-//
-// file: rematch.cpp
-//
-// Contains the implementation of class RegexMatcher,
-// which is one of the main API classes for the ICU regular expression package.
-//
/*
**************************************************************************
-* Copyright (C) 2002-2003 International Business Machines Corporation *
+* Copyright (C) 2002-2012 International Business Machines Corporation *
* and others. All rights reserved. *
**************************************************************************
*/
+//
+// file: rematch.cpp
+//
+// Contains the implementation of class RegexMatcher,
+// which is one of the main API classes for the ICU regular expression package.
+//
#include "unicode/utypes.h"
#if !UCONFIG_NO_REGULAR_EXPRESSIONS
#include "unicode/uniset.h"
#include "unicode/uchar.h"
#include "unicode/ustring.h"
+#include "unicode/rbbi.h"
+#include "unicode/utf.h"
+#include "unicode/utf16.h"
#include "uassert.h"
#include "cmemory.h"
#include "uvector.h"
#include "uvectr32.h"
+#include "uvectr64.h"
#include "regeximp.h"
#include "regexst.h"
+#include "regextxt.h"
+#include "ucase.h"
// #include <malloc.h> // Needed for heapcheck testing
+
+// Find progress callback
+// ----------------------
+// Macro to inline test & call to ReportFindProgress(). Eliminates unnecessary function call.
+//
+#define REGEXFINDPROGRESS_INTERRUPT(pos, status) \
+ (fFindProgressCallbackFn != NULL) && (ReportFindProgress(pos, status) == FALSE)
+
+
+// Smart Backtracking
+// ------------------
+// When a failure would go back to a LOOP_C instruction,
+// strings, characters, and setrefs scan backwards for a valid start
+// character themselves, pop the stack, and save state, emulating the
+// LOOP_C's effect but assured that the next character of input is a
+// possible matching character.
+//
+// Good idea in theory; unfortunately it only helps out a few specific
+// cases and slows the engine down a little in the rest.
+
U_NAMESPACE_BEGIN
+// Default limit for the size of the back track stack, to avoid system
+// failures causedby heap exhaustion. Units are in 32 bit words, not bytes.
+// This value puts ICU's limits higher than most other regexp implementations,
+// which use recursion rather than the heap, and take more storage per
+// backtrack point.
+//
+static const int32_t DEFAULT_BACKTRACK_STACK_CAPACITY = 8000000;
+
+// Time limit counter constant.
+// Time limits for expression evaluation are in terms of quanta of work by
+// the engine, each of which is 10,000 state saves.
+// This constant determines that state saves per tick number.
+static const int32_t TIMER_INITIAL_VALUE = 10000;
+
//-----------------------------------------------------------------------------
//
// Constructor and Destructor
//
//-----------------------------------------------------------------------------
RegexMatcher::RegexMatcher(const RegexPattern *pat) {
- fPattern = pat;
- fPatternOwned = NULL;
- fInput = NULL;
- fTraceDebug = FALSE;
- fDeferredStatus = U_ZERO_ERROR;
- fStack = new UVector32(fDeferredStatus);
- fData = fSmallData;
+ fDeferredStatus = U_ZERO_ERROR;
+ init(fDeferredStatus);
+ if (U_FAILURE(fDeferredStatus)) {
+ return;
+ }
if (pat==NULL) {
fDeferredStatus = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
- if (pat->fDataSize > (int32_t)(sizeof(fSmallData)/sizeof(int32_t))) {
- fData = (int32_t *)uprv_malloc(pat->fDataSize * sizeof(int32_t));
- }
- if (fStack == NULL || fData == NULL) {
- fDeferredStatus = U_MEMORY_ALLOCATION_ERROR;
- }
-
- reset(*RegexStaticSets::gStaticSets->fEmptyString);
+ fPattern = pat;
+ init2(RegexStaticSets::gStaticSets->fEmptyText, fDeferredStatus);
}
RegexMatcher::RegexMatcher(const UnicodeString ®exp, const UnicodeString &input,
uint32_t flags, UErrorCode &status) {
+ init(status);
+ if (U_FAILURE(status)) {
+ return;
+ }
UParseError pe;
fPatternOwned = RegexPattern::compile(regexp, flags, pe, status);
fPattern = fPatternOwned;
- fTraceDebug = FALSE;
- fDeferredStatus = U_ZERO_ERROR;
- fStack = new UVector32(status);
- fData = fSmallData;
+
+ UText inputText = UTEXT_INITIALIZER;
+ utext_openConstUnicodeString(&inputText, &input, &status);
+ init2(&inputText, status);
+ utext_close(&inputText);
+
+ fInputUniStrMaybeMutable = TRUE;
+}
+
+
+RegexMatcher::RegexMatcher(UText *regexp, UText *input,
+ uint32_t flags, UErrorCode &status) {
+ init(status);
if (U_FAILURE(status)) {
return;
}
- if (fPattern->fDataSize > (int32_t)(sizeof(fSmallData)/sizeof(int32_t))) {
- fData = (int32_t *)uprv_malloc(fPattern->fDataSize * sizeof(int32_t));
- }
- if (fStack == NULL || fData == NULL) {
- status = U_MEMORY_ALLOCATION_ERROR;
+ UParseError pe;
+ fPatternOwned = RegexPattern::compile(regexp, flags, pe, status);
+ if (U_FAILURE(status)) {
+ return;
}
- reset(input);
+
+ fPattern = fPatternOwned;
+ init2(input, status);
}
RegexMatcher::RegexMatcher(const UnicodeString ®exp,
uint32_t flags, UErrorCode &status) {
+ init(status);
+ if (U_FAILURE(status)) {
+ return;
+ }
UParseError pe;
- fTraceDebug = FALSE;
- fDeferredStatus = U_ZERO_ERROR;
- fStack = new UVector32(status);
- fData = fSmallData;
fPatternOwned = RegexPattern::compile(regexp, flags, pe, status);
- fPattern = fPatternOwned;
if (U_FAILURE(status)) {
return;
}
+ fPattern = fPatternOwned;
+ init2(RegexStaticSets::gStaticSets->fEmptyText, status);
+}
- if (fPattern->fDataSize > (int32_t)(sizeof(fSmallData)/sizeof(int32_t))) {
- fData = (int32_t *)uprv_malloc(fPattern->fDataSize * sizeof(int32_t));
+RegexMatcher::RegexMatcher(UText *regexp,
+ uint32_t flags, UErrorCode &status) {
+ init(status);
+ if (U_FAILURE(status)) {
+ return;
}
- if (fStack == NULL || fData == NULL) {
- status = U_MEMORY_ALLOCATION_ERROR;
+ UParseError pe;
+ fPatternOwned = RegexPattern::compile(regexp, flags, pe, status);
+ if (U_FAILURE(status)) {
+ return;
}
- reset(*RegexStaticSets::gStaticSets->fEmptyString);
+
+ fPattern = fPatternOwned;
+ init2(RegexStaticSets::gStaticSets->fEmptyText, status);
}
+
RegexMatcher::~RegexMatcher() {
delete fStack;
if (fData != fSmallData) {
- delete fData;
+ uprv_free(fData);
fData = NULL;
}
if (fPatternOwned) {
fPatternOwned = NULL;
fPattern = NULL;
}
+
+ if (fInput) {
+ delete fInput;
+ }
+ if (fInputText) {
+ utext_close(fInputText);
+ }
+ if (fAltInputText) {
+ utext_close(fAltInputText);
+ }
+
+ #if UCONFIG_NO_BREAK_ITERATION==0
+ delete fWordBreakItr;
+ #endif
+}
+
+//
+// init() common initialization for use by all constructors.
+// Initialize all fields, get the object into a consistent state.
+// This must be done even when the initial status shows an error,
+// so that the object is initialized sufficiently well for the destructor
+// to run safely.
+//
+void RegexMatcher::init(UErrorCode &status) {
+ fPattern = NULL;
+ fPatternOwned = NULL;
+ fFrameSize = 0;
+ fRegionStart = 0;
+ fRegionLimit = 0;
+ fAnchorStart = 0;
+ fAnchorLimit = 0;
+ fLookStart = 0;
+ fLookLimit = 0;
+ fActiveStart = 0;
+ fActiveLimit = 0;
+ fTransparentBounds = FALSE;
+ fAnchoringBounds = TRUE;
+ fMatch = FALSE;
+ fMatchStart = 0;
+ fMatchEnd = 0;
+ fLastMatchEnd = -1;
+ fAppendPosition = 0;
+ fHitEnd = FALSE;
+ fRequireEnd = FALSE;
+ fStack = NULL;
+ fFrame = NULL;
+ fTimeLimit = 0;
+ fTime = 0;
+ fTickCounter = 0;
+ fStackLimit = DEFAULT_BACKTRACK_STACK_CAPACITY;
+ fCallbackFn = NULL;
+ fCallbackContext = NULL;
+ fFindProgressCallbackFn = NULL;
+ fFindProgressCallbackContext = NULL;
+ fTraceDebug = FALSE;
+ fDeferredStatus = status;
+ fData = fSmallData;
+ fWordBreakItr = NULL;
+
+ fStack = NULL;
+ fInputText = NULL;
+ fAltInputText = NULL;
+ fInput = NULL;
+ fInputLength = 0;
+ fInputUniStrMaybeMutable = FALSE;
+
+ if (U_FAILURE(status)) {
+ fDeferredStatus = status;
+ }
}
+//
+// init2() Common initialization for use by RegexMatcher constructors, part 2.
+// This handles the common setup to be done after the Pattern is available.
+//
+void RegexMatcher::init2(UText *input, UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ fDeferredStatus = status;
+ return;
+ }
+
+ if (fPattern->fDataSize > (int32_t)(sizeof(fSmallData)/sizeof(fSmallData[0]))) {
+ fData = (int64_t *)uprv_malloc(fPattern->fDataSize * sizeof(int64_t));
+ if (fData == NULL) {
+ status = fDeferredStatus = U_MEMORY_ALLOCATION_ERROR;
+ return;
+ }
+ }
+
+ fStack = new UVector64(status);
+ if (fStack == NULL) {
+ status = fDeferredStatus = U_MEMORY_ALLOCATION_ERROR;
+ return;
+ }
+
+ reset(input);
+ setStackLimit(DEFAULT_BACKTRACK_STACK_CAPACITY, status);
+ if (U_FAILURE(status)) {
+ fDeferredStatus = status;
+ return;
+ }
+}
static const UChar BACKSLASH = 0x5c;
RegexMatcher &RegexMatcher::appendReplacement(UnicodeString &dest,
const UnicodeString &replacement,
UErrorCode &status) {
+ UText replacementText = UTEXT_INITIALIZER;
+
+ utext_openConstUnicodeString(&replacementText, &replacement, &status);
+ if (U_SUCCESS(status)) {
+ UText resultText = UTEXT_INITIALIZER;
+ utext_openUnicodeString(&resultText, &dest, &status);
+
+ if (U_SUCCESS(status)) {
+ appendReplacement(&resultText, &replacementText, status);
+ utext_close(&resultText);
+ }
+ utext_close(&replacementText);
+ }
+
+ return *this;
+}
+
+//
+// appendReplacement, UText mode
+//
+RegexMatcher &RegexMatcher::appendReplacement(UText *dest,
+ UText *replacement,
+ UErrorCode &status) {
if (U_FAILURE(status)) {
return *this;
}
status = U_REGEX_INVALID_STATE;
return *this;
}
-
+
// Copy input string from the end of previous match to start of current match
- int32_t len = fMatchStart-fLastMatchEnd;
- if (len > 0) {
- dest.append(*fInput, fLastMatchEnd, len);
+ int64_t destLen = utext_nativeLength(dest);
+ if (fMatchStart > fAppendPosition) {
+ if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
+ destLen += utext_replace(dest, destLen, destLen, fInputText->chunkContents+fAppendPosition,
+ (int32_t)(fMatchStart-fAppendPosition), &status);
+ } else {
+ int32_t len16;
+ if (UTEXT_USES_U16(fInputText)) {
+ len16 = (int32_t)(fMatchStart-fAppendPosition);
+ } else {
+ UErrorCode lengthStatus = U_ZERO_ERROR;
+ len16 = utext_extract(fInputText, fAppendPosition, fMatchStart, NULL, 0, &lengthStatus);
+ }
+ UChar *inputChars = (UChar *)uprv_malloc(sizeof(UChar)*(len16+1));
+ if (inputChars == NULL) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ return *this;
+ }
+ utext_extract(fInputText, fAppendPosition, fMatchStart, inputChars, len16+1, &status);
+ destLen += utext_replace(dest, destLen, destLen, inputChars, len16, &status);
+ uprv_free(inputChars);
+ }
}
+ fAppendPosition = fMatchEnd;
+
-
// scan the replacement text, looking for substitutions ($n) and \escapes.
// TODO: optimize this loop by efficiently scanning for '$' or '\',
// move entire ranges not containing substitutions.
- int32_t replLen = replacement.length();
- int32_t replIdx = 0;
- while (replIdx<replLen) {
- UChar c = replacement.charAt(replIdx);
- replIdx++;
+ UTEXT_SETNATIVEINDEX(replacement, 0);
+ UChar32 c = UTEXT_NEXT32(replacement);
+ while (c != U_SENTINEL) {
if (c == BACKSLASH) {
// Backslash Escape. Copy the following char out without further checks.
// Note: Surrogate pairs don't need any special handling
// The second half wont be a '$' or a '\', and
// will move to the dest normally on the next
// loop iteration.
- if (replIdx >= replLen) {
+ c = UTEXT_CURRENT32(replacement);
+ if (c == U_SENTINEL) {
break;
}
- c = replacement.charAt(replIdx);
-
+
if (c==0x55/*U*/ || c==0x75/*u*/) {
// We have a \udddd or \Udddddddd escape sequence.
- UChar32 escapedChar = replacement.unescapeAt(replIdx);
+ int32_t offset = 0;
+ struct URegexUTextUnescapeCharContext context = U_REGEX_UTEXT_UNESCAPE_CONTEXT(replacement);
+ UChar32 escapedChar = u_unescapeAt(uregex_utext_unescape_charAt, &offset, INT32_MAX, &context);
if (escapedChar != (UChar32)0xFFFFFFFF) {
- dest.append(escapedChar);
- replIdx += (c==0x55? 9: 5);
+ if (U_IS_BMP(escapedChar)) {
+ UChar c16 = (UChar)escapedChar;
+ destLen += utext_replace(dest, destLen, destLen, &c16, 1, &status);
+ } else {
+ UChar surrogate[2];
+ surrogate[0] = U16_LEAD(escapedChar);
+ surrogate[1] = U16_TRAIL(escapedChar);
+ if (U_SUCCESS(status)) {
+ destLen += utext_replace(dest, destLen, destLen, surrogate, 2, &status);
+ }
+ }
// TODO: Report errors for mal-formed \u escapes?
// As this is, the original sequence is output, which may be OK.
- continue;
+ if (context.lastOffset == offset) {
+ (void)UTEXT_PREVIOUS32(replacement);
+ } else if (context.lastOffset != offset-1) {
+ utext_moveIndex32(replacement, offset - context.lastOffset - 1);
+ }
+ }
+ } else {
+ (void)UTEXT_NEXT32(replacement);
+ // Plain backslash escape. Just put out the escaped character.
+ if (U_IS_BMP(c)) {
+ UChar c16 = (UChar)c;
+ destLen += utext_replace(dest, destLen, destLen, &c16, 1, &status);
+ } else {
+ UChar surrogate[2];
+ surrogate[0] = U16_LEAD(c);
+ surrogate[1] = U16_TRAIL(c);
+ if (U_SUCCESS(status)) {
+ destLen += utext_replace(dest, destLen, destLen, surrogate, 2, &status);
+ }
}
}
-
- // Plain backslash escape. Just put out the escaped character.
- dest.append(c);
- replIdx++;
- continue;
- }
-
- if (c != DOLLARSIGN) {
+ } else if (c != DOLLARSIGN) {
// Normal char, not a $. Copy it out without further checks.
- dest.append(c);
- continue;
- }
-
- // We've got a $. Pick up a capture group number if one follows.
- // Consume at most the number of digits necessary for the largest capture
- // number that is valid for this pattern.
-
- int32_t numDigits = 0;
- int32_t groupNum = 0;
- UChar32 digitC;
- for (;;) {
- if (replIdx >= replLen) {
- break;
+ if (U_IS_BMP(c)) {
+ UChar c16 = (UChar)c;
+ destLen += utext_replace(dest, destLen, destLen, &c16, 1, &status);
+ } else {
+ UChar surrogate[2];
+ surrogate[0] = U16_LEAD(c);
+ surrogate[1] = U16_TRAIL(c);
+ if (U_SUCCESS(status)) {
+ destLen += utext_replace(dest, destLen, destLen, surrogate, 2, &status);
+ }
}
- digitC = replacement.char32At(replIdx);
- if (u_isdigit(digitC) == FALSE) {
- break;
+ } else {
+ // We've got a $. Pick up a capture group number if one follows.
+ // Consume at most the number of digits necessary for the largest capture
+ // number that is valid for this pattern.
+
+ int32_t numDigits = 0;
+ int32_t groupNum = 0;
+ UChar32 digitC;
+ for (;;) {
+ digitC = UTEXT_CURRENT32(replacement);
+ if (digitC == U_SENTINEL) {
+ break;
+ }
+ if (u_isdigit(digitC) == FALSE) {
+ break;
+ }
+ (void)UTEXT_NEXT32(replacement);
+ groupNum=groupNum*10 + u_charDigitValue(digitC);
+ numDigits++;
+ if (numDigits >= fPattern->fMaxCaptureDigits) {
+ break;
+ }
}
- replIdx = replacement.moveIndex32(replIdx, 1);
- groupNum=groupNum*10 + u_charDigitValue(digitC);
- numDigits++;
- if (numDigits >= fPattern->fMaxCaptureDigits) {
- break;
+
+
+ if (numDigits == 0) {
+ // The $ didn't introduce a group number at all.
+ // Treat it as just part of the substitution text.
+ UChar c16 = DOLLARSIGN;
+ destLen += utext_replace(dest, destLen, destLen, &c16, 1, &status);
+ } else {
+ // Finally, append the capture group data to the destination.
+ destLen += appendGroup(groupNum, dest, status);
+ if (U_FAILURE(status)) {
+ // Can fail if group number is out of range.
+ break;
+ }
}
}
-
-
- if (numDigits == 0) {
- // The $ didn't introduce a group number at all.
- // Treat it as just part of the substitution text.
- dest.append(DOLLARSIGN);
- continue;
- }
-
- // Finally, append the capture group data to the destination.
- dest.append(group(groupNum, status));
+
if (U_FAILURE(status)) {
- // Can fail if group number is out of range.
break;
+ } else {
+ c = UTEXT_NEXT32(replacement);
}
-
}
-
+
return *this;
}
// To the destination string, append everything following
// the last match position from the input string.
//
+// Note: Match ranges do not affect appendTail or appendReplacement
+//
//--------------------------------------------------------------------------------
UnicodeString &RegexMatcher::appendTail(UnicodeString &dest) {
- int32_t len = fInput->length()-fMatchEnd;
- if (len > 0) {
- dest.append(*fInput, fMatchEnd, len);
+ UErrorCode status = U_ZERO_ERROR;
+ UText resultText = UTEXT_INITIALIZER;
+ utext_openUnicodeString(&resultText, &dest, &status);
+
+ if (U_SUCCESS(status)) {
+ appendTail(&resultText, status);
+ utext_close(&resultText);
+ }
+
+ return dest;
+}
+
+//
+// appendTail, UText mode
+//
+UText *RegexMatcher::appendTail(UText *dest, UErrorCode &status) {
+ UBool bailOut = FALSE;
+ if (U_FAILURE(status)) {
+ bailOut = TRUE;
+ }
+ if (U_FAILURE(fDeferredStatus)) {
+ status = fDeferredStatus;
+ bailOut = TRUE;
+ }
+
+ if (bailOut) {
+ // dest must not be NULL
+ if (dest) {
+ utext_replace(dest, utext_nativeLength(dest), utext_nativeLength(dest), NULL, 0, &status);
+ return dest;
+ }
+ }
+
+ if (fInputLength > fAppendPosition) {
+ if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
+ int64_t destLen = utext_nativeLength(dest);
+ utext_replace(dest, destLen, destLen, fInputText->chunkContents+fAppendPosition,
+ (int32_t)(fInputLength-fAppendPosition), &status);
+ } else {
+ int32_t len16;
+ if (UTEXT_USES_U16(fInputText)) {
+ len16 = (int32_t)(fInputLength-fAppendPosition);
+ } else {
+ len16 = utext_extract(fInputText, fAppendPosition, fInputLength, NULL, 0, &status);
+ status = U_ZERO_ERROR; // buffer overflow
+ }
+
+ UChar *inputChars = (UChar *)uprv_malloc(sizeof(UChar)*(len16));
+ if (inputChars == NULL) {
+ fDeferredStatus = U_MEMORY_ALLOCATION_ERROR;
+ } else {
+ utext_extract(fInputText, fAppendPosition, fInputLength, inputChars, len16, &status); // unterminated
+ int64_t destLen = utext_nativeLength(dest);
+ utext_replace(dest, destLen, destLen, inputChars, len16, &status);
+ uprv_free(inputChars);
+ }
+ }
}
return dest;
}
return end(0, err);
}
+int64_t RegexMatcher::end64(UErrorCode &err) const {
+ return end64(0, err);
+}
-
-int32_t RegexMatcher::end(int group, UErrorCode &err) const {
+int64_t RegexMatcher::end64(int32_t group, UErrorCode &err) const {
if (U_FAILURE(err)) {
return -1;
}
err = U_INDEX_OUTOFBOUNDS_ERROR;
return -1;
}
- int32_t e = -1;
+ int64_t e = -1;
if (group == 0) {
e = fMatchEnd;
} else {
U_ASSERT(groupOffset >= 0);
e = fFrame->fExtra[groupOffset + 1];
}
- return e;
+
+ return e;
}
+int32_t RegexMatcher::end(int32_t group, UErrorCode &err) const {
+ return (int32_t)end64(group, err);
+}
//--------------------------------------------------------------------------------
//--------------------------------------------------------------------------------
UBool RegexMatcher::find() {
// Start at the position of the last match end. (Will be zero if the
- // matcher has been reset.
+ // matcher has been reset.)
//
if (U_FAILURE(fDeferredStatus)) {
return FALSE;
}
+
+ if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
+ return findUsingChunk();
+ }
- int32_t startPos = fMatchEnd;
- int32_t inputLen = fInput->length();
- int32_t testLen = inputLen - fPattern->fMinMatchLen;
- if (startPos > testLen) {
- return FALSE;
+ int64_t startPos = fMatchEnd;
+ if (startPos==0) {
+ startPos = fActiveStart;
+ }
+
+ if (fMatch) {
+ // Save the position of any previous successful match.
+ fLastMatchEnd = fMatchEnd;
+
+ if (fMatchStart == fMatchEnd) {
+ // Previous match had zero length. Move start position up one position
+ // to avoid sending find() into a loop on zero-length matches.
+ if (startPos >= fActiveLimit) {
+ fMatch = FALSE;
+ fHitEnd = TRUE;
+ return FALSE;
+ }
+ UTEXT_SETNATIVEINDEX(fInputText, startPos);
+ (void)UTEXT_NEXT32(fInputText);
+ startPos = UTEXT_GETNATIVEINDEX(fInputText);
+ }
+ } else {
+ if (fLastMatchEnd >= 0) {
+ // A previous find() failed to match. Don't try again.
+ // (without this test, a pattern with a zero-length match
+ // could match again at the end of an input string.)
+ fHitEnd = TRUE;
+ return FALSE;
+ }
+ }
+
+
+ // Compute the position in the input string beyond which a match can not begin, because
+ // the minimum length match would extend past the end of the input.
+ // Note: some patterns that cannot match anything will have fMinMatchLength==Max Int.
+ // Be aware of possible overflows if making changes here.
+ int64_t testStartLimit;
+ if (UTEXT_USES_U16(fInputText)) {
+ testStartLimit = fActiveLimit - fPattern->fMinMatchLen;
+ if (startPos > testStartLimit) {
+ fMatch = FALSE;
+ fHitEnd = TRUE;
+ return FALSE;
+ }
+ } else {
+ // For now, let the matcher discover that it can't match on its own
+ // We don't know how long the match len is in native characters
+ testStartLimit = fActiveLimit;
}
- const UChar *inputBuf = fInput->getBuffer();
UChar32 c;
U_ASSERT(startPos >= 0);
// No optimization was found.
// Try a match at each input position.
for (;;) {
- MatchAt(startPos, fDeferredStatus);
+ MatchAt(startPos, FALSE, fDeferredStatus);
if (U_FAILURE(fDeferredStatus)) {
return FALSE;
}
if (fMatch) {
return TRUE;
}
- if (startPos >= testLen) {
+ if (startPos >= testStartLimit) {
+ fHitEnd = TRUE;
return FALSE;
}
- U16_FWD_1(inputBuf, startPos, inputLen);
+ UTEXT_SETNATIVEINDEX(fInputText, startPos);
+ (void)UTEXT_NEXT32(fInputText);
+ startPos = UTEXT_GETNATIVEINDEX(fInputText);
// Note that it's perfectly OK for a pattern to have a zero-length
// match at the end of a string, so we must make sure that the loop
- // runs with startPos == testLen the last time through.
+ // runs with startPos == testStartLimit the last time through.
+ if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus))
+ return FALSE;
}
U_ASSERT(FALSE);
case START_START:
// Matches are only possible at the start of the input string
// (pattern begins with ^ or \A)
- if (startPos > 0) {
+ if (startPos > fActiveStart) {
+ fMatch = FALSE;
return FALSE;
}
- MatchAt(startPos, fDeferredStatus);
+ MatchAt(startPos, FALSE, fDeferredStatus);
if (U_FAILURE(fDeferredStatus)) {
return FALSE;
}
{
// Match may start on any char from a pre-computed set.
U_ASSERT(fPattern->fMinMatchLen > 0);
+ int64_t pos;
+ UTEXT_SETNATIVEINDEX(fInputText, startPos);
for (;;) {
- int32_t pos = startPos;
- U16_NEXT(inputBuf, startPos, inputLen, c); // like c = inputBuf[startPos++];
- if (c<256 && fPattern->fInitialChars8->contains(c) ||
- c>=256 && fPattern->fInitialChars->contains(c)) {
- MatchAt(pos, fDeferredStatus);
+ c = UTEXT_NEXT32(fInputText);
+ pos = UTEXT_GETNATIVEINDEX(fInputText);
+ // c will be -1 (U_SENTINEL) at end of text, in which case we
+ // skip this next block (so we don't have a negative array index)
+ // and handle end of text in the following block.
