--- /dev/null
+/********************************************************************
+ * COPYRIGHT:
+ * Copyright (c) 2005-2006, International Business Machines Corporation and
+ * others. All Rights Reserved.
+ ********************************************************************/
+/************************************************************************
+* Tests for the UText and UTextIterator text abstraction classses
+*
+************************************************************************/
+
+#include "unicode/utypes.h"
+
+#include <string.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <unicode/utext.h>
+#include <unicode/utf8.h>
+#include <unicode/ustring.h>
+#include <unicode/uchriter.h>
+#include "utxttest.h"
+
+static UBool gFailed = FALSE;
+static int gTestNum = 0;
+
+// Forward decl
+UText *openFragmentedUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status);
+
+#define TEST_ASSERT(x) \
+{ if ((x)==FALSE) {errln("Test #%d failure in file %s at line %d\n", gTestNum, __FILE__, __LINE__);\
+ gFailed = TRUE;\
+ }}
+
+
+#define TEST_SUCCESS(status) \
+{ if (U_FAILURE(status)) {errln("Test #%d failure in file %s at line %d. Error = \"%s\"\n", \
+ gTestNum, __FILE__, __LINE__, u_errorName(status)); \
+ gFailed = TRUE;\
+ }}
+
+UTextTest::UTextTest() {
+}
+
+UTextTest::~UTextTest() {
+}
+
+
+void
+UTextTest::runIndexedTest(int32_t index, UBool exec,
+ const char* &name, char* /*par*/) {
+ switch (index) {
+ case 0: name = "TextTest";
+ if (exec) TextTest(); break;
+ case 1: name = "ErrorTest";
+ if (exec) ErrorTest(); break;
+ case 2: name = "FreezeTest";
+ if (exec) FreezeTest(); break;
+ default: name = ""; break;
+ }
+}
+
+//
+// Quick and dirty random number generator.
+// (don't use library so that results are portable.
+static uint32_t m_seed = 1;
+static uint32_t m_rand()
+{
+ m_seed = m_seed * 1103515245 + 12345;
+ return (uint32_t)(m_seed/65536) % 32768;
+}
+
+
+//
+// TextTest()
+//
+// Top Level function for UText testing.
+// Specifies the strings to be tested, with the acutal testing itself
+// being carried out in another function, TestString().
+//
+void UTextTest::TextTest() {
+ int32_t i, j;
+
+ TestString("abcd\\U00010001xyz");
+ TestString("");
+
+ // Supplementary chars at start or end
+ TestString("\\U00010001");
+ TestString("abc\\U00010001");
+ TestString("\\U00010001abc");
+
+ // Test simple strings of lengths 1 to 60, looking for glitches at buffer boundaries
+ UnicodeString s;
+ for (i=1; i<60; i++) {
+ s.truncate(0);
+ for (j=0; j<i; j++) {
+ if (j+0x30 == 0x5c) {
+ // backslash. Needs to be escaped
+ s.append((UChar)0x5c);
+ }
+ s.append(UChar(j+0x30));
+ }
+ TestString(s);
+ }
+
+ // Test strings with odd-aligned supplementary chars,
+ // looking for glitches at buffer boundaries
+ for (i=1; i<60; i++) {
+ s.truncate(0);
+ s.append((UChar)0x41);
+ for (j=0; j<i; j++) {
+ s.append(UChar32(j+0x11000));
+ }
+ TestString(s);
+ }
+
+ // String of chars of randomly varying size in utf-8 representation.
+ // Exercise the mapping, and the varying sized buffer.
+ //
+ s.truncate(0);
+ UChar32 c1 = 0;
+ UChar32 c2 = 0x100;
+ UChar32 c3 = 0xa000;
+ UChar32 c4 = 0x11000;
+ for (i=0; i<1000; i++) {
+ int len8 = m_rand()%4 + 1;
+ switch (len8) {
+ case 1:
+ c1 = (c1+1)%0x80;
+ // don't put 0 into string (0 terminated strings for some tests)
+ // don't put '\', will cause unescape() to fail.
+ if (c1==0x5c || c1==0) {
+ c1++;
+ }
+ s.append(c1);
+ break;
+ case 2:
+ s.append(c2++);
+ break;
+ case 3:
+ s.append(c3++);
+ break;
+ case 4:
+ s.append(c4++);
+ break;
+ }
+ }
+ TestString(s);
+}
+
+
+//
+// TestString() Run a suite of UText tests on a string.
+// The test string is unescaped before use.
+//
+void UTextTest::TestString(const UnicodeString &s) {
+ int32_t i;
+ int32_t j;
+ UChar32 c;
+ int32_t cpCount = 0;
+ UErrorCode status = U_ZERO_ERROR;
+ UText *ut = NULL;
+ int32_t saLen;
+
+ UnicodeString sa = s.unescape();
+ saLen = sa.length();
+
+ //
+ // Build up a mapping between code points and UTF-16 code unit indexes.
+ //
+ m *cpMap = new m[sa.length() + 1];
+ j = 0;
+ for (i=0; i<sa.length(); i=sa.moveIndex32(i, 1)) {
+ c = sa.char32At(i);
+ cpMap[j].nativeIdx = i;
+ cpMap[j].cp = c;
+ j++;
+ cpCount++;
+ }
+ cpMap[j].nativeIdx = i; // position following the last char in utf-16 string.
