LIMIT);
break;
}
+ if (minML == INT32_MAX) {
+ // This condition happens when no match is possible, such as with a
+ // [set] expression containing no elements.
+ // In principle, the generated code to evaluate the expression could be deleted,
+ // but it's probably not worth the complication.
+ minML = 0;
+ }
+
U_ASSERT(minML <= maxML);
// Insert the min and max match len bounds into the URX_LB_CONT op that
// Insert the pattern location to continue at after a successful match
// as the last operand of the URX_LBN_CONT
- op = URX_BUILD(URX_RELOC_OPRND, fRXPat->fCompiledPat->size());
+ int32_t op = buildOp(URX_RELOC_OPRND, fRXPat->fCompiledPat->size());
fRXPat->fCompiledPat->setElementAt(op, fMatchOpenParen-1);
}
break;
default:
- U_ASSERT(FALSE);
+ UPRV_UNREACHABLE;
}
// remember the next location in the compiled pattern.
-//----------------------------------------------------------------------------------------
+//------------------------------------------------------------------------------
//
// compileSet Compile the pattern operations for a reference to a
// UnicodeSet.
//
-//----------------------------------------------------------------------------------------
+//------------------------------------------------------------------------------
void RegexCompile::compileSet(UnicodeSet *theSet)
{
if (theSet == NULL) {
return;
}
+ // Remove any strings from the set.
+ // There shoudn't be any, but just in case.
+ // (Case Closure can add them; if we had a simple case closure avaialble that
+ // ignored strings, that would be better.)
+ theSet->removeAllStrings();
int32_t setSize = theSet->size();
- UChar32 firstSetChar = theSet->charAt(0);
- if (firstSetChar == -1) {
- // Sets that contain only strings, but no individual chars,
- // will end up here.
- error(U_REGEX_SET_CONTAINS_STRING);
- setSize = 0;
- }
switch (setSize) {
- case 0:
+ case 0:
{
- // Set of no elements. Always fails to match.
- fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKTRACK, 0), *fStatus);
+ // Set of no elements. Always fails to match.
+ appendOp(URX_BACKTRACK, 0);
delete theSet;
}
break;
-
+
case 1:
{
// The set contains only a single code point. Put it into
// the compiled pattern as a single char operation rather
// than a set, and discard the set itself.
- literalChar(firstSetChar);
+ literalChar(theSet->charAt(0));
delete theSet;
}
break;
-
- default:
+
+ default:
{
// The set contains two or more chars. (the normal case)
// Put it into the compiled pattern as a set.
int32_t setNumber = fRXPat->fSets->size();
fRXPat->fSets->addElement(theSet, *fStatus);
- int32_t setOp = URX_BUILD(URX_SETREF, setNumber);
- fRXPat->fCompiledPat->addElement(setOp, *fStatus);
+ appendOp(URX_SETREF, setNumber);
}
}
}
-//----------------------------------------------------------------------------------------
+//------------------------------------------------------------------------------
//
// compileInterval Generate the code for a {min, max} style interval quantifier.
// Except for the specific opcodes used, the code is the same
// for all three types (greedy, non-greedy, possessive) of
// intervals. The opcodes are supplied as parameters.
+// (There are two sets of opcodes - greedy & possessive use the
+// same ones, while non-greedy has it's own.)
//
// The code for interval loops has this form:
// 0 CTR_INIT counter loc (in stack frame)
// 2 min count
// 3 max count (-1 for unbounded)
// 4 ... block to be iterated over
-// 5 CTR_LOOP
-//
-// In
-//----------------------------------------------------------------------------------------
+// 5 CTR_LOOP
+//
+// In
+//------------------------------------------------------------------------------
void RegexCompile::compileInterval(int32_t InitOp, int32_t LoopOp)
{
// The CTR_INIT op at the top of the block with the {n,m} quantifier takes
insertOp(topOfBlock);
// The operands for the CTR_INIT opcode include the index in the matcher data
- // of the counter. Allocate it now.
- int32_t counterLoc = fRXPat->fFrameSize;
- fRXPat->fFrameSize++;
-
- int32_t op = URX_BUILD(InitOp, counterLoc);
+ // of the counter. Allocate it now. There are two data items
+ // counterLoc --> Loop counter
+ // +1 --> Input index (for breaking non-progressing loops)
+ // (Only present if unbounded upper limit on loop)
+ int32_t dataSize = fIntervalUpper < 0 ? 2 : 1;
+ int32_t counterLoc = allocateStackData(dataSize);
+
+ int32_t op = buildOp(InitOp, counterLoc);
fRXPat->fCompiledPat->setElementAt(op, topOfBlock);
// The second operand of CTR_INIT is the location following the end of the loop.
// compilation of something later on causes the code to grow and the target
// position to move.
int32_t loopEnd = fRXPat->fCompiledPat->size();
- op = URX_BUILD(URX_RELOC_OPRND, loopEnd);
+ op = buildOp(URX_RELOC_OPRND, loopEnd);
fRXPat->fCompiledPat->setElementAt(op, topOfBlock+1);
// Followed by the min and max counts.
// Apend the CTR_LOOP op. The operand is the location of the CTR_INIT op.
// Goes at end of the block being looped over, so just append to the code so far.
- op = URX_BUILD(LoopOp, topOfBlock);
- fRXPat->fCompiledPat->addElement(op, *fStatus);
+ appendOp(LoopOp, topOfBlock);
+
+ if ((fIntervalLow & 0xff000000) != 0 ||
+ (fIntervalUpper > 0 && (fIntervalUpper & 0xff000000) != 0)) {
+ error(U_REGEX_NUMBER_TOO_BIG);
+ }
if (fIntervalLow > fIntervalUpper && fIntervalUpper != -1) {
error(U_REGEX_MAX_LT_MIN);
}
-
-
-
}
int32_t topOfBlock = blockTopLoc(FALSE);
if (fIntervalUpper == 0) {
// Pathological case. Attempt no matches, as if the block doesn't exist.
+ // Discard the generated code for the block.
+ // If the block included parens, discard the info pertaining to them as well.
fRXPat->fCompiledPat->setSize(topOfBlock);
+ if (fMatchOpenParen >= topOfBlock) {
+ fMatchOpenParen = -1;
+ }
+ if (fMatchCloseParen >= topOfBlock) {
+ fMatchCloseParen = -1;
+ }
return TRUE;
}
// Pick up the opcode that is to be repeated
//
- int32_t op = fRXPat->fCompiledPat->elementAti(topOfBlock);
+ int32_t op = (int32_t)fRXPat->fCompiledPat->elementAti(topOfBlock);
- // Compute the pattern location where the inline sequence
+ // Compute the pattern location where the inline sequence
// will end, and set up the state save op that will be needed.
- //
+ //
int32_t endOfSequenceLoc = fRXPat->fCompiledPat->size()-1
+ fIntervalUpper + (fIntervalUpper-fIntervalLow);
- int32_t saveOp = URX_BUILD(URX_STATE_SAVE, endOfSequenceLoc);
+ int32_t saveOp = buildOp(URX_STATE_SAVE, endOfSequenceLoc);
if (fIntervalLow == 0) {
insertOp(topOfBlock);
fRXPat->fCompiledPat->setElementAt(saveOp, topOfBlock);
// it was put there when it was originally encountered.
int32_t i;
for (i=1; i<fIntervalUpper; i++ ) {
- if (i == fIntervalLow) {
- fRXPat->fCompiledPat->addElement(saveOp, *fStatus);
- }
- if (i > fIntervalLow) {
- fRXPat->fCompiledPat->addElement(saveOp, *fStatus);
+ if (i >= fIntervalLow) {
+ appendOp(saveOp);
}
- fRXPat->fCompiledPat->addElement(op, *fStatus);
+ appendOp(op);
}
return TRUE;
}
-//----------------------------------------------------------------------------------------
+//------------------------------------------------------------------------------
+//
+// caseInsensitiveStart given a single code point from a pattern string, determine the
+// set of characters that could potentially begin a case-insensitive
+// match of a string beginning with that character, using full Unicode
+// case insensitive matching.
+//
+// This is used in optimizing find().
+//
+// closeOver(USET_CASE_INSENSITIVE) does most of what is needed, but
+// misses cases like this:
+// A string from the pattern begins with 'ss' (although all we know
+// in this context is that it begins with 's')
+// The pattern could match a string beginning with a German sharp-s
+//
+// To the ordinary case closure for a character c, we add all other
+// characters cx where the case closure of cx incudes a string form that begins
+// with the original character c.
+//
+// This function could be made smarter. The full pattern string is available
+// and it would be possible to verify that the extra characters being added
+// to the starting set fully match, rather than having just a first-char of the
+// folded form match.
+//
+//------------------------------------------------------------------------------
+void RegexCompile::findCaseInsensitiveStarters(UChar32 c, UnicodeSet *starterChars) {
+
+// Machine Generated below.
+// It may need updating with new versions of Unicode.
+// Intltest test RegexTest::TestCaseInsensitiveStarters will fail if an update is needed.
+// The update tool is here: svn+ssh://source.icu-project.org/repos/icu/tools/trunk/unicode/c/genregexcasing
+
+// Machine Generated Data. Do not hand edit.