+ if (c >= 0 && ((c<256 && fPattern->fInitialChars8->contains(c)) ||
+ (c>=256 && fPattern->fInitialChars->contains(c)))) {
+ MatchAt(startPos, FALSE, fDeferredStatus);
if (U_FAILURE(fDeferredStatus)) {
return FALSE;
}
if (fMatch) {
return TRUE;
}
+ UTEXT_SETNATIVEINDEX(fInputText, pos);
}
- if (pos >= testLen) {
+ if (startPos >= testStartLimit) {
+ fMatch = FALSE;
+ fHitEnd = TRUE;
return FALSE;
}
+ startPos = pos;
+ if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus))
+ return FALSE;
}
}
U_ASSERT(FALSE);
// Match starts on exactly one char.
U_ASSERT(fPattern->fMinMatchLen > 0);
UChar32 theChar = fPattern->fInitialChar;
+ int64_t pos;
+ UTEXT_SETNATIVEINDEX(fInputText, startPos);
for (;;) {
- int32_t pos = startPos;
- U16_NEXT(inputBuf, startPos, inputLen, c); // like c = inputBuf[startPos++];
+ c = UTEXT_NEXT32(fInputText);
+ pos = UTEXT_GETNATIVEINDEX(fInputText);
if (c == theChar) {
- MatchAt(pos, fDeferredStatus);
+ MatchAt(startPos, FALSE, fDeferredStatus);
if (U_FAILURE(fDeferredStatus)) {
return FALSE;
}
if (fMatch) {
return TRUE;
}
+ UTEXT_SETNATIVEINDEX(fInputText, pos);
}
- if (pos >= testLen) {
+ if (startPos >= testStartLimit) {
+ fMatch = FALSE;
+ fHitEnd = TRUE;
return FALSE;
}
- }
+ startPos = pos;
+ if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus))
+ return FALSE;
+ }
}
U_ASSERT(FALSE);
case START_LINE:
{
UChar32 c;
- if (startPos == 0) {
- MatchAt(startPos, fDeferredStatus);
+ if (startPos == fAnchorStart) {
+ MatchAt(startPos, FALSE, fDeferredStatus);
if (U_FAILURE(fDeferredStatus)) {
return FALSE;
}
if (fMatch) {
return TRUE;
}
- U16_NEXT(inputBuf, startPos, inputLen, c); // like c = inputBuf[startPos++];
+ UTEXT_SETNATIVEINDEX(fInputText, startPos);
+ c = UTEXT_NEXT32(fInputText);
+ startPos = UTEXT_GETNATIVEINDEX(fInputText);
+ } else {
+ UTEXT_SETNATIVEINDEX(fInputText, startPos);
+ c = UTEXT_PREVIOUS32(fInputText);
+ UTEXT_SETNATIVEINDEX(fInputText, startPos);
}
- for (;;) {
- UChar32 c = inputBuf[startPos-1];
- if (((c & 0x7f) <= 0x29) && // First quickly bypass as many chars as possible
- (c == 0x0a || c==0x0c || c==0x85 ||c==0x2028 || c==0x2029 ||
- c == 0x0d && startPos+1 < inputLen && inputBuf[startPos+1] != 0x0a)) {
- MatchAt(startPos, fDeferredStatus);
- if (U_FAILURE(fDeferredStatus)) {
- return FALSE;
+ if (fPattern->fFlags & UREGEX_UNIX_LINES) {
+ for (;;) {
+ if (c == 0x0a) {
+ MatchAt(startPos, FALSE, fDeferredStatus);
+ if (U_FAILURE(fDeferredStatus)) {
+ return FALSE;
+ }
+ if (fMatch) {
+ return TRUE;
+ }
+ UTEXT_SETNATIVEINDEX(fInputText, startPos);
}
- if (fMatch) {
- return TRUE;
+ if (startPos >= testStartLimit) {
+ fMatch = FALSE;
+ fHitEnd = TRUE;
+ return FALSE;
}
+ c = UTEXT_NEXT32(fInputText);
+ startPos = UTEXT_GETNATIVEINDEX(fInputText);
+ // Note that it's perfectly OK for a pattern to have a zero-length
+ // match at the end of a string, so we must make sure that the loop
+ // runs with startPos == testStartLimit the last time through.
+ if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus))
+ return FALSE;
}
- if (startPos >= testLen) {
- return FALSE;
+ } else {
+ for (;;) {
+ if (((c & 0x7f) <= 0x29) && // First quickly bypass as many chars as possible
+ ((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029 )) {
+ if (c == 0x0d && startPos < fActiveLimit && UTEXT_CURRENT32(fInputText) == 0x0a) {
+ (void)UTEXT_NEXT32(fInputText);
+ startPos = UTEXT_GETNATIVEINDEX(fInputText);
+ }
+ MatchAt(startPos, FALSE, fDeferredStatus);
+ if (U_FAILURE(fDeferredStatus)) {
+ return FALSE;
+ }
+ if (fMatch) {
+ return TRUE;
+ }
+ UTEXT_SETNATIVEINDEX(fInputText, startPos);
+ }
+ if (startPos >= testStartLimit) {
+ fMatch = FALSE;
+ fHitEnd = TRUE;
+ return FALSE;
+ }
+ c = UTEXT_NEXT32(fInputText);
+ startPos = UTEXT_GETNATIVEINDEX(fInputText);
+ // Note that it's perfectly OK for a pattern to have a zero-length
+ // match at the end of a string, so we must make sure that the loop
+ // runs with startPos == testStartLimit the last time through.
+ if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus))
+ return FALSE;
}
- U16_NEXT(inputBuf, startPos, inputLen, c); // like c = inputBuf[startPos++];
- // Note that it's perfectly OK for a pattern to have a zero-length
- // match at the end of a string, so we must make sure that the loop
- // runs with startPos == testLen the last time through.
}
}
-UBool RegexMatcher::find(int32_t start, UErrorCode &status) {
+UBool RegexMatcher::find(int64_t start, UErrorCode &status) {
if (U_FAILURE(status)) {
return FALSE;
}
status = fDeferredStatus;
return FALSE;
}
- int32_t inputLen = fInput->length();
- if (start < 0 || start >= inputLen) {
+ this->reset(); // Note: Reset() is specified by Java Matcher documentation.
+ // This will reset the region to be the full input length.
+ if (start < 0) {
+ status = U_INDEX_OUTOFBOUNDS_ERROR;
+ return FALSE;
+ }
+
+ int64_t nativeStart = start;
+ if (nativeStart < fActiveStart || nativeStart > fActiveLimit) {
status = U_INDEX_OUTOFBOUNDS_ERROR;
return FALSE;
}
- this->reset();
- fMatchEnd = start;
+ fMatchEnd = nativeStart;
return find();
}
-
//--------------------------------------------------------------------------------
//
-// group()
+// findUsingChunk() -- like find(), but with the advance knowledge that the
+// entire string is available in the UText's chunk buffer.
//
//--------------------------------------------------------------------------------
-UnicodeString RegexMatcher::group(UErrorCode &status) const {
- return group(0, status);
-}
-
-
-
-UnicodeString RegexMatcher::group(int32_t groupNum, UErrorCode &status) const {
- int32_t s = start(groupNum, status);
- int32_t e = end(groupNum, status);
+UBool RegexMatcher::findUsingChunk() {
+ // Start at the position of the last match end. (Will be zero if the
+ // matcher has been reset.
+ //
- // Note: calling start() and end() above will do all necessary checking that
- // the group number is OK and that a match exists. status will be set.
- if (U_FAILURE(status)) {
- return UnicodeString();
- }
- if (U_FAILURE(fDeferredStatus)) {
- status = fDeferredStatus;
- return UnicodeString();
+ int32_t startPos = (int32_t)fMatchEnd;
+ if (startPos==0) {
+ startPos = (int32_t)fActiveStart;
}
+
+ const UChar *inputBuf = fInputText->chunkContents;
- if (s < 0) {
- // A capture group wasn't part of the match
- return UnicodeString();
+ if (fMatch) {
+ // Save the position of any previous successful match.
+ fLastMatchEnd = fMatchEnd;
+
+ if (fMatchStart == fMatchEnd) {
+ // Previous match had zero length. Move start position up one position
+ // to avoid sending find() into a loop on zero-length matches.
+ if (startPos >= fActiveLimit) {
+ fMatch = FALSE;
+ fHitEnd = TRUE;
+ return FALSE;
+ }
+ U16_FWD_1(inputBuf, startPos, fInputLength);
+ }
+ } else {
+ if (fLastMatchEnd >= 0) {
+ // A previous find() failed to match. Don't try again.
+ // (without this test, a pattern with a zero-length match
+ // could match again at the end of an input string.)
+ fHitEnd = TRUE;
+ return FALSE;
+ }
}
- U_ASSERT(s <= e);
- return UnicodeString(*fInput, s, e-s);
+
+
+ // Compute the position in the input string beyond which a match can not begin, because
+ // the minimum length match would extend past the end of the input.
+ // Note: some patterns that cannot match anything will have fMinMatchLength==Max Int.
+ // Be aware of possible overflows if making changes here.
+ int32_t testLen = (int32_t)(fActiveLimit - fPattern->fMinMatchLen);
+ if (startPos > testLen) {
+ fMatch = FALSE;
+ fHitEnd = TRUE;
+ return FALSE;
+ }
+
+ UChar32 c;
+ U_ASSERT(startPos >= 0);
+
+ switch (fPattern->fStartType) {
+ case START_NO_INFO:
+ // No optimization was found.
+ // Try a match at each input position.
+ for (;;) {
+ MatchChunkAt(startPos, FALSE, fDeferredStatus);
+ if (U_FAILURE(fDeferredStatus)) {
+ return FALSE;
+ }
+ if (fMatch) {
+ return TRUE;
+ }
+ if (startPos >= testLen) {
+ fHitEnd = TRUE;
+ return FALSE;
+ }
+ U16_FWD_1(inputBuf, startPos, fActiveLimit);
+ // Note that it's perfectly OK for a pattern to have a zero-length
+ // match at the end of a string, so we must make sure that the loop
+ // runs with startPos == testLen the last time through.
+ if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus))
+ return FALSE;
+ }
+ U_ASSERT(FALSE);
+
+ case START_START:
+ // Matches are only possible at the start of the input string
+ // (pattern begins with ^ or \A)
+ if (startPos > fActiveStart) {
+ fMatch = FALSE;
+ return FALSE;
+ }
+ MatchChunkAt(startPos, FALSE, fDeferredStatus);
+ if (U_FAILURE(fDeferredStatus)) {
+ return FALSE;
+ }
+ return fMatch;
+
+
+ case START_SET:
+ {
+ // Match may start on any char from a pre-computed set.
+ U_ASSERT(fPattern->fMinMatchLen > 0);
+ for (;;) {
+ int32_t pos = startPos;
+ U16_NEXT(inputBuf, startPos, fActiveLimit, c); // like c = inputBuf[startPos++];
+ if ((c<256 && fPattern->fInitialChars8->contains(c)) ||
+ (c>=256 && fPattern->fInitialChars->contains(c))) {
+ MatchChunkAt(pos, FALSE, fDeferredStatus);
+ if (U_FAILURE(fDeferredStatus)) {
+ return FALSE;
+ }
+ if (fMatch) {
+ return TRUE;
+ }
+ }
+ if (pos >= testLen) {
+ fMatch = FALSE;
+ fHitEnd = TRUE;
+ return FALSE;
+ }
+ if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus))
+ return FALSE;
+ }
+ }
+ U_ASSERT(FALSE);
+
+ case START_STRING:
+ case START_CHAR:
+ {
+ // Match starts on exactly one char.
+ U_ASSERT(fPattern->fMinMatchLen > 0);
+ UChar32 theChar = fPattern->fInitialChar;
+ for (;;) {
+ int32_t pos = startPos;
+ U16_NEXT(inputBuf, startPos, fActiveLimit, c); // like c = inputBuf[startPos++];
+ if (c == theChar) {
+ MatchChunkAt(pos, FALSE, fDeferredStatus);
+ if (U_FAILURE(fDeferredStatus)) {
+ return FALSE;
+ }
+ if (fMatch) {
+ return TRUE;
+ }
+ }
+ if (pos >= testLen) {
+ fMatch = FALSE;
+ fHitEnd = TRUE;
+ return FALSE;
+ }
+ if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus))
+ return FALSE;
+ }
+ }
+ U_ASSERT(FALSE);
+
+ case START_LINE:
+ {
+ UChar32 c;
+ if (startPos == fAnchorStart) {
+ MatchChunkAt(startPos, FALSE, fDeferredStatus);
+ if (U_FAILURE(fDeferredStatus)) {
+ return FALSE;
+ }
+ if (fMatch) {
+ return TRUE;
+ }
+ U16_FWD_1(inputBuf, startPos, fActiveLimit);
+ }
+
+ if (fPattern->fFlags & UREGEX_UNIX_LINES) {
+ for (;;) {
+ c = inputBuf[startPos-1];
+ if (c == 0x0a) {
+ MatchChunkAt(startPos, FALSE, fDeferredStatus);
+ if (U_FAILURE(fDeferredStatus)) {
+ return FALSE;
+ }
+ if (fMatch) {
+ return TRUE;
+ }
+ }
+ if (startPos >= testLen) {
+ fMatch = FALSE;
+ fHitEnd = TRUE;
+ return FALSE;
+ }
+ U16_FWD_1(inputBuf, startPos, fActiveLimit);
+ // Note that it's perfectly OK for a pattern to have a zero-length
+ // match at the end of a string, so we must make sure that the loop
+ // runs with startPos == testLen the last time through.
+ if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus))
+ return FALSE;
+ }
+ } else {
+ for (;;) {
+ c = inputBuf[startPos-1];
+ if (((c & 0x7f) <= 0x29) && // First quickly bypass as many chars as possible
+ ((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029 )) {
+ if (c == 0x0d && startPos < fActiveLimit && inputBuf[startPos] == 0x0a) {
+ startPos++;
+ }
+ MatchChunkAt(startPos, FALSE, fDeferredStatus);
+ if (U_FAILURE(fDeferredStatus)) {
+ return FALSE;
+ }
+ if (fMatch) {
+ return TRUE;
+ }
+ }
+ if (startPos >= testLen) {
+ fMatch = FALSE;
+ fHitEnd = TRUE;
+ return FALSE;
+ }
+ U16_FWD_1(inputBuf, startPos, fActiveLimit);
+ // Note that it's perfectly OK for a pattern to have a zero-length
+ // match at the end of a string, so we must make sure that the loop
+ // runs with startPos == testLen the last time through.
+ if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus))
+ return FALSE;
+ }
+ }
+ }
+
+ default:
+ U_ASSERT(FALSE);
+ }
+
+ U_ASSERT(FALSE);
+ return FALSE;
}
-
-int32_t RegexMatcher::groupCount() const {
- return fPattern->fGroupMap->size();
+//--------------------------------------------------------------------------------
+//
+// group()
+//
+//--------------------------------------------------------------------------------
+UnicodeString RegexMatcher::group(UErrorCode &status) const {
+ return group(0, status);
}
-
-
-const UnicodeString &RegexMatcher::input() const {
- return *fInput;
+// Return immutable shallow clone
+UText *RegexMatcher::group(UText *dest, int64_t &group_len, UErrorCode &status) const {
+ return group(0, dest, group_len, status);
}
-
-
-
-UBool RegexMatcher::lookingAt(UErrorCode &status) {
+// Return immutable shallow clone
+UText *RegexMatcher::group(int32_t groupNum, UText *dest, int64_t &group_len, UErrorCode &status) const {
+ group_len = 0;
+ UBool bailOut = FALSE;
if (U_FAILURE(status)) {
- return FALSE;
+ return dest;
}
if (U_FAILURE(fDeferredStatus)) {
status = fDeferredStatus;
- return FALSE;
+ bailOut = TRUE;
}
- reset();
- MatchAt(0, status);
- return fMatch;
+ if (fMatch == FALSE) {
+ status = U_REGEX_INVALID_STATE;
+ bailOut = TRUE;
+ }
+ if (groupNum < 0 || groupNum > fPattern->fGroupMap->size()) {
+ status = U_INDEX_OUTOFBOUNDS_ERROR;
+ bailOut = TRUE;
+ }
+
+ if (bailOut) {
+ return (dest) ? dest : utext_openUChars(NULL, NULL, 0, &status);
+ }
+
+ int64_t s, e;
+ if (groupNum == 0) {
+ s = fMatchStart;
+ e = fMatchEnd;
+ } else {
+ int32_t groupOffset = fPattern->fGroupMap->elementAti(groupNum-1);
+ U_ASSERT(groupOffset < fPattern->fFrameSize);
+ U_ASSERT(groupOffset >= 0);
+ s = fFrame->fExtra[groupOffset];
+ e = fFrame->fExtra[groupOffset+1];
+ }
+
+ if (s < 0) {
+ // A capture group wasn't part of the match
+ return utext_clone(dest, fInputText, FALSE, TRUE, &status);
+ }
+ U_ASSERT(s <= e);
+ group_len = e - s;
+
+ dest = utext_clone(dest, fInputText, FALSE, TRUE, &status);
+ if (dest)
+ UTEXT_SETNATIVEINDEX(dest, s);
+ return dest;
}
+UnicodeString RegexMatcher::group(int32_t groupNum, UErrorCode &status) const {
+ UnicodeString result;
+ if (U_FAILURE(status)) {
+ return result;
+ }
+ UText resultText = UTEXT_INITIALIZER;
+ utext_openUnicodeString(&resultText, &result, &status);
+ group(groupNum, &resultText, status);
+ utext_close(&resultText);
+ return result;
+}
-UBool RegexMatcher::matches(UErrorCode &status) {
+// Return deep (mutable) clone
+// Technology Preview (as an API), but note that the UnicodeString API is implemented
+// using this function.
+UText *RegexMatcher::group(int32_t groupNum, UText *dest, UErrorCode &status) const {
+ UBool bailOut = FALSE;
if (U_FAILURE(status)) {
- return FALSE;
+ return dest;
}
if (U_FAILURE(fDeferredStatus)) {
status = fDeferredStatus;
- return FALSE;
+ bailOut = TRUE;
}
- reset();
- MatchAt(0, status);
- UBool success = (fMatch && fMatchEnd==fInput->length());
- return success;
-}
-
-
-
-
-const RegexPattern &RegexMatcher::pattern() const {
- return *fPattern;
+
+ if (fMatch == FALSE) {
+ status = U_REGEX_INVALID_STATE;
+ bailOut = TRUE;
+ }
+ if (groupNum < 0 || groupNum > fPattern->fGroupMap->size()) {
+ status = U_INDEX_OUTOFBOUNDS_ERROR;
+ bailOut = TRUE;
+ }
+
+ if (bailOut) {
+ if (dest) {
+ utext_replace(dest, 0, utext_nativeLength(dest), NULL, 0, &status);
+ return dest;
+ } else {
+ return utext_openUChars(NULL, NULL, 0, &status);
+ }
+ }
+
+ int64_t s, e;
+ if (groupNum == 0) {
+ s = fMatchStart;
+ e = fMatchEnd;
+ } else {
+ int32_t groupOffset = fPattern->fGroupMap->elementAti(groupNum-1);
+ U_ASSERT(groupOffset < fPattern->fFrameSize);
+ U_ASSERT(groupOffset >= 0);
+ s = fFrame->fExtra[groupOffset];
+ e = fFrame->fExtra[groupOffset+1];
+ }
+
+ if (s < 0) {
+ // A capture group wasn't part of the match
+ if (dest) {
+ utext_replace(dest, 0, utext_nativeLength(dest), NULL, 0, &status);
+ return dest;
+ } else {
+ return utext_openUChars(NULL, NULL, 0, &status);
+ }
+ }
+ U_ASSERT(s <= e);
+
+ if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
+ U_ASSERT(e <= fInputLength);
+ if (dest) {
+ utext_replace(dest, 0, utext_nativeLength(dest), fInputText->chunkContents+s, (int32_t)(e-s), &status);
+ } else {
+ UText groupText = UTEXT_INITIALIZER;
+ utext_openUChars(&groupText, fInputText->chunkContents+s, e-s, &status);
+ dest = utext_clone(NULL, &groupText, TRUE, FALSE, &status);
+ utext_close(&groupText);
+ }
+ } else {
+ int32_t len16;
+ if (UTEXT_USES_U16(fInputText)) {
+ len16 = (int32_t)(e-s);
+ } else {
+ UErrorCode lengthStatus = U_ZERO_ERROR;
+ len16 = utext_extract(fInputText, s, e, NULL, 0, &lengthStatus);
+ }
+ UChar *groupChars = (UChar *)uprv_malloc(sizeof(UChar)*(len16+1));
+ if (groupChars == NULL) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ return dest;
+ }
+ utext_extract(fInputText, s, e, groupChars, len16+1, &status);
+
+ if (dest) {
+ utext_replace(dest, 0, utext_nativeLength(dest), groupChars, len16, &status);
+ } else {
+ UText groupText = UTEXT_INITIALIZER;
+ utext_openUChars(&groupText, groupChars, len16, &status);
+ dest = utext_clone(NULL, &groupText, TRUE, FALSE, &status);
+ utext_close(&groupText);
+ }
+
+ uprv_free(groupChars);
+ }
+ return dest;
}
-
-
//--------------------------------------------------------------------------------
//
-// replaceAll
+// appendGroup() -- currently internal only, appends a group to a UText rather
+// than replacing its contents
//
//--------------------------------------------------------------------------------
-UnicodeString RegexMatcher::replaceAll(const UnicodeString &replacement, UErrorCode &status) {
+
+int64_t RegexMatcher::appendGroup(int32_t groupNum, UText *dest, UErrorCode &status) const {
if (U_FAILURE(status)) {
- return *fInput;
+ return 0;
}
if (U_FAILURE(fDeferredStatus)) {
status = fDeferredStatus;
- return *fInput;
+ return 0;
}
- UnicodeString destString;
- for (reset(); find(); ) {
- appendReplacement(destString, replacement, status);
- if (U_FAILURE(status)) {
- break;
+ int64_t destLen = utext_nativeLength(dest);
+
+ if (fMatch == FALSE) {
+ status = U_REGEX_INVALID_STATE;
+ return utext_replace(dest, destLen, destLen, NULL, 0, &status);
+ }
+ if (groupNum < 0 || groupNum > fPattern->fGroupMap->size()) {
+ status = U_INDEX_OUTOFBOUNDS_ERROR;
+ return utext_replace(dest, destLen, destLen, NULL, 0, &status);
+ }
+
+ int64_t s, e;
+ if (groupNum == 0) {
+ s = fMatchStart;
+ e = fMatchEnd;
+ } else {
+ int32_t groupOffset = fPattern->fGroupMap->elementAti(groupNum-1);
+ U_ASSERT(groupOffset < fPattern->fFrameSize);
+ U_ASSERT(groupOffset >= 0);
+ s = fFrame->fExtra[groupOffset];
+ e = fFrame->fExtra[groupOffset+1];
+ }
+
+ if (s < 0) {
+ // A capture group wasn't part of the match
+ return utext_replace(dest, destLen, destLen, NULL, 0, &status);
+ }
+ U_ASSERT(s <= e);
+
+ int64_t deltaLen;
+ if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
+ U_ASSERT(e <= fInputLength);
+ deltaLen = utext_replace(dest, destLen, destLen, fInputText->chunkContents+s, (int32_t)(e-s), &status);
+ } else {
+ int32_t len16;
+ if (UTEXT_USES_U16(fInputText)) {
+ len16 = (int32_t)(e-s);
+ } else {
+ UErrorCode lengthStatus = U_ZERO_ERROR;
+ len16 = utext_extract(fInputText, s, e, NULL, 0, &lengthStatus);
+ }
+ UChar *groupChars = (UChar *)uprv_malloc(sizeof(UChar)*(len16+1));
+ if (groupChars == NULL) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ return 0;
}
+ utext_extract(fInputText, s, e, groupChars, len16+1, &status);
+
+ deltaLen = utext_replace(dest, destLen, destLen, groupChars, len16, &status);
+ uprv_free(groupChars);
}
- appendTail(destString);
- return destString;
+ return deltaLen;
}
-
//--------------------------------------------------------------------------------
//
-// replaceFirst
+// groupCount()
//
//--------------------------------------------------------------------------------
-UnicodeString RegexMatcher::replaceFirst(const UnicodeString &replacement, UErrorCode &status) {
- if (U_FAILURE(status)) {
- return *fInput;
- }
- if (U_FAILURE(fDeferredStatus)) {
- status = fDeferredStatus;
- return *fInput;
- }
-
- reset();
- if (!find()) {
- return *fInput;
- }
-
- UnicodeString destString;
- appendReplacement(destString, replacement, status);
- appendTail(destString);
- return destString;
+int32_t RegexMatcher::groupCount() const {
+ return fPattern->fGroupMap->size();
}
//--------------------------------------------------------------------------------
//
-// reset
+// hasAnchoringBounds()
//
//--------------------------------------------------------------------------------
-RegexMatcher &RegexMatcher::reset() {
- fMatchStart = 0;
- fMatchEnd = 0;
- fLastMatchEnd = 0;
- fMatch = FALSE;
- resetStack();
- return *this;
+UBool RegexMatcher::hasAnchoringBounds() const {
+ return fAnchoringBounds;
}
-
-RegexMatcher &RegexMatcher::reset(const UnicodeString &input) {
- fInput = &input;
- reset();
- return *this;
+//--------------------------------------------------------------------------------
+//
+// hasTransparentBounds()
+//
+//--------------------------------------------------------------------------------
+UBool RegexMatcher::hasTransparentBounds() const {
+ return fTransparentBounds;
}
-REStackFrame *RegexMatcher::resetStack() {
- // Discard any previous contents of the state save stack, and initialize a
- // new stack frame to all -1. The -1s are needed for capture group limits, where
- // they indicate that a group has not yet matched anything.