+
+
+ // UChar * test, null terminated
+ status = U_ZERO_ERROR;
+ UChar *buf = new UChar[saLen+1];
+ sa.extract(buf, saLen+1, status);
+ TEST_SUCCESS(status);
+ ut = utext_openUChars(NULL, buf, -1, &status);
+ TEST_SUCCESS(status);
+ TestAccess(sa, ut, cpCount, cpMap);
+ utext_close(ut);
+ delete [] buf;
+
+ // UChar * test, with length
+ status = U_ZERO_ERROR;
+ buf = new UChar[saLen+1];
+ sa.extract(buf, saLen+1, status);
+ TEST_SUCCESS(status);
+ ut = utext_openUChars(NULL, buf, saLen, &status);
+ TEST_SUCCESS(status);
+ TestAccess(sa, ut, cpCount, cpMap);
+ utext_close(ut);
+ delete [] buf;
+
+
+ // UnicodeString test
+ status = U_ZERO_ERROR;
+ ut = utext_openUnicodeString(NULL, &sa, &status);
+ TEST_SUCCESS(status);
+ TestAccess(sa, ut, cpCount, cpMap);
+ TestCMR(sa, ut, cpCount, cpMap, cpMap);
+ utext_close(ut);
+
+
+ // Const UnicodeString test
+ status = U_ZERO_ERROR;
+ ut = utext_openConstUnicodeString(NULL, &sa, &status);
+ TEST_SUCCESS(status);
+ TestAccess(sa, ut, cpCount, cpMap);
+ utext_close(ut);
+
+
+ // Replaceable test. (UnicodeString inherits Replaceable)
+ status = U_ZERO_ERROR;
+ ut = utext_openReplaceable(NULL, &sa, &status);
+ TEST_SUCCESS(status);
+ TestAccess(sa, ut, cpCount, cpMap);
+ TestCMR(sa, ut, cpCount, cpMap, cpMap);
+ utext_close(ut);
+
+ // Character Iterator Tests
+ status = U_ZERO_ERROR;
+ const UChar *cbuf = sa.getBuffer();
+ CharacterIterator *ci = new UCharCharacterIterator(cbuf, saLen, status);
+ TEST_SUCCESS(status);
+ ut = utext_openCharacterIterator(NULL, ci, &status);
+ TEST_SUCCESS(status);
+ TestAccess(sa, ut, cpCount, cpMap);
+ utext_close(ut);
+ delete ci;
+
+
+ // Fragmented UnicodeString (Chunk size of one)
+ //
+ status = U_ZERO_ERROR;
+ ut = openFragmentedUnicodeString(NULL, &sa, &status);
+ TEST_SUCCESS(status);
+ TestAccess(sa, ut, cpCount, cpMap);
+ utext_close(ut);
+
+ //
+ // UTF-8 test
+ //
+
+ // Convert the test string from UnicodeString to (char *) in utf-8 format
+ int32_t u8Len = sa.extract(0, sa.length(), NULL, 0, "utf-8");
+ char *u8String = new char[u8Len + 1];
+ sa.extract(0, sa.length(), u8String, u8Len+1, "utf-8");
+
+ // Build up the map of code point indices in the utf-8 string
+ m * u8Map = new m[sa.length() + 1];
+ i = 0; // native utf-8 index
+ for (j=0; j<cpCount ; j++) { // code point number
+ u8Map[j].nativeIdx = i;
+ U8_NEXT(u8String, i, u8Len, c)
+ u8Map[j].cp = c;
+ }
+ u8Map[cpCount].nativeIdx = u8Len; // position following the last char in utf-8 string.
+
+ // Do the test itself
+ status = U_ZERO_ERROR;
+ ut = utext_openUTF8(NULL, u8String, -1, &status);
+ TEST_SUCCESS(status);
+ TestAccess(sa, ut, cpCount, u8Map);
+ utext_close(ut);
+
+
+
+ delete []cpMap;
+ delete []u8Map;
+ delete []u8String;
+}
+
+// TestCMR test Copy, Move and Replace operations.
+// us UnicodeString containing the test text.
+// ut UText containing the same test text.
+// cpCount number of code points in the test text.
+// nativeMap Mapping from code points to native indexes for the UText.
+// u16Map Mapping from code points to UTF-16 indexes, for use with the UnicodeString.
+//
+// This function runs a whole series of opertions on each incoming UText.
+// The UText is deep-cloned prior to each operation, so that the original UText remains unchanged.
+//
+void UTextTest::TestCMR(const UnicodeString &us, UText *ut, int cpCount, m *nativeMap, m *u16Map) {
+ TEST_ASSERT(utext_isWritable(ut) == TRUE);
+
+ int srcLengthType; // Loop variables for selecting the postion and length
+ int srcPosType; // of the block to operate on within the source text.
+ int destPosType;
+
+ int srcIndex = 0; // Code Point indexes of the block to operate on for
+ int srcLength = 0; // a specific test.
+
+ int destIndex = 0; // Code point index of the destination for a copy/move test.
+
+ int32_t nativeStart = 0; // Native unit indexes for a test.
+ int32_t nativeLimit = 0;
+ int32_t nativeDest = 0;
+
+ int32_t u16Start = 0; // UTF-16 indexes for a test.
+ int32_t u16Limit = 0; // used when performing the same operation in a Unicode String
+ int32_t u16Dest = 0;
+
+ // Iterate over a whole series of source index, length and a target indexes.
+ // This is done with code point indexes; these will be later translated to native
+ // indexes using the cpMap.
+ for (srcLengthType=1; srcLengthType<=3; srcLengthType++) {
+ switch (srcLengthType) {
+ case 1: srcLength = 1; break;
+ case 2: srcLength = 5; break;
+ case 3: srcLength = cpCount / 3;
+ }
+ for (srcPosType=1; srcPosType<=5; srcPosType++) {
+ switch (srcPosType) {
+ case 1: srcIndex = 0; break;
+ case 2: srcIndex = 1; break;
+ case 3: srcIndex = cpCount - srcLength; break;
+ case 4: srcIndex = cpCount - srcLength - 1; break;
+ case 5: srcIndex = cpCount / 2; break;
+ }
+ if (srcIndex < 0 || srcIndex + srcLength > cpCount) {
+ // filter out bogus test cases -
+ // those with a source range that falls of an edge of the string.
+ continue;
+ }
+
+ //
+ // Copy and move tests.
+ // iterate over a variety of destination positions.
+ //
+ for (destPosType=1; destPosType<=4; destPosType++) {
+ switch (destPosType) {
+ case 1: destIndex = 0; break;
+ case 2: destIndex = 1; break;
+ case 3: destIndex = srcIndex - 1; break;
+ case 4: destIndex = srcIndex + srcLength + 1; break;
+ case 5: destIndex = cpCount-1; break;
+ case 6: destIndex = cpCount; break;
+ }
+ if (destIndex<0 || destIndex>cpCount) {
+ // filter out bogus test cases.