+ static const UChar32 RECaseFixCodePoints[] = {
+ 0x61, 0x66, 0x68, 0x69, 0x6a, 0x73, 0x74, 0x77, 0x79, 0x2bc,
+ 0x3ac, 0x3ae, 0x3b1, 0x3b7, 0x3b9, 0x3c1, 0x3c5, 0x3c9, 0x3ce, 0x565,
+ 0x574, 0x57e, 0x1f00, 0x1f01, 0x1f02, 0x1f03, 0x1f04, 0x1f05, 0x1f06, 0x1f07,
+ 0x1f20, 0x1f21, 0x1f22, 0x1f23, 0x1f24, 0x1f25, 0x1f26, 0x1f27, 0x1f60, 0x1f61,
+ 0x1f62, 0x1f63, 0x1f64, 0x1f65, 0x1f66, 0x1f67, 0x1f70, 0x1f74, 0x1f7c, 0x110000};
+
+ static const int16_t RECaseFixStringOffsets[] = {
+ 0x0, 0x1, 0x6, 0x7, 0x8, 0x9, 0xd, 0xe, 0xf, 0x10,
+ 0x11, 0x12, 0x13, 0x17, 0x1b, 0x20, 0x21, 0x2a, 0x2e, 0x2f,
+ 0x30, 0x34, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f, 0x41, 0x43,
+ 0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57,
+ 0x59, 0x5b, 0x5d, 0x5f, 0x61, 0x63, 0x65, 0x66, 0x67, 0};
+
+ static const int16_t RECaseFixCounts[] = {
+ 0x1, 0x5, 0x1, 0x1, 0x1, 0x4, 0x1, 0x1, 0x1, 0x1,
+ 0x1, 0x1, 0x4, 0x4, 0x5, 0x1, 0x9, 0x4, 0x1, 0x1,
+ 0x4, 0x1, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2,
+ 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2,
+ 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x1, 0x1, 0x1, 0};
+
+ static const UChar RECaseFixData[] = {
+ 0x1e9a, 0xfb00, 0xfb01, 0xfb02, 0xfb03, 0xfb04, 0x1e96, 0x130, 0x1f0, 0xdf,
+ 0x1e9e, 0xfb05, 0xfb06, 0x1e97, 0x1e98, 0x1e99, 0x149, 0x1fb4, 0x1fc4, 0x1fb3,
+ 0x1fb6, 0x1fb7, 0x1fbc, 0x1fc3, 0x1fc6, 0x1fc7, 0x1fcc, 0x390, 0x1fd2, 0x1fd3,
+ 0x1fd6, 0x1fd7, 0x1fe4, 0x3b0, 0x1f50, 0x1f52, 0x1f54, 0x1f56, 0x1fe2, 0x1fe3,
+ 0x1fe6, 0x1fe7, 0x1ff3, 0x1ff6, 0x1ff7, 0x1ffc, 0x1ff4, 0x587, 0xfb13, 0xfb14,
+ 0xfb15, 0xfb17, 0xfb16, 0x1f80, 0x1f88, 0x1f81, 0x1f89, 0x1f82, 0x1f8a, 0x1f83,
+ 0x1f8b, 0x1f84, 0x1f8c, 0x1f85, 0x1f8d, 0x1f86, 0x1f8e, 0x1f87, 0x1f8f, 0x1f90,
+ 0x1f98, 0x1f91, 0x1f99, 0x1f92, 0x1f9a, 0x1f93, 0x1f9b, 0x1f94, 0x1f9c, 0x1f95,
+ 0x1f9d, 0x1f96, 0x1f9e, 0x1f97, 0x1f9f, 0x1fa0, 0x1fa8, 0x1fa1, 0x1fa9, 0x1fa2,
+ 0x1faa, 0x1fa3, 0x1fab, 0x1fa4, 0x1fac, 0x1fa5, 0x1fad, 0x1fa6, 0x1fae, 0x1fa7,
+ 0x1faf, 0x1fb2, 0x1fc2, 0x1ff2, 0};
+
+// End of machine generated data.
+
+ if (c < UCHAR_MIN_VALUE || c > UCHAR_MAX_VALUE) {
+ // This function should never be called with an invalid input character.
+ UPRV_UNREACHABLE;
+ } else if (u_hasBinaryProperty(c, UCHAR_CASE_SENSITIVE)) {
+ UChar32 caseFoldedC = u_foldCase(c, U_FOLD_CASE_DEFAULT);
+ starterChars->set(caseFoldedC, caseFoldedC);
+
+ int32_t i;
+ for (i=0; RECaseFixCodePoints[i]<c ; i++) {
+ // Simple linear search through the sorted list of interesting code points.
+ }
+
+ if (RECaseFixCodePoints[i] == c) {
+ int32_t dataIndex = RECaseFixStringOffsets[i];
+ int32_t numCharsToAdd = RECaseFixCounts[i];
+ UChar32 cpToAdd = 0;
+ for (int32_t j=0; j<numCharsToAdd; j++) {
+ U16_NEXT_UNSAFE(RECaseFixData, dataIndex, cpToAdd);
+ starterChars->add(cpToAdd);
+ }
+ }
+
+ starterChars->closeOver(USET_CASE_INSENSITIVE);
+ starterChars->removeAllStrings();
+ } else {
+ // Not a cased character. Just return it alone.
+ starterChars->set(c, c);
+ }
+}
+
+
+// Increment with overflow check.
+// val and delta will both be positive.
+
+static int32_t safeIncrement(int32_t val, int32_t delta) {
+ if (INT32_MAX - val > delta) {
+ return val + delta;
+ } else {
+ return INT32_MAX;
+ }
+}
+
+
+//------------------------------------------------------------------------------
//
// matchStartType Determine how a match can start.
// Used to optimize find() operations.
// op where the min match coming in is zero, add that ops possible
// starting matches to the possible starts for the overall pattern.
//
-//----------------------------------------------------------------------------------------
+//------------------------------------------------------------------------------
void RegexCompile::matchStartType() {
if (U_FAILURE(*fStatus)) {
return;
}
for (loc = 3; loc<end; loc++) {
- op = fRXPat->fCompiledPat->elementAti(loc);
+ op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
opType = URX_TYPE(op);
// The loop is advancing linearly through the pattern.
// If the op we are now at was the destination of a branch in the pattern,
// and that path has a shorter minimum length than the current accumulated value,
// replace the current accumulated value.
- U_ASSERT(currentLen>=0 && currentLen < INT32_MAX);
if (forwardedLength.elementAti(loc) < currentLen) {
currentLen = forwardedLength.elementAti(loc);
U_ASSERT(currentLen>=0 && currentLen < INT32_MAX);
// Ops that don't change the total length matched
case URX_RESERVED_OP:
case URX_END:
+ case URX_FAIL:
case URX_STRING_LEN:
case URX_NOP:
case URX_START_CAPTURE:
case URX_END_CAPTURE:
case URX_BACKSLASH_B:
+ case URX_BACKSLASH_BU:
case URX_BACKSLASH_G:
case URX_BACKSLASH_Z:
case URX_DOLLAR:
+ case URX_DOLLAR_M:
+ case URX_DOLLAR_D:
+ case URX_DOLLAR_MD:
case URX_RELOC_OPRND:
case URX_STO_INP_LOC:
- case URX_DOLLAR_M:
- case URX_BACKTRACK:
case URX_BACKREF: // BackRef. Must assume that it might be a zero length match
case URX_BACKREF_I:
case URX_STO_SP: // Setup for atomic or possessive blocks. Doesn't change what can match.
case URX_LD_SP:
break;
-
+
case URX_CARET:
if (atStart) {
fRXPat->fStartType = START_START;
break;
case URX_CARET_M:
+ case URX_CARET_M_UNIX:
if (atStart) {
fRXPat->fStartType = START_LINE;
}
break;
-
+
case URX_ONECHAR:
if (currentLen == 0) {
// This character could appear at the start of a match.
fRXPat->fInitialChars->add(URX_VAL(op));
numInitialStrings += 2;
}
- currentLen++;
+ currentLen = safeIncrement(currentLen, 1);
atStart = FALSE;
break;
-
- case URX_SETREF:
+
+ case URX_SETREF:
if (currentLen == 0) {
int32_t sn = URX_VAL(op);
U_ASSERT(sn > 0 && sn < fRXPat->fSets->size());
fRXPat->fInitialChars->addAll(*s);
numInitialStrings += 2;
}
- currentLen++;
+ currentLen = safeIncrement(currentLen, 1);
atStart = FALSE;
break;
break;
- case URX_STATIC_SETREF:
+ case URX_STATIC_SETREF:
if (currentLen == 0) {
int32_t sn = URX_VAL(op);
U_ASSERT(sn>0 && sn<URX_LAST_SET);
fRXPat->fInitialChars->addAll(*s);
numInitialStrings += 2;
}
- currentLen++;
+ currentLen = safeIncrement(currentLen, 1);
atStart = FALSE;
break;
- case URX_STAT_SETREF_N:
+ case URX_STAT_SETREF_N:
if (currentLen == 0) {
int32_t sn = URX_VAL(op);
const UnicodeSet *s = fRXPat->fStaticSets[sn];
fRXPat->fInitialChars->addAll(sc);
numInitialStrings += 2;
}
- currentLen++;
+ currentLen = safeIncrement(currentLen, 1);
atStart = FALSE;
break;
case URX_BACKSLASH_D:
// Digit Char
if (currentLen == 0) {
- UnicodeSet s;
+ UnicodeSet s;
s.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, U_GC_ND_MASK, *fStatus);
if (URX_VAL(op) != 0) {
s.complement();
fRXPat->fInitialChars->addAll(s);
numInitialStrings += 2;
}
- currentLen++;
+ currentLen = safeIncrement(currentLen, 1);
+ atStart = FALSE;
+ break;
+
+
+ case URX_BACKSLASH_H:
+ // Horiz white space
+ if (currentLen == 0) {
+ UnicodeSet s;
+ s.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, U_GC_ZS_MASK, *fStatus);
+ s.add((UChar32)9); // Tab
+ if (URX_VAL(op) != 0) {
+ s.complement();
+ }
+ fRXPat->fInitialChars->addAll(s);
+ numInitialStrings += 2;
+ }
+ currentLen = safeIncrement(currentLen, 1);
+ atStart = FALSE;
+ break;
+
+
+ case URX_BACKSLASH_R: // Any line ending sequence
+ case URX_BACKSLASH_V: // Any line ending code point, with optional negation
+ if (currentLen == 0) {
+ UnicodeSet s;
+ s.add((UChar32)0x0a, (UChar32)0x0d); // add range
+ s.add((UChar32)0x85);
+ s.add((UChar32)0x2028, (UChar32)0x2029);
+ if (URX_VAL(op) != 0) {
+ // Complement option applies to URX_BACKSLASH_V only.
+ s.complement();
+ }
+ fRXPat->fInitialChars->addAll(s);
+ numInitialStrings += 2;
+ }
+ currentLen = safeIncrement(currentLen, 1);
atStart = FALSE;
break;
+
case URX_ONECHAR_I:
// Case Insensitive Single Character.
if (currentLen == 0) {
UChar32 c = URX_VAL(op);
if (u_hasBinaryProperty(c, UCHAR_CASE_SENSITIVE)) {
- // character may have distinct cased forms. Add all of them
- // to the set of possible starting match chars.
- UnicodeSet s(c, c);
- s.closeOver(USET_CASE);
- fRXPat->fInitialChars->addAll(s);
+ UnicodeSet starters(c, c);
+ starters.closeOver(USET_CASE_INSENSITIVE);
+ // findCaseInsensitiveStarters(c, &starters);
+ // For ONECHAR_I, no need to worry about text chars that expand on folding into strings.
+ // The expanded folding can't match the pattern.
+ fRXPat->fInitialChars->addAll(starters);
} else {
// Char has no case variants. Just add it as-is to the
// set of possible starting chars.