- fStack->removeAllElements();
-
- int32_t *iFrame = fStack->reserveBlock(fPattern->fFrameSize, fDeferredStatus);
- int i;
- for (i=0; i<fPattern->fFrameSize; i++) {
- iFrame[i] = -1;
- }
- return (REStackFrame *)iFrame;
+//--------------------------------------------------------------------------------
+//
+// hitEnd()
+//
+//--------------------------------------------------------------------------------
+UBool RegexMatcher::hitEnd() const {
+ return fHitEnd;
}
-
//--------------------------------------------------------------------------------
//
-// setTrace
+// input()
//
//--------------------------------------------------------------------------------
-void RegexMatcher::setTrace(UBool state) {
- fTraceDebug = state;
+const UnicodeString &RegexMatcher::input() const {
+ if (!fInput) {
+ UErrorCode status = U_ZERO_ERROR;
+ int32_t len16;
+ if (UTEXT_USES_U16(fInputText)) {
+ len16 = (int32_t)fInputLength;
+ } else {
+ len16 = utext_extract(fInputText, 0, fInputLength, NULL, 0, &status);
+ status = U_ZERO_ERROR; // overflow, length status
+ }
+ UnicodeString *result = new UnicodeString(len16, 0, 0);
+
+ UChar *inputChars = result->getBuffer(len16);
+ utext_extract(fInputText, 0, fInputLength, inputChars, len16, &status); // unterminated warning
+ result->releaseBuffer(len16);
+
+ (*(const UnicodeString **)&fInput) = result; // pointer assignment, rather than operator=
+ }
+
+ return *fInput;
}
+//--------------------------------------------------------------------------------
+//
+// inputText()
+//
+//--------------------------------------------------------------------------------
+UText *RegexMatcher::inputText() const {
+ return fInputText;
+}
-//---------------------------------------------------------------------
+//--------------------------------------------------------------------------------
//
-// split
+// getInput() -- like inputText(), but makes a clone or copies into another UText
//
-//---------------------------------------------------------------------
-int32_t RegexMatcher::split(const UnicodeString &input,
- UnicodeString dest[],
- int32_t destCapacity,
- UErrorCode &status)
-{
- //
- // Check arguements for validity
- //
+//--------------------------------------------------------------------------------
+UText *RegexMatcher::getInput (UText *dest, UErrorCode &status) const {
+ UBool bailOut = FALSE;
if (U_FAILURE(status)) {
- return 0;
- };
-
- if (destCapacity < 1) {
- status = U_ILLEGAL_ARGUMENT_ERROR;
- return 0;
+ return dest;
}
-
-
- //
- // Reset for the input text
- //
- reset(input);
- int32_t inputLen = input.length();
- int32_t nextOutputStringStart = 0;
- if (inputLen == 0) {
- return 0;
+ if (U_FAILURE(fDeferredStatus)) {
+ status = fDeferredStatus;
+ bailOut = TRUE;
}
-
-
- //
- // Loop through the input text, searching for the delimiter pattern
- //
- int i;
- int32_t numCaptureGroups = fPattern->fGroupMap->size();
- for (i=0; ; i++) {
- if (i>=destCapacity-1) {
- // There is one or zero output string left.
- // Fill the last output string with whatever is left from the input, then exit the loop.
- // ( i will be == destCapicity if we filled the output array while processing
- // capture groups of the delimiter expression, in which case we will discard the
- // last capture group saved in favor of the unprocessed remainder of the
- // input string.)
- i = destCapacity-1;
- int32_t remainingLength = inputLen-nextOutputStringStart;
- if (remainingLength > 0) {
- dest[i].setTo(input, nextOutputStringStart, remainingLength);
- }
- break;
+
+ if (bailOut) {
+ if (dest) {
+ utext_replace(dest, 0, utext_nativeLength(dest), NULL, 0, &status);
+ return dest;
+ } else {
+ return utext_clone(NULL, fInputText, FALSE, TRUE, &status);
}
- if (find()) {
- // We found another delimiter. Move everything from where we started looking
- // up until the start of the delimiter into the next output string.
- int32_t fieldLen = fMatchStart - nextOutputStringStart;
- dest[i].setTo(input, nextOutputStringStart, fieldLen);
- nextOutputStringStart = fMatchEnd;
-
- // If the delimiter pattern has capturing parentheses, the captured
- // text goes out into the next n destination strings.
- int32_t groupNum;
- for (groupNum=1; groupNum<=numCaptureGroups; groupNum++) {
- if (i==destCapacity-1) {
- break;
- }
- i++;
- dest[i] = group(groupNum, status);
+ }
+
+ if (dest) {
+ if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
+ utext_replace(dest, 0, utext_nativeLength(dest), fInputText->chunkContents, (int32_t)fInputLength, &status);
+ } else {
+ int32_t input16Len;
+ if (UTEXT_USES_U16(fInputText)) {
+ input16Len = (int32_t)fInputLength;
+ } else {
+ UErrorCode lengthStatus = U_ZERO_ERROR;
+ input16Len = utext_extract(fInputText, 0, fInputLength, NULL, 0, &lengthStatus); // buffer overflow error
}
-
- if (nextOutputStringStart == inputLen) {
- // The delimiter was at the end of the string. We're done.
- break;
+ UChar *inputChars = (UChar *)uprv_malloc(sizeof(UChar)*(input16Len));
+ if (inputChars == NULL) {
+ return dest;
}
-
- }
- else
- {
- // We ran off the end of the input while looking for the next delimiter.
- // All the remaining text goes into the current output string.
- dest[i].setTo(input, nextOutputStringStart, inputLen-nextOutputStringStart);
- break;
+
+ status = U_ZERO_ERROR;
+ utext_extract(fInputText, 0, fInputLength, inputChars, input16Len, &status); // not terminated warning
+ status = U_ZERO_ERROR;
+ utext_replace(dest, 0, utext_nativeLength(dest), inputChars, input16Len, &status);
+
+ uprv_free(inputChars);
}
+ return dest;
+ } else {
+ return utext_clone(NULL, fInputText, FALSE, TRUE, &status);
}
- return i+1;
}
+static UBool compat_SyncMutableUTextContents(UText *ut);
+static UBool compat_SyncMutableUTextContents(UText *ut) {
+ UBool retVal = FALSE;
+
+ // In the following test, we're really only interested in whether the UText should switch
+ // between heap and stack allocation. If length hasn't changed, we won't, so the chunkContents
+ // will still point to the correct data.
+ if (utext_nativeLength(ut) != ut->nativeIndexingLimit) {
+ UnicodeString *us=(UnicodeString *)ut->context;
+
+ // Update to the latest length.
+ // For example, (utext_nativeLength(ut) != ut->nativeIndexingLimit).
+ int32_t newLength = us->length();
+
+ // Update the chunk description.
+ // The buffer may have switched between stack- and heap-based.
+ ut->chunkContents = us->getBuffer();
+ ut->chunkLength = newLength;
+ ut->chunkNativeLimit = newLength;
+ ut->nativeIndexingLimit = newLength;
+ retVal = TRUE;
+ }
+
+ return retVal;
+}
//--------------------------------------------------------------------------------
//
-// start
+// lookingAt()
//
//--------------------------------------------------------------------------------
-int32_t RegexMatcher::start(UErrorCode &status) const {
- return start(0, status);
+UBool RegexMatcher::lookingAt(UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return FALSE;
+ }
+ if (U_FAILURE(fDeferredStatus)) {
+ status = fDeferredStatus;
+ return FALSE;
+ }
+
+ if (fInputUniStrMaybeMutable) {
+ if (compat_SyncMutableUTextContents(fInputText)) {
+ fInputLength = utext_nativeLength(fInputText);
+ reset();
+ }
+ }
+ else {
+ resetPreserveRegion();
+ }
+ if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
+ MatchChunkAt((int32_t)fActiveStart, FALSE, status);
+ } else {
+ MatchAt(fActiveStart, FALSE, status);
+ }
+ return fMatch;
}
-
-
-int32_t RegexMatcher::start(int group, UErrorCode &status) const {
+UBool RegexMatcher::lookingAt(int64_t start, UErrorCode &status) {
if (U_FAILURE(status)) {
- return -1;
+ return FALSE;
}
if (U_FAILURE(fDeferredStatus)) {
status = fDeferredStatus;
- return -1;
+ return FALSE;
}
- if (fMatch == FALSE) {
- status = U_REGEX_INVALID_STATE;
- return -1;
+ reset();
+
+ if (start < 0) {
+ status = U_INDEX_OUTOFBOUNDS_ERROR;
+ return FALSE;
}
- if (group < 0 || group > fPattern->fGroupMap->size()) {
+
+ if (fInputUniStrMaybeMutable) {
+ if (compat_SyncMutableUTextContents(fInputText)) {
+ fInputLength = utext_nativeLength(fInputText);
+ reset();
+ }
+ }
+
+ int64_t nativeStart;
+ nativeStart = start;
+ if (nativeStart < fActiveStart || nativeStart > fActiveLimit) {
status = U_INDEX_OUTOFBOUNDS_ERROR;
- return -1;
+ return FALSE;
}
- int32_t s;
- if (group == 0) {
- s = fMatchStart;
+
+ if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
+ MatchChunkAt((int32_t)nativeStart, FALSE, status);
} else {
- int32_t groupOffset = fPattern->fGroupMap->elementAti(group-1);
- U_ASSERT(groupOffset < fPattern->fFrameSize);
- U_ASSERT(groupOffset >= 0);
- s = fFrame->fExtra[groupOffset];
+ MatchAt(nativeStart, FALSE, status);
}
- return s;
+ return fMatch;
}
//--------------------------------------------------------------------------------
//
-// isWordBoundary
-// in perl, "xab..cd..", \b is true at positions 0,3,5,7
-// For us,
-// If the current char is a combining mark,
-// \b is FALSE.
-// Else Scan backwards to the first non-combining char.
-// We are at a boundary if the this char and the original chars are
-// opposite in membership in \w set
-//
-// parameters: pos - the current position in the input buffer
-// start - the position where the match operation started.
-// don't backup before this position when looking back
-// for a preceding base char.
+// matches()
//
//--------------------------------------------------------------------------------
-UBool RegexMatcher::isWordBoundary(int32_t pos) {
- UBool isBoundary = FALSE;
- UBool cIsWord = FALSE;
-
- // Determine whether char c at current position is a member of the word set of chars.
- // If we're off the end of the string, behave as though we're not at a word char.
- if (pos < fInput->length()) {
- UChar32 c = fInput->char32At(pos);
- int8_t ctype = u_charType(c);
- if (ctype==U_NON_SPACING_MARK || ctype==U_ENCLOSING_MARK) {
- // Current char is a combining one. Not a boundary.
- return FALSE;
+UBool RegexMatcher::matches(UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return FALSE;
+ }
+ if (U_FAILURE(fDeferredStatus)) {
+ status = fDeferredStatus;
+ return FALSE;
+ }
+
+ if (fInputUniStrMaybeMutable) {
+ if (compat_SyncMutableUTextContents(fInputText)) {
+ fInputLength = utext_nativeLength(fInputText);
+ reset();
}
- cIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(c);
}
+ else {
+ resetPreserveRegion();
+ }
+
+ if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
+ MatchChunkAt((int32_t)fActiveStart, TRUE, status);
+ } else {
+ MatchAt(fActiveStart, TRUE, status);
+ }
+ return fMatch;
+}
+
+
+UBool RegexMatcher::matches(int64_t start, UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return FALSE;
+ }
+ if (U_FAILURE(fDeferredStatus)) {
+ status = fDeferredStatus;
+ return FALSE;
+ }
+ reset();
- // Back up until we come to a non-combining char, determine whether
- // that char is a word char.
- UBool prevCIsWord = FALSE;
- int32_t prevPos = pos;
- for (;;) {
- if (prevPos == 0) {
- break;
- }
- prevPos = fInput->moveIndex32(prevPos, -1);
- UChar32 prevChar = fInput->char32At(prevPos);
- int8_t prevCType = u_charType(prevChar);
- if (!(prevCType==U_NON_SPACING_MARK || prevCType==U_ENCLOSING_MARK)) {
- prevCIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(prevChar);
- break;
+ if (start < 0) {
+ status = U_INDEX_OUTOFBOUNDS_ERROR;
+ return FALSE;
+ }
+
+ if (fInputUniStrMaybeMutable) {
+ if (compat_SyncMutableUTextContents(fInputText)) {
+ fInputLength = utext_nativeLength(fInputText);
+ reset();
}
}
- isBoundary = cIsWord ^ prevCIsWord;
- return isBoundary;
+
+ int64_t nativeStart;
+ nativeStart = start;
+ if (nativeStart < fActiveStart || nativeStart > fActiveLimit) {
+ status = U_INDEX_OUTOFBOUNDS_ERROR;
+ return FALSE;
+ }
+
+ if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
+ MatchChunkAt((int32_t)nativeStart, TRUE, status);
+ } else {
+ MatchAt(nativeStart, TRUE, status);
+ }
+ return fMatch;
}
+
+
//--------------------------------------------------------------------------------
//
-// StateSave
-// Make a new stack frame, initialized as a copy of the current stack frame.
-// Set the pattern index in the original stack frame from the operand value
-// in the opcode. Execution of the engine continues with the state in
-// the newly created stack frame
+// pattern
//
-// Note that reserveBlock() may grow the stack, resulting in the
-// whole thing being relocated in memory.
+//--------------------------------------------------------------------------------
+const RegexPattern &RegexMatcher::pattern() const {
+ return *fPattern;
+}
+
+
+
+//--------------------------------------------------------------------------------
+//
+// region
//
//--------------------------------------------------------------------------------
-inline REStackFrame *RegexMatcher::StateSave(REStackFrame *fp, int32_t savePatIdx, int32_t frameSize, UErrorCode &status) {
- // push storage for a new frame.
- int32_t *newFP = fStack->reserveBlock(frameSize, status);
- fp = (REStackFrame *)(newFP - frameSize); // in case of realloc of stack.
-
- // New stack frame = copy of old top frame.
- int32_t *source = (int32_t *)fp;
- int32_t *dest = newFP;
+RegexMatcher &RegexMatcher::region(int64_t regionStart, int64_t regionLimit, int64_t startIndex, UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return *this;
+ }
+
+ if (regionStart>regionLimit || regionStart<0 || regionLimit<0) {
+ status = U_ILLEGAL_ARGUMENT_ERROR;
+ }
+
+ int64_t nativeStart = regionStart;
+ int64_t nativeLimit = regionLimit;
+ if (nativeStart > fInputLength || nativeLimit > fInputLength) {
+ status = U_ILLEGAL_ARGUMENT_ERROR;
+ }
+
+ if (startIndex == -1)
+ this->reset();
+ else
+ resetPreserveRegion();
+
+ fRegionStart = nativeStart;
+ fRegionLimit = nativeLimit;
+ fActiveStart = nativeStart;
+ fActiveLimit = nativeLimit;
+
+ if (startIndex != -1) {
+ if (startIndex < fActiveStart || startIndex > fActiveLimit) {
+ status = U_INDEX_OUTOFBOUNDS_ERROR;
+ }
+ fMatchEnd = startIndex;
+ }
+
+ if (!fTransparentBounds) {
+ fLookStart = nativeStart;
+ fLookLimit = nativeLimit;
+ }
+ if (fAnchoringBounds) {
+ fAnchorStart = nativeStart;
+ fAnchorLimit = nativeLimit;
+ }
+ return *this;
+}
+
+RegexMatcher &RegexMatcher::region(int64_t start, int64_t limit, UErrorCode &status) {
+ return region(start, limit, -1, status);
+}
+
+//--------------------------------------------------------------------------------
+//
+// regionEnd
+//
+//--------------------------------------------------------------------------------
+int32_t RegexMatcher::regionEnd() const {
+ return (int32_t)fRegionLimit;
+}
+
+int64_t RegexMatcher::regionEnd64() const {
+ return fRegionLimit;
+}
+
+//--------------------------------------------------------------------------------
+//
+// regionStart
+//
+//--------------------------------------------------------------------------------
+int32_t RegexMatcher::regionStart() const {
+ return (int32_t)fRegionStart;
+}
+
+int64_t RegexMatcher::regionStart64() const {
+ return fRegionStart;
+}
+
+
+//--------------------------------------------------------------------------------
+//
+// replaceAll
+//
+//--------------------------------------------------------------------------------
+UnicodeString RegexMatcher::replaceAll(const UnicodeString &replacement, UErrorCode &status) {
+ UText replacementText = UTEXT_INITIALIZER;
+ UText resultText = UTEXT_INITIALIZER;
+ UnicodeString resultString;
+ if (U_FAILURE(status)) {
+ return resultString;
+ }
+
+ utext_openConstUnicodeString(&replacementText, &replacement, &status);
+ utext_openUnicodeString(&resultText, &resultString, &status);
+
+ replaceAll(&replacementText, &resultText, status);
+
+ utext_close(&resultText);
+ utext_close(&replacementText);
+
+ return resultString;
+}
+
+
+//
+// replaceAll, UText mode
+//
+UText *RegexMatcher::replaceAll(UText *replacement, UText *dest, UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return dest;
+ }
+ if (U_FAILURE(fDeferredStatus)) {
+ status = fDeferredStatus;
+ return dest;
+ }
+
+ if (dest == NULL) {
+ UnicodeString emptyString;
+ UText empty = UTEXT_INITIALIZER;
+
+ utext_openUnicodeString(&empty, &emptyString, &status);
+ dest = utext_clone(NULL, &empty, TRUE, FALSE, &status);
+ utext_close(&empty);
+ }
+
+ if (U_SUCCESS(status)) {
+ reset();
+ while (find()) {
+ appendReplacement(dest, replacement, status);
+ if (U_FAILURE(status)) {
+ break;
+ }
+ }
+ appendTail(dest, status);
+ }
+
+ return dest;
+}
+
+
+//--------------------------------------------------------------------------------
+//
+// replaceFirst
+//
+//--------------------------------------------------------------------------------
+UnicodeString RegexMatcher::replaceFirst(const UnicodeString &replacement, UErrorCode &status) {
+ UText replacementText = UTEXT_INITIALIZER;
+ UText resultText = UTEXT_INITIALIZER;
+ UnicodeString resultString;
+
+ utext_openConstUnicodeString(&replacementText, &replacement, &status);
+ utext_openUnicodeString(&resultText, &resultString, &status);
+
+ replaceFirst(&replacementText, &resultText, status);
+
+ utext_close(&resultText);
+ utext_close(&replacementText);
+
+ return resultString;
+}
+
+//
+// replaceFirst, UText mode
+//
+UText *RegexMatcher::replaceFirst(UText *replacement, UText *dest, UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return dest;
+ }
+ if (U_FAILURE(fDeferredStatus)) {
+ status = fDeferredStatus;
+ return dest;
+ }
+
+ reset();
+ if (!find()) {
+ return getInput(dest, status);
+ }
+
+ if (dest == NULL) {
+ UnicodeString emptyString;
+ UText empty = UTEXT_INITIALIZER;
+
+ utext_openUnicodeString(&empty, &emptyString, &status);
+ dest = utext_clone(NULL, &empty, TRUE, FALSE, &status);
+ utext_close(&empty);
+ }
+
+ appendReplacement(dest, replacement, status);
+ appendTail(dest, status);
+
+ return dest;
+}
+
+
+//--------------------------------------------------------------------------------
+//
+// requireEnd
+//
+//--------------------------------------------------------------------------------
+UBool RegexMatcher::requireEnd() const {
+ return fRequireEnd;
+}
+
+
+//--------------------------------------------------------------------------------
+//
+// reset
+//
+//--------------------------------------------------------------------------------
+RegexMatcher &RegexMatcher::reset() {
+ fRegionStart = 0;
+ fRegionLimit = fInputLength;
+ fActiveStart = 0;
+ fActiveLimit = fInputLength;
+ fAnchorStart = 0;
+ fAnchorLimit = fInputLength;
+ fLookStart = 0;
+ fLookLimit = fInputLength;
+ resetPreserveRegion();
+ return *this;
+}
+
+
+
+void RegexMatcher::resetPreserveRegion() {
+ fMatchStart = 0;
+ fMatchEnd = 0;
+ fLastMatchEnd = -1;
+ fAppendPosition = 0;
+ fMatch = FALSE;
+ fHitEnd = FALSE;
+ fRequireEnd = FALSE;
+ fTime = 0;
+ fTickCounter = TIMER_INITIAL_VALUE;
+ //resetStack(); // more expensive than it looks...
+}
+
+
+RegexMatcher &RegexMatcher::reset(const UnicodeString &input) {
+ fInputText = utext_openConstUnicodeString(fInputText, &input, &fDeferredStatus);
+ if (fPattern->fNeedsAltInput) {
+ fAltInputText = utext_clone(fAltInputText, fInputText, FALSE, TRUE, &fDeferredStatus);
+ }
+ fInputLength = utext_nativeLength(fInputText);
+
+ reset();
+ delete fInput;
+ fInput = NULL;
+
+ // Do the following for any UnicodeString.
+ // This is for compatibility for those clients who modify the input string "live" during regex operations.
+ fInputUniStrMaybeMutable = TRUE;
+
+ if (fWordBreakItr != NULL) {
+#if UCONFIG_NO_BREAK_ITERATION==0
+ UErrorCode status = U_ZERO_ERROR;
+ fWordBreakItr->setText(fInputText, status);
+#endif
+ }
+ return *this;
+}
+
+
+RegexMatcher &RegexMatcher::reset(UText *input) {
+ if (fInputText != input) {
+ fInputText = utext_clone(fInputText, input, FALSE, TRUE, &fDeferredStatus);
+ if (fPattern->fNeedsAltInput) fAltInputText = utext_clone(fAltInputText, fInputText, FALSE, TRUE, &fDeferredStatus);
+ fInputLength = utext_nativeLength(fInputText);
+
+ delete fInput;
+ fInput = NULL;
+
+ if (fWordBreakItr != NULL) {
+#if UCONFIG_NO_BREAK_ITERATION==0
+ UErrorCode status = U_ZERO_ERROR;
+ fWordBreakItr->setText(input, status);
+#endif
+ }
+ }
+ reset();
+ fInputUniStrMaybeMutable = FALSE;
+
+ return *this;
+}
+
+/*RegexMatcher &RegexMatcher::reset(const UChar *) {
+ fDeferredStatus = U_INTERNAL_PROGRAM_ERROR;
+ return *this;
+}*/
+
+RegexMatcher &RegexMatcher::reset(int64_t position, UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return *this;
+ }
+ reset(); // Reset also resets the region to be the entire string.
+
+ if (position < 0 || position > fActiveLimit) {
+ status = U_INDEX_OUTOFBOUNDS_ERROR;
+ return *this;
+ }
+ fMatchEnd = position;
+ return *this;
+}
+
+
+//--------------------------------------------------------------------------------
+//
+// refresh
+//
+//--------------------------------------------------------------------------------
+RegexMatcher &RegexMatcher::refreshInputText(UText *input, UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return *this;
+ }
+ if (input == NULL) {
+ status = U_ILLEGAL_ARGUMENT_ERROR;
+ return *this;
+ }
+ if (utext_nativeLength(fInputText) != utext_nativeLength(input)) {
+ status = U_ILLEGAL_ARGUMENT_ERROR;
+ return *this;
+ }
+ int64_t pos = utext_getNativeIndex(fInputText);
+ // Shallow read-only clone of the new UText into the existing input UText
+ fInputText = utext_clone(fInputText, input, FALSE, TRUE, &status);
+ if (U_FAILURE(status)) {
+ return *this;
+ }
+ utext_setNativeIndex(fInputText, pos);
+
+ if (fAltInputText != NULL) {
+ pos = utext_getNativeIndex(fAltInputText);
+ fAltInputText = utext_clone(fAltInputText, input, FALSE, TRUE, &status);
+ if (U_FAILURE(status)) {
+ return *this;
+ }
+ utext_setNativeIndex(fAltInputText, pos);
+ }
+ return *this;
+}
+
+
+
+//--------------------------------------------------------------------------------
+//
+// setTrace
+//
+//--------------------------------------------------------------------------------
+void RegexMatcher::setTrace(UBool state) {
+ fTraceDebug = state;
+}
+
+
+
+//---------------------------------------------------------------------
+//
+// split
+//
+//---------------------------------------------------------------------
+int32_t RegexMatcher::split(const UnicodeString &input,
+ UnicodeString dest[],
+ int32_t destCapacity,
+ UErrorCode &status)
+{
+ UText inputText = UTEXT_INITIALIZER;
+ utext_openConstUnicodeString(&inputText, &input, &status);
+ if (U_FAILURE(status)) {
+ return 0;
+ }
+
+ UText **destText = (UText **)uprv_malloc(sizeof(UText*)*destCapacity);
+ if (destText == NULL) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ return 0;
+ }
+ int32_t i;
+ for (i = 0; i < destCapacity; i++) {
+ destText[i] = utext_openUnicodeString(NULL, &dest[i], &status);
+ }
+
+ int32_t fieldCount = split(&inputText, destText, destCapacity, status);
+
+ for (i = 0; i < destCapacity; i++) {
+ utext_close(destText[i]);
+ }
+
+ uprv_free(destText);
+ utext_close(&inputText);
+ return fieldCount;
+}
+
+//
+// split, UText mode
+//
+int32_t RegexMatcher::split(UText *input,
+ UText *dest[],
+ int32_t destCapacity,
+ UErrorCode &status)
+{
+ //
+ // Check arguements for validity
+ //
+ if (U_FAILURE(status)) {
+ return 0;
+ };
+
+ if (destCapacity < 1) {
+ status = U_ILLEGAL_ARGUMENT_ERROR;
+ return 0;
+ }
+
+ //
+ // Reset for the input text
+ //
+ reset(input);
+ int64_t nextOutputStringStart = 0;
+ if (fActiveLimit == 0) {
+ return 0;
+ }
+
+ //
+ // Loop through the input text, searching for the delimiter pattern
+ //
+ int32_t i;
+ int32_t numCaptureGroups = fPattern->fGroupMap->size();
+ for (i=0; ; i++) {
+ if (i>=destCapacity-1) {
+ // There is one or zero output string left.
+ // Fill the last output string with whatever is left from the input, then exit the loop.
+ // ( i will be == destCapacity if we filled the output array while processing
+ // capture groups of the delimiter expression, in which case we will discard the
+ // last capture group saved in favor of the unprocessed remainder of the
+ // input string.)
+ i = destCapacity-1;
+ if (fActiveLimit > nextOutputStringStart) {
+ if (UTEXT_FULL_TEXT_IN_CHUNK(input, fInputLength)) {
+ if (dest[i]) {
+ utext_replace(dest[i], 0, utext_nativeLength(dest[i]),
+ input->chunkContents+nextOutputStringStart,
+ (int32_t)(fActiveLimit-nextOutputStringStart), &status);
+ } else {
+ UText remainingText = UTEXT_INITIALIZER;
+ utext_openUChars(&remainingText, input->chunkContents+nextOutputStringStart,
+ fActiveLimit-nextOutputStringStart, &status);
+ dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status);
+ utext_close(&remainingText);
+ }
+ } else {
+ UErrorCode lengthStatus = U_ZERO_ERROR;
+ int32_t remaining16Length =
+ utext_extract(input, nextOutputStringStart, fActiveLimit, NULL, 0, &lengthStatus);
+ UChar *remainingChars = (UChar *)uprv_malloc(sizeof(UChar)*(remaining16Length+1));
+ if (remainingChars == NULL) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ break;
+ }
+
+ utext_extract(input, nextOutputStringStart, fActiveLimit, remainingChars, remaining16Length+1, &status);
+ if (dest[i]) {
+ utext_replace(dest[i], 0, utext_nativeLength(dest[i]), remainingChars, remaining16Length, &status);
+ } else {
+ UText remainingText = UTEXT_INITIALIZER;
+ utext_openUChars(&remainingText, remainingChars, remaining16Length, &status);
+ dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status);
+ utext_close(&remainingText);
+ }
+
+ uprv_free(remainingChars);
+ }
+ }
+ break;
+ }
+ if (find()) {
+ // We found another delimiter. Move everything from where we started looking
+ // up until the start of the delimiter into the next output string.