+ continue;
+ }
+
+ nativeStart = nativeMap[srcIndex].nativeIdx;
+ nativeLimit = nativeMap[srcIndex+srcLength].nativeIdx;
+ nativeDest = nativeMap[destIndex].nativeIdx;
+
+ u16Start = u16Map[srcIndex].nativeIdx;
+ u16Limit = u16Map[srcIndex+srcLength].nativeIdx;
+ u16Dest = u16Map[destIndex].nativeIdx;
+
+ gFailed = FALSE;
+ TestCopyMove(us, ut, FALSE,
+ nativeStart, nativeLimit, nativeDest,
+ u16Start, u16Limit, u16Dest);
+
+ TestCopyMove(us, ut, TRUE,
+ nativeStart, nativeLimit, nativeDest,
+ u16Start, u16Limit, u16Dest);
+
+ if (gFailed) {
+ return;
+ }
+ }
+
+ //
+ // Replace tests.
+ //
+ UnicodeString fullRepString("This is an arbitrary string that will be used as replacement text");
+ for (int32_t replStrLen=0; replStrLen<20; replStrLen++) {
+ UnicodeString repStr(fullRepString, 0, replStrLen);
+ TestReplace(us, ut,
+ nativeStart, nativeLimit,
+ u16Start, u16Limit,
+ repStr);
+ if (gFailed) {
+ return;
+ }
+ }
+
+ }
+ }
+
+}
+
+//
+// TestCopyMove run a single test case for utext_copy.
+// Test cases are created in TestCMR and dispatched here for execution.
+//
+void UTextTest::TestCopyMove(const UnicodeString &us, UText *ut, UBool move,
+ int32_t nativeStart, int32_t nativeLimit, int32_t nativeDest,
+ int32_t u16Start, int32_t u16Limit, int32_t u16Dest)
+{
+ UErrorCode status = U_ZERO_ERROR;
+ UText *targetUT = NULL;
+ gTestNum++;
+ gFailed = FALSE;
+
+ //
+ // clone the UText. The test will be run in the cloned copy
+ // so that we don't alter the original.
+ //
+ targetUT = utext_clone(NULL, ut, TRUE, FALSE, &status);
+ TEST_SUCCESS(status);
+ UnicodeString targetUS(us); // And copy the reference string.
+
+ // do the test operation first in the reference
+ targetUS.copy(u16Start, u16Limit, u16Dest);
+ if (move) {
+ // delete out the source range.
+ if (u16Limit < u16Dest) {
+ targetUS.removeBetween(u16Start, u16Limit);
+ } else {
+ int32_t amtCopied = u16Limit - u16Start;
+ targetUS.removeBetween(u16Start+amtCopied, u16Limit+amtCopied);
+ }
+ }
+
+ // Do the same operation in the UText under test
+ utext_copy(targetUT, nativeStart, nativeLimit, nativeDest, move, &status);
+ if (nativeDest > nativeStart && nativeDest < nativeLimit) {
+ TEST_ASSERT(status == U_INDEX_OUTOFBOUNDS_ERROR);
+ } else {
+ TEST_SUCCESS(status);
+
+ // Compare the results of the two parallel tests
+ int32_t usi = 0; // UnicodeString postion, utf-16 index.
+ int64_t uti = 0; // UText position, native index.
+ int32_t cpi; // char32 position (code point index)
+ UChar32 usc; // code point from Unicode String
+ UChar32 utc; // code point from UText
+ utext_setNativeIndex(targetUT, 0);
+ for (cpi=0; ; cpi++) {
+ usc = targetUS.char32At(usi);
+ utc = utext_next32(targetUT);
+ if (utc < 0) {
+ break;
+ }
+ TEST_ASSERT(uti == usi);
+ TEST_ASSERT(utc == usc);
+ usi = targetUS.moveIndex32(usi, 1);
+ uti = utext_getNativeIndex(targetUT);
+ if (gFailed) {
+ goto cleanupAndReturn;
+ }
+ }
+ int64_t expectedNativeLength = utext_nativeLength(ut);
+ if (move == FALSE) {
+ expectedNativeLength += nativeLimit - nativeStart;
+ }
+ uti = utext_getNativeIndex(targetUT);
+ TEST_ASSERT(uti == expectedNativeLength);
+ }
+
+cleanupAndReturn:
+ utext_close(targetUT);
+}
+
+
+//
+// TestReplace Test a single Replace operation.
+//
+void UTextTest::TestReplace(
+ const UnicodeString &us, // reference UnicodeString in which to do the replace
+ UText *ut, // UnicodeText object under test.
+ int32_t nativeStart, // Range to be replaced, in UText native units.
+ int32_t nativeLimit,
+ int32_t u16Start, // Range to be replaced, in UTF-16 units
+ int32_t u16Limit, // for use in the reference UnicodeString.
+ const UnicodeString &repStr) // The replacement string
+{
+ UErrorCode status = U_ZERO_ERROR;
+ UText *targetUT = NULL;
+ gTestNum++;
+ gFailed = FALSE;
+
+ //
+ // clone the target UText. The test will be run in the cloned copy
+ // so that we don't alter the original.
+ //
+ targetUT = utext_clone(NULL, ut, TRUE, FALSE, &status);
+ TEST_SUCCESS(status);
+ UnicodeString targetUS(us); // And copy the reference string.
+
+ //
+ // Do the replace operation in the Unicode String, to
+ // produce a reference result.
+ //
+ targetUS.replace(u16Start, u16Limit-u16Start, repStr);
+
+ //
+ // Do the replace on the UText under test
+ //
+ const UChar *rs = repStr.getBuffer();
+ int32_t rsLen = repStr.length();
+ int32_t actualDelta = utext_replace(targetUT, nativeStart, nativeLimit, rs, rsLen, &status);
+ int32_t expectedDelta = repStr.length() - (nativeLimit - nativeStart);
+ TEST_ASSERT(actualDelta == expectedDelta);
+
+ //
+ // Compare the results
+ //
+ int32_t usi = 0; // UnicodeString postion, utf-16 index.
+ int64_t uti = 0; // UText position, native index.