}
numInitialStrings += 2;
}
- currentLen++;
+ currentLen = safeIncrement(currentLen, 1);
atStart = FALSE;
break;
case URX_BACKSLASH_X: // Grahpeme Cluster. Minimum is 1, max unbounded.
case URX_DOTANY_ALL: // . matches one or two.
case URX_DOTANY:
- case URX_DOTANY_ALL_PL:
- case URX_DOTANY_PL:
+ case URX_DOTANY_UNIX:
if (currentLen == 0) {
// These constructs are all bad news when they appear at the start
// of a match. Any character can begin the match.
fRXPat->fInitialChars->complement();
numInitialStrings += 2;
}
- currentLen++;
+ currentLen = safeIncrement(currentLen, 1);
atStart = FALSE;
break;
case URX_JMPX:
loc++; // Except for extra operand on URX_JMPX, same as URX_JMP.
+ U_FALLTHROUGH;
case URX_JMP:
{
int32_t jmpDest = URX_VAL(op);
// Loop of some kind. Can safely ignore, the worst that will happen
// is that we understate the true minimum length
currentLen = forwardedLength.elementAti(loc+1);
-
+
} else {
// Forward jump. Propagate the current min length to the target loc of the jump.
U_ASSERT(jmpDest <= end+1);
atStart = FALSE;
break;
- case URX_FAIL:
+ case URX_BACKTRACK:
// Fails are kind of like a branch, except that the min length was
// propagated already, by the state save.
currentLen = forwardedLength.elementAti(loc+1);
if (currentLen < forwardedLength.elementAti(jmpDest)) {
forwardedLength.setElementAt(currentLen, jmpDest);
}
- }
+ }
}
atStart = FALSE;
break;
-
+
case URX_STRING:
{
loc++;
- int32_t stringLenOp = fRXPat->fCompiledPat->elementAti(loc);
+ int32_t stringLenOp = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
int32_t stringLen = URX_VAL(stringLenOp);
U_ASSERT(URX_TYPE(stringLenOp) == URX_STRING_LEN);
U_ASSERT(stringLenOp >= 2);
fRXPat->fInitialStringIdx = stringStartIdx;
fRXPat->fInitialStringLen = stringLen;
}
-
- currentLen += stringLen;
+
+ currentLen = safeIncrement(currentLen, stringLen);
atStart = FALSE;
}
break;
// attempt a string search for possible match positions. But we
// do update the set of possible starting characters.
loc++;
- int32_t stringLenOp = fRXPat->fCompiledPat->elementAti(loc);
+ int32_t stringLenOp = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
int32_t stringLen = URX_VAL(stringLenOp);
U_ASSERT(URX_TYPE(stringLenOp) == URX_STRING_LEN);
U_ASSERT(stringLenOp >= 2);
// characters for this pattern.
int32_t stringStartIdx = URX_VAL(op);
UChar32 c = fRXPat->fLiteralText.char32At(stringStartIdx);
- UnicodeSet s(c, c);
- s.closeOver(USET_CASE);
+ UnicodeSet s;
+ findCaseInsensitiveStarters(c, &s);
fRXPat->fInitialChars->addAll(s);
numInitialStrings += 2; // Matching on an initial string not possible.
}
- currentLen += stringLen;
+ currentLen = safeIncrement(currentLen, stringLen);
atStart = FALSE;
}
break;
{
// Loop Init Ops. These don't change the min length, but they are 4 word ops
// so location must be updated accordingly.
- // Loop Init Ops.
+ // Loop Init Ops.
// If the min loop count == 0
// move loc forwards to the end of the loop, skipping over the body.
- // If the min count is > 0,
+ // If the min count is > 0,
// continue normal processing of the body of the loop.
- int32_t loopEndLoc = fRXPat->fCompiledPat->elementAti(loc+1);
+ int32_t loopEndLoc = (int32_t)fRXPat->fCompiledPat->elementAti(loc+1);
loopEndLoc = URX_VAL(loopEndLoc);
- int32_t minLoopCount = fRXPat->fCompiledPat->elementAti(loc+2);
+ int32_t minLoopCount = (int32_t)fRXPat->fCompiledPat->elementAti(loc+2);
if (minLoopCount == 0) {
- loc = loopEndLoc;
- } else {
- loc+=3; // Skips over operands of CTR_INIT
+ // Min Loop Count of 0, treat like a forward branch and
+ // move the current minimum length up to the target
+ // (end of loop) location.
+ U_ASSERT(loopEndLoc <= end+1);
+ if (forwardedLength.elementAti(loopEndLoc) > currentLen) {
+ forwardedLength.setElementAt(currentLen, loopEndLoc);
+ }
}
+ loc+=3; // Skips over operands of CTR_INIT
}
atStart = FALSE;
break;
case URX_CTR_LOOP:
case URX_CTR_LOOP_NG:
- // Loop ops.
+ // Loop ops.
// The jump is conditional, backwards only.
atStart = FALSE;
break;
-
+
case URX_LOOP_C:
// More loop ops. These state-save to themselves.
// don't change the minimum match
atStart = FALSE;
break;
-
+
case URX_LA_START:
case URX_LB_START:
{
// Look-around. Scan forward until the matching look-ahead end,
// without processing the look-around block. This is overly pessimistic.
- int32_t depth = 0;
+
+ // Keep track of the nesting depth of look-around blocks. Boilerplate code for
+ // lookahead contains two LA_END instructions, so count goes up by two
+ // for each LA_START.
+ int32_t depth = (opType == URX_LA_START? 2: 1);
for (;;) {
loc++;
- op = fRXPat->fCompiledPat->elementAti(loc);
- if (URX_TYPE(op) == URX_LA_START || URX_TYPE(op) == URX_LB_START) {
+ op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
+ if (URX_TYPE(op) == URX_LA_START) {
+ depth+=2;
+ }
+ if (URX_TYPE(op) == URX_LB_START) {
depth++;
}
if (URX_TYPE(op) == URX_LA_END || URX_TYPE(op)==URX_LBN_END) {
+ depth--;
if (depth == 0) {
break;
}
- depth--;
}
if (URX_TYPE(op) == URX_STATE_SAVE) {
// Need this because neg lookahead blocks will FAIL to outside
}
}
}
- U_ASSERT(loc <= end);
+ U_ASSERT(loc <= end);
}
}
break;
-
+
case URX_LA_END:
case URX_LB_CONT:
case URX_LB_END:
case URX_LBN_CONT:
case URX_LBN_END:
- U_ASSERT(FALSE); // Shouldn't get here. These ops should be
+ UPRV_UNREACHABLE; // Shouldn't get here. These ops should be
// consumed by the scan in URX_LA_START and LB_START
-
- break;
-
default:
- U_ASSERT(FALSE);
+ UPRV_UNREACHABLE;
}
-
+
}
fRXPat->fStartType = START_STRING;
fRXPat->fInitialChar = c;
} else if (fRXPat->fStartType == START_LINE) {
- // Match at start of line in Mulit-Line mode.
+ // Match at start of line in Multi-Line mode.
// Nothing to do here; everything is already set.
} else if (fRXPat->fMinMatchLen == 0) {
// Zero length match possible. We could start anywhere.
-//----------------------------------------------------------------------------------------
+//------------------------------------------------------------------------------
//
// minMatchLength Calculate the length of the shortest string that could
-// match the specified pattern.
+// match the specified pattern.
// Length is in 16 bit code units, not code points.
//
// The calculated length may not be exact. The returned
// start and end are the range of p-code operations to be
// examined. The endpoints are included in the range.
//
-//----------------------------------------------------------------------------------------
+//------------------------------------------------------------------------------
int32_t RegexCompile::minMatchLength(int32_t start, int32_t end) {
if (U_FAILURE(*fStatus)) {
return 0;
}
for (loc = start; loc<=end; loc++) {
- op = fRXPat->fCompiledPat->elementAti(loc);
+ op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
opType = URX_TYPE(op);
// The loop is advancing linearly through the pattern.
// If the op we are now at was the destination of a branch in the pattern,
// and that path has a shorter minimum length than the current accumulated value,
// replace the current accumulated value.
- U_ASSERT(currentLen>=0 && currentLen < INT32_MAX);
+ // U_ASSERT(currentLen>=0 && currentLen < INT32_MAX); // MinLength == INT32_MAX for some
+ // no-match-possible cases.
if (forwardedLength.elementAti(loc) < currentLen) {
currentLen = forwardedLength.elementAti(loc);
U_ASSERT(currentLen>=0 && currentLen < INT32_MAX);
case URX_START_CAPTURE:
case URX_END_CAPTURE:
case URX_BACKSLASH_B:
+ case URX_BACKSLASH_BU:
case URX_BACKSLASH_G:
case URX_BACKSLASH_Z:
case URX_CARET:
case URX_DOLLAR:
+ case URX_DOLLAR_M:
+ case URX_DOLLAR_D:
+ case URX_DOLLAR_MD:
case URX_RELOC_OPRND:
case URX_STO_INP_LOC:
- case URX_DOLLAR_M:
case URX_CARET_M:
- case URX_BACKTRACK:
+ case URX_CARET_M_UNIX:
case URX_BACKREF: // BackRef. Must assume that it might be a zero length match
case URX_BACKREF_I:
case URX_JMP_SAV:
case URX_JMP_SAV_X:
break;
-
+
// Ops that match a minimum of one character (one or two 16 bit code units.)
- //
+ //
case URX_ONECHAR:
case URX_STATIC_SETREF:
case URX_STAT_SETREF_N:
case URX_SETREF:
case URX_BACKSLASH_D:
+ case URX_BACKSLASH_H:
+ case URX_BACKSLASH_R:
+ case URX_BACKSLASH_V:
case URX_ONECHAR_I:
case URX_BACKSLASH_X: // Grahpeme Cluster. Minimum is 1, max unbounded.
case URX_DOTANY_ALL: // . matches one or two.
case URX_DOTANY:
- case URX_DOTANY_PL:
- case URX_DOTANY_ALL_PL:
- currentLen++;
+ case URX_DOTANY_UNIX:
+ currentLen = safeIncrement(currentLen, 1);
break;
case URX_JMPX:
loc++; // URX_JMPX has an extra operand, ignored here,
// otherwise processed identically to URX_JMP.
