// ICU PATCH: Use U_ASSERT instead of <assert.h>
#include "uassert.h"
-#define ASSERT U_ASSERT
-
-#ifndef UNIMPLEMENTED
-#define UNIMPLEMENTED() (abort())
+#ifndef DOUBLE_CONVERSION_ASSERT
+#define DOUBLE_CONVERSION_ASSERT(condition) \
+ U_ASSERT(condition);
+#endif
+#ifndef DOUBLE_CONVERSION_UNIMPLEMENTED
+#define DOUBLE_CONVERSION_UNIMPLEMENTED() (abort())
#endif
#ifndef DOUBLE_CONVERSION_NO_RETURN
#ifdef _MSC_VER
#define DOUBLE_CONVERSION_NO_RETURN __attribute__((noreturn))
#endif
#endif
-#ifndef UNREACHABLE
+#ifndef DOUBLE_CONVERSION_UNREACHABLE
#ifdef _MSC_VER
void DOUBLE_CONVERSION_NO_RETURN abort_noreturn();
inline void abort_noreturn() { abort(); }
-#define UNREACHABLE() (abort_noreturn())
+#define DOUBLE_CONVERSION_UNREACHABLE() (abort_noreturn())
#else
-#define UNREACHABLE() (abort())
+#define DOUBLE_CONVERSION_UNREACHABLE() (abort())
#endif
#endif
+#ifndef DOUBLE_CONVERSION_UNUSED
+#ifdef __GNUC__
+#define DOUBLE_CONVERSION_UNUSED __attribute__((unused))
+#else
+#define DOUBLE_CONVERSION_UNUSED
+#endif
+#endif
// Double operations detection based on target architecture.
// Linux uses a 80bit wide floating point stack on x86. This induces double
defined(_POWER) || defined(_ARCH_PPC) || defined(_ARCH_PPC64) || \
defined(__sparc__) || defined(__sparc) || defined(__s390__) || \
defined(__SH4__) || defined(__alpha__) || \
- defined(_MIPS_ARCH_MIPS32R2) || \
+ defined(_MIPS_ARCH_MIPS32R2) || defined(__ARMEB__) ||\
defined(__AARCH64EL__) || defined(__aarch64__) || defined(__AARCH64EB__) || \
- defined(__riscv) || \
+ defined(__riscv) || defined(__e2k__) || \
defined(__or1k__) || defined(__arc__) || \
defined(__EMSCRIPTEN__)
#define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1
// The following macro works on both 32 and 64-bit platforms.
// Usage: instead of writing 0x1234567890123456
-// write UINT64_2PART_C(0x12345678,90123456);
-#define UINT64_2PART_C(a, b) (((static_cast<uint64_t>(a) << 32) + 0x##b##u))
+// write DOUBLE_CONVERSION_UINT64_2PART_C(0x12345678,90123456);
+#define DOUBLE_CONVERSION_UINT64_2PART_C(a, b) (((static_cast<uint64_t>(a) << 32) + 0x##b##u))
-// The expression ARRAY_SIZE(a) is a compile-time constant of type
+// The expression DOUBLE_CONVERSION_ARRAY_SIZE(a) is a compile-time constant of type
// size_t which represents the number of elements of the given
-// array. You should only use ARRAY_SIZE on statically allocated
+// array. You should only use DOUBLE_CONVERSION_ARRAY_SIZE on statically allocated
// arrays.
-#ifndef ARRAY_SIZE
-#define ARRAY_SIZE(a) \
+#ifndef DOUBLE_CONVERSION_ARRAY_SIZE
+#define DOUBLE_CONVERSION_ARRAY_SIZE(a) \
((sizeof(a) / sizeof(*(a))) / \
static_cast<size_t>(!(sizeof(a) % sizeof(*(a)))))
#endif
// A macro to disallow the evil copy constructor and operator= functions
// This should be used in the private: declarations for a class
-#ifndef DC_DISALLOW_COPY_AND_ASSIGN
-#define DC_DISALLOW_COPY_AND_ASSIGN(TypeName) \
+#ifndef DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN
+#define DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN(TypeName) \
TypeName(const TypeName&); \
void operator=(const TypeName&)
#endif
// This should be used in the private: declarations for a class
// that wants to prevent anyone from instantiating it. This is
// especially useful for classes containing only static methods.
-#ifndef DC_DISALLOW_IMPLICIT_CONSTRUCTORS
-#define DC_DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \
+#ifndef DOUBLE_CONVERSION_DISALLOW_IMPLICIT_CONSTRUCTORS
+#define DOUBLE_CONVERSION_DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \
TypeName(); \
- DC_DISALLOW_COPY_AND_ASSIGN(TypeName)
+ DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN(TypeName)
#endif
// ICU PATCH: Wrap in ICU namespace
namespace double_conversion {
-static const int kCharSize = sizeof(char);
-
-// Returns the maximum of the two parameters.