+ if (UTEXT_FULL_TEXT_IN_CHUNK(input, fInputLength)) {
+ if (dest[i]) {
+ utext_replace(dest[i], 0, utext_nativeLength(dest[i]),
+ input->chunkContents+nextOutputStringStart,
+ (int32_t)(fMatchStart-nextOutputStringStart), &status);
+ } else {
+ UText remainingText = UTEXT_INITIALIZER;
+ utext_openUChars(&remainingText, input->chunkContents+nextOutputStringStart,
+ fMatchStart-nextOutputStringStart, &status);
+ dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status);
+ utext_close(&remainingText);
+ }
+ } else {
+ UErrorCode lengthStatus = U_ZERO_ERROR;
+ int32_t remaining16Length = utext_extract(input, nextOutputStringStart, fMatchStart, NULL, 0, &lengthStatus);
+ UChar *remainingChars = (UChar *)uprv_malloc(sizeof(UChar)*(remaining16Length+1));
+ if (remainingChars == NULL) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ break;
+ }
+ utext_extract(input, nextOutputStringStart, fMatchStart, remainingChars, remaining16Length+1, &status);
+ if (dest[i]) {
+ utext_replace(dest[i], 0, utext_nativeLength(dest[i]), remainingChars, remaining16Length, &status);
+ } else {
+ UText remainingText = UTEXT_INITIALIZER;
+ utext_openUChars(&remainingText, remainingChars, remaining16Length, &status);
+ dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status);
+ utext_close(&remainingText);
+ }
+
+ uprv_free(remainingChars);
+ }
+ nextOutputStringStart = fMatchEnd;
+
+ // If the delimiter pattern has capturing parentheses, the captured
+ // text goes out into the next n destination strings.
+ int32_t groupNum;
+ for (groupNum=1; groupNum<=numCaptureGroups; groupNum++) {
+ if (i >= destCapacity-2) {
+ // Never fill the last available output string with capture group text.
+ // It will filled with the last field, the remainder of the
+ // unsplit input text.
+ break;
+ }
+ i++;
+ dest[i] = group(groupNum, dest[i], status);
+ }
+
+ if (nextOutputStringStart == fActiveLimit) {
+ // The delimiter was at the end of the string. We're done, but first
+ // we output one last empty string, for the empty field following
+ // the delimiter at the end of input.
+ if (i+1 < destCapacity) {
+ ++i;
+ if (dest[i] == NULL) {
+ dest[i] = utext_openUChars(NULL, NULL, 0, &status);
+ } else {
+ static UChar emptyString[] = {(UChar)0};
+ utext_replace(dest[i], 0, utext_nativeLength(dest[i]), emptyString, 0, &status);
+ }
+ }
+ break;
+
+ }
+ }
+ else
+ {
+ // We ran off the end of the input while looking for the next delimiter.
+ // All the remaining text goes into the current output string.
+ if (UTEXT_FULL_TEXT_IN_CHUNK(input, fInputLength)) {
+ if (dest[i]) {
+ utext_replace(dest[i], 0, utext_nativeLength(dest[i]),
+ input->chunkContents+nextOutputStringStart,
+ (int32_t)(fActiveLimit-nextOutputStringStart), &status);
+ } else {
+ UText remainingText = UTEXT_INITIALIZER;
+ utext_openUChars(&remainingText, input->chunkContents+nextOutputStringStart,
+ fActiveLimit-nextOutputStringStart, &status);
+ dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status);
+ utext_close(&remainingText);
+ }
+ } else {
+ UErrorCode lengthStatus = U_ZERO_ERROR;
+ int32_t remaining16Length = utext_extract(input, nextOutputStringStart, fActiveLimit, NULL, 0, &lengthStatus);
+ UChar *remainingChars = (UChar *)uprv_malloc(sizeof(UChar)*(remaining16Length+1));
+ if (remainingChars == NULL) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ break;
+ }
+
+ utext_extract(input, nextOutputStringStart, fActiveLimit, remainingChars, remaining16Length+1, &status);
+ if (dest[i]) {
+ utext_replace(dest[i], 0, utext_nativeLength(dest[i]), remainingChars, remaining16Length, &status);
+ } else {
+ UText remainingText = UTEXT_INITIALIZER;
+ utext_openUChars(&remainingText, remainingChars, remaining16Length, &status);
+ dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status);
+ utext_close(&remainingText);
+ }
+
+ uprv_free(remainingChars);
+ }
+ break;
+ }
+ if (U_FAILURE(status)) {
+ break;
+ }
+ } // end of for loop
+ return i+1;
+}
+
+
+//--------------------------------------------------------------------------------
+//
+// start
+//
+//--------------------------------------------------------------------------------
+int32_t RegexMatcher::start(UErrorCode &status) const {
+ return start(0, status);
+}
+
+int64_t RegexMatcher::start64(UErrorCode &status) const {
+ return start64(0, status);
+}
+
+//--------------------------------------------------------------------------------
+//
+// start(int32_t group, UErrorCode &status)
+//
+//--------------------------------------------------------------------------------
+
+int64_t RegexMatcher::start64(int32_t group, UErrorCode &status) const {
+ if (U_FAILURE(status)) {
+ return -1;
+ }
+ if (U_FAILURE(fDeferredStatus)) {
+ status = fDeferredStatus;
+ return -1;
+ }
+ if (fMatch == FALSE) {
+ status = U_REGEX_INVALID_STATE;
+ return -1;
+ }
+ if (group < 0 || group > fPattern->fGroupMap->size()) {
+ status = U_INDEX_OUTOFBOUNDS_ERROR;
+ return -1;
+ }
+ int64_t s;
+ if (group == 0) {
+ s = fMatchStart;
+ } else {
+ int32_t groupOffset = fPattern->fGroupMap->elementAti(group-1);
+ U_ASSERT(groupOffset < fPattern->fFrameSize);
+ U_ASSERT(groupOffset >= 0);
+ s = fFrame->fExtra[groupOffset];
+ }
+
+ return s;
+}
+
+
+int32_t RegexMatcher::start(int32_t group, UErrorCode &status) const {
+ return (int32_t)start64(group, status);
+}
+
+//--------------------------------------------------------------------------------
+//
+// useAnchoringBounds
+//
+//--------------------------------------------------------------------------------
+RegexMatcher &RegexMatcher::useAnchoringBounds(UBool b) {
+ fAnchoringBounds = b;
+ fAnchorStart = (fAnchoringBounds ? fRegionStart : 0);
+ fAnchorLimit = (fAnchoringBounds ? fRegionLimit : fInputLength);
+ return *this;
+}
+
+
+//--------------------------------------------------------------------------------
+//
+// useTransparentBounds
+//
+//--------------------------------------------------------------------------------
+RegexMatcher &RegexMatcher::useTransparentBounds(UBool b) {
+ fTransparentBounds = b;
+ fLookStart = (fTransparentBounds ? 0 : fRegionStart);
+ fLookLimit = (fTransparentBounds ? fInputLength : fRegionLimit);
+ return *this;
+}
+
+//--------------------------------------------------------------------------------
+//
+// setTimeLimit
+//
+//--------------------------------------------------------------------------------
+void RegexMatcher::setTimeLimit(int32_t limit, UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return;
+ }
+ if (U_FAILURE(fDeferredStatus)) {
+ status = fDeferredStatus;
+ return;
+ }
+ if (limit < 0) {
+ status = U_ILLEGAL_ARGUMENT_ERROR;
+ return;
+ }
+ fTimeLimit = limit;
+}
+
+
+//--------------------------------------------------------------------------------
+//
+// getTimeLimit
+//
+//--------------------------------------------------------------------------------
+int32_t RegexMatcher::getTimeLimit() const {
+ return fTimeLimit;
+}
+
+
+//--------------------------------------------------------------------------------
+//
+// setStackLimit
+//
+//--------------------------------------------------------------------------------
+void RegexMatcher::setStackLimit(int32_t limit, UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return;
+ }
+ if (U_FAILURE(fDeferredStatus)) {
+ status = fDeferredStatus;
+ return;
+ }
+ if (limit < 0) {
+ status = U_ILLEGAL_ARGUMENT_ERROR;
+ return;
+ }
+
+ // Reset the matcher. This is needed here in case there is a current match
+ // whose final stack frame (containing the match results, pointed to by fFrame)
+ // would be lost by resizing to a smaller stack size.
+ reset();
+
+ if (limit == 0) {
+ // Unlimited stack expansion
+ fStack->setMaxCapacity(0);
+ } else {
+ // Change the units of the limit from bytes to ints, and bump the size up
+ // to be big enough to hold at least one stack frame for the pattern,
+ // if it isn't there already.
+ int32_t adjustedLimit = limit / sizeof(int32_t);
+ if (adjustedLimit < fPattern->fFrameSize) {
+ adjustedLimit = fPattern->fFrameSize;
+ }
+ fStack->setMaxCapacity(adjustedLimit);
+ }
+ fStackLimit = limit;
+}
+
+
+//--------------------------------------------------------------------------------
+//
+// getStackLimit
+//
+//--------------------------------------------------------------------------------
+int32_t RegexMatcher::getStackLimit() const {
+ return fStackLimit;
+}
+
+
+//--------------------------------------------------------------------------------
+//
+// setMatchCallback
+//
+//--------------------------------------------------------------------------------
+void RegexMatcher::setMatchCallback(URegexMatchCallback *callback,
+ const void *context,
+ UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return;
+ }
+ fCallbackFn = callback;
+ fCallbackContext = context;
+}
+
+
+//--------------------------------------------------------------------------------
+//
+// getMatchCallback
+//
+//--------------------------------------------------------------------------------
+void RegexMatcher::getMatchCallback(URegexMatchCallback *&callback,
+ const void *&context,
+ UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return;
+ }
+ callback = fCallbackFn;
+ context = fCallbackContext;
+}
+
+
+//--------------------------------------------------------------------------------
+//
+// setMatchCallback
+//
+//--------------------------------------------------------------------------------
+void RegexMatcher::setFindProgressCallback(URegexFindProgressCallback *callback,
+ const void *context,
+ UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return;
+ }
+ fFindProgressCallbackFn = callback;
+ fFindProgressCallbackContext = context;
+}
+
+
+//--------------------------------------------------------------------------------
+//
+// getMatchCallback
+//
+//--------------------------------------------------------------------------------
+void RegexMatcher::getFindProgressCallback(URegexFindProgressCallback *&callback,
+ const void *&context,
+ UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return;
+ }
+ callback = fFindProgressCallbackFn;
+ context = fFindProgressCallbackContext;
+}
+
+
+//================================================================================
+//
+// Code following this point in this file is the internal
+// Match Engine Implementation.
+//
+//================================================================================
+
+
+//--------------------------------------------------------------------------------
+//
+// resetStack
+// Discard any previous contents of the state save stack, and initialize a
+// new stack frame to all -1. The -1s are needed for capture group limits,
+// where they indicate that a group has not yet matched anything.
+//--------------------------------------------------------------------------------
+REStackFrame *RegexMatcher::resetStack() {
+ // Discard any previous contents of the state save stack, and initialize a
+ // new stack frame with all -1 data. The -1s are needed for capture group limits,
+ // where they indicate that a group has not yet matched anything.
+ fStack->removeAllElements();
+
+ REStackFrame *iFrame = (REStackFrame *)fStack->reserveBlock(fPattern->fFrameSize, fDeferredStatus);
+ int32_t i;
+ for (i=0; i<fPattern->fFrameSize-RESTACKFRAME_HDRCOUNT; i++) {
+ iFrame->fExtra[i] = -1;
+ }
+ return iFrame;
+}
+
+
+
+//--------------------------------------------------------------------------------
+//
+// isWordBoundary
+// in perl, "xab..cd..", \b is true at positions 0,3,5,7
+// For us,
+// If the current char is a combining mark,
+// \b is FALSE.
+// Else Scan backwards to the first non-combining char.
+// We are at a boundary if the this char and the original chars are
+// opposite in membership in \w set
+//
+// parameters: pos - the current position in the input buffer
+//
+// TODO: double-check edge cases at region boundaries.
+//
+//--------------------------------------------------------------------------------
+UBool RegexMatcher::isWordBoundary(int64_t pos) {
+ UBool isBoundary = FALSE;
+ UBool cIsWord = FALSE;
+
+ if (pos >= fLookLimit) {
+ fHitEnd = TRUE;
+ } else {
+ // Determine whether char c at current position is a member of the word set of chars.
+ // If we're off the end of the string, behave as though we're not at a word char.
+ UTEXT_SETNATIVEINDEX(fInputText, pos);
+ UChar32 c = UTEXT_CURRENT32(fInputText);
+ if (u_hasBinaryProperty(c, UCHAR_GRAPHEME_EXTEND) || u_charType(c) == U_FORMAT_CHAR) {
+ // Current char is a combining one. Not a boundary.
+ return FALSE;
+ }
+ cIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(c);
+ }
+
+ // Back up until we come to a non-combining char, determine whether
+ // that char is a word char.
+ UBool prevCIsWord = FALSE;
+ for (;;) {
+ if (UTEXT_GETNATIVEINDEX(fInputText) <= fLookStart) {
+ break;
+ }
+ UChar32 prevChar = UTEXT_PREVIOUS32(fInputText);
+ if (!(u_hasBinaryProperty(prevChar, UCHAR_GRAPHEME_EXTEND)
+ || u_charType(prevChar) == U_FORMAT_CHAR)) {
+ prevCIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(prevChar);
+ break;
+ }
+ }
+ isBoundary = cIsWord ^ prevCIsWord;
+ return isBoundary;
+}
+
+UBool RegexMatcher::isChunkWordBoundary(int32_t pos) {
+ UBool isBoundary = FALSE;
+ UBool cIsWord = FALSE;
+
+ const UChar *inputBuf = fInputText->chunkContents;
+
+ if (pos >= fLookLimit) {
+ fHitEnd = TRUE;
+ } else {
+ // Determine whether char c at current position is a member of the word set of chars.
+ // If we're off the end of the string, behave as though we're not at a word char.
+ UChar32 c;
+ U16_GET(inputBuf, fLookStart, pos, fLookLimit, c);
+ if (u_hasBinaryProperty(c, UCHAR_GRAPHEME_EXTEND) || u_charType(c) == U_FORMAT_CHAR) {
+ // Current char is a combining one. Not a boundary.
+ return FALSE;
+ }
+ cIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(c);
+ }
+
+ // Back up until we come to a non-combining char, determine whether
+ // that char is a word char.
+ UBool prevCIsWord = FALSE;
+ for (;;) {
+ if (pos <= fLookStart) {
+ break;
+ }
+ UChar32 prevChar;
+ U16_PREV(inputBuf, fLookStart, pos, prevChar);
+ if (!(u_hasBinaryProperty(prevChar, UCHAR_GRAPHEME_EXTEND)
+ || u_charType(prevChar) == U_FORMAT_CHAR)) {
+ prevCIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(prevChar);
+ break;
+ }
+ }
+ isBoundary = cIsWord ^ prevCIsWord;
+ return isBoundary;
+}
+
+//--------------------------------------------------------------------------------
+//
+// isUWordBoundary
+//
+// Test for a word boundary using RBBI word break.
+//
+// parameters: pos - the current position in the input buffer
+//
+//--------------------------------------------------------------------------------
+UBool RegexMatcher::isUWordBoundary(int64_t pos) {
+ UBool returnVal = FALSE;
+#if UCONFIG_NO_BREAK_ITERATION==0
+
+ // If we haven't yet created a break iterator for this matcher, do it now.
+ if (fWordBreakItr == NULL) {
+ fWordBreakItr =
+ (RuleBasedBreakIterator *)BreakIterator::createWordInstance(Locale::getEnglish(), fDeferredStatus);
+ if (U_FAILURE(fDeferredStatus)) {
+ return FALSE;
+ }
+ fWordBreakItr->setText(fInputText, fDeferredStatus);
+ }
+
+ if (pos >= fLookLimit) {
+ fHitEnd = TRUE;
+ returnVal = TRUE; // With Unicode word rules, only positions within the interior of "real"
+ // words are not boundaries. All non-word chars stand by themselves,
+ // with word boundaries on both sides.
+ } else {
+ if (!UTEXT_USES_U16(fInputText)) {
+ // !!!: Would like a better way to do this!
+ UErrorCode status = U_ZERO_ERROR;
+ pos = utext_extract(fInputText, 0, pos, NULL, 0, &status);
+ }
+ returnVal = fWordBreakItr->isBoundary((int32_t)pos);
+ }
+#endif
+ return returnVal;
+}
+
+//--------------------------------------------------------------------------------
+//
+// IncrementTime This function is called once each TIMER_INITIAL_VALUE state
+// saves. Increment the "time" counter, and call the
+// user callback function if there is one installed.
+//
+// If the match operation needs to be aborted, either for a time-out
+// or because the user callback asked for it, just set an error status.
+// The engine will pick that up and stop in its outer loop.
+//
+//--------------------------------------------------------------------------------
+void RegexMatcher::IncrementTime(UErrorCode &status) {
+ fTickCounter = TIMER_INITIAL_VALUE;
+ fTime++;
+ if (fCallbackFn != NULL) {
+ if ((*fCallbackFn)(fCallbackContext, fTime) == FALSE) {
+ status = U_REGEX_STOPPED_BY_CALLER;
+ return;
+ }
+ }
+ if (fTimeLimit > 0 && fTime >= fTimeLimit) {
+ status = U_REGEX_TIME_OUT;
+ }
+}
+
+//--------------------------------------------------------------------------------
+//
+// ReportFindProgress This function is called once for each advance in the target
+// string from the find() function, and calls the user progress callback
+// function if there is one installed.
+//
+// NOTE:
+//
+// If the match operation needs to be aborted because the user
+// callback asked for it, just set an error status.
+// The engine will pick that up and stop in its outer loop.
+//
+//--------------------------------------------------------------------------------
+UBool RegexMatcher::ReportFindProgress(int64_t matchIndex, UErrorCode &status) {
+ if (fFindProgressCallbackFn != NULL) {
+ if ((*fFindProgressCallbackFn)(fFindProgressCallbackContext, matchIndex) == FALSE) {
+ status = U_ZERO_ERROR /*U_REGEX_STOPPED_BY_CALLER*/;
+ return FALSE;
+ }
+ }
+ return TRUE;
+}
+
+//--------------------------------------------------------------------------------
+//
+// StateSave
+// Make a new stack frame, initialized as a copy of the current stack frame.
+// Set the pattern index in the original stack frame from the operand value
+// in the opcode. Execution of the engine continues with the state in
+// the newly created stack frame
+//
+// Note that reserveBlock() may grow the stack, resulting in the
+// whole thing being relocated in memory.
+//
+// Parameters:
+// fp The top frame pointer when called. At return, a new
+// fame will be present
+// savePatIdx An index into the compiled pattern. Goes into the original
+// (not new) frame. If execution ever back-tracks out of the
+// new frame, this will be where we continue from in the pattern.
+// Return
+// The new frame pointer.
+//
+//--------------------------------------------------------------------------------
+inline REStackFrame *RegexMatcher::StateSave(REStackFrame *fp, int64_t savePatIdx, UErrorCode &status) {
+ // push storage for a new frame.
+ int64_t *newFP = fStack->reserveBlock(fFrameSize, status);
+ if (newFP == NULL) {
+ // Failure on attempted stack expansion.
+ // Stack function set some other error code, change it to a more
+ // specific one for regular expressions.
+ status = U_REGEX_STACK_OVERFLOW;
+ // We need to return a writable stack frame, so just return the
+ // previous frame. The match operation will stop quickly
+ // because of the error status, after which the frame will never
+ // be looked at again.
+ return fp;
+ }
+ fp = (REStackFrame *)(newFP - fFrameSize); // in case of realloc of stack.
+
+ // New stack frame = copy of old top frame.
+ int64_t *source = (int64_t *)fp;
+ int64_t *dest = newFP;
for (;;) {
*dest++ = *source++;
if (source == newFP) {
}
}
- fp->fPatIdx = savePatIdx;
- return (REStackFrame *)newFP;
+ fTickCounter--;
+ if (fTickCounter <= 0) {
+ IncrementTime(status); // Re-initializes fTickCounter
+ }
+ fp->fPatIdx = savePatIdx;
+ return (REStackFrame *)newFP;
+}
+
+
+//--------------------------------------------------------------------------------
+//
+// MatchAt This is the actual matching engine.
+//
+// startIdx: begin matching a this index.
+// toEnd: if true, match must extend to end of the input region
+//
+//--------------------------------------------------------------------------------
+void RegexMatcher::MatchAt(int64_t startIdx, UBool toEnd, UErrorCode &status) {
+ UBool isMatch = FALSE; // True if the we have a match.
+
+ int64_t backSearchIndex = U_INT64_MAX; // used after greedy single-character matches for searching backwards
+
+ int32_t op; // Operation from the compiled pattern, split into
+ int32_t opType; // the opcode
+ int32_t opValue; // and the operand value.
+
+ #ifdef REGEX_RUN_DEBUG
+ if (fTraceDebug)
+ {
+ printf("MatchAt(startIdx=%ld)\n", startIdx);
+ printf("Original Pattern: ");
+ UChar32 c = utext_next32From(fPattern->fPattern, 0);
+ while (c != U_SENTINEL) {
+ if (c<32 || c>256) {
+ c = '.';
+ }
+ REGEX_DUMP_DEBUG_PRINTF(("%c", c));
+
+ c = UTEXT_NEXT32(fPattern->fPattern);
+ }
+ printf("\n");
+ printf("Input String: ");
+ c = utext_next32From(fInputText, 0);
+ while (c != U_SENTINEL) {
+ if (c<32 || c>256) {
+ c = '.';
+ }
+ printf("%c", c);
+
+ c = UTEXT_NEXT32(fInputText);
+ }
+ printf("\n");
+ printf("\n");
+ }
+ #endif
+
+ if (U_FAILURE(status)) {
+ return;
+ }
+
+ // Cache frequently referenced items from the compiled pattern
+ //
+ int64_t *pat = fPattern->fCompiledPat->getBuffer();
+
+ const UChar *litText = fPattern->fLiteralText.getBuffer();
+ UVector *sets = fPattern->fSets;
+
+ fFrameSize = fPattern->fFrameSize;
+ REStackFrame *fp = resetStack();
+
+ fp->fPatIdx = 0;
+ fp->fInputIdx = startIdx;
+
+ // Zero out the pattern's static data
+ int32_t i;
+ for (i = 0; i<fPattern->fDataSize; i++) {
+ fData[i] = 0;
+ }
+
+ //
+ // Main loop for interpreting the compiled pattern.
+ // One iteration of the loop per pattern operation performed.
+ //
+ for (;;) {
+#if 0
+ if (_heapchk() != _HEAPOK) {
+ fprintf(stderr, "Heap Trouble\n");
+ }
+#endif
+
+ op = (int32_t)pat[fp->fPatIdx];
+ opType = URX_TYPE(op);
+ opValue = URX_VAL(op);
+ #ifdef REGEX_RUN_DEBUG
+ if (fTraceDebug) {
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+ printf("inputIdx=%d inputChar=%x sp=%3d activeLimit=%d ", fp->fInputIdx,
+ UTEXT_CURRENT32(fInputText), (int64_t *)fp-fStack->getBuffer(), fActiveLimit);
+ fPattern->dumpOp(fp->fPatIdx);
+ }
+ #endif
+ fp->fPatIdx++;
+
+ switch (opType) {
+
+
+ case URX_NOP:
+ break;
+
+
+ case URX_BACKTRACK:
+ // Force a backtrack. In some circumstances, the pattern compiler
+ // will notice that the pattern can't possibly match anything, and will
+ // emit one of these at that point.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+
+
+ case URX_ONECHAR:
+ if (fp->fInputIdx < fActiveLimit) {
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+ UChar32 c = UTEXT_NEXT32(fInputText);
+ if (c == opValue) {
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ break;
+ }
+ } else {
+ fHitEnd = TRUE;
+ }
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+
+
+ case URX_STRING:
+ {
+ // Test input against a literal string.
+ // Strings require two slots in the compiled pattern, one for the
+ // offset to the string text, and one for the length.
+
+ int32_t stringStartIdx = opValue;
+ op = (int32_t)pat[fp->fPatIdx]; // Fetch the second operand
+ fp->fPatIdx++;
+ opType = URX_TYPE(op);
+ int32_t stringLen = URX_VAL(op);
+ U_ASSERT(opType == URX_STRING_LEN);
+ U_ASSERT(stringLen >= 2);
+
+ const UChar *patternString = litText+stringStartIdx;
+ int32_t patternStringIndex = 0;
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+ UChar32 inputChar;
+ UChar32 patternChar;
+ UBool success = TRUE;
+ while (patternStringIndex < stringLen) {
+ if (UTEXT_GETNATIVEINDEX(fInputText) >= fActiveLimit) {
+ success = FALSE;
+ fHitEnd = TRUE;
+ break;
+ }
+ inputChar = UTEXT_NEXT32(fInputText);
+ U16_NEXT(patternString, patternStringIndex, stringLen, patternChar);
+ if (patternChar != inputChar) {
+ success = FALSE;
+ break;
+ }
+ }
+
+ if (success) {
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ } else {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+
+ case URX_STATE_SAVE:
+ fp = StateSave(fp, opValue, status);
+ break;
+
+
+ case URX_END:
+ // The match loop will exit via this path on a successful match,
+ // when we reach the end of the pattern.
+ if (toEnd && fp->fInputIdx != fActiveLimit) {
+ // The pattern matched, but not to the end of input. Try some more.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+ isMatch = TRUE;
+ goto breakFromLoop;
+
+ // Start and End Capture stack frame variables are laid out out like this:
+ // fp->fExtra[opValue] - The start of a completed capture group
+ // opValue+1 - The end of a completed capture group
+ // opValue+2 - the start of a capture group whose end
+ // has not yet been reached (and might not ever be).
+ case URX_START_CAPTURE:
+ U_ASSERT(opValue >= 0 && opValue < fFrameSize-3);
+ fp->fExtra[opValue+2] = fp->fInputIdx;
+ break;
+
+
+ case URX_END_CAPTURE:
+ U_ASSERT(opValue >= 0 && opValue < fFrameSize-3);
+ U_ASSERT(fp->fExtra[opValue+2] >= 0); // Start pos for this group must be set.