+ int32_t cpi; // char32 position (code point index)
+ UChar32 usc; // code point from Unicode String
+ UChar32 utc; // code point from UText
+ int64_t expectedNativeLength = 0;
+ utext_setNativeIndex(targetUT, 0);
+ for (cpi=0; ; cpi++) {
+ usc = targetUS.char32At(usi);
+ utc = utext_next32(targetUT);
+ if (utc < 0) {
+ break;
+ }
+ TEST_ASSERT(uti == usi);
+ TEST_ASSERT(utc == usc);
+ usi = targetUS.moveIndex32(usi, 1);
+ uti = utext_getNativeIndex(targetUT);
+ if (gFailed) {
+ goto cleanupAndReturn;
+ }
+ }
+ expectedNativeLength = utext_nativeLength(ut) + expectedDelta;
+ uti = utext_getNativeIndex(targetUT);
+ TEST_ASSERT(uti == expectedNativeLength);
+
+cleanupAndReturn:
+ utext_close(targetUT);
+}
+
+//
+// TestAccess() Test the read only access functions on a UText.
+// The text is accessed in a variety of ways, and compared with
+// the reference UnicodeString.
+//
+void UTextTest::TestAccess(const UnicodeString &us, UText *ut, int cpCount, m *cpMap) {
+ UErrorCode status = U_ZERO_ERROR;
+ gTestNum++;
+
+ //
+ // Check the length from the UText
+ //
+ int64_t expectedLen = cpMap[cpCount].nativeIdx;
+ int64_t utlen = utext_nativeLength(ut);
+ TEST_ASSERT(expectedLen == utlen);
+
+ //
+ // Iterate forwards, verify that we get the correct code points
+ // at the correct native offsets.
+ //
+ int i = 0;
+ int64_t index;
+ int64_t expectedIndex = 0;
+ int64_t foundIndex = 0;
+ UChar32 expectedC;
+ UChar32 foundC;
+ int64_t len;
+
+ for (i=0; i<cpCount; i++) {
+ expectedIndex = cpMap[i].nativeIdx;
+ foundIndex = utext_getNativeIndex(ut);
+ TEST_ASSERT(expectedIndex == foundIndex);
+ expectedC = cpMap[i].cp;
+ foundC = utext_next32(ut);
+ TEST_ASSERT(expectedC == foundC);
+ foundIndex = utext_getPreviousNativeIndex(ut);
+ TEST_ASSERT(expectedIndex == foundIndex);
+ if (gFailed) {
+ return;
+ }
+ }
+ foundC = utext_next32(ut);
+ TEST_ASSERT(foundC == U_SENTINEL);
+
+ // Repeat above, using macros
+ utext_setNativeIndex(ut, 0);
+ for (i=0; i<cpCount; i++) {
+ expectedIndex = cpMap[i].nativeIdx;
+ foundIndex = UTEXT_GETNATIVEINDEX(ut);
+ TEST_ASSERT(expectedIndex == foundIndex);
+ expectedC = cpMap[i].cp;
+ foundC = UTEXT_NEXT32(ut);
+ TEST_ASSERT(expectedC == foundC);
+ if (gFailed) {
+ return;
+ }
+ }
+ foundC = UTEXT_NEXT32(ut);
+ TEST_ASSERT(foundC == U_SENTINEL);
+
+ //
+ // Forward iteration (above) should have left index at the
+ // end of the input, which should == length().
+ //
+ len = utext_nativeLength(ut);
+ foundIndex = utext_getNativeIndex(ut);
+ TEST_ASSERT(len == foundIndex);
+
+ //
+ // Iterate backwards over entire test string
+ //
+ len = utext_getNativeIndex(ut);
+ utext_setNativeIndex(ut, len);
+ for (i=cpCount-1; i>=0; i--) {
+ expectedC = cpMap[i].cp;
+ expectedIndex = cpMap[i].nativeIdx;
+ int64_t prevIndex = utext_getPreviousNativeIndex(ut);
+ foundC = utext_previous32(ut);
+ foundIndex = utext_getNativeIndex(ut);
+ TEST_ASSERT(expectedIndex == foundIndex);
+ TEST_ASSERT(expectedC == foundC);
+ TEST_ASSERT(prevIndex == foundIndex);
+ if (gFailed) {
+ return;
+ }
+ }
+
+ //
+ // Backwards iteration, above, should have left our iterator
+ // position at zero, and continued backwards iterationshould fail.
+ //
+ foundIndex = utext_getNativeIndex(ut);
+ TEST_ASSERT(foundIndex == 0);
+ foundIndex = utext_getPreviousNativeIndex(ut);
+ TEST_ASSERT(foundIndex == 0);
+
+
+ foundC = utext_previous32(ut);
+ TEST_ASSERT(foundC == U_SENTINEL);
+ foundIndex = utext_getNativeIndex(ut);
+ TEST_ASSERT(foundIndex == 0);
+ foundIndex = utext_getPreviousNativeIndex(ut);
+ TEST_ASSERT(foundIndex == 0);
+
+
+ // And again, with the macros
+ utext_setNativeIndex(ut, len);
+ for (i=cpCount-1; i>=0; i--) {
+ expectedC = cpMap[i].cp;
+ expectedIndex = cpMap[i].nativeIdx;
+ foundC = UTEXT_PREVIOUS32(ut);
+ foundIndex = UTEXT_GETNATIVEINDEX(ut);
+ TEST_ASSERT(expectedIndex == foundIndex);
+ TEST_ASSERT(expectedC == foundC);
+ if (gFailed) {
+ return;
+ }
+ }
+
+ //
+ // Backwards iteration, above, should have left our iterator
+ // position at zero, and continued backwards iterationshould fail.
+ //
+ foundIndex = UTEXT_GETNATIVEINDEX(ut);
+ TEST_ASSERT(foundIndex == 0);
+
+ foundC = UTEXT_PREVIOUS32(ut);
+ TEST_ASSERT(foundC == U_SENTINEL);
+ foundIndex = UTEXT_GETNATIVEINDEX(ut);
+ TEST_ASSERT(foundIndex == 0);
+ if (gFailed) {
+ return;
+ }
+
+ //
+ // next32From(), prevous32From(), Iterate in a somewhat random order.