+ U_FALLTHROUGH;
case URX_JMP:
{
int32_t jmpDest = URX_VAL(op);
}
break;
- case URX_FAIL:
+ case URX_BACKTRACK:
{
- // Fails are kind of like a branch, except that the min length was
+ // Back-tracks are kind of like a branch, except that the min length was
// propagated already, by the state save.
currentLen = forwardedLength.elementAti(loc+1);
- U_ASSERT(currentLen>=0 && currentLen < INT32_MAX);
}
break;
if (currentLen < forwardedLength.elementAti(jmpDest)) {
forwardedLength.setElementAt(currentLen, jmpDest);
}
- }
+ }
}
break;
-
+
case URX_STRING:
- case URX_STRING_I:
{
loc++;
- int32_t stringLenOp = fRXPat->fCompiledPat->elementAti(loc);
- currentLen += URX_VAL(stringLenOp);
+ int32_t stringLenOp = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
+ currentLen = safeIncrement(currentLen, URX_VAL(stringLenOp));
}
break;
+ case URX_STRING_I:
+ {
+ loc++;
+ // TODO: with full case folding, matching input text may be shorter than
+ // the string we have here. More smarts could put some bounds on it.
+ // Assume a min length of one for now. A min length of zero causes
+ // optimization failures for a pattern like "string"+
+ // currentLen += URX_VAL(stringLenOp);
+ currentLen = safeIncrement(currentLen, 1);
+ }
+ break;
+
case URX_CTR_INIT:
case URX_CTR_INIT_NG:
{
- // Loop Init Ops.
+ // Loop Init Ops.
// If the min loop count == 0
// move loc forwards to the end of the loop, skipping over the body.
- // If the min count is > 0,
+ // If the min count is > 0,
// continue normal processing of the body of the loop.
- int32_t loopEndLoc = fRXPat->fCompiledPat->elementAti(loc+1);
+ int32_t loopEndLoc = (int32_t)fRXPat->fCompiledPat->elementAti(loc+1);
loopEndLoc = URX_VAL(loopEndLoc);
- int32_t minLoopCount = fRXPat->fCompiledPat->elementAti(loc+2);
+ int32_t minLoopCount = (int32_t)fRXPat->fCompiledPat->elementAti(loc+2);
if (minLoopCount == 0) {
loc = loopEndLoc;
} else {
case URX_CTR_LOOP:
case URX_CTR_LOOP_NG:
- // Loop ops.
+ // Loop ops.
// The jump is conditional, backwards only.
break;
-
+
case URX_LOOP_SR_I:
case URX_LOOP_DOT_I:
case URX_LOOP_C:
// More loop ops. These state-save to themselves.
// don't change the minimum match - could match nothing at all.
break;
-
+
case URX_LA_START:
case URX_LB_START:
{
// Look-around. Scan forward until the matching look-ahead end,
- // without processing the look-around block. This is overly pessimistic.
+ // without processing the look-around block. This is overly pessimistic for look-ahead,
+ // it assumes that the look-ahead match might be zero-length.
// TODO: Positive lookahead could recursively do the block, then continue
- // with the longer of the block or the value coming in.
- int32_t depth = 0;
+ // with the longer of the block or the value coming in. Ticket 6060
+ int32_t depth = (opType == URX_LA_START? 2: 1);
for (;;) {
loc++;
- op = fRXPat->fCompiledPat->elementAti(loc);
- if (URX_TYPE(op) == URX_LA_START || URX_TYPE(op) == URX_LB_START) {
+ op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
+ if (URX_TYPE(op) == URX_LA_START) {
+ // The boilerplate for look-ahead includes two LA_END insturctions,
+ // Depth will be decremented by each one when it is seen.
+ depth += 2;
+ }
+ if (URX_TYPE(op) == URX_LB_START) {
depth++;
}
- if (URX_TYPE(op) == URX_LA_END || URX_TYPE(op)==URX_LBN_END) {
+ if (URX_TYPE(op) == URX_LA_END) {
+ depth--;
if (depth == 0) {
break;
}
+ }
+ if (URX_TYPE(op)==URX_LBN_END) {
depth--;
+ if (depth == 0) {
+ break;
+ }
}
if (URX_TYPE(op) == URX_STATE_SAVE) {
// Need this because neg lookahead blocks will FAIL to outside
}
}
}
-
- U_ASSERT(loc <= end);
+ U_ASSERT(loc <= end);
}
}
break;
-
+
case URX_LA_END:
case URX_LB_CONT:
case URX_LB_END:
// Only come here if the matching URX_LA_START or URX_LB_START was not in the
// range being sized, which happens when measuring size of look-behind blocks.
break;
-
+
default:
- U_ASSERT(FALSE);
+ UPRV_UNREACHABLE;
}
-
+
}
// We have finished walking through the ops. Check whether some forward jump
currentLen = forwardedLength.elementAti(end+1);
U_ASSERT(currentLen>=0 && currentLen < INT32_MAX);
}
-
+
return currentLen;
}
-
-
-//----------------------------------------------------------------------------------------
+//------------------------------------------------------------------------------
//
// maxMatchLength Calculate the length of the longest string that could
-// match the specified pattern.
+// match the specified pattern.
// Length is in 16 bit code units, not code points.
//
// The calculated length may not be exact. The returned
// value may be longer than the actual maximum; it must
// never be shorter.
//
-//----------------------------------------------------------------------------------------
+//------------------------------------------------------------------------------
int32_t RegexCompile::maxMatchLength(int32_t start, int32_t end) {
if (U_FAILURE(*fStatus)) {
return 0;
U_ASSERT(start <= end);
U_ASSERT(end < fRXPat->fCompiledPat->size());
-
int32_t loc;
int32_t op;
int32_t opType;
}
for (loc = start; loc<=end; loc++) {
- op = fRXPat->fCompiledPat->elementAti(loc);
+ op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
opType = URX_TYPE(op);
// The loop is advancing linearly through the pattern.
case URX_START_CAPTURE:
case URX_END_CAPTURE:
case URX_BACKSLASH_B:
+ case URX_BACKSLASH_BU:
case URX_BACKSLASH_G:
case URX_BACKSLASH_Z:
case URX_CARET:
case URX_DOLLAR:
+ case URX_DOLLAR_M:
+ case URX_DOLLAR_D:
+ case URX_DOLLAR_MD:
case URX_RELOC_OPRND:
case URX_STO_INP_LOC:
- case URX_DOLLAR_M:
case URX_CARET_M:
- case URX_BACKTRACK:
+ case URX_CARET_M_UNIX:
case URX_STO_SP: // Setup for atomic or possessive blocks. Doesn't change what can match.
case URX_LD_SP:
case URX_LBN_CONT:
case URX_LBN_END:
break;
-
+
// Ops that increase that cause an unbounded increase in the length
// of a matched string, or that increase it a hard to characterize way.
case URX_BACKREF: // BackRef. Must assume that it might be a zero length match
case URX_BACKREF_I:
case URX_BACKSLASH_X: // Grahpeme Cluster. Minimum is 1, max unbounded.
- case URX_DOTANY_PL:
- case URX_DOTANY_ALL_PL:
currentLen = INT32_MAX;
break;
// Ops that match a max of one character (possibly two 16 bit code units.)
- //
+ //
case URX_STATIC_SETREF:
case URX_STAT_SETREF_N:
case URX_SETREF:
case URX_BACKSLASH_D:
+ case URX_BACKSLASH_H:
+ case URX_BACKSLASH_R:
+ case URX_BACKSLASH_V:
case URX_ONECHAR_I:
- case URX_DOTANY_ALL:
+ case URX_DOTANY_ALL:
case URX_DOTANY:
- currentLen+=2;
+ case URX_DOTANY_UNIX:
+ currentLen = safeIncrement(currentLen, 2);
break;
// Single literal character. Increase current max length by one or two,
// depending on whether the char is in the supplementary range.
case URX_ONECHAR:
- currentLen++;
+ currentLen = safeIncrement(currentLen, 1);
if (URX_VAL(op) > 0x10000) {
- currentLen++;
+ currentLen = safeIncrement(currentLen, 1);
}
break;
- // Jumps.
+ // Jumps.
//
case URX_JMP:
case URX_JMPX:
}
break;
- case URX_FAIL:
- // Fails are kind of like a branch, except that the max length was
+ case URX_BACKTRACK:
+ // back-tracks are kind of like a branch, except that the max length was
// propagated already, by the state save.
currentLen = forwardedLength.elementAti(loc+1);
break;
}
}
break;
-
+
case URX_STRING:
+ {
+ loc++;
+ int32_t stringLenOp = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
+ currentLen = safeIncrement(currentLen, URX_VAL(stringLenOp));
+ break;
+ }
+
case URX_STRING_I:
+ // TODO: This code assumes that any user string that matches will be no longer
+ // than our compiled string, with case insensitive matching.
+ // Our compiled string has been case-folded already.
+ //
+ // Any matching user string will have no more code points than our
+ // compiled (folded) string. Folding may add code points, but
+ // not remove them.
+ //
+ // There is a potential problem if a supplemental code point
+ // case-folds to a BMP code point. In this case our compiled string
+ // could be shorter (in code units) than a matching user string.
+ //
+ // At this time (Unicode 6.1) there are no such characters, and this case
+ // is not being handled. A test, intltest regex/Bug9283, will fail if
+ // any problematic characters are added to Unicode.
+ //
+ // If this happens, we can make a set of the BMP chars that the
+ // troublesome supplementals fold to, scan our string, and bump the
+ // currentLen one extra for each that is found.
+ //
{
loc++;
- int32_t stringLenOp = fRXPat->fCompiledPat->elementAti(loc);
- currentLen += URX_VAL(stringLenOp);
+ int32_t stringLenOp = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
+ currentLen = safeIncrement(currentLen, URX_VAL(stringLenOp));
}
break;
-
case URX_CTR_INIT:
case URX_CTR_INIT_NG:
+ // For Loops, recursively call this function on the pattern for the loop body,
+ // then multiply the result by the maximum loop count.
+ {
+ int32_t loopEndLoc = URX_VAL(fRXPat->fCompiledPat->elementAti(loc+1));
+ if (loopEndLoc == loc+4) {
+ // Loop has an empty body. No affect on max match length.
+ // Continue processing with code after the loop end.
+ loc = loopEndLoc;
+ break;
+ }
+
+ int32_t maxLoopCount = static_cast<int32_t>(fRXPat->fCompiledPat->elementAti(loc+3));
+ if (maxLoopCount == -1) {
+ // Unbounded Loop. No upper bound on match length.
+ currentLen = INT32_MAX;
+ break;
+ }
+
+ U_ASSERT(loopEndLoc >= loc+4);
+ int64_t blockLen = maxMatchLength(loc+4, loopEndLoc-1); // Recursive call.
+ int64_t updatedLen = (int64_t)currentLen + blockLen * maxLoopCount;
+ if (updatedLen >= INT32_MAX) {
+ currentLen = INT32_MAX;
+ break;
+ }
+ currentLen = (int32_t)updatedLen;
+ loc = loopEndLoc;
+ break;
+ }
+
case URX_CTR_LOOP:
case URX_CTR_LOOP_NG:
+ // These opcodes will be skipped over by code for URX_CTR_INIT.