-template <typename T>
-static T Max(T a, T b) {
- return a < b ? b : a;
-}
-
-
-// Returns the minimum of the two parameters.
-template <typename T>
-static T Min(T a, T b) {
- return a < b ? a : b;
-}
-
-
inline int StrLength(const char* string) {
size_t length = strlen(string);
- ASSERT(length == static_cast<size_t>(static_cast<int>(length)));
+ DOUBLE_CONVERSION_ASSERT(length == static_cast<size_t>(static_cast<int>(length)));
return static_cast<int>(length);
}
public:
Vector() : start_(NULL), length_(0) {}
Vector(T* data, int len) : start_(data), length_(len) {
- ASSERT(len == 0 || (len > 0 && data != NULL));
+ DOUBLE_CONVERSION_ASSERT(len == 0 || (len > 0 && data != NULL));
}
// Returns a vector using the same backing storage as this one,
// spanning from and including 'from', to but not including 'to'.
Vector<T> SubVector(int from, int to) {
- ASSERT(to <= length_);
- ASSERT(from < to);
- ASSERT(0 <= from);
+ DOUBLE_CONVERSION_ASSERT(to <= length_);
+ DOUBLE_CONVERSION_ASSERT(from < to);
+ DOUBLE_CONVERSION_ASSERT(0 <= from);
return Vector<T>(start() + from, to - from);
}
// Access individual vector elements - checks bounds in debug mode.
T& operator[](int index) const {
- ASSERT(0 <= index && index < length_);
+ DOUBLE_CONVERSION_ASSERT(0 <= index && index < length_);
return start_[index];
}
T& last() { return start_[length_ - 1]; }
+ void pop_back() {
+ DOUBLE_CONVERSION_ASSERT(!is_empty());
+ --length_;
+ }
+
private:
T* start_;
int length_;
// Get the current position in the builder.
int position() const {
- ASSERT(!is_finalized());
+ DOUBLE_CONVERSION_ASSERT(!is_finalized());
return position_;
}
// 0-characters; use the Finalize() method to terminate the string
// instead.
void AddCharacter(char c) {
- ASSERT(c != '\0');
- ASSERT(!is_finalized() && position_ < buffer_.length());
+ DOUBLE_CONVERSION_ASSERT(c != '\0');
+ DOUBLE_CONVERSION_ASSERT(!is_finalized() && position_ < buffer_.length());
buffer_[position_++] = c;
}
// Add the first 'n' characters of the given string 's' to the
// builder. The input string must have enough characters.
void AddSubstring(const char* s, int n) {
- ASSERT(!is_finalized() && position_ + n < buffer_.length());
- ASSERT(static_cast<size_t>(n) <= strlen(s));
- memmove(&buffer_[position_], s, n * kCharSize);
+ DOUBLE_CONVERSION_ASSERT(!is_finalized() && position_ + n < buffer_.length());
+ DOUBLE_CONVERSION_ASSERT(static_cast<size_t>(n) <= strlen(s));
+ memmove(&buffer_[position_], s, n);
position_ += n;
}
// Finalize the string by 0-terminating it and returning the buffer.
char* Finalize() {
- ASSERT(!is_finalized() && position_ < buffer_.length());
+ DOUBLE_CONVERSION_ASSERT(!is_finalized() && position_ < buffer_.length());
buffer_[position_] = '\0';
// Make sure nobody managed to add a 0-character to the
// buffer while building the string.
- ASSERT(strlen(buffer_.start()) == static_cast<size_t>(position_));
+ DOUBLE_CONVERSION_ASSERT(strlen(buffer_.start()) == static_cast<size_t>(position_));
position_ = -1;
- ASSERT(is_finalized());
+ DOUBLE_CONVERSION_ASSERT(is_finalized());
return buffer_.start();
}
bool is_finalized() const { return position_ < 0; }
- DC_DISALLOW_IMPLICIT_CONSTRUCTORS(StringBuilder);
+ DOUBLE_CONVERSION_DISALLOW_IMPLICIT_CONSTRUCTORS(StringBuilder);
};
// The type-based aliasing rule allows the compiler to assume that pointers of
// enough that it can no longer see that you have cast one pointer type to
// another thus avoiding the warning.
template <class Dest, class Source>
-inline Dest BitCast(const Source& source) {
+Dest BitCast(const Source& source) {
// Compile time assertion: sizeof(Dest) == sizeof(Source)
// A compile error here means your Dest and Source have different sizes.
#if __cplusplus >= 201103L
static_assert(sizeof(Dest) == sizeof(Source),
"source and destination size mismatch");
#else
+ DOUBLE_CONVERSION_UNUSED
typedef char VerifySizesAreEqual[sizeof(Dest) == sizeof(Source) ? 1 : -1];
#endif
}
template <class Dest, class Source>
-inline Dest BitCast(Source* source) {
+Dest BitCast(Source* source) {
return BitCast<Dest>(reinterpret_cast<uintptr_t>(source));
}