+ //
+ int cpIndex = 0;
+ for (i=0; i<cpCount; i++) {
+ cpIndex = (cpIndex + 9973) % cpCount;
+ index = cpMap[cpIndex].nativeIdx;
+ expectedC = cpMap[cpIndex].cp;
+ foundC = utext_next32From(ut, index);
+ TEST_ASSERT(expectedC == foundC);
+ if (gFailed) {
+ return;
+ }
+ }
+
+ cpIndex = 0;
+ for (i=0; i<cpCount; i++) {
+ cpIndex = (cpIndex + 9973) % cpCount;
+ index = cpMap[cpIndex+1].nativeIdx;
+ expectedC = cpMap[cpIndex].cp;
+ foundC = utext_previous32From(ut, index);
+ TEST_ASSERT(expectedC == foundC);
+ if (gFailed) {
+ return;
+ }
+ }
+
+
+ //
+ // moveIndex(int32_t delta);
+ //
+
+ // Walk through frontwards, incrementing by one
+ utext_setNativeIndex(ut, 0);
+ for (i=1; i<=cpCount; i++) {
+ utext_moveIndex32(ut, 1);
+ index = utext_getNativeIndex(ut);
+ expectedIndex = cpMap[i].nativeIdx;
+ TEST_ASSERT(expectedIndex == index);
+ index = UTEXT_GETNATIVEINDEX(ut);
+ TEST_ASSERT(expectedIndex == index);
+ }
+
+ // Walk through frontwards, incrementing by two
+ utext_setNativeIndex(ut, 0);
+ for (i=2; i<cpCount; i+=2) {
+ utext_moveIndex32(ut, 2);
+ index = utext_getNativeIndex(ut);
+ expectedIndex = cpMap[i].nativeIdx;
+ TEST_ASSERT(expectedIndex == index);
+ index = UTEXT_GETNATIVEINDEX(ut);
+ TEST_ASSERT(expectedIndex == index);
+ }
+
+ // walk through the string backwards, decrementing by one.
+ i = cpMap[cpCount].nativeIdx;
+ utext_setNativeIndex(ut, i);
+ for (i=cpCount; i>=0; i--) {
+ expectedIndex = cpMap[i].nativeIdx;
+ index = utext_getNativeIndex(ut);
+ TEST_ASSERT(expectedIndex == index);
+ index = UTEXT_GETNATIVEINDEX(ut);
+ TEST_ASSERT(expectedIndex == index);
+ utext_moveIndex32(ut, -1);
+ }
+
+
+ // walk through backwards, decrementing by three
+ i = cpMap[cpCount].nativeIdx;
+ utext_setNativeIndex(ut, i);
+ for (i=cpCount; i>=0; i-=3) {
+ expectedIndex = cpMap[i].nativeIdx;
+ index = utext_getNativeIndex(ut);
+ TEST_ASSERT(expectedIndex == index);
+ index = UTEXT_GETNATIVEINDEX(ut);
+ TEST_ASSERT(expectedIndex == index);
+ utext_moveIndex32(ut, -3);
+ }
+
+
+ //
+ // Extract
+ //
+ int bufSize = us.length() + 10;
+ UChar *buf = new UChar[bufSize];
+ status = U_ZERO_ERROR;
+ expectedLen = us.length();
+ len = utext_extract(ut, 0, utlen, buf, bufSize, &status);
+ TEST_SUCCESS(status);
+ TEST_ASSERT(len == expectedLen);
+ int compareResult = us.compare(buf, -1);
+ TEST_ASSERT(compareResult == 0);
+
+ status = U_ZERO_ERROR;
+ len = utext_extract(ut, 0, utlen, NULL, 0, &status);
+ if (utlen == 0) {
+ TEST_ASSERT(status == U_STRING_NOT_TERMINATED_WARNING);
+ } else {
+ TEST_ASSERT(status == U_BUFFER_OVERFLOW_ERROR);
+ }
+ TEST_ASSERT(len == expectedLen);
+
+ status = U_ZERO_ERROR;
+ u_memset(buf, 0x5555, bufSize);
+ len = utext_extract(ut, 0, utlen, buf, 1, &status);
+ if (us.length() == 0) {
+ TEST_SUCCESS(status);
+ TEST_ASSERT(buf[0] == 0);
+ } else {
+ // Buf len == 1, extracting a single 16 bit value.
+ // If the data char is supplementary, it doesn't matter whether the buffer remains unchanged,
+ // or whether the lead surrogate of the pair is extracted.
+ // It's a buffer overflow error in either case.
+ TEST_ASSERT(buf[0] == us.charAt(0) ||
+ buf[0] == 0x5555 && U_IS_SUPPLEMENTARY(us.char32At(0)));
+ TEST_ASSERT(buf[1] == 0x5555);
+ if (us.length() == 1) {
+ TEST_ASSERT(status == U_STRING_NOT_TERMINATED_WARNING);
+ } else {
+ TEST_ASSERT(status == U_BUFFER_OVERFLOW_ERROR);
+ }
+ }
+
+ delete []buf;
+}
+
+
+
+//
+// ErrorTest() Check various error and edge cases.
+//
+void UTextTest::ErrorTest()
+{
+ // Close of an unitialized UText. Shouldn't blow up.
+ {
+ UText ut;
+ memset(&ut, 0, sizeof(UText));
+ utext_close(&ut);
+ utext_close(NULL);
+ }
+
+ // Double-close of a UText. Shouldn't blow up. UText should still be usable.