+ // We shouldn't encounter them here.
+ UPRV_UNREACHABLE;
+
case URX_LOOP_SR_I:
case URX_LOOP_DOT_I:
case URX_LOOP_C:
// For anything to do with loops, make the match length unbounded.
- // Note: INIT instructions are multi-word. Can ignore because
- // INT32_MAX length will stop the per-instruction loop.
currentLen = INT32_MAX;
break;
-
-
+
+
case URX_LA_START:
case URX_LA_END:
// it were normal pattern. Gives a too-long match length,
// but good enough for now.
break;
-
+
// End of look-ahead ops should always be consumed by the processing at
// the URX_LA_START op.
- U_ASSERT(FALSE);
- break;
-
+ // UPRV_UNREACHABLE;
+
case URX_LB_START:
{
// Look-behind. Scan forward until the matching look-around end,
- // without processing the look-behind block.
- int32_t depth = 0;
- for (;;) {
- loc++;
- op = fRXPat->fCompiledPat->elementAti(loc);
- if (URX_TYPE(op) == URX_LA_START || URX_TYPE(op) == URX_LB_START) {
- depth++;
- }
- if (URX_TYPE(op) == URX_LA_END || URX_TYPE(op)==URX_LBN_END) {
- if (depth == 0) {
- break;
- }
- depth--;
+ // without processing the look-behind block.
+ int32_t dataLoc = URX_VAL(op);
+ for (loc = loc + 1; loc < end; ++loc) {
+ op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
+ int32_t opType = URX_TYPE(op);
+ if ((opType == URX_LA_END || opType == URX_LBN_END) && (URX_VAL(op) == dataLoc)) {
+ break;
}
- U_ASSERT(loc < end);
}
+ U_ASSERT(loc < end);
}
break;
default:
- U_ASSERT(FALSE);
+ UPRV_UNREACHABLE;
}
-
+
if (currentLen == INT32_MAX) {
// The maximum length is unbounded.
// Stop further processing of the pattern.
break;
}
-
+
}
return currentLen;
-
+
}
-//----------------------------------------------------------------------------------------
+//------------------------------------------------------------------------------
//
// stripNOPs Remove any NOP operations from the compiled pattern code.
// Extra NOPs are inserted for some constructs during the initial
// code generation to provide locations that may be patched later.
// Many end up unneeded, and are removed by this function.
//
-//----------------------------------------------------------------------------------------
+// In order to minimize the number of passes through the pattern,
+// back-reference fixup is also performed here (adjusting
+// back-reference operands to point to the correct frame offsets).
+//
+//------------------------------------------------------------------------------
void RegexCompile::stripNOPs() {
if (U_FAILURE(*fStatus)) {
int32_t d = 0;
for (loc=0; loc<end; loc++) {
deltas.addElement(d, *fStatus);
- int32_t op = fRXPat->fCompiledPat->elementAti(loc);
+ int32_t op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
if (URX_TYPE(op) == URX_NOP) {
d++;
}
}
+ UnicodeString caseStringBuffer;
+
// Make a second pass over the code, removing the NOPs by moving following
// code up, and patching operands that refer to code locations that
// are being moved. The array of offsets from the first step is used
int32_t src;
int32_t dst = 0;
for (src=0; src<end; src++) {
- int32_t op = fRXPat->fCompiledPat->elementAti(src);
+ int32_t op = (int32_t)fRXPat->fCompiledPat->elementAti(src);
int32_t opType = URX_TYPE(op);
switch (opType) {
case URX_NOP:
int32_t operandAddress = URX_VAL(op);
U_ASSERT(operandAddress>=0 && operandAddress<deltas.size());
int32_t fixedOperandAddress = operandAddress - deltas.elementAti(operandAddress);
- op = URX_BUILD(opType, fixedOperandAddress);
+ op = buildOp(opType, fixedOperandAddress);
fRXPat->fCompiledPat->setElementAt(op, dst);
dst++;
break;
}
+ case URX_BACKREF:
+ case URX_BACKREF_I:
+ {
+ int32_t where = URX_VAL(op);
+ if (where > fRXPat->fGroupMap->size()) {
+ error(U_REGEX_INVALID_BACK_REF);
+ break;
+ }
+ where = fRXPat->fGroupMap->elementAti(where-1);
+ op = buildOp(opType, where);
+ fRXPat->fCompiledPat->setElementAt(op, dst);
+ dst++;
+
+ fRXPat->fNeedsAltInput = TRUE;
+ break;
+ }
case URX_RESERVED_OP:
case URX_RESERVED_OP_N:
case URX_BACKTRACK:
case URX_DOTANY:
case URX_FAIL:
case URX_BACKSLASH_B:
+ case URX_BACKSLASH_BU:
case URX_BACKSLASH_G:
case URX_BACKSLASH_X:
case URX_BACKSLASH_Z:
case URX_DOTANY_ALL:
- case URX_DOTANY_ALL_PL:
- case URX_DOTANY_PL:
case URX_BACKSLASH_D:
case URX_CARET:
case URX_DOLLAR:
case URX_CTR_INIT:
case URX_CTR_INIT_NG:
+ case URX_DOTANY_UNIX:
case URX_STO_SP:
case URX_LD_SP:
- case URX_BACKREF:
case URX_STO_INP_LOC:
case URX_LA_START:
case URX_LA_END:
case URX_ONECHAR_I:
case URX_STRING_I:
- case URX_BACKREF_I:
case URX_DOLLAR_M:
case URX_CARET_M:
+ case URX_CARET_M_UNIX:
case URX_LB_START:
case URX_LB_CONT:
case URX_LB_END:
case URX_LOOP_SR_I:
case URX_LOOP_DOT_I:
case URX_LOOP_C:
+ case URX_DOLLAR_D:
+ case URX_DOLLAR_MD:
+ case URX_BACKSLASH_H:
+ case URX_BACKSLASH_R:
+ case URX_BACKSLASH_V:
// These instructions are unaltered by the relocation.
fRXPat->fCompiledPat->setElementAt(op, dst);
dst++;
default:
// Some op is unaccounted for.
- U_ASSERT(FALSE);
- error(U_REGEX_INTERNAL_ERROR);
+ UPRV_UNREACHABLE;
}
}
-//----------------------------------------------------------------------------------------
-//
-// OptDotStar Optimize patterns that end with a '.*' or '.+' to
-// just advance the input to the end.
-//
-// Transform this compiled sequence
-// [DOT_ANY | DOT_ANY_ALL]
-// JMP_SAV to previous instruction
-// [NOP | END_CAPTURE | DOLLAR | BACKSLASH_Z]*
-// END
-//
-// To
-// NOP
-// [DOT_ANY_PL | DOT_ANY_ALL_PL]
-// [NOP | END_CAPTURE | DOLLAR | BACKSLASH_Z]*
-// END
-//
-//----------------------------------------------------------------------------------------
-void RegexCompile::OptDotStar() {
- // Scan backwards in the pattern, looking for a JMP_SAV near the end.
- int32_t jmpLoc;
- int32_t op = 0;
- int32_t opType;
- for (jmpLoc=fRXPat->fCompiledPat->size(); jmpLoc--;) {
- U_ASSERT(jmpLoc>0);
- op = fRXPat->fCompiledPat->elementAti(jmpLoc);
- opType = URX_TYPE(op);
- switch(opType) {
-
-
- case URX_END:
- case URX_NOP:
- case URX_END_CAPTURE:
- case URX_DOLLAR_M:
- case URX_DOLLAR:
- case URX_BACKSLASH_Z:
- // These ops may follow the JMP_SAV without preventing us from
- // doing this optimization.
- continue;
-
- case URX_JMP_SAV:
- // Got a trailing JMP_SAV that's a candidate for optimization.
- break;
-
- default:
- // This optimization not possible.
- return;
- }
- break; // from the for loop.
- }
-
- // We found in URX_JMP_SAV near the end that is a candidate for optimizing.
- // Is the target address the previous instruction?
- // Is the previous instruction a flavor of URX_DOTANY
- int32_t loopTopLoc = URX_VAL(op);
- if (loopTopLoc != jmpLoc-1) {
- return;
- }
- int32_t newOp;
- int32_t oldOp = fRXPat->fCompiledPat->elementAti(loopTopLoc);
- int32_t oldOpType = opType = URX_TYPE(oldOp);
- if (oldOpType == URX_DOTANY) {
- newOp = URX_BUILD(URX_DOTANY_PL, 0);
- }
- else if (oldOpType == URX_DOTANY_ALL) {
- newOp = URX_BUILD(URX_DOTANY_ALL_PL, 0);
- } else {
- return; // Sequence we were looking for isn't there.
- }
-
- // Substitute the new instructions into the pattern.
- // The NOP will be removed in a later optimization step.
- fRXPat->fCompiledPat->setElementAt(URX_BUILD(URX_NOP, 0), loopTopLoc);
- fRXPat->fCompiledPat->setElementAt(newOp, jmpLoc);
-}
-
-
-//----------------------------------------------------------------------------------------
+//------------------------------------------------------------------------------
//
// Error Report a rule parse error.
// Only report it if no previous error has been recorded.
//
-//----------------------------------------------------------------------------------------
+//------------------------------------------------------------------------------
void RegexCompile::error(UErrorCode e) {
- if (U_SUCCESS(*fStatus)) {
+ if (U_SUCCESS(*fStatus) || e == U_MEMORY_ALLOCATION_ERROR) {
*fStatus = e;
- fParseErr->line = fLineNum;
- fParseErr->offset = fCharNum;
+ // Hmm. fParseErr (UParseError) line & offset fields are int32_t in public
+ // API (see common/unicode/parseerr.h), while fLineNum and fCharNum are
+ // int64_t. If the values of the latter are out of range for the former,
+ // set them to the appropriate "field not supported" values.
+ if (fLineNum > 0x7FFFFFFF) {
+ fParseErr->line = 0;
+ fParseErr->offset = -1;
+ } else if (fCharNum > 0x7FFFFFFF) {
+ fParseErr->line = (int32_t)fLineNum;
+ fParseErr->offset = -1;
+ } else {
+ fParseErr->line = (int32_t)fLineNum;
+ fParseErr->offset = (int32_t)fCharNum;
+ }
+
+ UErrorCode status = U_ZERO_ERROR; // throwaway status for extracting context
// Fill in the context.