+ fp->fExtra[opValue] = fp->fExtra[opValue+2]; // Tentative start becomes real.
+ fp->fExtra[opValue+1] = fp->fInputIdx; // End position
+ U_ASSERT(fp->fExtra[opValue] <= fp->fExtra[opValue+1]);
+ break;
+
+
+ case URX_DOLLAR: // $, test for End of line
+ // or for position before new line at end of input
+ {
+ if (fp->fInputIdx >= fAnchorLimit) {
+ // We really are at the end of input. Success.
+ fHitEnd = TRUE;
+ fRequireEnd = TRUE;
+ break;
+ }
+
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+
+ // If we are positioned just before a new-line that is located at the
+ // end of input, succeed.
+ UChar32 c = UTEXT_NEXT32(fInputText);
+ if (UTEXT_GETNATIVEINDEX(fInputText) >= fAnchorLimit) {
+ if ((c>=0x0a && c<=0x0d) || c==0x85 || c==0x2028 || c==0x2029) {
+ // If not in the middle of a CR/LF sequence
+ if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && ((void)UTEXT_PREVIOUS32(fInputText), UTEXT_PREVIOUS32(fInputText))==0x0d)) {
+ // At new-line at end of input. Success
+ fHitEnd = TRUE;
+ fRequireEnd = TRUE;
+
+ break;
+ }
+ }
+ } else {
+ UChar32 nextC = UTEXT_NEXT32(fInputText);
+ if (c == 0x0d && nextC == 0x0a && UTEXT_GETNATIVEINDEX(fInputText) >= fAnchorLimit) {
+ fHitEnd = TRUE;
+ fRequireEnd = TRUE;
+ break; // At CR/LF at end of input. Success
+ }
+ }
+
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ break;
+
+
+ case URX_DOLLAR_D: // $, test for End of Line, in UNIX_LINES mode.
+ if (fp->fInputIdx >= fAnchorLimit) {
+ // Off the end of input. Success.
+ fHitEnd = TRUE;
+ fRequireEnd = TRUE;
+ break;
+ } else {
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+ UChar32 c = UTEXT_NEXT32(fInputText);
+ // Either at the last character of input, or off the end.
+ if (c == 0x0a && UTEXT_GETNATIVEINDEX(fInputText) == fAnchorLimit) {
+ fHitEnd = TRUE;
+ fRequireEnd = TRUE;
+ break;
+ }
+ }
+
+ // Not at end of input. Back-track out.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+
+
+ case URX_DOLLAR_M: // $, test for End of line in multi-line mode
+ {
+ if (fp->fInputIdx >= fAnchorLimit) {
+ // We really are at the end of input. Success.
+ fHitEnd = TRUE;
+ fRequireEnd = TRUE;
+ break;
+ }
+ // If we are positioned just before a new-line, succeed.
+ // It makes no difference where the new-line is within the input.
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+ UChar32 c = UTEXT_CURRENT32(fInputText);
+ if ((c>=0x0a && c<=0x0d) || c==0x85 ||c==0x2028 || c==0x2029) {
+ // At a line end, except for the odd chance of being in the middle of a CR/LF sequence
+ // In multi-line mode, hitting a new-line just before the end of input does not
+ // set the hitEnd or requireEnd flags
+ if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && UTEXT_PREVIOUS32(fInputText)==0x0d)) {
+ break;
+ }
+ }
+ // not at a new line. Fail.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ break;
+
+
+ case URX_DOLLAR_MD: // $, test for End of line in multi-line and UNIX_LINES mode
+ {
+ if (fp->fInputIdx >= fAnchorLimit) {
+ // We really are at the end of input. Success.
+ fHitEnd = TRUE;
+ fRequireEnd = TRUE; // Java set requireEnd in this case, even though
+ break; // adding a new-line would not lose the match.
+ }
+ // If we are not positioned just before a new-line, the test fails; backtrack out.
+ // It makes no difference where the new-line is within the input.
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+ if (UTEXT_CURRENT32(fInputText) != 0x0a) {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+
+ case URX_CARET: // ^, test for start of line
+ if (fp->fInputIdx != fAnchorStart) {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ break;
+
+
+ case URX_CARET_M: // ^, test for start of line in mulit-line mode
+ {
+ if (fp->fInputIdx == fAnchorStart) {
+ // We are at the start input. Success.
+ break;
+ }
+ // Check whether character just before the current pos is a new-line
+ // unless we are at the end of input
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+ UChar32 c = UTEXT_PREVIOUS32(fInputText);
+ if ((fp->fInputIdx < fAnchorLimit) &&
+ ((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029)) {
+ // It's a new-line. ^ is true. Success.
+ // TODO: what should be done with positions between a CR and LF?
+ break;
+ }
+ // Not at the start of a line. Fail.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ break;
+
+
+ case URX_CARET_M_UNIX: // ^, test for start of line in mulit-line + Unix-line mode
+ {
+ U_ASSERT(fp->fInputIdx >= fAnchorStart);
+ if (fp->fInputIdx <= fAnchorStart) {
+ // We are at the start input. Success.
+ break;
+ }
+ // Check whether character just before the current pos is a new-line
+ U_ASSERT(fp->fInputIdx <= fAnchorLimit);
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+ UChar32 c = UTEXT_PREVIOUS32(fInputText);
+ if (c != 0x0a) {
+ // Not at the start of a line. Back-track out.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+ case URX_BACKSLASH_B: // Test for word boundaries
+ {
+ UBool success = isWordBoundary(fp->fInputIdx);
+ success ^= (UBool)(opValue != 0); // flip sense for \B
+ if (!success) {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+
+ case URX_BACKSLASH_BU: // Test for word boundaries, Unicode-style
+ {
+ UBool success = isUWordBoundary(fp->fInputIdx);
+ success ^= (UBool)(opValue != 0); // flip sense for \B
+ if (!success) {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+
+ case URX_BACKSLASH_D: // Test for decimal digit
+ {
+ if (fp->fInputIdx >= fActiveLimit) {
+ fHitEnd = TRUE;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+
+ UChar32 c = UTEXT_NEXT32(fInputText);
+ int8_t ctype = u_charType(c); // TODO: make a unicode set for this. Will be faster.
+ UBool success = (ctype == U_DECIMAL_DIGIT_NUMBER);
+ success ^= (UBool)(opValue != 0); // flip sense for \D
+ if (success) {
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ } else {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+
+ case URX_BACKSLASH_G: // Test for position at end of previous match
+ if (!((fMatch && fp->fInputIdx==fMatchEnd) || (fMatch==FALSE && fp->fInputIdx==fActiveStart))) {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ break;
+
+
+ case URX_BACKSLASH_X:
+ // Match a Grapheme, as defined by Unicode TR 29.
+ // Differs slightly from Perl, which consumes combining marks independently
+ // of context.
+ {
+
+ // Fail if at end of input
+ if (fp->fInputIdx >= fActiveLimit) {
+ fHitEnd = TRUE;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+
+ // Examine (and consume) the current char.
+ // Dispatch into a little state machine, based on the char.
+ UChar32 c;
+ c = UTEXT_NEXT32(fInputText);
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ UnicodeSet **sets = fPattern->fStaticSets;
+ if (sets[URX_GC_NORMAL]->contains(c)) goto GC_Extend;
+ if (sets[URX_GC_CONTROL]->contains(c)) goto GC_Control;
+ if (sets[URX_GC_L]->contains(c)) goto GC_L;
+ if (sets[URX_GC_LV]->contains(c)) goto GC_V;
+ if (sets[URX_GC_LVT]->contains(c)) goto GC_T;
+ if (sets[URX_GC_V]->contains(c)) goto GC_V;
+ if (sets[URX_GC_T]->contains(c)) goto GC_T;
+ goto GC_Extend;
+
+
+
+GC_L:
+ if (fp->fInputIdx >= fActiveLimit) goto GC_Done;
+ c = UTEXT_NEXT32(fInputText);
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ if (sets[URX_GC_L]->contains(c)) goto GC_L;
+ if (sets[URX_GC_LV]->contains(c)) goto GC_V;
+ if (sets[URX_GC_LVT]->contains(c)) goto GC_T;
+ if (sets[URX_GC_V]->contains(c)) goto GC_V;
+ (void)UTEXT_PREVIOUS32(fInputText);
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ goto GC_Extend;
+
+GC_V:
+ if (fp->fInputIdx >= fActiveLimit) goto GC_Done;
+ c = UTEXT_NEXT32(fInputText);
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ if (sets[URX_GC_V]->contains(c)) goto GC_V;
+ if (sets[URX_GC_T]->contains(c)) goto GC_T;
+ (void)UTEXT_PREVIOUS32(fInputText);
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ goto GC_Extend;
+
+GC_T:
+ if (fp->fInputIdx >= fActiveLimit) goto GC_Done;
+ c = UTEXT_NEXT32(fInputText);
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ if (sets[URX_GC_T]->contains(c)) goto GC_T;
+ (void)UTEXT_PREVIOUS32(fInputText);
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ goto GC_Extend;
+
+GC_Extend:
+ // Combining characters are consumed here
+ for (;;) {
+ if (fp->fInputIdx >= fActiveLimit) {
+ break;
+ }
+ c = UTEXT_CURRENT32(fInputText);
+ if (sets[URX_GC_EXTEND]->contains(c) == FALSE) {
+ break;
+ }
+ (void)UTEXT_NEXT32(fInputText);
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ }
+ goto GC_Done;
+
+GC_Control:
+ // Most control chars stand alone (don't combine with combining chars),
+ // except for that CR/LF sequence is a single grapheme cluster.
+ if (c == 0x0d && fp->fInputIdx < fActiveLimit && UTEXT_CURRENT32(fInputText) == 0x0a) {
+ c = UTEXT_NEXT32(fInputText);
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ }
+
+GC_Done:
+ if (fp->fInputIdx >= fActiveLimit) {
+ fHitEnd = TRUE;
+ }
+ break;
+ }
+
+
+
+
+ case URX_BACKSLASH_Z: // Test for end of Input
+ if (fp->fInputIdx < fAnchorLimit) {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ } else {
+ fHitEnd = TRUE;
+ fRequireEnd = TRUE;
+ }
+ break;
+
+
+
+ case URX_STATIC_SETREF:
+ {
+ // Test input character against one of the predefined sets
+ // (Word Characters, for example)
+ // The high bit of the op value is a flag for the match polarity.
+ // 0: success if input char is in set.
+ // 1: success if input char is not in set.
+ if (fp->fInputIdx >= fActiveLimit) {
+ fHitEnd = TRUE;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+
+ UBool success = ((opValue & URX_NEG_SET) == URX_NEG_SET);
+ opValue &= ~URX_NEG_SET;
+ U_ASSERT(opValue > 0 && opValue < URX_LAST_SET);
+
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+ UChar32 c = UTEXT_NEXT32(fInputText);
+ if (c < 256) {
+ Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue];
+ if (s8->contains(c)) {
+ success = !success;
+ }
+ } else {
+ const UnicodeSet *s = fPattern->fStaticSets[opValue];
+ if (s->contains(c)) {
+ success = !success;
+ }
+ }
+ if (success) {
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ } else {
+ // the character wasn't in the set.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+
+ case URX_STAT_SETREF_N:
+ {
+ // Test input character for NOT being a member of one of
+ // the predefined sets (Word Characters, for example)
+ if (fp->fInputIdx >= fActiveLimit) {
+ fHitEnd = TRUE;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+
+ U_ASSERT(opValue > 0 && opValue < URX_LAST_SET);
+
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+
+ UChar32 c = UTEXT_NEXT32(fInputText);
+ if (c < 256) {
+ Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue];
+ if (s8->contains(c) == FALSE) {
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ break;
+ }
+ } else {
+ const UnicodeSet *s = fPattern->fStaticSets[opValue];
+ if (s->contains(c) == FALSE) {
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ break;
+ }
+ }
+ // the character wasn't in the set.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ break;
+
+
+ case URX_SETREF:
+ if (fp->fInputIdx >= fActiveLimit) {
+ fHitEnd = TRUE;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ } else {
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+
+ // There is input left. Pick up one char and test it for set membership.
+ UChar32 c = UTEXT_NEXT32(fInputText);
+ U_ASSERT(opValue > 0 && opValue < sets->size());
+ if (c<256) {
+ Regex8BitSet *s8 = &fPattern->fSets8[opValue];
+ if (s8->contains(c)) {
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ break;
+ }
+ } else {
+ UnicodeSet *s = (UnicodeSet *)sets->elementAt(opValue);
+ if (s->contains(c)) {
+ // The character is in the set. A Match.
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ break;
+ }
+ }
+
+ // the character wasn't in the set.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ break;
+
+
+ case URX_DOTANY:
+ {
+ // . matches anything, but stops at end-of-line.
+ if (fp->fInputIdx >= fActiveLimit) {
+ // At end of input. Match failed. Backtrack out.
+ fHitEnd = TRUE;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+
+ // There is input left. Advance over one char, unless we've hit end-of-line
+ UChar32 c = UTEXT_NEXT32(fInputText);
+ if (((c & 0x7f) <= 0x29) && // First quickly bypass as many chars as possible
+ ((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029)) {
+ // End of line in normal mode. . does not match.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ }
+ break;
+
+
+ case URX_DOTANY_ALL:
+ {
+ // ., in dot-matches-all (including new lines) mode
+ if (fp->fInputIdx >= fActiveLimit) {
+ // At end of input. Match failed. Backtrack out.
+ fHitEnd = TRUE;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+
+ // There is input left. Advance over one char, except if we are
+ // at a cr/lf, advance over both of them.
+ UChar32 c;
+ c = UTEXT_NEXT32(fInputText);
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ if (c==0x0d && fp->fInputIdx < fActiveLimit) {
+ // In the case of a CR/LF, we need to advance over both.
+ UChar32 nextc = UTEXT_CURRENT32(fInputText);
+ if (nextc == 0x0a) {
+ (void)UTEXT_NEXT32(fInputText);
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ }
+ }
+ }
+ break;
+
+
+ case URX_DOTANY_UNIX:
+ {
+ // '.' operator, matches all, but stops at end-of-line.
+ // UNIX_LINES mode, so 0x0a is the only recognized line ending.
+ if (fp->fInputIdx >= fActiveLimit) {
+ // At end of input. Match failed. Backtrack out.
+ fHitEnd = TRUE;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+
+ // There is input left. Advance over one char, unless we've hit end-of-line
+ UChar32 c = UTEXT_NEXT32(fInputText);
+ if (c == 0x0a) {
+ // End of line in normal mode. '.' does not match the \n
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ } else {
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ }
+ }
+ break;
+
+
+ case URX_JMP:
+ fp->fPatIdx = opValue;
+ break;
+
+ case URX_FAIL:
+ isMatch = FALSE;
+ goto breakFromLoop;
+
+ case URX_JMP_SAV:
+ U_ASSERT(opValue < fPattern->fCompiledPat->size());
+ fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current
+ fp->fPatIdx = opValue; // Then JMP.
+ break;
+
+ case URX_JMP_SAV_X:
+ // This opcode is used with (x)+, when x can match a zero length string.
+ // Same as JMP_SAV, except conditional on the match having made forward progress.
+ // Destination of the JMP must be a URX_STO_INP_LOC, from which we get the
+ // data address of the input position at the start of the loop.
+ {
+ U_ASSERT(opValue > 0 && opValue < fPattern->fCompiledPat->size());
+ int32_t stoOp = (int32_t)pat[opValue-1];
+ U_ASSERT(URX_TYPE(stoOp) == URX_STO_INP_LOC);
+ int32_t frameLoc = URX_VAL(stoOp);
+ U_ASSERT(frameLoc >= 0 && frameLoc < fFrameSize);
+ int64_t prevInputIdx = fp->fExtra[frameLoc];
+ U_ASSERT(prevInputIdx <= fp->fInputIdx);
+ if (prevInputIdx < fp->fInputIdx) {
+ // The match did make progress. Repeat the loop.
+ fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current
+ fp->fPatIdx = opValue;
+ fp->fExtra[frameLoc] = fp->fInputIdx;
+ }
+ // If the input position did not advance, we do nothing here,
+ // execution will fall out of the loop.
+ }
+ break;
+
+ case URX_CTR_INIT:
+ {
+ U_ASSERT(opValue >= 0 && opValue < fFrameSize-2);
+ fp->fExtra[opValue] = 0; // Set the loop counter variable to zero
+
+ // Pick up the three extra operands that CTR_INIT has, and
+ // skip the pattern location counter past
+ int32_t instrOperandLoc = (int32_t)fp->fPatIdx;
+ fp->fPatIdx += 3;
+ int32_t loopLoc = URX_VAL(pat[instrOperandLoc]);
+ int32_t minCount = (int32_t)pat[instrOperandLoc+1];
+ int32_t maxCount = (int32_t)pat[instrOperandLoc+2];
+ U_ASSERT(minCount>=0);
+ U_ASSERT(maxCount>=minCount || maxCount==-1);
+ U_ASSERT(loopLoc>fp->fPatIdx);
+
+ if (minCount == 0) {
+ fp = StateSave(fp, loopLoc+1, status);
+ }
+ if (maxCount == 0) {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+ case URX_CTR_LOOP:
+ {
+ U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2);
+ int32_t initOp = (int32_t)pat[opValue];
+ U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT);
+ int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)];
+ int32_t minCount = (int32_t)pat[opValue+2];
+ int32_t maxCount = (int32_t)pat[opValue+3];
+ // Increment the counter. Note: we DIDN'T worry about counter
+ // overflow, since the data comes from UnicodeStrings, which
+ // stores its length in an int32_t. Do we have to think about
+ // this now that we're using UText? Probably not, since the length
+ // in UChar32s is still an int32_t.
+ (*pCounter)++;
+ U_ASSERT(*pCounter > 0);
+ if ((uint64_t)*pCounter >= (uint32_t)maxCount) {
+ U_ASSERT(*pCounter == maxCount || maxCount == -1);
+ break;
+ }
+ if (*pCounter >= minCount) {
+ fp = StateSave(fp, fp->fPatIdx, status);
+ }
+ fp->fPatIdx = opValue + 4; // Loop back.
+ }
+ break;
+
+ case URX_CTR_INIT_NG:
+ {
+ // Initialize a non-greedy loop
+ U_ASSERT(opValue >= 0 && opValue < fFrameSize-2);
+ fp->fExtra[opValue] = 0; // Set the loop counter variable to zero
+
+ // Pick up the three extra operands that CTR_INIT has, and
+ // skip the pattern location counter past
+ int32_t instrOperandLoc = (int32_t)fp->fPatIdx;
+ fp->fPatIdx += 3;
+ int32_t loopLoc = URX_VAL(pat[instrOperandLoc]);
+ int32_t minCount = (int32_t)pat[instrOperandLoc+1];
+ int32_t maxCount = (int32_t)pat[instrOperandLoc+2];
+ U_ASSERT(minCount>=0);
+ U_ASSERT(maxCount>=minCount || maxCount==-1);
+ U_ASSERT(loopLoc>fp->fPatIdx);
+
+ if (minCount == 0) {
+ if (maxCount != 0) {
+ fp = StateSave(fp, fp->fPatIdx, status);
+ }
+ fp->fPatIdx = loopLoc+1; // Continue with stuff after repeated block
+ }
+ }
+ break;
+
+ case URX_CTR_LOOP_NG:
+ {
+ // Non-greedy {min, max} loops
+ U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2);
+ int32_t initOp = (int32_t)pat[opValue];
+ U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT_NG);
+ int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)];
+ int32_t minCount = (int32_t)pat[opValue+2];
+ int32_t maxCount = (int32_t)pat[opValue+3];
+ // Increment the counter. Note: we DIDN'T worry about counter
+ // overflow, since the data comes from UnicodeStrings, which
+ // stores its length in an int32_t. Do we have to think about
+ // this now that we're using UText? Probably not, since the length
+ // in UChar32s is still an int32_t.
+ (*pCounter)++;
+ U_ASSERT(*pCounter > 0);
+
+ if ((uint64_t)*pCounter >= (uint32_t)maxCount) {
+ // The loop has matched the maximum permitted number of times.
+ // Break out of here with no action. Matching will
+ // continue with the following pattern.
+ U_ASSERT(*pCounter == maxCount || maxCount == -1);
+ break;
+ }
+
+ if (*pCounter < minCount) {
+ // We haven't met the minimum number of matches yet.
+ // Loop back for another one.
+ fp->fPatIdx = opValue + 4; // Loop back.
+ } else {
+ // We do have the minimum number of matches.
+ // Fall into the following pattern, but first do
+ // a state save to the top of the loop, so that a failure
+ // in the following pattern will try another iteration of the loop.
+ fp = StateSave(fp, opValue + 4, status);
+ }
+ }
+ break;
+
+ case URX_STO_SP:
+ U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize);
+ fData[opValue] = fStack->size();
+ break;
+
+ case URX_LD_SP:
+ {
+ U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize);
+ int32_t newStackSize = (int32_t)fData[opValue];
+ U_ASSERT(newStackSize <= fStack->size());
+ int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize;
+ if (newFP == (int64_t *)fp) {
+ break;
+ }
+ int32_t i;
+ for (i=0; i<fFrameSize; i++) {
+ newFP[i] = ((int64_t *)fp)[i];
+ }
+ fp = (REStackFrame *)newFP;
+ fStack->setSize(newStackSize);
+ }
+ break;
+
+ case URX_BACKREF:
+ {
+ U_ASSERT(opValue < fFrameSize);
+ int64_t groupStartIdx = fp->fExtra[opValue];
+ int64_t groupEndIdx = fp->fExtra[opValue+1];
+ U_ASSERT(groupStartIdx <= groupEndIdx);
+ if (groupStartIdx < 0) {
+ // This capture group has not participated in the match thus far,
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match.
+ break;
+ }
+ UTEXT_SETNATIVEINDEX(fAltInputText, groupStartIdx);
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+
+ // Note: if the capture group match was of an empty string the backref
+ // match succeeds. Verified by testing: Perl matches succeed
+ // in this case, so we do too.
+
+ UBool success = TRUE;
+ for (;;) {
+ if (utext_getNativeIndex(fAltInputText) >= groupEndIdx) {
+ success = TRUE;
+ break;
+ }
+ if (utext_getNativeIndex(fInputText) >= fActiveLimit) {
+ success = FALSE;
+ fHitEnd = TRUE;
+ break;
+ }
+ UChar32 captureGroupChar = utext_next32(fAltInputText);
+ UChar32 inputChar = utext_next32(fInputText);
+ if (inputChar != captureGroupChar) {
+ success = FALSE;
+ break;
+ }
+ }
+
+ if (success) {
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ } else {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+
+
+ case URX_BACKREF_I:
+ {
+ U_ASSERT(opValue < fFrameSize);
+ int64_t groupStartIdx = fp->fExtra[opValue];
+ int64_t groupEndIdx = fp->fExtra[opValue+1];
+ U_ASSERT(groupStartIdx <= groupEndIdx);
+ if (groupStartIdx < 0) {
+ // This capture group has not participated in the match thus far,
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match.
+ break;
+ }
+ utext_setNativeIndex(fAltInputText, groupStartIdx);
+ utext_setNativeIndex(fInputText, fp->fInputIdx);
+ CaseFoldingUTextIterator captureGroupItr(*fAltInputText);
+ CaseFoldingUTextIterator inputItr(*fInputText);
+
+ // Note: if the capture group match was of an empty string the backref
+ // match succeeds. Verified by testing: Perl matches succeed
+ // in this case, so we do too.
+
+ UBool success = TRUE;
+ for (;;) {
+ if (!captureGroupItr.inExpansion() && utext_getNativeIndex(fAltInputText) >= groupEndIdx) {
+ success = TRUE;
+ break;
+ }
+ if (!inputItr.inExpansion() && utext_getNativeIndex(fInputText) >= fActiveLimit) {
+ success = FALSE;
+ fHitEnd = TRUE;
+ break;
+ }
+ UChar32 captureGroupChar = captureGroupItr.next();
+ UChar32 inputChar = inputItr.next();
+ if (inputChar != captureGroupChar) {
+ success = FALSE;
+ break;
+ }
+ }
+
+ if (success && inputItr.inExpansion()) {
+ // We otained a match by consuming part of a string obtained from
+ // case-folding a single code point of the input text.
+ // This does not count as an overall match.
+ success = FALSE;
+ }
+
+ if (success) {
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ } else {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+
+ }
+ break;
+
+ case URX_STO_INP_LOC:
+ {
+ U_ASSERT(opValue >= 0 && opValue < fFrameSize);
+ fp->fExtra[opValue] = fp->fInputIdx;
+ }
+ break;
+
+ case URX_JMPX:
+ {
+ int32_t instrOperandLoc = (int32_t)fp->fPatIdx;
+ fp->fPatIdx += 1;
+ int32_t dataLoc = URX_VAL(pat[instrOperandLoc]);
+ U_ASSERT(dataLoc >= 0 && dataLoc < fFrameSize);
+ int64_t savedInputIdx = fp->fExtra[dataLoc];
+ U_ASSERT(savedInputIdx <= fp->fInputIdx);
+ if (savedInputIdx < fp->fInputIdx) {
+ fp->fPatIdx = opValue; // JMP
+ } else {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no progress in loop.
+ }
+ }
+ break;
+
+ case URX_LA_START:
+ {
+ // Entering a lookahead block.
+ // Save Stack Ptr, Input Pos.
+ U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
+ fData[opValue] = fStack->size();
+ fData[opValue+1] = fp->fInputIdx;
+ fActiveStart = fLookStart; // Set the match region change for
+ fActiveLimit = fLookLimit; // transparent bounds.
+ }
+ break;
+
+ case URX_LA_END:
+ {
+ // Leaving a look-ahead block.
+ // restore Stack Ptr, Input Pos to positions they had on entry to block.
+ U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
+ int32_t stackSize = fStack->size();
+ int32_t newStackSize =(int32_t)fData[opValue];
+ U_ASSERT(stackSize >= newStackSize);
+ if (stackSize > newStackSize) {
+ // Copy the current top frame back to the new (cut back) top frame.
+ // This makes the capture groups from within the look-ahead
+ // expression available.
+ int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize;
+ int32_t i;
+ for (i=0; i<fFrameSize; i++) {
+ newFP[i] = ((int64_t *)fp)[i];
+ }
+ fp = (REStackFrame *)newFP;
+ fStack->setSize(newStackSize);
+ }
+ fp->fInputIdx = fData[opValue+1];
+
+ // Restore the active region bounds in the input string; they may have
+ // been changed because of transparent bounds on a Region.
+ fActiveStart = fRegionStart;
+ fActiveLimit = fRegionLimit;
+ }
+ break;
+
+ case URX_ONECHAR_I:
+ // Case insensitive one char. The char from the pattern is already case folded.