+ {
+ UErrorCode status = U_ZERO_ERROR;
+ UText ut = UTEXT_INITIALIZER;
+ UnicodeString s("Hello, World");
+ UText *ut2 = utext_openUnicodeString(&ut, &s, &status);
+ TEST_SUCCESS(status);
+ TEST_ASSERT(ut2 == &ut);
+
+ UText *ut3 = utext_close(&ut);
+ TEST_ASSERT(ut3 == &ut);
+
+ UText *ut4 = utext_close(&ut);
+ TEST_ASSERT(ut4 == &ut);
+
+ utext_openUnicodeString(&ut, &s, &status);
+ TEST_SUCCESS(status);
+ utext_close(&ut);
+ }
+
+ // Re-use of a UText, chaining through each of the types of UText
+ // (If it doesn't blow up, and doesn't leak, it's probably working fine)
+ {
+ UErrorCode status = U_ZERO_ERROR;
+ UText ut = UTEXT_INITIALIZER;
+ UText *utp;
+ UnicodeString s1("Hello, World");
+ UChar s2[] = {(UChar)0x41, (UChar)0x42, (UChar)0};
+ const char *s3 = "\x66\x67\x68";
+
+ utp = utext_openUnicodeString(&ut, &s1, &status);
+ TEST_SUCCESS(status);
+ TEST_ASSERT(utp == &ut);
+
+ utp = utext_openConstUnicodeString(&ut, &s1, &status);
+ TEST_SUCCESS(status);
+ TEST_ASSERT(utp == &ut);
+
+ utp = utext_openUTF8(&ut, s3, -1, &status);
+ TEST_SUCCESS(status);
+ TEST_ASSERT(utp == &ut);
+
+ utp = utext_openUChars(&ut, s2, -1, &status);
+ TEST_SUCCESS(status);
+ TEST_ASSERT(utp == &ut);
+
+ utp = utext_close(&ut);
+ TEST_ASSERT(utp == &ut);
+
+ utp = utext_openUnicodeString(&ut, &s1, &status);
+ TEST_SUCCESS(status);
+ TEST_ASSERT(utp == &ut);
+ }
+
+ //
+ // UTF-8 with malformed sequences.
+ // These should come through as the Unicode replacement char, \ufffd
+ //
+ {
+ UErrorCode status = U_ZERO_ERROR;
+ UText *ut = NULL;
+ const char *badUTF8 = "\x41\x81\x42\xf0\x81\x81\x43";
+ UChar32 c;
+
+ ut = utext_openUTF8(NULL, badUTF8, -1, &status);
+ TEST_SUCCESS(status);
+ c = utext_char32At(ut, 1);
+ TEST_ASSERT(c == 0xfffd);
+ c = utext_char32At(ut, 3);
+ TEST_ASSERT(c == 0xfffd);
+ c = utext_char32At(ut, 5);
+ TEST_ASSERT(c == 0xfffd);
+ c = utext_char32At(ut, 6);
+ TEST_ASSERT(c == 0x43);
+
+ UChar buf[10];
+ int n = utext_extract(ut, 0, 9, buf, 10, &status);
+ TEST_SUCCESS(status);
+ TEST_ASSERT(n==5);
+ TEST_ASSERT(buf[1] == 0xfffd);
+ TEST_ASSERT(buf[3] == 0xfffd);
+ TEST_ASSERT(buf[2] == 0x42);
+ utext_close(ut);
+ }
+
+
+ //
+ // isLengthExpensive - does it make the exptected transitions after
+ // getting the length of a nul terminated string?
+ //
+ {
+ UErrorCode status = U_ZERO_ERROR;
+ UnicodeString sa("Hello, this is a string");
+ UBool isExpensive;
+
+ UChar sb[100];
+ memset(sb, 0x20, sizeof(sb));
+ sb[99] = 0;
+
+ UText *uta = utext_openUnicodeString(NULL, &sa, &status);
+ TEST_SUCCESS(status);
+ isExpensive = utext_isLengthExpensive(uta);
+ TEST_ASSERT(isExpensive == FALSE);
+ utext_close(uta);
+
+ UText *utb = utext_openUChars(NULL, sb, -1, &status);
+ TEST_SUCCESS(status);
+ isExpensive = utext_isLengthExpensive(utb);
+ TEST_ASSERT(isExpensive == TRUE);
+ int64_t len = utext_nativeLength(utb);
+ TEST_ASSERT(len == 99);
+ isExpensive = utext_isLengthExpensive(utb);
+ TEST_ASSERT(isExpensive == FALSE);
+ utext_close(utb);
+ }
+
+ //
+ // Index to positions not on code point boundaries.
+ //
+ {
+ const char *u8str = "\xc8\x81\xe1\x82\x83\xf1\x84\x85\x86";
+ int32_t startMap[] = { 0, 0, 2, 2, 2, 5, 5, 5, 5, 9, 9};
+ int32_t nextMap[] = { 2, 2, 5, 5, 5, 9, 9, 9, 9, 9, 9};
+ int32_t prevMap[] = { 0, 0, 0, 0, 0, 2, 2, 2, 2, 5, 5};
+ UChar32 c32Map[] = {0x201, 0x201, 0x1083, 0x1083, 0x1083, 0x044146, 0x044146, 0x044146, 0x044146, -1, -1};
+ UChar32 pr32Map[] = { -1, -1, 0x201, 0x201, 0x201, 0x1083, 0x1083, 0x1083, 0x1083, 0x044146, 0x044146};
+
+ // extractLen is the size, in UChars, of what will be extracted between index and index+1.
+ // is zero when both index positions lie within the same code point.
+ int32_t exLen[] = { 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0};
+
+
+ UErrorCode status = U_ZERO_ERROR;
+ UText *ut = utext_openUTF8(NULL, u8str, -1, &status);
+ TEST_SUCCESS(status);
+
+ // Check setIndex
+ int32_t i;
+ int32_t startMapLimit = sizeof(startMap) / sizeof(int32_t);
+ for (i=0; i<startMapLimit; i++) {
+ utext_setNativeIndex(ut, i);
+ int64_t cpIndex = utext_getNativeIndex(ut);
+ TEST_ASSERT(cpIndex == startMap[i]);
+ cpIndex = UTEXT_GETNATIVEINDEX(ut);
+ TEST_ASSERT(cpIndex == startMap[i]);
+ }
+
+ // Check char32At
+ for (i=0; i<startMapLimit; i++) {
+ UChar32 c32 = utext_char32At(ut, i);
+ TEST_ASSERT(c32 == c32Map[i]);
+ int64_t cpIndex = utext_getNativeIndex(ut);
+ TEST_ASSERT(cpIndex == startMap[i]);
+ }
+
+ // Check utext_next32From
+ for (i=0; i<startMapLimit; i++) {
+ UChar32 c32 = utext_next32From(ut, i);
+ TEST_ASSERT(c32 == c32Map[i]);
+ int64_t cpIndex = utext_getNativeIndex(ut);
+ TEST_ASSERT(cpIndex == nextMap[i]);
+ }
+
+ // check utext_previous32From
+ for (i=0; i<startMapLimit; i++) {
+ gTestNum++;
+ UChar32 c32 = utext_previous32From(ut, i);
+ TEST_ASSERT(c32 == pr32Map[i]);
+ int64_t cpIndex = utext_getNativeIndex(ut);
+ TEST_ASSERT(cpIndex == prevMap[i]);
+ }
+
+ // check Extract
+ // Extract from i to i+1, which may be zero or one code points,
+ // depending on whether the indices straddle a cp boundary.