// Note: extractBetween() pins supplied indicies to the string bounds.
uprv_memset(fParseErr->preContext, 0, sizeof(fParseErr->preContext));
uprv_memset(fParseErr->postContext, 0, sizeof(fParseErr->postContext));
- fRXPat->fPattern.extractBetween(fScanIndex-U_PARSE_CONTEXT_LEN+1, fScanIndex,
- fParseErr->preContext, 0);
- fRXPat->fPattern.extractBetween(fScanIndex, fScanIndex+U_PARSE_CONTEXT_LEN-1,
- fParseErr->postContext, 0);
+ utext_extract(fRXPat->fPattern, fScanIndex-U_PARSE_CONTEXT_LEN+1, fScanIndex, fParseErr->preContext, U_PARSE_CONTEXT_LEN, &status);
+ utext_extract(fRXPat->fPattern, fScanIndex, fScanIndex+U_PARSE_CONTEXT_LEN-1, fParseErr->postContext, U_PARSE_CONTEXT_LEN, &status);
}
}
// (Think EBCDIC).
//
static const UChar chCR = 0x0d; // New lines, for terminating comments.
-static const UChar chLF = 0x0a;
-static const UChar chNEL = 0x85; // NEL newline variant
-static const UChar chLS = 0x2028; // Unicode Line Separator
-static const UChar chApos = 0x27; // single quote, for quoted chars.
+static const UChar chLF = 0x0a; // Line Feed
static const UChar chPound = 0x23; // '#', introduces a comment.
+static const UChar chDigit0 = 0x30; // '0'
+static const UChar chDigit7 = 0x37; // '9'
+static const UChar chColon = 0x3A; // ':'
static const UChar chE = 0x45; // 'E'
+static const UChar chQ = 0x51; // 'Q'
+//static const UChar chN = 0x4E; // 'N'
+static const UChar chP = 0x50; // 'P'
static const UChar chBackSlash = 0x5c; // '\' introduces a char escape
-static const UChar chLParen = 0x28;
-static const UChar chRParen = 0x29;
-static const UChar chLBracket = 0x5b;
-static const UChar chRBracket = 0x5d;
-static const UChar chRBrace = 0x7d;
-static const UChar chUpperN = 0x4E;
+//static const UChar chLBracket = 0x5b; // '['
+static const UChar chRBracket = 0x5d; // ']'
+static const UChar chUp = 0x5e; // '^'
static const UChar chLowerP = 0x70;
-static const UChar chUpperP = 0x50;
+static const UChar chLBrace = 0x7b; // '{'
+static const UChar chRBrace = 0x7d; // '}'
+static const UChar chNEL = 0x85; // NEL newline variant
+static const UChar chLS = 0x2028; // Unicode Line Separator
-//----------------------------------------------------------------------------------------
+//------------------------------------------------------------------------------
//
// nextCharLL Low Level Next Char from the regex pattern.
// Get a char from the string, keep track of input position
// for error reporting.
//
-//----------------------------------------------------------------------------------------
+//------------------------------------------------------------------------------
UChar32 RegexCompile::nextCharLL() {
UChar32 ch;
- UnicodeString &pattern = fRXPat->fPattern;
if (fPeekChar != -1) {
ch = fPeekChar;
fPeekChar = -1;
return ch;
}
- if (fPatternLength==0 || fNextIndex >= fPatternLength) {
- return (UChar32)-1;
+
+ // assume we're already in the right place
+ ch = UTEXT_NEXT32(fRXPat->fPattern);
+ if (ch == U_SENTINEL) {
+ return ch;
}
- ch = pattern.char32At(fNextIndex);
- fNextIndex = pattern.moveIndex32(fNextIndex, 1);
if (ch == chCR ||
ch == chNEL ||
ch == chLS ||
- ch == chLF && fLastChar != chCR) {
+ (ch == chLF && fLastChar != chCR)) {
// Character is starting a new line. Bump up the line number, and
// reset the column to 0.
fLineNum++;
fCharNum=0;
- if (fQuoteMode) {
- error(U_REGEX_RULE_SYNTAX);
- fQuoteMode = FALSE;
- }
}
else {
// Character is not starting a new line. Except in the case of a
return ch;
}
-//---------------------------------------------------------------------------------
+//------------------------------------------------------------------------------
//
// peekCharLL Low Level Character Scanning, sneak a peek at the next
// character without actually getting it.
//
-//---------------------------------------------------------------------------------
+//------------------------------------------------------------------------------
UChar32 RegexCompile::peekCharLL() {
if (fPeekChar == -1) {
fPeekChar = nextCharLL();
}
-//---------------------------------------------------------------------------------
+//------------------------------------------------------------------------------
//
// nextChar for pattern scanning. At this level, we handle stripping
// out comments and processing some backslash character escapes.
// The rest of the pattern grammar is handled at the next level up.
//
-//---------------------------------------------------------------------------------
+//------------------------------------------------------------------------------
void RegexCompile::nextChar(RegexPatternChar &c) {
-
- fScanIndex = fNextIndex;
+ tailRecursion:
+ fScanIndex = UTEXT_GETNATIVEINDEX(fRXPat->fPattern);
c.fChar = nextCharLL();
c.fQuoted = FALSE;
if (fQuoteMode) {
c.fQuoted = TRUE;
- if ((c.fChar==chBackSlash && peekCharLL()==chE) || c.fChar == (UChar32)-1) {
+ if ((c.fChar==chBackSlash && peekCharLL()==chE && ((fModeFlags & UREGEX_LITERAL) == 0)) ||
+ c.fChar == (UChar32)-1) {
fQuoteMode = FALSE; // Exit quote mode,
- nextCharLL(); // discard the E
- nextChar(c); // recurse to get the real next char
+ nextCharLL(); // discard the E
+ // nextChar(c); // recurse to get the real next char
+ goto tailRecursion; // Note: fuzz testing produced testcases that
+ // resulted in stack overflow here.
}
}
else if (fInBackslashQuote) {
if (fModeFlags & UREGEX_COMMENTS) {
//
// We are in free-spacing and comments mode.
- // Scan through any white space and comments, until we
+ // Scan through any white space and comments, until we
// reach a significant character or the end of inut.
for (;;) {
if (c.fChar == (UChar32)-1) {
}
}
}
- if (uprv_isRuleWhiteSpace(c.fChar) == FALSE) {
+ // TODO: check what Java & Perl do with non-ASCII white spaces. Ticket 6061.
+ if (PatternProps::isWhiteSpace(c.fChar) == FALSE) {
break;
}
c.fChar = nextCharLL();
//
// check for backslash escaped characters.
//
- int32_t startX = fNextIndex; // start and end positions of the
- int32_t endX = fNextIndex; // sequence following the '\'
if (c.fChar == chBackSlash) {
- if (RegexStaticSets::gStaticSets->fUnescapeCharSet->contains(peekCharLL())) {
+ int64_t pos = UTEXT_GETNATIVEINDEX(fRXPat->fPattern);
+ if (RegexStaticSets::gStaticSets->fUnescapeCharSet.contains(peekCharLL())) {
//
// A '\' sequence that is handled by ICU's standard unescapeAt function.
// Includes \uxxxx, \n, \r, many others.
//
nextCharLL(); // get & discard the peeked char.
c.fQuoted = TRUE;
- c.fChar = fRXPat->fPattern.unescapeAt(endX);
- if (startX == endX) {
- error(U_REGEX_BAD_ESCAPE_SEQUENCE);
+
+ if (UTEXT_FULL_TEXT_IN_CHUNK(fRXPat->fPattern, fPatternLength)) {
+ int32_t endIndex = (int32_t)pos;
+ c.fChar = u_unescapeAt(uregex_ucstr_unescape_charAt, &endIndex, (int32_t)fPatternLength, (void *)fRXPat->fPattern->chunkContents);
+
+ if (endIndex == pos) {
+ error(U_REGEX_BAD_ESCAPE_SEQUENCE);
+ }
+ fCharNum += endIndex - pos;
+ UTEXT_SETNATIVEINDEX(fRXPat->fPattern, endIndex);
+ } else {
+ int32_t offset = 0;
+ struct URegexUTextUnescapeCharContext context = U_REGEX_UTEXT_UNESCAPE_CONTEXT(fRXPat->fPattern);
+
+ UTEXT_SETNATIVEINDEX(fRXPat->fPattern, pos);
+ c.fChar = u_unescapeAt(uregex_utext_unescape_charAt, &offset, INT32_MAX, &context);
+
+ if (offset == 0) {
+ error(U_REGEX_BAD_ESCAPE_SEQUENCE);
+ } else if (context.lastOffset == offset) {
+ UTEXT_PREVIOUS32(fRXPat->fPattern);
+ } else if (context.lastOffset != offset-1) {
+ utext_moveIndex32(fRXPat->fPattern, offset - context.lastOffset - 1);
+ }
+ fCharNum += offset;
}
- fCharNum += endX - startX;
- fNextIndex = endX;
+ }
+ else if (peekCharLL() == chDigit0) {
+ // Octal Escape, using Java Regexp Conventions
+ // which are \0 followed by 1-3 octal digits.
+ // Different from ICU Unescape handling of Octal, which does not
+ // require the leading 0.
+ // Java also has the convention of only consuming 2 octal digits if
+ // the three digit number would be > 0xff
+ //
+ c.fChar = 0;
+ nextCharLL(); // Consume the initial 0.
+ int index;
+ for (index=0; index<3; index++) {
+ int32_t ch = peekCharLL();
+ if (ch<chDigit0 || ch>chDigit7) {
+ if (index==0) {
+ // \0 is not followed by any octal digits.
+ error(U_REGEX_BAD_ESCAPE_SEQUENCE);
+ }
+ break;
+ }
+ c.fChar <<= 3;
+ c.fChar += ch&7;
+ if (c.fChar <= 255) {
+ nextCharLL();
+ } else {
+ // The last digit made the number too big. Forget we saw it.
+ c.fChar >>= 3;
+ }
+ }
+ c.fQuoted = TRUE;
+ }
+ else if (peekCharLL() == chQ) {
+ // "\Q" enter quote mode, which will continue until "\E"
+ fQuoteMode = TRUE;
+ nextCharLL(); // discard the 'Q'.
+ // nextChar(c); // recurse to get the real next char.
+ goto tailRecursion; // Note: fuzz testing produced test cases that
+ // resulted in stack overflow here.
}
else
{
// We are in a '\' escape that will be handled by the state table scanner.
// Just return the backslash, but remember that the following char is to
- // be taken literally. TODO: this is awkward, think about alternatives.
+ // be taken literally.
fInBackslashQuote = TRUE;
}
}
-//---------------------------------------------------------------------------------
+//------------------------------------------------------------------------------
//
-// scanSet Construct a UnicodeSet from the text at the current scan
-// position. Advance the scan position to the first character
-// after the set.