+ // Input text is not, but case folding the input can not reduce two or more code
+ // points to one.
+ if (fp->fInputIdx < fActiveLimit) {
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+
+ UChar32 c = UTEXT_NEXT32(fInputText);
+ if (u_foldCase(c, U_FOLD_CASE_DEFAULT) == opValue) {
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ break;
+ }
+ } else {
+ fHitEnd = TRUE;
+ }
+
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+
+ case URX_STRING_I:
+ {
+ // Case-insensitive test input against a literal string.
+ // Strings require two slots in the compiled pattern, one for the
+ // offset to the string text, and one for the length.
+ // The compiled string has already been case folded.
+ {
+ const UChar *patternString = litText + opValue;
+ int32_t patternStringIdx = 0;
+
+ op = (int32_t)pat[fp->fPatIdx];
+ fp->fPatIdx++;
+ opType = URX_TYPE(op);
+ opValue = URX_VAL(op);
+ U_ASSERT(opType == URX_STRING_LEN);
+ int32_t patternStringLen = opValue; // Length of the string from the pattern.
+
+
+ UChar32 cPattern;
+ UChar32 cText;
+ UBool success = TRUE;
+
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+ CaseFoldingUTextIterator inputIterator(*fInputText);
+ while (patternStringIdx < patternStringLen) {
+ if (!inputIterator.inExpansion() && UTEXT_GETNATIVEINDEX(fInputText) >= fActiveLimit) {
+ success = FALSE;
+ fHitEnd = TRUE;
+ break;
+ }
+ U16_NEXT(patternString, patternStringIdx, patternStringLen, cPattern);
+ cText = inputIterator.next();
+ if (cText != cPattern) {
+ success = FALSE;
+ break;
+ }
+ }
+ if (inputIterator.inExpansion()) {
+ success = FALSE;
+ }
+
+ if (success) {
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ } else {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ }
+ break;
+
+ case URX_LB_START:
+ {
+ // Entering a look-behind block.
+ // Save Stack Ptr, Input Pos.
+ // TODO: implement transparent bounds. Ticket #6067
+ U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
+ fData[opValue] = fStack->size();
+ fData[opValue+1] = fp->fInputIdx;
+ // Init the variable containing the start index for attempted matches.
+ fData[opValue+2] = -1;
+ // Save input string length, then reset to pin any matches to end at
+ // the current position.
+ fData[opValue+3] = fActiveLimit;
+ fActiveLimit = fp->fInputIdx;
+ }
+ break;
+
+
+ case URX_LB_CONT:
+ {
+ // Positive Look-Behind, at top of loop checking for matches of LB expression
+ // at all possible input starting positions.
+
+ // Fetch the min and max possible match lengths. They are the operands
+ // of this op in the pattern.
+ int32_t minML = (int32_t)pat[fp->fPatIdx++];
+ int32_t maxML = (int32_t)pat[fp->fPatIdx++];
+ U_ASSERT(minML <= maxML);
+ U_ASSERT(minML >= 0);
+
+ // Fetch (from data) the last input index where a match was attempted.
+ U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
+ int64_t *lbStartIdx = &fData[opValue+2];
+ if (*lbStartIdx < 0) {
+ // First time through loop.
+ *lbStartIdx = fp->fInputIdx - minML;
+ } else {
+ // 2nd through nth time through the loop.
+ // Back up start position for match by one.
+ if (*lbStartIdx == 0) {
+ (*lbStartIdx)--;
+ } else {
+ UTEXT_SETNATIVEINDEX(fInputText, *lbStartIdx);
+ (void)UTEXT_PREVIOUS32(fInputText);
+ *lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ }
+ }
+
+ if (*lbStartIdx < 0 || *lbStartIdx < fp->fInputIdx - maxML) {
+ // We have tried all potential match starting points without
+ // getting a match. Backtrack out, and out of the
+ // Look Behind altogether.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ int64_t restoreInputLen = fData[opValue+3];
+ U_ASSERT(restoreInputLen >= fActiveLimit);
+ U_ASSERT(restoreInputLen <= fInputLength);
+ fActiveLimit = restoreInputLen;
+ break;
+ }
+
+ // Save state to this URX_LB_CONT op, so failure to match will repeat the loop.
+ // (successful match will fall off the end of the loop.)
+ fp = StateSave(fp, fp->fPatIdx-3, status);
+ fp->fInputIdx = *lbStartIdx;
+ }
+ break;
+
+ case URX_LB_END:
+ // End of a look-behind block, after a successful match.
+ {
+ U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
+ if (fp->fInputIdx != fActiveLimit) {
+ // The look-behind expression matched, but the match did not
+ // extend all the way to the point that we are looking behind from.
+ // FAIL out of here, which will take us back to the LB_CONT, which
+ // will retry the match starting at another position or fail
+ // the look-behind altogether, whichever is appropriate.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+
+ // Look-behind match is good. Restore the orignal input string length,
+ // which had been truncated to pin the end of the lookbehind match to the
+ // position being looked-behind.
+ int64_t originalInputLen = fData[opValue+3];
+ U_ASSERT(originalInputLen >= fActiveLimit);
+ U_ASSERT(originalInputLen <= fInputLength);
+ fActiveLimit = originalInputLen;
+ }
+ break;
+
+
+ case URX_LBN_CONT:
+ {
+ // Negative Look-Behind, at top of loop checking for matches of LB expression
+ // at all possible input starting positions.
+
+ // Fetch the extra parameters of this op.
+ int32_t minML = (int32_t)pat[fp->fPatIdx++];
+ int32_t maxML = (int32_t)pat[fp->fPatIdx++];
+ int32_t continueLoc = (int32_t)pat[fp->fPatIdx++];
+ continueLoc = URX_VAL(continueLoc);
+ U_ASSERT(minML <= maxML);
+ U_ASSERT(minML >= 0);
+ U_ASSERT(continueLoc > fp->fPatIdx);
+
+ // Fetch (from data) the last input index where a match was attempted.
+ U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
+ int64_t *lbStartIdx = &fData[opValue+2];
+ if (*lbStartIdx < 0) {
+ // First time through loop.
+ *lbStartIdx = fp->fInputIdx - minML;
+ } else {
+ // 2nd through nth time through the loop.
+ // Back up start position for match by one.
+ if (*lbStartIdx == 0) {
+ (*lbStartIdx)--;
+ } else {
+ UTEXT_SETNATIVEINDEX(fInputText, *lbStartIdx);
+ (void)UTEXT_PREVIOUS32(fInputText);
+ *lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ }
+ }
+
+ if (*lbStartIdx < 0 || *lbStartIdx < fp->fInputIdx - maxML) {
+ // We have tried all potential match starting points without
+ // getting a match, which means that the negative lookbehind as
+ // a whole has succeeded. Jump forward to the continue location
+ int64_t restoreInputLen = fData[opValue+3];
+ U_ASSERT(restoreInputLen >= fActiveLimit);
+ U_ASSERT(restoreInputLen <= fInputLength);
+ fActiveLimit = restoreInputLen;
+ fp->fPatIdx = continueLoc;
+ break;
+ }
+
+ // Save state to this URX_LB_CONT op, so failure to match will repeat the loop.
+ // (successful match will cause a FAIL out of the loop altogether.)
+ fp = StateSave(fp, fp->fPatIdx-4, status);
+ fp->fInputIdx = *lbStartIdx;
+ }
+ break;
+
+ case URX_LBN_END:
+ // End of a negative look-behind block, after a successful match.
+ {
+ U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
+ if (fp->fInputIdx != fActiveLimit) {
+ // The look-behind expression matched, but the match did not
+ // extend all the way to the point that we are looking behind from.
+ // FAIL out of here, which will take us back to the LB_CONT, which
+ // will retry the match starting at another position or succeed
+ // the look-behind altogether, whichever is appropriate.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+
+ // Look-behind expression matched, which means look-behind test as
+ // a whole Fails
+
+ // Restore the orignal input string length, which had been truncated
+ // inorder to pin the end of the lookbehind match
+ // to the position being looked-behind.
+ int64_t originalInputLen = fData[opValue+3];
+ U_ASSERT(originalInputLen >= fActiveLimit);
+ U_ASSERT(originalInputLen <= fInputLength);
+ fActiveLimit = originalInputLen;
+
+ // Restore original stack position, discarding any state saved
+ // by the successful pattern match.
+ U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
+ int32_t newStackSize = (int32_t)fData[opValue];
+ U_ASSERT(fStack->size() > newStackSize);
+ fStack->setSize(newStackSize);
+
+ // FAIL, which will take control back to someplace
+ // prior to entering the look-behind test.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ break;
+
+
+ case URX_LOOP_SR_I:
+ // Loop Initialization for the optimized implementation of
+ // [some character set]*
+ // This op scans through all matching input.
+ // The following LOOP_C op emulates stack unwinding if the following pattern fails.
+ {
+ U_ASSERT(opValue > 0 && opValue < sets->size());
+ Regex8BitSet *s8 = &fPattern->fSets8[opValue];
+ UnicodeSet *s = (UnicodeSet *)sets->elementAt(opValue);
+
+ // Loop through input, until either the input is exhausted or
+ // we reach a character that is not a member of the set.
+ int64_t ix = fp->fInputIdx;
+ UTEXT_SETNATIVEINDEX(fInputText, ix);
+ for (;;) {
+ if (ix >= fActiveLimit) {
+ fHitEnd = TRUE;
+ break;
+ }
+ UChar32 c = UTEXT_NEXT32(fInputText);
+ if (c<256) {
+ if (s8->contains(c) == FALSE) {
+ break;
+ }
+ } else {
+ if (s->contains(c) == FALSE) {
+ break;
+ }
+ }
+ ix = UTEXT_GETNATIVEINDEX(fInputText);
+ }
+
+ // If there were no matching characters, skip over the loop altogether.
+ // The loop doesn't run at all, a * op always succeeds.
+ if (ix == fp->fInputIdx) {
+ fp->fPatIdx++; // skip the URX_LOOP_C op.
+ break;
+ }
+
+ // Peek ahead in the compiled pattern, to the URX_LOOP_C that
+ // must follow. It's operand is the stack location
+ // that holds the starting input index for the match of this [set]*
+ int32_t loopcOp = (int32_t)pat[fp->fPatIdx];
+ U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C);
+ int32_t stackLoc = URX_VAL(loopcOp);
+ U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize);
+ fp->fExtra[stackLoc] = fp->fInputIdx;
+ fp->fInputIdx = ix;
+
+ // Save State to the URX_LOOP_C op that follows this one,
+ // so that match failures in the following code will return to there.
+ // Then bump the pattern idx so the LOOP_C is skipped on the way out of here.
+ fp = StateSave(fp, fp->fPatIdx, status);
+ fp->fPatIdx++;
+ }
+ break;
+
+
+ case URX_LOOP_DOT_I:
+ // Loop Initialization for the optimized implementation of .*
+ // This op scans through all remaining input.
+ // The following LOOP_C op emulates stack unwinding if the following pattern fails.
+ {
+ // Loop through input until the input is exhausted (we reach an end-of-line)
+ // In DOTALL mode, we can just go straight to the end of the input.
+ int64_t ix;
+ if ((opValue & 1) == 1) {
+ // Dot-matches-All mode. Jump straight to the end of the string.
+ ix = fActiveLimit;
+ fHitEnd = TRUE;
+ } else {
+ // NOT DOT ALL mode. Line endings do not match '.'
+ // Scan forward until a line ending or end of input.
+ ix = fp->fInputIdx;
+ UTEXT_SETNATIVEINDEX(fInputText, ix);
+ for (;;) {
+ if (ix >= fActiveLimit) {
+ fHitEnd = TRUE;
+ break;
+ }
+ UChar32 c = UTEXT_NEXT32(fInputText);
+ if ((c & 0x7f) <= 0x29) { // Fast filter of non-new-line-s
+ if ((c == 0x0a) || // 0x0a is newline in both modes.
+ (((opValue & 2) == 0) && // IF not UNIX_LINES mode
+ (c<=0x0d && c>=0x0a)) || c==0x85 ||c==0x2028 || c==0x2029) {
+ // char is a line ending. Exit the scanning loop.
+ break;
+ }
+ }
+ ix = UTEXT_GETNATIVEINDEX(fInputText);
+ }
+ }
+
+ // If there were no matching characters, skip over the loop altogether.
+ // The loop doesn't run at all, a * op always succeeds.
+ if (ix == fp->fInputIdx) {
+ fp->fPatIdx++; // skip the URX_LOOP_C op.
+ break;
+ }
+
+ // Peek ahead in the compiled pattern, to the URX_LOOP_C that
+ // must follow. It's operand is the stack location
+ // that holds the starting input index for the match of this .*
+ int32_t loopcOp = (int32_t)pat[fp->fPatIdx];
+ U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C);
+ int32_t stackLoc = URX_VAL(loopcOp);
+ U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize);
+ fp->fExtra[stackLoc] = fp->fInputIdx;
+ fp->fInputIdx = ix;
+
+ // Save State to the URX_LOOP_C op that follows this one,
+ // so that match failures in the following code will return to there.
+ // Then bump the pattern idx so the LOOP_C is skipped on the way out of here.
+ fp = StateSave(fp, fp->fPatIdx, status);
+ fp->fPatIdx++;
+ }
+ break;
+
+
+ case URX_LOOP_C:
+ {
+ U_ASSERT(opValue>=0 && opValue<fFrameSize);
+ backSearchIndex = fp->fExtra[opValue];
+ U_ASSERT(backSearchIndex <= fp->fInputIdx);
+ if (backSearchIndex == fp->fInputIdx) {
+ // We've backed up the input idx to the point that the loop started.
+ // The loop is done. Leave here without saving state.
+ // Subsequent failures won't come back here.
+ break;
+ }
+ // Set up for the next iteration of the loop, with input index
+ // backed up by one from the last time through,
+ // and a state save to this instruction in case the following code fails again.
+ // (We're going backwards because this loop emulates stack unwinding, not
+ // the initial scan forward.)
+ U_ASSERT(fp->fInputIdx > 0);
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+ UChar32 prevC = UTEXT_PREVIOUS32(fInputText);
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+
+ UChar32 twoPrevC = UTEXT_PREVIOUS32(fInputText);
+ if (prevC == 0x0a &&
+ fp->fInputIdx > backSearchIndex &&
+ twoPrevC == 0x0d) {
+ int32_t prevOp = (int32_t)pat[fp->fPatIdx-2];
+ if (URX_TYPE(prevOp) == URX_LOOP_DOT_I) {
+ // .*, stepping back over CRLF pair.
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ }
+ }
+
+
+ fp = StateSave(fp, fp->fPatIdx-1, status);
+ }
+ break;
+
+
+
+ default:
+ // Trouble. The compiled pattern contains an entry with an
+ // unrecognized type tag.
+ U_ASSERT(FALSE);
+ }
+
+ if (U_FAILURE(status)) {
+ isMatch = FALSE;
+ break;
+ }
+ }
+
+breakFromLoop:
+ fMatch = isMatch;
+ if (isMatch) {
+ fLastMatchEnd = fMatchEnd;
+ fMatchStart = startIdx;
+ fMatchEnd = fp->fInputIdx;
+ if (fTraceDebug) {
+ REGEX_RUN_DEBUG_PRINTF(("Match. start=%d end=%d\n\n", fMatchStart, fMatchEnd));
+ }
+ }
+ else
+ {
+ if (fTraceDebug) {
+ REGEX_RUN_DEBUG_PRINTF(("No match\n\n"));
+ }
+ }
+
+ fFrame = fp; // The active stack frame when the engine stopped.
+ // Contains the capture group results that we need to
+ // access later.
+ return;
}
-
-
+
+
//--------------------------------------------------------------------------------
//
-// MatchAt This is the actual matching engine.
+// MatchChunkAt This is the actual matching engine. Like MatchAt, but with the
+// assumption that the entire string is available in the UText's
+// chunk buffer. For now, that means we can use int32_t indexes,
+// except for anything that needs to be saved (like group starts
+// and ends).
+//
+// startIdx: begin matching a this index.
+// toEnd: if true, match must extend to end of the input region
//
//--------------------------------------------------------------------------------
-void RegexMatcher::MatchAt(int32_t startIdx, UErrorCode &status) {
+void RegexMatcher::MatchChunkAt(int32_t startIdx, UBool toEnd, UErrorCode &status) {
UBool isMatch = FALSE; // True if the we have a match.
+
+ int32_t backSearchIndex = INT32_MAX; // used after greedy single-character matches for searching backwards
int32_t op; // Operation from the compiled pattern, split into
int32_t opType; // the opcode
int32_t opValue; // and the operand value.
-
- #ifdef REGEX_RUN_DEBUG
+
+#ifdef REGEX_RUN_DEBUG
if (fTraceDebug)
{
- printf("MatchAt(startIdx=%d)\n", startIdx);
+ printf("MatchAt(startIdx=%ld)\n", startIdx);
printf("Original Pattern: ");
- int i;
- for (i=0; i<fPattern->fPattern.length(); i++) {
- printf("%c", fPattern->fPattern.charAt(i));
+ UChar32 c = utext_next32From(fPattern->fPattern, 0);
+ while (c != U_SENTINEL) {
+ if (c<32 || c>256) {
+ c = '.';
+ }
+ REGEX_DUMP_DEBUG_PRINTF(("%c", c));
+
+ c = UTEXT_NEXT32(fPattern->fPattern);
}
printf("\n");
printf("Input String: ");
- for (i=0; i<fInput->length(); i++) {
- UChar c = fInput->charAt(i);
+ c = utext_next32From(fInputText, 0);
+ while (c != U_SENTINEL) {
if (c<32 || c>256) {
c = '.';
}
printf("%c", c);
+
+ c = UTEXT_NEXT32(fInputText);
}
printf("\n");
printf("\n");
}
- #endif
-
+#endif
+
if (U_FAILURE(status)) {
return;
}
-
+
// Cache frequently referenced items from the compiled pattern
- // in local variables.
//
- int32_t *pat = fPattern->fCompiledPat->getBuffer();
-
+ int64_t *pat = fPattern->fCompiledPat->getBuffer();
+
const UChar *litText = fPattern->fLiteralText.getBuffer();
UVector *sets = fPattern->fSets;
- int32_t inputLen = fInput->length();
- const UChar *inputBuf = fInput->getBuffer();
-
+
+ const UChar *inputBuf = fInputText->chunkContents;
+
+ fFrameSize = fPattern->fFrameSize;
REStackFrame *fp = resetStack();
- int32_t frameSize = fPattern->fFrameSize;
-
+
fp->fPatIdx = 0;
fp->fInputIdx = startIdx;
-
+
// Zero out the pattern's static data
int32_t i;
for (i = 0; i<fPattern->fDataSize; i++) {
fData[i] = 0;
}
-
+
//
// Main loop for interpreting the compiled pattern.
// One iteration of the loop per pattern operation performed.
fprintf(stderr, "Heap Trouble\n");
}
#endif
- op = pat[fp->fPatIdx];
+
+ op = (int32_t)pat[fp->fPatIdx];
opType = URX_TYPE(op);
opValue = URX_VAL(op);
- #ifdef REGEX_RUN_DEBUG
+#ifdef REGEX_RUN_DEBUG
if (fTraceDebug) {
- printf("inputIdx=%d inputChar=%c sp=%3d ", fp->fInputIdx,
- fInput->char32At(fp->fInputIdx), (int32_t *)fp-fStack->getBuffer());
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+ printf("inputIdx=%d inputChar=%x sp=%3d activeLimit=%d ", fp->fInputIdx,
+ UTEXT_CURRENT32(fInputText), (int64_t *)fp-fStack->getBuffer(), fActiveLimit);
fPattern->dumpOp(fp->fPatIdx);
}
- #endif
+#endif
fp->fPatIdx++;
-
+
switch (opType) {
-
-
+
+
case URX_NOP:
break;
-
-
+
+
case URX_BACKTRACK:
// Force a backtrack. In some circumstances, the pattern compiler
// will notice that the pattern can't possibly match anything, and will
// emit one of these at that point.
- fp = (REStackFrame *)fStack->popFrame(frameSize);
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
break;
-
-
+
+
case URX_ONECHAR:
- if (fp->fInputIdx < inputLen) {
- UChar32 c;
- U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c);
- if (c == opValue) {
+ if (fp->fInputIdx < fActiveLimit) {
+ UChar32 c;
+ U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
+ if (c == opValue) {
break;
}
+ } else {
+ fHitEnd = TRUE;
}
- fp = (REStackFrame *)fStack->popFrame(frameSize);
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
break;
-
-
+
+
case URX_STRING:
{
// Test input against a literal string.
// offset to the string text, and one for the length.
int32_t stringStartIdx = opValue;
int32_t stringLen;
-
- op = pat[fp->fPatIdx]; // Fetch the second operand
+
+ op = (int32_t)pat[fp->fPatIdx]; // Fetch the second operand
fp->fPatIdx++;
opType = URX_TYPE(op);
stringLen = URX_VAL(op);
U_ASSERT(opType == URX_STRING_LEN);
U_ASSERT(stringLen >= 2);
-
- if (fp->fInputIdx + stringLen > inputLen) {
- // No match. String is longer than the remaining input text.
- fp = (REStackFrame *)fStack->popFrame(frameSize);
- break;
- }
-
+
const UChar * pInp = inputBuf + fp->fInputIdx;
+ const UChar * pInpLimit = inputBuf + fActiveLimit;
const UChar * pPat = litText+stringStartIdx;
const UChar * pEnd = pInp + stringLen;
- for(;;) {
- if (*pInp == *pPat) {
- pInp++;
- pPat++;
- if (pInp == pEnd) {
- // Successful Match.
- fp->fInputIdx += stringLen;
- break;
- }
- } else {
- // Match failed.
- fp = (REStackFrame *)fStack->popFrame(frameSize);
+ UBool success = TRUE;
+ while (pInp < pEnd) {
+ if (pInp >= pInpLimit) {
+ fHitEnd = TRUE;
+ success = FALSE;
+ break;
+ }
+ if (*pInp++ != *pPat++) {
+ success = FALSE;
break;
}
}
- break;
-
+
+ if (success) {
+ fp->fInputIdx += stringLen;
+ } else {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
}
break;
-
-
-
+
+
case URX_STATE_SAVE:
- fp = StateSave(fp, opValue, frameSize, status);
+ fp = StateSave(fp, opValue, status);
break;
-
-
+
+
case URX_END:
// The match loop will exit via this path on a successful match,
// when we reach the end of the pattern.
+ if (toEnd && fp->fInputIdx != fActiveLimit) {
+ // The pattern matched, but not to the end of input. Try some more.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
isMatch = TRUE;
goto breakFromLoop;
-
- // Start and End Capture stack frame variables are layout out like this:
+
+ // Start and End Capture stack frame variables are laid out out like this:
// fp->fExtra[opValue] - The start of a completed capture group
// opValue+1 - The end of a completed capture group
// opValue+2 - the start of a capture group whose end
// has not yet been reached (and might not ever be).
case URX_START_CAPTURE:
- U_ASSERT(opValue >= 0 && opValue < frameSize-3);
+ U_ASSERT(opValue >= 0 && opValue < fFrameSize-3);
fp->fExtra[opValue+2] = fp->fInputIdx;
break;
-
-
+
+
case URX_END_CAPTURE:
- U_ASSERT(opValue >= 0 && opValue < frameSize-3);
+ U_ASSERT(opValue >= 0 && opValue < fFrameSize-3);
U_ASSERT(fp->fExtra[opValue+2] >= 0); // Start pos for this group must be set.
fp->fExtra[opValue] = fp->fExtra[opValue+2]; // Tentative start becomes real.
fp->fExtra[opValue+1] = fp->fInputIdx; // End position
U_ASSERT(fp->fExtra[opValue] <= fp->fExtra[opValue+1]);
break;
-
+
case URX_DOLLAR: // $, test for End of line
- // or for position before new line at end of input
- if (fp->fInputIdx < inputLen-2) {
+ // or for position before new line at end of input
+ if (fp->fInputIdx < fAnchorLimit-2) {
// We are no where near the end of input. Fail.
- fp = (REStackFrame *)fStack->popFrame(frameSize);
+ // This is the common case. Keep it first.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
break;
}
- if (fp->fInputIdx >= inputLen) {
+ if (fp->fInputIdx >= fAnchorLimit) {
// We really are at the end of input. Success.
+ fHitEnd = TRUE;
+ fRequireEnd = TRUE;
break;
}
+
// If we are positioned just before a new-line that is located at the
// end of input, succeed.
- if (fp->fInputIdx == inputLen-1) {
- UChar32 c = fInput->char32At(fp->fInputIdx);
- if (c == 0x0a || c==0x0d || c==0x0c || c==0x85 ||c==0x2028 || c==0x2029) {
- break; // At new-line at end of input. Success
+ if (fp->fInputIdx == fAnchorLimit-1) {
+ UChar32 c;
+ U16_GET(inputBuf, fAnchorStart, fp->fInputIdx, fAnchorLimit, c);
+
+ if ((c>=0x0a && c<=0x0d) || c==0x85 || c==0x2028 || c==0x2029) {
+ if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && inputBuf[fp->fInputIdx-1]==0x0d)) {
+ // At new-line at end of input. Success
+ fHitEnd = TRUE;
+ fRequireEnd = TRUE;
+ break;
+ }
}
- }
-
- if (fp->fInputIdx == inputLen-2) {
- if (fInput->char32At(fp->fInputIdx) == 0x0d && fInput->char32At(fp->fInputIdx+1) == 0x0a) {
+ } else if (fp->fInputIdx == fAnchorLimit-2 &&
+ inputBuf[fp->fInputIdx]==0x0d && inputBuf[fp->fInputIdx+1]==0x0a) {
+ fHitEnd = TRUE;
+ fRequireEnd = TRUE;
break; // At CR/LF at end of input. Success
+ }
+
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+
+ break;
+
+
+ case URX_DOLLAR_D: // $, test for End of Line, in UNIX_LINES mode.
+ if (fp->fInputIdx >= fAnchorLimit-1) {
+ // Either at the last character of input, or off the end.
+ if (fp->fInputIdx == fAnchorLimit-1) {
+ // At last char of input. Success if it's a new line.
+ if (inputBuf[fp->fInputIdx] == 0x0a) {
+ fHitEnd = TRUE;
+ fRequireEnd = TRUE;
+ break;
+ }
+ } else {
+ // Off the end of input. Success.
+ fHitEnd = TRUE;
+ fRequireEnd = TRUE;
+ break;
}
}
-
- fp = (REStackFrame *)fStack->popFrame(frameSize);
-
+
+ // Not at end of input. Back-track out.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
break;
-
-
- case URX_DOLLAR_M: // $, test for End of line in multi-line mode
- {
- if (fp->fInputIdx >= inputLen) {
- // We really are at the end of input. Success.