+ for (i=0; i<startMapLimit; i++) {
+ UChar buf[3];
+ status = U_ZERO_ERROR;
+ int32_t extractedLen = utext_extract(ut, i, i+1, buf, 3, &status);
+ TEST_SUCCESS(status);
+ TEST_ASSERT(extractedLen == exLen[i]);
+ if (extractedLen > 0) {
+ UChar32 c32;
+ U16_GET(buf, 0, 0, extractedLen, c32);
+ TEST_ASSERT(c32 == c32Map[i]);
+ }
+ }
+
+ utext_close(ut);
+ }
+
+
+ { // Similar test, with utf16 instead of utf8
+ // TODO: merge the common parts of these tests.
+
+ UnicodeString u16str("\\u1000\\U00011000\\u2000\\U00022000");
+ int32_t startMap[] ={ 0, 1, 1, 3, 4, 4, 6, 6};
+ int32_t nextMap[] = { 1, 3, 3, 4, 6, 6, 6, 6};
+ int32_t prevMap[] = { 0, 0, 0, 1, 3, 3, 4, 4};
+ UChar32 c32Map[] = {0x1000, 0x11000, 0x11000, 0x2000, 0x22000, 0x22000, -1, -1};
+ UChar32 pr32Map[] = { -1, 0x1000, 0x1000, 0x11000, 0x2000, 0x2000, 0x22000, 0x22000};
+ int32_t exLen[] = { 1, 0, 2, 1, 0, 2, 0, 0,};
+
+ u16str = u16str.unescape();
+ UErrorCode status = U_ZERO_ERROR;
+ UText *ut = utext_openUnicodeString(NULL, &u16str, &status);
+ TEST_SUCCESS(status);
+
+ int32_t startMapLimit = sizeof(startMap) / sizeof(int32_t);
+ int i;
+ for (i=0; i<startMapLimit; i++) {
+ utext_setNativeIndex(ut, i);
+ int64_t cpIndex = utext_getNativeIndex(ut);
+ TEST_ASSERT(cpIndex == startMap[i]);
+ }
+
+ // Check char32At
+ for (i=0; i<startMapLimit; i++) {
+ UChar32 c32 = utext_char32At(ut, i);
+ TEST_ASSERT(c32 == c32Map[i]);
+ int64_t cpIndex = utext_getNativeIndex(ut);
+ TEST_ASSERT(cpIndex == startMap[i]);
+ }
+
+ // Check utext_next32From
+ for (i=0; i<startMapLimit; i++) {
+ UChar32 c32 = utext_next32From(ut, i);
+ TEST_ASSERT(c32 == c32Map[i]);
+ int64_t cpIndex = utext_getNativeIndex(ut);
+ TEST_ASSERT(cpIndex == nextMap[i]);
+ }
+
+ // check utext_previous32From
+ for (i=0; i<startMapLimit; i++) {
+ UChar32 c32 = utext_previous32From(ut, i);
+ TEST_ASSERT(c32 == pr32Map[i]);
+ int64_t cpIndex = utext_getNativeIndex(ut);
+ TEST_ASSERT(cpIndex == prevMap[i]);
+ }
+
+ // check Extract
+ // Extract from i to i+1, which may be zero or one code points,
+ // depending on whether the indices straddle a cp boundary.
+ for (i=0; i<startMapLimit; i++) {
+ UChar buf[3];
+ status = U_ZERO_ERROR;
+ int32_t extractedLen = utext_extract(ut, i, i+1, buf, 3, &status);
+ TEST_SUCCESS(status);
+ TEST_ASSERT(extractedLen == exLen[i]);
+ if (extractedLen > 0) {
+ UChar32 c32;
+ U16_GET(buf, 0, 0, extractedLen, c32);
+ TEST_ASSERT(c32 == c32Map[i]);
+ }
+ }
+
+ utext_close(ut);
+ }
+
+ { // Similar test, with UText over Replaceable
+ // TODO: merge the common parts of these tests.
+
+ UnicodeString u16str("\\u1000\\U00011000\\u2000\\U00022000");
+ int32_t startMap[] ={ 0, 1, 1, 3, 4, 4, 6, 6};
+ int32_t nextMap[] = { 1, 3, 3, 4, 6, 6, 6, 6};
+ int32_t prevMap[] = { 0, 0, 0, 1, 3, 3, 4, 4};
+ UChar32 c32Map[] = {0x1000, 0x11000, 0x11000, 0x2000, 0x22000, 0x22000, -1, -1};
+ UChar32 pr32Map[] = { -1, 0x1000, 0x1000, 0x11000, 0x2000, 0x2000, 0x22000, 0x22000};
+ int32_t exLen[] = { 1, 0, 2, 1, 0, 2, 0, 0,};
+
+ u16str = u16str.unescape();
+ UErrorCode status = U_ZERO_ERROR;
+ UText *ut = utext_openReplaceable(NULL, &u16str, &status);
+ TEST_SUCCESS(status);
+
+ int32_t startMapLimit = sizeof(startMap) / sizeof(int32_t);
+ int i;
+ for (i=0; i<startMapLimit; i++) {
+ utext_setNativeIndex(ut, i);
+ int64_t cpIndex = utext_getNativeIndex(ut);
+ TEST_ASSERT(cpIndex == startMap[i]);
+ }
+
+ // Check char32At
+ for (i=0; i<startMapLimit; i++) {
+ UChar32 c32 = utext_char32At(ut, i);
+ TEST_ASSERT(c32 == c32Map[i]);
+ int64_t cpIndex = utext_getNativeIndex(ut);
+ TEST_ASSERT(cpIndex == startMap[i]);
+ }
+
+ // Check utext_next32From
+ for (i=0; i<startMapLimit; i++) {
+ UChar32 c32 = utext_next32From(ut, i);
+ TEST_ASSERT(c32 == c32Map[i]);
+ int64_t cpIndex = utext_getNativeIndex(ut);
+ TEST_ASSERT(cpIndex == nextMap[i]);
+ }
+
+ // check utext_previous32From
+ for (i=0; i<startMapLimit; i++) {
+ UChar32 c32 = utext_previous32From(ut, i);
+ TEST_ASSERT(c32 == pr32Map[i]);
+ int64_t cpIndex = utext_getNativeIndex(ut);
+ TEST_ASSERT(cpIndex == prevMap[i]);
+ }
+
+ // check Extract
+ // Extract from i to i+1, which may be zero or one code points,
+ // depending on whether the indices straddle a cp boundary.