+// scanNamedChar
+// Get a UChar32 from a \N{UNICODE CHARACTER NAME} in the pattern.
//
-// The scan position is normally under the control of the state machine
-// that controls pattern parsing. UnicodeSets, however, are parsed by
-// the UnicodeSet constructor, not by the Regex pattern parser.
+// The scan position will be at the 'N'. On return
+// the scan position should be just after the '}'
//
-//---------------------------------------------------------------------------------
-UnicodeSet *RegexCompile::scanSet() {
- UnicodeSet *uset = NULL;
- ParsePosition pos;
- int startPos;
- int i;
-
+// Return the UChar32
+//
+//------------------------------------------------------------------------------
+UChar32 RegexCompile::scanNamedChar() {
if (U_FAILURE(*fStatus)) {
- return NULL;
- }
-
- pos.setIndex(fScanIndex);
- startPos = fScanIndex;
- UErrorCode localStatus = U_ZERO_ERROR;
- uint32_t usetFlags = 0;
- if (fModeFlags & UREGEX_CASE_INSENSITIVE) {
- usetFlags |= USET_CASE_INSENSITIVE;
- }
- if (fModeFlags & UREGEX_COMMENTS) {
- usetFlags |= USET_IGNORE_SPACE;
+ return 0;
}
- uset = new UnicodeSet(fRXPat->fPattern, pos,
- usetFlags, localStatus);
- if (U_FAILURE(localStatus)) {
- // TODO: Get more accurate position of the error from UnicodeSet's return info.
- // UnicodeSet appears to not be reporting correctly at this time.
- REGEX_SCAN_DEBUG_PRINTF( "UnicodeSet parse postion.ErrorIndex = %d\n", pos.getIndex());
- error(localStatus);
- delete uset;
- return NULL;
+ nextChar(fC);
+ if (fC.fChar != chLBrace) {
+ error(U_REGEX_PROPERTY_SYNTAX);
+ return 0;
}
- // Advance the current scan postion over the UnicodeSet.
- // Don't just set fScanIndex because the line/char positions maintained
- // for error reporting would be thrown off.
- i = pos.getIndex();
+ UnicodeString charName;
for (;;) {
- if (fNextIndex >= i) {
+ nextChar(fC);
+ if (fC.fChar == chRBrace) {
break;
}
- nextCharLL();
+ if (fC.fChar == -1) {
+ error(U_REGEX_PROPERTY_SYNTAX);
+ return 0;
+ }
+ charName.append(fC.fChar);
}
- return uset;
-};
+ char name[100];
+ if (!uprv_isInvariantUString(charName.getBuffer(), charName.length()) ||
+ (uint32_t)charName.length()>=sizeof(name)) {
+ // All Unicode character names have only invariant characters.
+ // The API to get a character, given a name, accepts only char *, forcing us to convert,
+ // which requires this error check
+ error(U_REGEX_PROPERTY_SYNTAX);
+ return 0;
+ }
+ charName.extract(0, charName.length(), name, sizeof(name), US_INV);
+
+ UChar32 theChar = u_charFromName(U_UNICODE_CHAR_NAME, name, fStatus);
+ if (U_FAILURE(*fStatus)) {
+ error(U_REGEX_PROPERTY_SYNTAX);
+ }
+ nextChar(fC); // Continue overall regex pattern processing with char after the '}'
+ return theChar;
+}
-//---------------------------------------------------------------------------------
+//------------------------------------------------------------------------------
//
// scanProp Construct a UnicodeSet from the text at the current scan
// position, which will be of the form \p{whaterver}
// Return a UnicodeSet, constructed from the \P pattern,
// or NULL if the pattern is invalid.
//
-//---------------------------------------------------------------------------------
+//------------------------------------------------------------------------------
UnicodeSet *RegexCompile::scanProp() {
UnicodeSet *uset = NULL;
if (U_FAILURE(*fStatus)) {
return NULL;
}
-
- U_ASSERT(fC.fChar == chLowerP || fC.fChar == chUpperP || fC.fChar == chUpperN);
-
- // enclose the \p{property} from the regex pattern source in [brackets]
- UnicodeString setPattern;
- setPattern.append(chLBracket);
- setPattern.append(chBackSlash);
+ (void)chLowerP; // Suppress compiler unused variable warning.
+ U_ASSERT(fC.fChar == chLowerP || fC.fChar == chP);
+ UBool negated = (fC.fChar == chP);
+
+ UnicodeString propertyName;
+ nextChar(fC);
+ if (fC.fChar != chLBrace) {
+ error(U_REGEX_PROPERTY_SYNTAX);
+ return NULL;
+ }
for (;;) {
- setPattern.append(fC.fChar);
+ nextChar(fC);
if (fC.fChar == chRBrace) {
break;
}
- nextChar(fC);
if (fC.fChar == -1) {
// Hit the end of the input string without finding the closing '}'
error(U_REGEX_PROPERTY_SYNTAX);
return NULL;
}
+ propertyName.append(fC.fChar);
}
- setPattern.append(chRBracket);
+ uset = createSetForProperty(propertyName, negated);
+ nextChar(fC); // Move input scan to position following the closing '}'
+ return uset;
+}
- uint32_t usetFlags = 0;
- if (fModeFlags & UREGEX_CASE_INSENSITIVE) {
- usetFlags |= USET_CASE_INSENSITIVE;
+//------------------------------------------------------------------------------
+//
+// scanPosixProp Construct a UnicodeSet from the text at the current scan
+// position, which is expected be of the form [:property expression:]
+//
+// The scan position will be at the opening ':'. On return
+// the scan position must be on the closing ']'
+//
+// Return a UnicodeSet constructed from the pattern,
+// or NULL if this is not a valid POSIX-style set expression.
+// If not a property expression, restore the initial scan position
+// (to the opening ':')
+//
+// Note: the opening '[:' is not sufficient to guarantee that
+// this is a [:property:] expression.
+// [:'+=,] is a perfectly good ordinary set expression that
+// happens to include ':' as one of its characters.
+//
+//------------------------------------------------------------------------------
+UnicodeSet *RegexCompile::scanPosixProp() {
+ UnicodeSet *uset = NULL;
+
+ if (U_FAILURE(*fStatus)) {
+ return NULL;
}
- if (fModeFlags & UREGEX_COMMENTS) {
- usetFlags |= USET_IGNORE_SPACE;
+
+ U_ASSERT(fC.fChar == chColon);
+
+ // Save the scanner state.
+ // TODO: move this into the scanner, with the state encapsulated in some way. Ticket 6062
+ int64_t savedScanIndex = fScanIndex;
+ int64_t savedNextIndex = UTEXT_GETNATIVEINDEX(fRXPat->fPattern);
+ UBool savedQuoteMode = fQuoteMode;
+ UBool savedInBackslashQuote = fInBackslashQuote;
+ UBool savedEOLComments = fEOLComments;
+ int64_t savedLineNum = fLineNum;
+ int64_t savedCharNum = fCharNum;
+ UChar32 savedLastChar = fLastChar;
+ UChar32 savedPeekChar = fPeekChar;
+ RegexPatternChar savedfC = fC;
+
+ // Scan for a closing ]. A little tricky because there are some perverse
+ // edge cases possible. "[:abc\Qdef:] \E]" is a valid non-property expression,
+ // ending on the second closing ].
+
+ UnicodeString propName;
+ UBool negated = FALSE;
+
+ // Check for and consume the '^' in a negated POSIX property, e.g. [:^Letter:]
+ nextChar(fC);
+ if (fC.fChar == chUp) {
+ negated = TRUE;
+ nextChar(fC);
}
- // Build the UnicodeSet from the set pattern we just built up in a string.
- uset = new UnicodeSet(setPattern, usetFlags, *fStatus);
- if (U_FAILURE(*fStatus)) {
- delete uset;
- uset = NULL;
+ // Scan for the closing ":]", collecting the property name along the way.
+ UBool sawPropSetTerminator = FALSE;
+ for (;;) {
+ propName.append(fC.fChar);
+ nextChar(fC);
+ if (fC.fQuoted || fC.fChar == -1) {
+ // Escaped characters or end of input - either says this isn't a [:Property:]
+ break;
+ }
+ if (fC.fChar == chColon) {
+ nextChar(fC);
+ if (fC.fChar == chRBracket) {
+ sawPropSetTerminator = TRUE;
+ }
+ break;
+ }
}
- nextChar(fC); // Continue overall regex pattern processing with char after the '}'
+ if (sawPropSetTerminator) {
+ uset = createSetForProperty(propName, negated);
+ }
+ else
+ {
+ // No closing ":]".
+ // Restore the original scan position.
+ // The main scanner will retry the input as a normal set expression,
+ // not a [:Property:] expression.
+ fScanIndex = savedScanIndex;
+ fQuoteMode = savedQuoteMode;
+ fInBackslashQuote = savedInBackslashQuote;
+ fEOLComments = savedEOLComments;
+ fLineNum = savedLineNum;
+ fCharNum = savedCharNum;
+ fLastChar = savedLastChar;
+ fPeekChar = savedPeekChar;
+ fC = savedfC;
+ UTEXT_SETNATIVEINDEX(fRXPat->fPattern, savedNextIndex);
+ }
return uset;
-};
+}
+
+static inline void addIdentifierIgnorable(UnicodeSet *set, UErrorCode& ec) {
+ set->add(0, 8).add(0x0e, 0x1b).add(0x7f, 0x9f);
+ addCategory(set, U_GC_CF_MASK, ec);
+}
+
+//
+// Create a Unicode Set from a Unicode Property expression.
+// This is common code underlying both \p{...} ane [:...:] expressions.
+// Includes trying the Java "properties" that aren't supported as
+// normal ICU UnicodeSet properties
+//
+UnicodeSet *RegexCompile::createSetForProperty(const UnicodeString &propName, UBool negated) {
+
+ if (U_FAILURE(*fStatus)) {
+ return nullptr;
+ }
+ LocalPointer<UnicodeSet> set;
+ UErrorCode status = U_ZERO_ERROR;
+
+ do { // non-loop, exists to allow breaks from the block.
+ //
+ // First try the property as we received it
+ //
+ UnicodeString setExpr;
+ uint32_t usetFlags = 0;
+ setExpr.append(u"[\\p{", -1);
+ setExpr.append(propName);
+ setExpr.append(u"}]", -1);
+ if (fModeFlags & UREGEX_CASE_INSENSITIVE) {
+ usetFlags |= USET_CASE_INSENSITIVE;
+ }
+ set.adoptInsteadAndCheckErrorCode(new UnicodeSet(setExpr, usetFlags, NULL, status), status);
+ if (U_SUCCESS(status) || status == U_MEMORY_ALLOCATION_ERROR) {
+ break;
+ }
+
+ //
+ // The incoming property wasn't directly recognized by ICU.