- break;
- }
- // If we are positioned just before a new-line , succeed.
- // It makes no difference where the new-line is within the input.
- UChar32 c = inputBuf[fp->fInputIdx];
- if (c == 0x0a || c==0x0d || c==0x0c || c==0x85 ||c==0x2028 || c==0x2029) {
- break; // At new-line at end of input. Success
- }
- // not at a new line. Fail.
- fp = (REStackFrame *)fStack->popFrame(frameSize);
- }
- break;
-
-
- case URX_CARET: // ^, test for start of line
- if (fp->fInputIdx != 0) {
- fp = (REStackFrame *)fStack->popFrame(frameSize);
- }
+
+
+ case URX_DOLLAR_M: // $, test for End of line in multi-line mode
+ {
+ if (fp->fInputIdx >= fAnchorLimit) {
+ // We really are at the end of input. Success.
+ fHitEnd = TRUE;
+ fRequireEnd = TRUE;
+ break;
+ }
+ // If we are positioned just before a new-line, succeed.
+ // It makes no difference where the new-line is within the input.
+ UChar32 c = inputBuf[fp->fInputIdx];
+ if ((c>=0x0a && c<=0x0d) || c==0x85 ||c==0x2028 || c==0x2029) {
+ // At a line end, except for the odd chance of being in the middle of a CR/LF sequence
+ // In multi-line mode, hitting a new-line just before the end of input does not
+ // set the hitEnd or requireEnd flags
+ if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && inputBuf[fp->fInputIdx-1]==0x0d)) {
+ break;
+ }
+ }
+ // not at a new line. Fail.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
break;
-
-
- case URX_CARET_M: // ^, test for start of line in mulit-line mode
- {
- if (fp->fInputIdx == 0) {
- // We are at the start input. Success.
- break;
- }
- // Check whether character just before the current pos is a new-line
- // unless we are at the end of input
- UChar c = inputBuf[fp->fInputIdx - 1];
- if ((fp->fInputIdx < inputLen) &&
- (c == 0x0a || c==0x0d || c==0x0c || c==0x85 ||c==0x2028 || c==0x2029)) {
- // It's a new-line. ^ is true. Success.
- break;
- }
- // Not at the start of a line. Fail.
- fp = (REStackFrame *)fStack->popFrame(frameSize);
- }
- break;
-
-
+
+
+ case URX_DOLLAR_MD: // $, test for End of line in multi-line and UNIX_LINES mode
+ {
+ if (fp->fInputIdx >= fAnchorLimit) {
+ // We really are at the end of input. Success.
+ fHitEnd = TRUE;
+ fRequireEnd = TRUE; // Java set requireEnd in this case, even though
+ break; // adding a new-line would not lose the match.
+ }
+ // If we are not positioned just before a new-line, the test fails; backtrack out.
+ // It makes no difference where the new-line is within the input.
+ if (inputBuf[fp->fInputIdx] != 0x0a) {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+
+ case URX_CARET: // ^, test for start of line
+ if (fp->fInputIdx != fAnchorStart) {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ break;
+
+
+ case URX_CARET_M: // ^, test for start of line in mulit-line mode
+ {
+ if (fp->fInputIdx == fAnchorStart) {
+ // We are at the start input. Success.
+ break;
+ }
+ // Check whether character just before the current pos is a new-line
+ // unless we are at the end of input
+ UChar c = inputBuf[fp->fInputIdx - 1];
+ if ((fp->fInputIdx < fAnchorLimit) &&
+ ((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029)) {
+ // It's a new-line. ^ is true. Success.
+ // TODO: what should be done with positions between a CR and LF?
+ break;
+ }
+ // Not at the start of a line. Fail.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ break;
+
+
+ case URX_CARET_M_UNIX: // ^, test for start of line in mulit-line + Unix-line mode
+ {
+ U_ASSERT(fp->fInputIdx >= fAnchorStart);
+ if (fp->fInputIdx <= fAnchorStart) {
+ // We are at the start input. Success.
+ break;
+ }
+ // Check whether character just before the current pos is a new-line
+ U_ASSERT(fp->fInputIdx <= fAnchorLimit);
+ UChar c = inputBuf[fp->fInputIdx - 1];
+ if (c != 0x0a) {
+ // Not at the start of a line. Back-track out.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
case URX_BACKSLASH_B: // Test for word boundaries
{
- UBool success = isWordBoundary(fp->fInputIdx);
- success ^= (opValue != 0); // flip sense for \B
+ UBool success = isChunkWordBoundary((int32_t)fp->fInputIdx);
+ success ^= (UBool)(opValue != 0); // flip sense for \B
if (!success) {
- fp = (REStackFrame *)fStack->popFrame(frameSize);
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
}
}
break;
-
-
+
+
+ case URX_BACKSLASH_BU: // Test for word boundaries, Unicode-style
+ {
+ UBool success = isUWordBoundary(fp->fInputIdx);
+ success ^= (UBool)(opValue != 0); // flip sense for \B
+ if (!success) {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+
case URX_BACKSLASH_D: // Test for decimal digit
{
- if (fp->fInputIdx >= inputLen) {
- fp = (REStackFrame *)fStack->popFrame(frameSize);
+ if (fp->fInputIdx >= fActiveLimit) {
+ fHitEnd = TRUE;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
break;
}
-
- UChar32 c = fInput->char32At(fp->fInputIdx);
- int8_t ctype = u_charType(c);
+
+ UChar32 c;
+ U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
+ int8_t ctype = u_charType(c); // TODO: make a unicode set for this. Will be faster.
UBool success = (ctype == U_DECIMAL_DIGIT_NUMBER);
- success ^= (opValue != 0); // flip sense for \D
- if (success) {
- fp->fInputIdx = fInput->moveIndex32(fp->fInputIdx, 1);
- } else {
- fp = (REStackFrame *)fStack->popFrame(frameSize);
+ success ^= (UBool)(opValue != 0); // flip sense for \D
+ if (!success) {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
}
}
break;
-
-
-
-
+
+
case URX_BACKSLASH_G: // Test for position at end of previous match
- if (!((fMatch && fp->fInputIdx==fMatchEnd) || fMatch==FALSE && fp->fInputIdx==0)) {
- fp = (REStackFrame *)fStack->popFrame(frameSize);
+ if (!((fMatch && fp->fInputIdx==fMatchEnd) || (fMatch==FALSE && fp->fInputIdx==fActiveStart))) {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
}
break;
-
-
+
+
case URX_BACKSLASH_X:
- // Match a Grapheme, as defined by Unicode TR 29.
- // Differs slightly from Perl, which consumes combining marks independently
- // of context.
- {
+ // Match a Grapheme, as defined by Unicode TR 29.
+ // Differs slightly from Perl, which consumes combining marks independently
+ // of context.
+ {
- // Fail if at end of input
- if (fp->fInputIdx >= inputLen) {
- fp = (REStackFrame *)fStack->popFrame(frameSize);
- break;
- }
+ // Fail if at end of input
+ if (fp->fInputIdx >= fActiveLimit) {
+ fHitEnd = TRUE;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
- // Examine (and consume) the current char.
- // Dispatch into a little state machine, based on the char.
- UChar32 c;
- U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c);
- UnicodeSet **sets = fPattern->fStaticSets;
- if (sets[URX_GC_NORMAL]->contains(c)) goto GC_Extend;
- if (sets[URX_GC_CONTROL]->contains(c)) goto GC_Control;
- if (sets[URX_GC_L]->contains(c)) goto GC_L;
- if (sets[URX_GC_LV]->contains(c)) goto GC_V;
- if (sets[URX_GC_LVT]->contains(c)) goto GC_T;
- if (sets[URX_GC_V]->contains(c)) goto GC_V;
- if (sets[URX_GC_T]->contains(c)) goto GC_T;
- goto GC_Extend;
+ // Examine (and consume) the current char.
+ // Dispatch into a little state machine, based on the char.
+ UChar32 c;
+ U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
+ UnicodeSet **sets = fPattern->fStaticSets;
+ if (sets[URX_GC_NORMAL]->contains(c)) goto GC_Extend;
+ if (sets[URX_GC_CONTROL]->contains(c)) goto GC_Control;
+ if (sets[URX_GC_L]->contains(c)) goto GC_L;
+ if (sets[URX_GC_LV]->contains(c)) goto GC_V;
+ if (sets[URX_GC_LVT]->contains(c)) goto GC_T;
+ if (sets[URX_GC_V]->contains(c)) goto GC_V;
+ if (sets[URX_GC_T]->contains(c)) goto GC_T;
+ goto GC_Extend;
GC_L:
- if (fp->fInputIdx >= inputLen) goto GC_Done;
- U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c);
- if (sets[URX_GC_L]->contains(c)) goto GC_L;
- if (sets[URX_GC_LV]->contains(c)) goto GC_V;
- if (sets[URX_GC_LVT]->contains(c)) goto GC_T;
- if (sets[URX_GC_V]->contains(c)) goto GC_V;
- U16_PREV(inputBuf, 0, fp->fInputIdx, c);
- goto GC_Extend;
+ if (fp->fInputIdx >= fActiveLimit) goto GC_Done;
+ U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
+ if (sets[URX_GC_L]->contains(c)) goto GC_L;
+ if (sets[URX_GC_LV]->contains(c)) goto GC_V;
+ if (sets[URX_GC_LVT]->contains(c)) goto GC_T;
+ if (sets[URX_GC_V]->contains(c)) goto GC_V;
+ U16_PREV(inputBuf, 0, fp->fInputIdx, c);
+ goto GC_Extend;
GC_V:
- if (fp->fInputIdx >= inputLen) goto GC_Done;
- U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c);
- if (sets[URX_GC_V]->contains(c)) goto GC_V;
- if (sets[URX_GC_T]->contains(c)) goto GC_T;
- U16_PREV(inputBuf, 0, fp->fInputIdx, c);
- goto GC_Extend;
+ if (fp->fInputIdx >= fActiveLimit) goto GC_Done;
+ U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
+ if (sets[URX_GC_V]->contains(c)) goto GC_V;
+ if (sets[URX_GC_T]->contains(c)) goto GC_T;
+ U16_PREV(inputBuf, 0, fp->fInputIdx, c);
+ goto GC_Extend;
GC_T:
- if (fp->fInputIdx >= inputLen) goto GC_Done;
- U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c);
- if (sets[URX_GC_T]->contains(c)) goto GC_T;
- U16_PREV(inputBuf, 0, fp->fInputIdx, c);
- goto GC_Extend;
-
-GC_Extend:
- // Combining characters are consumed here
- for (;;) {
- if (fp->fInputIdx >= inputLen) {
- break;
- }
- U16_GET(inputBuf, 0, fp->fInputIdx, inputLen, c);
- if (sets[URX_GC_EXTEND]->contains(c) == FALSE) {
- break;
- }
- U16_FWD_1(inputBuf, fp->fInputIdx, inputLen);
+ if (fp->fInputIdx >= fActiveLimit) goto GC_Done;
+ U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
+ if (sets[URX_GC_T]->contains(c)) goto GC_T;
+ U16_PREV(inputBuf, 0, fp->fInputIdx, c);
+ goto GC_Extend;
+
+GC_Extend:
+ // Combining characters are consumed here
+ for (;;) {
+ if (fp->fInputIdx >= fActiveLimit) {
+ break;
}
- goto GC_Done;
+ U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
+ if (sets[URX_GC_EXTEND]->contains(c) == FALSE) {
+ U16_BACK_1(inputBuf, 0, fp->fInputIdx);
+ break;
+ }
+ }
+ goto GC_Done;
GC_Control:
- // Most control chars stand alone (don't combine with combining chars),
- // except for that CR/LF sequence is a single grapheme cluster.
- if (c == 0x0d && fp->fInputIdx < inputLen && inputBuf[fp->fInputIdx] == 0x0a) {
- fp->fInputIdx++;
- }
+ // Most control chars stand alone (don't combine with combining chars),
+ // except for that CR/LF sequence is a single grapheme cluster.
+ if (c == 0x0d && fp->fInputIdx < fActiveLimit && inputBuf[fp->fInputIdx] == 0x0a) {
+ fp->fInputIdx++;
+ }
GC_Done:
- break;
+ if (fp->fInputIdx >= fActiveLimit) {
+ fHitEnd = TRUE;
}
+ break;
+ }
-
-
-
- case URX_BACKSLASH_Z: // Test for end of line
- if (fp->fInputIdx < inputLen) {
- fp = (REStackFrame *)fStack->popFrame(frameSize);
+
+
+
+ case URX_BACKSLASH_Z: // Test for end of Input
+ if (fp->fInputIdx < fAnchorLimit) {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ } else {
+ fHitEnd = TRUE;
+ fRequireEnd = TRUE;
}
break;
-
-
-
+
+
+
case URX_STATIC_SETREF:
{
// Test input character against one of the predefined sets
// The high bit of the op value is a flag for the match polarity.
// 0: success if input char is in set.
// 1: success if input char is not in set.
- if (fp->fInputIdx >= inputLen) {
- fp = (REStackFrame *)fStack->popFrame(frameSize);
+ if (fp->fInputIdx >= fActiveLimit) {
+ fHitEnd = TRUE;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
break;
}
-
+
UBool success = ((opValue & URX_NEG_SET) == URX_NEG_SET);
opValue &= ~URX_NEG_SET;
U_ASSERT(opValue > 0 && opValue < URX_LAST_SET);
- UChar32 c;
- U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c);
+
+ UChar32 c;
+ U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
if (c < 256) {
Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue];
if (s8->contains(c)) {
}
}
if (!success) {
- fp = (REStackFrame *)fStack->popFrame(frameSize);
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
}
}
break;
-
+
case URX_STAT_SETREF_N:
{
// Test input character for NOT being a member of one of
// the predefined sets (Word Characters, for example)
- if (fp->fInputIdx >= inputLen) {
- fp = (REStackFrame *)fStack->popFrame(frameSize);
+ if (fp->fInputIdx >= fActiveLimit) {
+ fHitEnd = TRUE;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
break;
}
-
+
U_ASSERT(opValue > 0 && opValue < URX_LAST_SET);
+
UChar32 c;
- U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c);
+ U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
if (c < 256) {
Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue];
if (s8->contains(c) == FALSE) {
break;
}
}
-
- fp = (REStackFrame *)fStack->popFrame(frameSize);
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
}
break;
-
+
case URX_SETREF:
- if (fp->fInputIdx < inputLen) {
- // There is input left. Pick up one char and test it for set membership.
- UChar32 c;
- U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c);
+ {
+ if (fp->fInputIdx >= fActiveLimit) {
+ fHitEnd = TRUE;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+
U_ASSERT(opValue > 0 && opValue < sets->size());
+
+ // There is input left. Pick up one char and test it for set membership.
+ UChar32 c;
+ U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
if (c<256) {
Regex8BitSet *s8 = &fPattern->fSets8[opValue];
if (s8->contains(c)) {
+ // The character is in the set. A Match.
break;
}
} else {
-
UnicodeSet *s = (UnicodeSet *)sets->elementAt(opValue);
if (s->contains(c)) {
// The character is in the set. A Match.
break;
}
}
+
+ // the character wasn't in the set.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
}
- // Either at end of input, or the character wasn't in the set.
- // Either way, we need to back track out.
- fp = (REStackFrame *)fStack->popFrame(frameSize);
break;
-
+
case URX_DOTANY:
{
// . matches anything, but stops at end-of-line.
- if (fp->fInputIdx >= inputLen) {
+ if (fp->fInputIdx >= fActiveLimit) {
// At end of input. Match failed. Backtrack out.
- fp = (REStackFrame *)fStack->popFrame(frameSize);
+ fHitEnd = TRUE;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
break;
}
+
// There is input left. Advance over one char, unless we've hit end-of-line
- UChar32 c;
- U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c);
+ UChar32 c;
+ U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
if (((c & 0x7f) <= 0x29) && // First quickly bypass as many chars as possible
- (c == 0x0a || c==0x0d || c==0x0c || c==0x85 ||c==0x2028 || c==0x2029)) {
+ ((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029)) {
// End of line in normal mode. . does not match.
- fp = (REStackFrame *)fStack->popFrame(frameSize);
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
break;
}
}
case URX_DOTANY_ALL:
{
- // ., in dot-matches-all (including new lines) mode
- if (fp->fInputIdx >= inputLen) {
+ // . in dot-matches-all (including new lines) mode
+ if (fp->fInputIdx >= fActiveLimit) {
// At end of input. Match failed. Backtrack out.
- fp = (REStackFrame *)fStack->popFrame(frameSize);
+ fHitEnd = TRUE;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
break;
}
+
// There is input left. Advance over one char, except if we are
// at a cr/lf, advance over both of them.
UChar32 c;
- U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c);
- if (c==0x0d) {
+ U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
+ if (c==0x0d && fp->fInputIdx < fActiveLimit) {
// In the case of a CR/LF, we need to advance over both.
- UChar nextc = inputBuf[fp->fInputIdx];
- if (nextc == 0x0a) {
- fp->fInputIdx++;
+ if (inputBuf[fp->fInputIdx] == 0x0a) {
+ U16_FWD_1(inputBuf, fp->fInputIdx, fActiveLimit);
}
}
}
break;
-
- case URX_DOTANY_PL:
- // Match all up to and end-of-line or end-of-input.
+
+
+ case URX_DOTANY_UNIX:
{
- // Fail if input already exhausted.
- if (fp->fInputIdx >= inputLen) {
- fp = (REStackFrame *)fStack->popFrame(frameSize);
- break;
- }
-
- // There is input left. Fail if we are at the end of a line.
- UChar32 c;
- U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c);
- if (((c & 0x7f) <= 0x29) && // First quickly bypass as many chars as possible
- (c == 0x0a || c==0x0d || c==0x0c || c==0x85 ||c==0x2028 || c==0x2029)) {
- // End of line in normal mode. . does not match.
- fp = (REStackFrame *)fStack->popFrame(frameSize);
+ // '.' operator, matches all, but stops at end-of-line.
+ // UNIX_LINES mode, so 0x0a is the only recognized line ending.
+ if (fp->fInputIdx >= fActiveLimit) {
+ // At end of input. Match failed. Backtrack out.
+ fHitEnd = TRUE;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
break;
}
- // There was input left. Consume it until we hit the end of a line,
- // or until it's exhausted.
- while (fp->fInputIdx < inputLen) {
- U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c);
- if (((c & 0x7f) <= 0x29) && // First quickly bypass as many chars as possible
- (c == 0x0a || c==0x0d || c==0x0c || c==0x85 ||c==0x2028 || c==0x2029)) {
- U16_BACK_1(inputBuf, 0, fp->fInputIdx)
- // Scan has reached a line-end. We are done.
- break;
- }
- }
- }
- break;
-
- case URX_DOTANY_ALL_PL:
- {
- // Match up to end of input. Fail if already at end of input.
- if (fp->fInputIdx >= inputLen) {
- fp = (REStackFrame *)fStack->popFrame(frameSize);
- } else {
- fp->fInputIdx = inputLen;
+ // There is input left. Advance over one char, unless we've hit end-of-line
+ UChar32 c;
+ U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
+ if (c == 0x0a) {
+ // End of line in normal mode. '.' does not match the \n
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
}
}
break;
-
-
+
+
case URX_JMP:
fp->fPatIdx = opValue;
break;
-
+
case URX_FAIL:
isMatch = FALSE;
goto breakFromLoop;
-
+
case URX_JMP_SAV:
U_ASSERT(opValue < fPattern->fCompiledPat->size());
- fp = StateSave(fp, fp->fPatIdx, frameSize, status); // State save to loc following current
- fp->fPatIdx = opValue; // Then JMP.
+ fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current
+ fp->fPatIdx = opValue; // Then JMP.
break;
-
+
case URX_JMP_SAV_X:
// This opcode is used with (x)+, when x can match a zero length string.
// Same as JMP_SAV, except conditional on the match having made forward progress.
// data address of the input position at the start of the loop.
{
U_ASSERT(opValue > 0 && opValue < fPattern->fCompiledPat->size());
- int32_t stoOp = pat[opValue-1];
+ int32_t stoOp = (int32_t)pat[opValue-1];
U_ASSERT(URX_TYPE(stoOp) == URX_STO_INP_LOC);
int32_t frameLoc = URX_VAL(stoOp);
- U_ASSERT(frameLoc >= 0 && frameLoc < frameSize);
- int32_t prevInputIdx = fp->fExtra[frameLoc];
+ U_ASSERT(frameLoc >= 0 && frameLoc < fFrameSize);
+ int32_t prevInputIdx = (int32_t)fp->fExtra[frameLoc];
U_ASSERT(prevInputIdx <= fp->fInputIdx);
if (prevInputIdx < fp->fInputIdx) {
// The match did make progress. Repeat the loop.
- fp = StateSave(fp, fp->fPatIdx, frameSize, status); // State save to loc following current
+ fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current
fp->fPatIdx = opValue;
fp->fExtra[frameLoc] = fp->fInputIdx;
}
// execution will fall out of the loop.
}
break;
-
+
case URX_CTR_INIT:
{
- U_ASSERT(opValue >= 0 && opValue < frameSize-2);
+ U_ASSERT(opValue >= 0 && opValue < fFrameSize-2);
fp->fExtra[opValue] = 0; // Set the loop counter variable to zero
-
+
// Pick up the three extra operands that CTR_INIT has, and
// skip the pattern location counter past
- int32_t instrOperandLoc = fp->fPatIdx;
+ int32_t instrOperandLoc = (int32_t)fp->fPatIdx;
fp->fPatIdx += 3;
int32_t loopLoc = URX_VAL(pat[instrOperandLoc]);
- int32_t minCount = pat[instrOperandLoc+1];
- int32_t maxCount = pat[instrOperandLoc+2];
+ int32_t minCount = (int32_t)pat[instrOperandLoc+1];
+ int32_t maxCount = (int32_t)pat[instrOperandLoc+2];
U_ASSERT(minCount>=0);
U_ASSERT(maxCount>=minCount || maxCount==-1);
U_ASSERT(loopLoc>fp->fPatIdx);
-
+
if (minCount == 0) {
- fp = StateSave(fp, loopLoc+1, frameSize, status);
+ fp = StateSave(fp, loopLoc+1, status);
}
if (maxCount == 0) {
- fp = (REStackFrame *)fStack->popFrame(frameSize);
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
}
}
break;
-
+
case URX_CTR_LOOP:
{
U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2);
- int32_t initOp = pat[opValue];
+ int32_t initOp = (int32_t)pat[opValue];
U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT);
- int32_t *pCounter = &fp->fExtra[URX_VAL(initOp)];
- int32_t minCount = pat[opValue+2];
- int32_t maxCount = pat[opValue+3];
- // Increment the counter. Note: we're not worrying about counter
+ int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)];
+ int32_t minCount = (int32_t)pat[opValue+2];
+ int32_t maxCount = (int32_t)pat[opValue+3];
+ // Increment the counter. Note: we DIDN'T worry about counter
// overflow, since the data comes from UnicodeStrings, which
- // stores its length in an int32_t.
+ // stores its length in an int32_t. Do we have to think about
+ // this now that we're using UText? Probably not, since the length
+ // in UChar32s is still an int32_t.
(*pCounter)++;
U_ASSERT(*pCounter > 0);
- if ((uint32_t)*pCounter >= (uint32_t)maxCount) {
+ if ((uint64_t)*pCounter >= (uint32_t)maxCount) {
U_ASSERT(*pCounter == maxCount || maxCount == -1);
break;
}
if (*pCounter >= minCount) {
- fp = StateSave(fp, fp->fPatIdx, frameSize, status);
+ fp = StateSave(fp, fp->fPatIdx, status);
}
fp->fPatIdx = opValue + 4; // Loop back.
}
break;
-
+
case URX_CTR_INIT_NG:
{
- U_ASSERT(opValue >= 0 && opValue < frameSize-2);
+ // Initialize a non-greedy loop
+ U_ASSERT(opValue >= 0 && opValue < fFrameSize-2);
fp->fExtra[opValue] = 0; // Set the loop counter variable to zero
-
+
// Pick up the three extra operands that CTR_INIT has, and
// skip the pattern location counter past
- int32_t instrOperandLoc = fp->fPatIdx;
+ int32_t instrOperandLoc = (int32_t)fp->fPatIdx;
fp->fPatIdx += 3;
int32_t loopLoc = URX_VAL(pat[instrOperandLoc]);
- int32_t minCount = pat[instrOperandLoc+1];
- int32_t maxCount = pat[instrOperandLoc+2];
+ int32_t minCount = (int32_t)pat[instrOperandLoc+1];
+ int32_t maxCount = (int32_t)pat[instrOperandLoc+2];
U_ASSERT(minCount>=0);
U_ASSERT(maxCount>=minCount || maxCount==-1);
U_ASSERT(loopLoc>fp->fPatIdx);
-
+
if (minCount == 0) {
if (maxCount != 0) {
- fp = StateSave(fp, fp->fPatIdx, frameSize, status);
+ fp = StateSave(fp, fp->fPatIdx, status);
}
fp->fPatIdx = loopLoc+1; // Continue with stuff after repeated block
}
}
break;
-
+
case URX_CTR_LOOP_NG:
{
+ // Non-greedy {min, max} loops
U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2);
- int32_t initOp = pat[opValue];
+ int32_t initOp = (int32_t)pat[opValue];
U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT_NG);
- int32_t *pCounter = &fp->fExtra[URX_VAL(initOp)];
- int32_t minCount = pat[opValue+2];
- int32_t maxCount = pat[opValue+3];
- // Increment the counter. Note: we're not worrying about counter
+ int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)];
+ int32_t minCount = (int32_t)pat[opValue+2];
+ int32_t maxCount = (int32_t)pat[opValue+3];
+ // Increment the counter. Note: we DIDN'T worry about counter
// overflow, since the data comes from UnicodeStrings, which
- // stores its length in an int32_t.
+ // stores its length in an int32_t. Do we have to think about
+ // this now that we're using UText? Probably not, since the length
+ // in UChar32s is still an int32_t.
(*pCounter)++;
U_ASSERT(*pCounter > 0);
-
- if ((uint32_t)*pCounter >= (uint32_t)maxCount) {
+
+ if ((uint64_t)*pCounter >= (uint32_t)maxCount) {
// The loop has matched the maximum permitted number of times.
// Break out of here with no action. Matching will
// continue with the following pattern.
U_ASSERT(*pCounter == maxCount || maxCount == -1);
break;
}
-
+
if (*pCounter < minCount) {
// We haven't met the minimum number of matches yet.
// Loop back for another one.
// Fall into the following pattern, but first do
// a state save to the top of the loop, so that a failure
// in the following pattern will try another iteration of the loop.
- fp = StateSave(fp, opValue + 4, frameSize, status);
+ fp = StateSave(fp, opValue + 4, status);
}
}
break;
-
- // TODO: Possessive flavor of loop ops, or take them out if no longer needed.
-
+
case URX_STO_SP:
U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize);
fData[opValue] = fStack->size();
break;
-
+
case URX_LD_SP:
{
U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize);
- int32_t newStackSize = fData[opValue];
+ int32_t newStackSize = (int32_t)fData[opValue];
U_ASSERT(newStackSize <= fStack->size());
- int32_t *newFP = fStack->getBuffer() + newStackSize - frameSize;
- if (newFP == (int32_t *)fp) {
+ int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize;
+ if (newFP == (int64_t *)fp) {
break;
}
int32_t i;
- for (i=0; i<frameSize; i++) {
- newFP[i] = ((int32_t *)fp)[i];
+ for (i=0; i<fFrameSize; i++) {
+ newFP[i] = ((int64_t *)fp)[i];
}
fp = (REStackFrame *)newFP;
fStack->setSize(newStackSize);
}
break;
-
+
case URX_BACKREF:
+ {
+ U_ASSERT(opValue < fFrameSize);
+ int64_t groupStartIdx = fp->fExtra[opValue];
+ int64_t groupEndIdx = fp->fExtra[opValue+1];
+ U_ASSERT(groupStartIdx <= groupEndIdx);
+ int64_t inputIndex = fp->fInputIdx;
+ if (groupStartIdx < 0) {
+ // This capture group has not participated in the match thus far,
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match.
+ break;
+ }
+ UBool success = TRUE;
+ for (int64_t groupIndex = groupStartIdx; groupIndex < groupEndIdx; ++groupIndex,++inputIndex) {
+ if (inputIndex >= fActiveLimit) {
+ success = FALSE;
+ fHitEnd = TRUE;
+ break;
+ }
+ if (inputBuf[groupIndex] != inputBuf[inputIndex]) {
+ success = FALSE;
+ break;
+ }
+ }
+ if (success) {
+ fp->fInputIdx = inputIndex;
+ } else {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
case URX_BACKREF_I:
{
- U_ASSERT(opValue < frameSize);
- int32_t groupStartIdx = fp->fExtra[opValue];
- int32_t groupEndIdx = fp->fExtra[opValue+1];
+ U_ASSERT(opValue < fFrameSize);
+ int64_t groupStartIdx = fp->fExtra[opValue];
+ int64_t groupEndIdx = fp->fExtra[opValue+1];
U_ASSERT(groupStartIdx <= groupEndIdx);
- int32_t len = groupEndIdx-groupStartIdx;
if (groupStartIdx < 0) {
// This capture group has not participated in the match thus far,
- fp = (REStackFrame *)fStack->popFrame(frameSize); // FAIL, no match.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match.
+ break;
}
+ CaseFoldingUCharIterator captureGroupItr(inputBuf, groupStartIdx, groupEndIdx);
+ CaseFoldingUCharIterator inputItr(inputBuf, fp->fInputIdx, fActiveLimit);
- if (len == 0) {
- // The capture group match was of an empty string.
- // Verified by testing: Perl matches succeed in this case, so
- // we do too.
+ // Note: if the capture group match was of an empty string the backref
+ // match succeeds. Verified by testing: Perl matches succeed
+ // in this case, so we do too.
+
+ UBool success = TRUE;
+ for (;;) {
+ UChar32 captureGroupChar = captureGroupItr.next();
+ if (captureGroupChar == U_SENTINEL) {
+ success = TRUE;
break;
}
- /*
- if ((fp->fInputIdx + len > inputLen) ||
- u_strncmp(inputBuf+groupStartIdx, inputBuf+fp->fInputIdx, len) != 0) {
- fp = (REStackFrame *)fStack->popFrame(frameSize); // FAIL, no match.
- } else {
- fp->fInputIdx += len; // Match. Advance current input position.
- }
- */
- UBool haveMatch = FALSE;
- if (fp->fInputIdx + len <= inputLen) {
- if (opType == URX_BACKREF) {
- if (u_strncmp(inputBuf+groupStartIdx, inputBuf+fp->fInputIdx, len) == 0) {
- haveMatch = TRUE;
- }
- } else {
- if (u_strncasecmp(inputBuf+groupStartIdx, inputBuf+fp->fInputIdx,
- len, U_FOLD_CASE_DEFAULT) == 0) {
- haveMatch = TRUE;
- }
+ UChar32 inputChar = inputItr.next();
+ if (inputChar == U_SENTINEL) {
+ success = FALSE;
+ fHitEnd = TRUE;
+ break;
+ }
+ if (inputChar != captureGroupChar) {
+ success = FALSE;
+ break;
}
}
- if (haveMatch) {
- fp->fInputIdx += len; // Match. Advance current input position.
+
+ if (success && inputItr.inExpansion()) {
+ // We otained a match by consuming part of a string obtained from
+ // case-folding a single code point of the input text.
+ // This does not count as an overall match.
+ success = FALSE;
+ }
+
+ if (success) {
+ fp->fInputIdx = inputItr.getIndex();
} else {
- fp = (REStackFrame *)fStack->popFrame(frameSize); // FAIL, no match.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
}
}
break;
case URX_STO_INP_LOC:
{
- U_ASSERT(opValue >= 0 && opValue < frameSize);
+ U_ASSERT(opValue >= 0 && opValue < fFrameSize);
fp->fExtra[opValue] = fp->fInputIdx;
}
break;
-
+
case URX_JMPX:
{
- int32_t instrOperandLoc = fp->fPatIdx;
+ int32_t instrOperandLoc = (int32_t)fp->fPatIdx;
fp->fPatIdx += 1;
int32_t dataLoc = URX_VAL(pat[instrOperandLoc]);
- U_ASSERT(dataLoc >= 0 && dataLoc < frameSize);
- int32_t savedInputIdx = fp->fExtra[dataLoc];
+ U_ASSERT(dataLoc >= 0 && dataLoc < fFrameSize);
+ int32_t savedInputIdx = (int32_t)fp->fExtra[dataLoc];
U_ASSERT(savedInputIdx <= fp->fInputIdx);
if (savedInputIdx < fp->fInputIdx) {
fp->fPatIdx = opValue; // JMP
} else {
- fp = (REStackFrame *)fStack->popFrame(frameSize); // FAIL, no progress in loop.
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no progress in loop.
}
}
break;
-
+
case URX_LA_START:
{
// Entering a lookahead block.
U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
fData[opValue] = fStack->size();
fData[opValue+1] = fp->fInputIdx;
+ fActiveStart = fLookStart; // Set the match region change for
+ fActiveLimit = fLookLimit; // transparent bounds.
}
break;
-
+
case URX_LA_END:
{
// Leaving a look-ahead block.
// restore Stack Ptr, Input Pos to positions they had on entry to block.
U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
int32_t stackSize = fStack->size();
- int32_t newStackSize = fData[opValue];
+ int32_t newStackSize = (int32_t)fData[opValue];
U_ASSERT(stackSize >= newStackSize);
if (stackSize > newStackSize) {
- int32_t *newFP = fStack->getBuffer() + newStackSize - frameSize;
+ // Copy the current top frame back to the new (cut back) top frame.
+ // This makes the capture groups from within the look-ahead
+ // expression available.
+ int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize;
int32_t i;
- for (i=0; i<frameSize; i++) {
- newFP[i] = ((int32_t *)fp)[i];
+ for (i=0; i<fFrameSize; i++) {
+ newFP[i] = ((int64_t *)fp)[i];
}
fp = (REStackFrame *)newFP;
fStack->setSize(newStackSize);
}
fp->fInputIdx = fData[opValue+1];
+
+ // Restore the active region bounds in the input string; they may have
+ // been changed because of transparent bounds on a Region.
+ fActiveStart = fRegionStart;
+ fActiveLimit = fRegionLimit;
}
break;
-
+
case URX_ONECHAR_I:
- if (fp->fInputIdx < inputLen) {
- UChar32 c;
- U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c);
- if (u_foldCase(c, U_FOLD_CASE_DEFAULT) == opValue) {
+ if (fp->fInputIdx < fActiveLimit) {
+ UChar32 c;
+ U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
+ if (u_foldCase(c, U_FOLD_CASE_DEFAULT) == opValue) {
break;
}
+ } else {
+ fHitEnd = TRUE;
}
- fp = (REStackFrame *)fStack->popFrame(frameSize);
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
break;
-
+
case URX_STRING_I:
+ // Case-insensitive test input against a literal string.
+ // Strings require two slots in the compiled pattern, one for the
+ // offset to the string text, and one for the length.
+ // The compiled string has already been case folded.
{
- // Test input against a literal string.
- // Strings require two slots in the compiled pattern, one for the
- // offset to the string text, and one for the length.
- int32_t stringStartIdx, stringLen;
- stringStartIdx = opValue;
+ const UChar *patternString = litText + opValue;
- op = pat[fp->fPatIdx];
+ op = (int32_t)pat[fp->fPatIdx];
fp->fPatIdx++;
opType = URX_TYPE(op);
opValue = URX_VAL(op);
U_ASSERT(opType == URX_STRING_LEN);
- stringLen = opValue;
-
- int32_t stringEndIndex = fp->fInputIdx + stringLen;
- if (stringEndIndex <= inputLen &&
- u_strncasecmp(inputBuf+fp->fInputIdx, litText+stringStartIdx,
- stringLen, U_FOLD_CASE_DEFAULT) == 0) {
- // Success. Advance the current input position.
- fp->fInputIdx = stringEndIndex;
+ int32_t patternStringLen = opValue; // Length of the string from the pattern.
+
+ UChar32 cText;
+ UChar32 cPattern;
+ UBool success = TRUE;
+ int32_t patternStringIdx = 0;
+ CaseFoldingUCharIterator inputIterator(inputBuf, fp->fInputIdx, fActiveLimit);
+ while (patternStringIdx < patternStringLen) {
+ U16_NEXT(patternString, patternStringIdx, patternStringLen, cPattern);
+ cText = inputIterator.next();
+ if (cText != cPattern) {
+ success = FALSE;
+ if (cText == U_SENTINEL) {
+ fHitEnd = TRUE;
+ }
+ break;
+ }
+ }
+ if (inputIterator.inExpansion()) {
+ success = FALSE;
+ }
+
+ if (success) {
+ fp->fInputIdx = inputIterator.getIndex();
} else {
- // No match. Back up matching to a saved state
- fp = (REStackFrame *)fStack->popFrame(frameSize);
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
}
}
break;
{
// Entering a look-behind block.
// Save Stack Ptr, Input Pos.
+ // TODO: implement transparent bounds. Ticket #6067
U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
fData[opValue] = fStack->size();
fData[opValue+1] = fp->fInputIdx;
fData[opValue+2] = -1;
// Save input string length, then reset to pin any matches to end at
// the current position.
- fData[opValue+3] = inputLen;
- inputLen = fp->fInputIdx;
+ fData[opValue+3] = fActiveLimit;
+ fActiveLimit = fp->fInputIdx;
}
break;
-
-
+
+
case URX_LB_CONT:
{
// Positive Look-Behind, at top of loop checking for matches of LB expression
// at all possible input starting positions.
-
+
// Fetch the min and max possible match lengths. They are the operands
// of this op in the pattern.
- int32_t minML = pat[fp->fPatIdx++];
- int32_t maxML = pat[fp->fPatIdx++];
+ int32_t minML = (int32_t)pat[fp->fPatIdx++];
+ int32_t maxML = (int32_t)pat[fp->fPatIdx++];
U_ASSERT(minML <= maxML);
U_ASSERT(minML >= 0);
-
+
// Fetch (from data) the last input index where a match was attempted.
U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
- int32_t *lbStartIdx = &fData[opValue+2];
+ int64_t *lbStartIdx = &fData[opValue+2];
if (*lbStartIdx < 0) {
// First time through loop.
*lbStartIdx = fp->fInputIdx - minML;
// 2nd through nth time through the loop.
// Back up start position for match by one.
if (*lbStartIdx == 0) {
- (*lbStartIdx)--; // Because U16_BACK is unsafe starting at 0.
+ (*lbStartIdx)--;
} else {
U16_BACK_1(inputBuf, 0, *lbStartIdx);
}
}
-
+
if (*lbStartIdx < 0 || *lbStartIdx < fp->fInputIdx - maxML) {
// We have tried all potential match starting points without
// getting a match. Backtrack out, and out of the
// Look Behind altogether.
- fp = (REStackFrame *)fStack->popFrame(frameSize);
- int32_t restoreInputLen = fData[opValue+3];
- U_ASSERT(restoreInputLen >= inputLen);
- U_ASSERT(restoreInputLen <= fInput->length());
- inputLen = restoreInputLen;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ int64_t restoreInputLen = fData[opValue+3];
+ U_ASSERT(restoreInputLen >= fActiveLimit);
+ U_ASSERT(restoreInputLen <= fInputLength);
+ fActiveLimit = restoreInputLen;
break;
}
-
+
// Save state to this URX_LB_CONT op, so failure to match will repeat the loop.
// (successful match will fall off the end of the loop.)
- fp = StateSave(fp, fp->fPatIdx-3, frameSize, status);
+ fp = StateSave(fp, fp->fPatIdx-3, status);
fp->fInputIdx = *lbStartIdx;
}
break;
-
+
case URX_LB_END:
// End of a look-behind block, after a successful match.
{
U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
- if (fp->fInputIdx != inputLen) {
+ if (fp->fInputIdx != fActiveLimit) {
// The look-behind expression matched, but the match did not
// extend all the way to the point that we are looking behind from.
// FAIL out of here, which will take us back to the LB_CONT, which
// will retry the match starting at another position or fail
// the look-behind altogether, whichever is appropriate.
- fp = (REStackFrame *)fStack->popFrame(frameSize);
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
break;
}
-
+
// Look-behind match is good. Restore the orignal input string length,
// which had been truncated to pin the end of the lookbehind match to the
// position being looked-behind.
- int32_t originalInputLen = fData[opValue+3];
- U_ASSERT(originalInputLen >= inputLen);
- U_ASSERT(originalInputLen <= fInput->length());
- inputLen = originalInputLen;
+ int64_t originalInputLen = fData[opValue+3];
+ U_ASSERT(originalInputLen >= fActiveLimit);
+ U_ASSERT(originalInputLen <= fInputLength);
+ fActiveLimit = originalInputLen;
}
break;
-
-
+
+
case URX_LBN_CONT:
{
// Negative Look-Behind, at top of loop checking for matches of LB expression
// at all possible input starting positions.
-
+
// Fetch the extra parameters of this op.
- int32_t minML = pat[fp->fPatIdx++];
- int32_t maxML = pat[fp->fPatIdx++];
- int32_t continueLoc = pat[fp->fPatIdx++];
- continueLoc = URX_VAL(continueLoc);
+ int32_t minML = (int32_t)pat[fp->fPatIdx++];
+ int32_t maxML = (int32_t)pat[fp->fPatIdx++];
+ int32_t continueLoc = (int32_t)pat[fp->fPatIdx++];
+ continueLoc = URX_VAL(continueLoc);
U_ASSERT(minML <= maxML);
U_ASSERT(minML >= 0);
U_ASSERT(continueLoc > fp->fPatIdx);
-
+
// Fetch (from data) the last input index where a match was attempted.
U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
- int32_t *lbStartIdx = &fData[opValue+2];
+ int64_t *lbStartIdx = &fData[opValue+2];
if (*lbStartIdx < 0) {
// First time through loop.
*lbStartIdx = fp->fInputIdx - minML;
U16_BACK_1(inputBuf, 0, *lbStartIdx);
}
}
-
+
if (*lbStartIdx < 0 || *lbStartIdx < fp->fInputIdx - maxML) {
// We have tried all potential match starting points without
// getting a match, which means that the negative lookbehind as
// a whole has succeeded. Jump forward to the continue location
- int32_t restoreInputLen = fData[opValue+3];
- U_ASSERT(restoreInputLen >= inputLen);
- U_ASSERT(restoreInputLen <= fInput->length());
- inputLen = restoreInputLen;
+ int64_t restoreInputLen = fData[opValue+3];
+ U_ASSERT(restoreInputLen >= fActiveLimit);
+ U_ASSERT(restoreInputLen <= fInputLength);
+ fActiveLimit = restoreInputLen;
fp->fPatIdx = continueLoc;
break;
}
-
+
// Save state to this URX_LB_CONT op, so failure to match will repeat the loop.
// (successful match will cause a FAIL out of the loop altogether.)
- fp = StateSave(fp, fp->fPatIdx-4, frameSize, status);
+ fp = StateSave(fp, fp->fPatIdx-4, status);
fp->fInputIdx = *lbStartIdx;
}
break;
-
+
case URX_LBN_END:
// End of a negative look-behind block, after a successful match.
{
U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
- if (fp->fInputIdx != inputLen) {
+ if (fp->fInputIdx != fActiveLimit) {
// The look-behind expression matched, but the match did not
// extend all the way to the point that we are looking behind from.
// FAIL out of here, which will take us back to the LB_CONT, which
// will retry the match starting at another position or succeed
// the look-behind altogether, whichever is appropriate.
- fp = (REStackFrame *)fStack->popFrame(frameSize);
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
break;
}
-
+
// Look-behind expression matched, which means look-behind test as
// a whole Fails
// Restore the orignal input string length, which had been truncated
// inorder to pin the end of the lookbehind match
// to the position being looked-behind.
- int32_t originalInputLen = fData[opValue+3];
- U_ASSERT(originalInputLen >= inputLen);
- U_ASSERT(originalInputLen <= fInput->length());
- inputLen = originalInputLen;
-
+ int64_t originalInputLen = fData[opValue+3];
+ U_ASSERT(originalInputLen >= fActiveLimit);
+ U_ASSERT(originalInputLen <= fInputLength);
+ fActiveLimit = originalInputLen;
+
// Restore original stack position, discarding any state saved
// by the successful pattern match.
U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
- int32_t newStackSize = fData[opValue];
+ int32_t newStackSize = (int32_t)fData[opValue];
U_ASSERT(fStack->size() > newStackSize);
fStack->setSize(newStackSize);
// FAIL, which will take control back to someplace
// prior to entering the look-behind test.
- fp = (REStackFrame *)fStack->popFrame(frameSize);
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
}
break;
-
-
+
+
case URX_LOOP_SR_I:
// Loop Initialization for the optimized implementation of
// [some character set]*
U_ASSERT(opValue > 0 && opValue < sets->size());
Regex8BitSet *s8 = &fPattern->fSets8[opValue];
UnicodeSet *s = (UnicodeSet *)sets->elementAt(opValue);
-
+
// Loop through input, until either the input is exhausted or
// we reach a character that is not a member of the set.
- int32_t ix = fp->fInputIdx;
+ int32_t ix = (int32_t)fp->fInputIdx;
for (;;) {
- if (ix >= inputLen) {
+ if (ix >= fActiveLimit) {
+ fHitEnd = TRUE;
break;
}
UChar32 c;
- U16_NEXT(inputBuf, ix, inputLen, c);
+ U16_NEXT(inputBuf, ix, fActiveLimit, c);
if (c<256) {
if (s8->contains(c) == FALSE) {
U16_BACK_1(inputBuf, 0, ix);
}
}
}
-
+
// If there were no matching characters, skip over the loop altogether.
// The loop doesn't run at all, a * op always succeeds.
if (ix == fp->fInputIdx) {
fp->fPatIdx++; // skip the URX_LOOP_C op.
break;
}
-
+
// Peek ahead in the compiled pattern, to the URX_LOOP_C that
// must follow. It's operand is the stack location
// that holds the starting input index for the match of this [set]*
- int32_t loopcOp = pat[fp->fPatIdx];
+ int32_t loopcOp = (int32_t)pat[fp->fPatIdx];
U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C);
int32_t stackLoc = URX_VAL(loopcOp);
- U_ASSERT(stackLoc >= 0 && stackLoc < frameSize);
+ U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize);
fp->fExtra[stackLoc] = fp->fInputIdx;
fp->fInputIdx = ix;
-
+
// Save State to the URX_LOOP_C op that follows this one,
// so that match failures in the following code will return to there.
// Then bump the pattern idx so the LOOP_C is skipped on the way out of here.
- fp = StateSave(fp, fp->fPatIdx, frameSize, status);
+ fp = StateSave(fp, fp->fPatIdx, status);
fp->fPatIdx++;
}
break;
-
-
+
+
case URX_LOOP_DOT_I:
// Loop Initialization for the optimized implementation of .*
// This op scans through all remaining input.
// The following LOOP_C op emulates stack unwinding if the following pattern fails.
{
// Loop through input until the input is exhausted (we reach an end-of-line)
- // In multi-line mode, we can just go straight to the end of the input.
- int32_t ix = inputLen;
- if (opValue == 0) {
- // NOT multi-line mode. Line endings do not match '.'
+ // In DOTALL mode, we can just go straight to the end of the input.
+ int32_t ix;
+ if ((opValue & 1) == 1) {
+ // Dot-matches-All mode. Jump straight to the end of the string.
+ ix = (int32_t)fActiveLimit;
+ fHitEnd = TRUE;
+ } else {
+ // NOT DOT ALL mode. Line endings do not match '.'
// Scan forward until a line ending or end of input.
- ix = fp->fInputIdx;
+ ix = (int32_t)fp->fInputIdx;
for (;;) {
- if (ix >= inputLen) {
+ if (ix >= fActiveLimit) {
+ fHitEnd = TRUE;
break;
}
UChar32 c;
- U16_NEXT(inputBuf, ix, inputLen, c); // c = inputBuf[ix++]
- if (((c & 0x7f) <= 0x29) &&
- (c == 0x0a || c==0x0d || c==0x0c || c==0x85 ||c==0x2028 || c==0x2029)) {
- // char is a line ending. Put the input pos back to the
- // line ending char, and exit the scanning loop.
- U16_BACK_1(inputBuf, 0, ix);
- break;
+ U16_NEXT(inputBuf, ix, fActiveLimit, c); // c = inputBuf[ix++]
+ if ((c & 0x7f) <= 0x29) { // Fast filter of non-new-line-s
+ if ((c == 0x0a) || // 0x0a is newline in both modes.
+ (((opValue & 2) == 0) && // IF not UNIX_LINES mode
+ ((c<=0x0d && c>=0x0a) || c==0x85 || c==0x2028 || c==0x2029))) {
+ // char is a line ending. Put the input pos back to the
+ // line ending char, and exit the scanning loop.
+ U16_BACK_1(inputBuf, 0, ix);
+ break;
+ }
}
}
}
fp->fPatIdx++; // skip the URX_LOOP_C op.
break;
}
-
+
// Peek ahead in the compiled pattern, to the URX_LOOP_C that
// must follow. It's operand is the stack location
- // that holds the starting input index for the match of this [set]*
- int32_t loopcOp = pat[fp->fPatIdx];
+ // that holds the starting input index for the match of this .*
+ int32_t loopcOp = (int32_t)pat[fp->fPatIdx];
U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C);
int32_t stackLoc = URX_VAL(loopcOp);
- U_ASSERT(stackLoc >= 0 && stackLoc < frameSize);
+ U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize);
fp->fExtra[stackLoc] = fp->fInputIdx;
fp->fInputIdx = ix;
-
+
// Save State to the URX_LOOP_C op that follows this one,
// so that match failures in the following code will return to there.
// Then bump the pattern idx so the LOOP_C is skipped on the way out of here.
- fp = StateSave(fp, fp->fPatIdx, frameSize, status);
+ fp = StateSave(fp, fp->fPatIdx, status);
fp->fPatIdx++;
}
break;
-
-
+
+
case URX_LOOP_C:
{
- U_ASSERT(opValue>=0 && opValue<frameSize);
- int32_t terminalIdx = fp->fExtra[opValue];
- U_ASSERT(terminalIdx <= fp->fInputIdx);
- if (terminalIdx == fp->fInputIdx) {
+ U_ASSERT(opValue>=0 && opValue<fFrameSize);
+ backSearchIndex = (int32_t)fp->fExtra[opValue];
+ U_ASSERT(backSearchIndex <= fp->fInputIdx);
+ if (backSearchIndex == fp->fInputIdx) {
// We've backed up the input idx to the point that the loop started.
// The loop is done. Leave here without saving state.
// Subsequent failures won't come back here.
// (We're going backwards because this loop emulates stack unwinding, not
// the initial scan forward.)
U_ASSERT(fp->fInputIdx > 0);
- U16_BACK_1(inputBuf, 0, fp->fInputIdx);
- if (inputBuf[fp->fInputIdx] == 0x0a &&
- fp->fInputIdx > terminalIdx &&
+ UChar32 prevC;
+ U16_PREV(inputBuf, 0, fp->fInputIdx, prevC); // !!!: should this 0 be one of f*Limit?
+
+ if (prevC == 0x0a &&
+ fp->fInputIdx > backSearchIndex &&
inputBuf[fp->fInputIdx-1] == 0x0d) {
- int32_t prevOp = pat[fp->fPatIdx-2];
+ int32_t prevOp = (int32_t)pat[fp->fPatIdx-2];
if (URX_TYPE(prevOp) == URX_LOOP_DOT_I) {
// .*, stepping back over CRLF pair.
- fp->fInputIdx--;
+ U16_BACK_1(inputBuf, 0, fp->fInputIdx);
}
}
-
-
- fp = StateSave(fp, fp->fPatIdx-1, frameSize, status);
+
+
+ fp = StateSave(fp, fp->fPatIdx-1, status);
}
break;
-
-
-
+
+
+
default:
// Trouble. The compiled pattern contains an entry with an
// unrecognized type tag.
U_ASSERT(FALSE);
}
-
+
if (U_FAILURE(status)) {
+ isMatch = FALSE;
break;
}
}
fMatchStart = startIdx;
fMatchEnd = fp->fInputIdx;
if (fTraceDebug) {
- REGEX_RUN_DEBUG_PRINTF("Match. start=%d end=%d\n\n", fMatchStart, fMatchEnd);
+ REGEX_RUN_DEBUG_PRINTF(("Match. start=%d end=%d\n\n", fMatchStart, fMatchEnd));
}
}
else
{
if (fTraceDebug) {
- REGEX_RUN_DEBUG_PRINTF("No match\n\n");
+ REGEX_RUN_DEBUG_PRINTF(("No match\n\n"));
}
}
-
+
fFrame = fp; // The active stack frame when the engine stopped.
- // Contains the capture group results that we need to
- // access later.
+ // Contains the capture group results that we need to
+ // access later.
return;
}
-
-const char RegexMatcher::fgClassID = 0;
+UOBJECT_DEFINE_RTTI_IMPLEMENTATION(RegexMatcher)
U_NAMESPACE_END
#endif // !UCONFIG_NO_REGULAR_EXPRESSIONS
-