+
+ // Check [:word:] and [:all:]. These are not recognized as a properties by ICU UnicodeSet.
+ // Java accepts 'word' with mixed case.
+ // Java accepts 'all' only in all lower case.
+
+ status = U_ZERO_ERROR;
+ if (propName.caseCompare(u"word", -1, 0) == 0) {
+ set.adoptInsteadAndCheckErrorCode(new UnicodeSet(*(fRXPat->fStaticSets[URX_ISWORD_SET])), status);
+ break;
+ }
+ if (propName.compare(u"all", -1) == 0) {
+ set.adoptInsteadAndCheckErrorCode(new UnicodeSet(0, 0x10ffff), status);
+ break;
+ }
+
+
+ // Do Java InBlock expressions
+ //
+ UnicodeString mPropName = propName;
+ if (mPropName.startsWith(u"In", 2) && mPropName.length() >= 3) {
+ status = U_ZERO_ERROR;
+ set.adoptInsteadAndCheckErrorCode(new UnicodeSet(), status);
+ if (U_FAILURE(status)) {
+ break;
+ }
+ UnicodeString blockName(mPropName, 2); // Property with the leading "In" removed.
+ set->applyPropertyAlias(UnicodeString(u"Block"), blockName, status);
+ break;
+ }
+
+ // Check for the Java form "IsBooleanPropertyValue", which we will recast
+ // as "BooleanPropertyValue". The property value can be either a
+ // a General Category or a Script Name.
+
+ if (propName.startsWith(u"Is", 2) && propName.length()>=3) {
+ mPropName.remove(0, 2); // Strip the "Is"
+ if (mPropName.indexOf(u'=') >= 0) {
+ // Reject any "Is..." property expression containing an '=', that is,
+ // any non-binary property expression.
+ status = U_REGEX_PROPERTY_SYNTAX;
+ break;
+ }
+
+ if (mPropName.caseCompare(u"assigned", -1, 0) == 0) {
+ mPropName.setTo(u"unassigned", -1);
+ negated = !negated;
+ } else if (mPropName.caseCompare(u"TitleCase", -1, 0) == 0) {
+ mPropName.setTo(u"Titlecase_Letter", -1);
+ }
+
+ mPropName.insert(0, u"[\\p{", -1);
+ mPropName.append(u"}]", -1);
+ set.adoptInsteadAndCheckErrorCode(new UnicodeSet(mPropName, *fStatus), status);
+
+ if (U_SUCCESS(status) && !set->isEmpty() && (usetFlags & USET_CASE_INSENSITIVE)) {
+ set->closeOver(USET_CASE_INSENSITIVE);
+ }
+ break;
+
+ }
+
+ if (propName.startsWith(u"java", -1)) {
+ status = U_ZERO_ERROR;
+ set.adoptInsteadAndCheckErrorCode(new UnicodeSet(), status);
+ if (U_FAILURE(status)) {
+ break;
+ }
+ //
+ // Try the various Java specific properties.
+ // These all begin with "java"
+ //
+ if (propName.compare(u"javaDefined", -1) == 0) {
+ addCategory(set.getAlias(), U_GC_CN_MASK, status);
+ set->complement();
+ }
+ else if (propName.compare(u"javaDigit", -1) == 0) {
+ addCategory(set.getAlias(), U_GC_ND_MASK, status);
+ }
+ else if (propName.compare(u"javaIdentifierIgnorable", -1) == 0) {
+ addIdentifierIgnorable(set.getAlias(), status);
+ }
+ else if (propName.compare(u"javaISOControl", -1) == 0) {
+ set->add(0, 0x1F).add(0x7F, 0x9F);
+ }
+ else if (propName.compare(u"javaJavaIdentifierPart", -1) == 0) {
+ addCategory(set.getAlias(), U_GC_L_MASK, status);
+ addCategory(set.getAlias(), U_GC_SC_MASK, status);
+ addCategory(set.getAlias(), U_GC_PC_MASK, status);
+ addCategory(set.getAlias(), U_GC_ND_MASK, status);
+ addCategory(set.getAlias(), U_GC_NL_MASK, status);
+ addCategory(set.getAlias(), U_GC_MC_MASK, status);
+ addCategory(set.getAlias(), U_GC_MN_MASK, status);
+ addIdentifierIgnorable(set.getAlias(), status);
+ }
+ else if (propName.compare(u"javaJavaIdentifierStart", -1) == 0) {
+ addCategory(set.getAlias(), U_GC_L_MASK, status);
+ addCategory(set.getAlias(), U_GC_NL_MASK, status);
+ addCategory(set.getAlias(), U_GC_SC_MASK, status);
+ addCategory(set.getAlias(), U_GC_PC_MASK, status);
+ }
+ else if (propName.compare(u"javaLetter", -1) == 0) {
+ addCategory(set.getAlias(), U_GC_L_MASK, status);
+ }
+ else if (propName.compare(u"javaLetterOrDigit", -1) == 0) {
+ addCategory(set.getAlias(), U_GC_L_MASK, status);
+ addCategory(set.getAlias(), U_GC_ND_MASK, status);
+ }
+ else if (propName.compare(u"javaLowerCase", -1) == 0) {
+ addCategory(set.getAlias(), U_GC_LL_MASK, status);
+ }
+ else if (propName.compare(u"javaMirrored", -1) == 0) {
+ set->applyIntPropertyValue(UCHAR_BIDI_MIRRORED, 1, status);
+ }
+ else if (propName.compare(u"javaSpaceChar", -1) == 0) {
+ addCategory(set.getAlias(), U_GC_Z_MASK, status);
+ }
+ else if (propName.compare(u"javaSupplementaryCodePoint", -1) == 0) {
+ set->add(0x10000, UnicodeSet::MAX_VALUE);
+ }
+ else if (propName.compare(u"javaTitleCase", -1) == 0) {
+ addCategory(set.getAlias(), U_GC_LT_MASK, status);
+ }
+ else if (propName.compare(u"javaUnicodeIdentifierStart", -1) == 0) {
+ addCategory(set.getAlias(), U_GC_L_MASK, status);
+ addCategory(set.getAlias(), U_GC_NL_MASK, status);
+ }
+ else if (propName.compare(u"javaUnicodeIdentifierPart", -1) == 0) {
+ addCategory(set.getAlias(), U_GC_L_MASK, status);
+ addCategory(set.getAlias(), U_GC_PC_MASK, status);
+ addCategory(set.getAlias(), U_GC_ND_MASK, status);
+ addCategory(set.getAlias(), U_GC_NL_MASK, status);
+ addCategory(set.getAlias(), U_GC_MC_MASK, status);
+ addCategory(set.getAlias(), U_GC_MN_MASK, status);
+ addIdentifierIgnorable(set.getAlias(), status);
+ }
+ else if (propName.compare(u"javaUpperCase", -1) == 0) {
+ addCategory(set.getAlias(), U_GC_LU_MASK, status);
+ }
+ else if (propName.compare(u"javaValidCodePoint", -1) == 0) {
+ set->add(0, UnicodeSet::MAX_VALUE);
+ }
+ else if (propName.compare(u"javaWhitespace", -1) == 0) {
+ addCategory(set.getAlias(), U_GC_Z_MASK, status);
+ set->removeAll(UnicodeSet().add(0xa0).add(0x2007).add(0x202f));
+ set->add(9, 0x0d).add(0x1c, 0x1f);
+ } else {
+ status = U_REGEX_PROPERTY_SYNTAX;
+ }
+
+ if (U_SUCCESS(status) && !set->isEmpty() && (usetFlags & USET_CASE_INSENSITIVE)) {
+ set->closeOver(USET_CASE_INSENSITIVE);
+ }
+ break;
+ }
+
+ // Unrecognized property. ICU didn't like it as it was, and none of the Java compatibility
+ // extensions matched it.
+ status = U_REGEX_PROPERTY_SYNTAX;
+ } while (false); // End of do loop block. Code above breaks out of the block on success or hard failure.
+
+ if (U_SUCCESS(status)) {
+ U_ASSERT(set.isValid());
+ if (negated) {
+ set->complement();
+ }
+ return set.orphan();
+ } else {
+ if (status == U_ILLEGAL_ARGUMENT_ERROR) {
+ status = U_REGEX_PROPERTY_SYNTAX;
+ }
+ error(status);
+ return nullptr;
+ }
+}
+
+
+//
+// SetEval Part of the evaluation of [set expressions].
+// Perform any pending (stacked) operations with precedence
+// equal or greater to that of the next operator encountered
+// in the expression.
+//
+void RegexCompile::setEval(int32_t nextOp) {
+ UnicodeSet *rightOperand = NULL;
+ UnicodeSet *leftOperand = NULL;
+ for (;;) {
+ U_ASSERT(fSetOpStack.empty()==FALSE);
+ int32_t pendingSetOperation = fSetOpStack.peeki();
+ if ((pendingSetOperation&0xffff0000) < (nextOp&0xffff0000)) {
+ break;
+ }
+ fSetOpStack.popi();
+ U_ASSERT(fSetStack.empty() == FALSE);
+ rightOperand = (UnicodeSet *)fSetStack.peek();
+ switch (pendingSetOperation) {
+ case setNegation:
+ rightOperand->complement();
+ break;
+ case setCaseClose:
+ // TODO: need a simple close function. Ticket 6065
+ rightOperand->closeOver(USET_CASE_INSENSITIVE);
+ rightOperand->removeAllStrings();
+ break;
+ case setDifference1:
+ case setDifference2:
+ fSetStack.pop();
+ leftOperand = (UnicodeSet *)fSetStack.peek();
+ leftOperand->removeAll(*rightOperand);
+ delete rightOperand;
+ break;
+ case setIntersection1:
+ case setIntersection2:
+ fSetStack.pop();
+ leftOperand = (UnicodeSet *)fSetStack.peek();
+ leftOperand->retainAll(*rightOperand);
+ delete rightOperand;
+ break;
+ case setUnion:
+ fSetStack.pop();
+ leftOperand = (UnicodeSet *)fSetStack.peek();
+ leftOperand->addAll(*rightOperand);
+ delete rightOperand;
+ break;
+ default:
+ UPRV_UNREACHABLE;
+ }
+ }
+ }
+
+void RegexCompile::setPushOp(int32_t op) {
+ setEval(op);
+ fSetOpStack.push(op, *fStatus);
+ fSetStack.push(new UnicodeSet(), *fStatus);
+}
U_NAMESPACE_END
#endif // !UCONFIG_NO_REGULAR_EXPRESSIONS
+