+ for (i=0; i<startMapLimit; i++) {
+ UChar buf[3];
+ status = U_ZERO_ERROR;
+ int32_t extractedLen = utext_extract(ut, i, i+1, buf, 3, &status);
+ TEST_SUCCESS(status);
+ TEST_ASSERT(extractedLen == exLen[i]);
+ if (extractedLen > 0) {
+ UChar32 c32;
+ U16_GET(buf, 0, 0, extractedLen, c32);
+ TEST_ASSERT(c32 == c32Map[i]);
+ }
+ }
+
+ utext_close(ut);
+ }
+}
+
+
+void UTextTest::FreezeTest() {
+ // Check isWritable() and freeze() behavior.
+ //
+
+ UnicodeString ustr("Hello, World.");
+ const char u8str[] = {char(0x31), (char)0x32, (char)0x33, 0};
+ const UChar u16str[] = {(UChar)0x31, (UChar)0x32, (UChar)0x44, 0};
+
+ UErrorCode status = U_ZERO_ERROR;
+ UText *ut = NULL;
+ UText *ut2 = NULL;
+
+ ut = utext_openUTF8(ut, u8str, -1, &status);
+ TEST_SUCCESS(status);
+ UBool writable = utext_isWritable(ut);
+ TEST_ASSERT(writable == FALSE);
+ utext_copy(ut, 1, 2, 0, TRUE, &status);
+ TEST_ASSERT(status == U_NO_WRITE_PERMISSION);
+
+ status = U_ZERO_ERROR;
+ ut = utext_openUChars(ut, u16str, -1, &status);
+ TEST_SUCCESS(status);
+ writable = utext_isWritable(ut);
+ TEST_ASSERT(writable == FALSE);
+ utext_copy(ut, 1, 2, 0, TRUE, &status);
+ TEST_ASSERT(status == U_NO_WRITE_PERMISSION);
+
+ status = U_ZERO_ERROR;
+ ut = utext_openUnicodeString(ut, &ustr, &status);
+ TEST_SUCCESS(status);
+ writable = utext_isWritable(ut);
+ TEST_ASSERT(writable == TRUE);
+ utext_freeze(ut);
+ writable = utext_isWritable(ut);
+ TEST_ASSERT(writable == FALSE);
+ utext_copy(ut, 1, 2, 0, TRUE, &status);
+ TEST_ASSERT(status == U_NO_WRITE_PERMISSION);
+
+ status = U_ZERO_ERROR;
+ ut = utext_openUnicodeString(ut, &ustr, &status);
+ TEST_SUCCESS(status);
+ ut2 = utext_clone(ut2, ut, FALSE, FALSE, &status); // clone with readonly = false
+ TEST_SUCCESS(status);
+ writable = utext_isWritable(ut2);
+ TEST_ASSERT(writable == TRUE);
+ ut2 = utext_clone(ut2, ut, FALSE, TRUE, &status); // clone with readonly = true
+ TEST_SUCCESS(status);
+ writable = utext_isWritable(ut2);
+ TEST_ASSERT(writable == FALSE);
+ utext_copy(ut2, 1, 2, 0, TRUE, &status);
+ TEST_ASSERT(status == U_NO_WRITE_PERMISSION);
+
+ status = U_ZERO_ERROR;
+ ut = utext_openConstUnicodeString(ut, (const UnicodeString *)&ustr, &status);
+ TEST_SUCCESS(status);
+ writable = utext_isWritable(ut);
+ TEST_ASSERT(writable == FALSE);
+ utext_copy(ut, 1, 2, 0, TRUE, &status);
+ TEST_ASSERT(status == U_NO_WRITE_PERMISSION);
+
+ // Deep Clone of a frozen UText should re-enable writing in the copy.
+ status = U_ZERO_ERROR;
+ ut = utext_openUnicodeString(ut, &ustr, &status);
+ TEST_SUCCESS(status);
+ utext_freeze(ut);
+ ut2 = utext_clone(ut2, ut, TRUE, FALSE, &status); // deep clone
+ TEST_SUCCESS(status);
+ writable = utext_isWritable(ut2);
+ TEST_ASSERT(writable == TRUE);
+
+
+ // Deep clone of a frozen UText, where the base type is intrinsically non-writable,
+ // should NOT enable writing in the copy.
+ status = U_ZERO_ERROR;
+ ut = utext_openUChars(ut, u16str, -1, &status);
+ TEST_SUCCESS(status);
+ utext_freeze(ut);
+ ut2 = utext_clone(ut2, ut, TRUE, FALSE, &status); // deep clone
+ TEST_SUCCESS(status);
+ writable = utext_isWritable(ut2);
+ TEST_ASSERT(writable == FALSE);
+
+ // cleanup
+ utext_close(ut);
+ utext_close(ut2);
+}
+
+
+//
+// Fragmented UText
+// A UText type that works with a chunk size of 1.
+// Intended to test for edge cases.
+// Input comes from a UnicodeString.
+//
+// ut.b the character. Put into both halves.
+//
+
+U_CDECL_BEGIN
+static UBool U_CALLCONV
+fragTextAccess(UText *ut, int64_t index, UBool forward) {
+ const UnicodeString *us = (const UnicodeString *)ut->context;
+ UChar c;
+ int32_t length = us->length();
+ if (forward && index>=0 && index<length) {
+ c = us->charAt((int32_t)index);
+ ut->b = c | c<<16;
+ ut->chunkOffset = 0;
+ ut->chunkLength = 1;
+ ut->chunkNativeStart = index;
+ ut->chunkNativeLimit = index+1;
+ return true;
+ }
+ if (!forward && index>0 && index <=length) {
+ c = us->charAt((int32_t)index-1);
+ ut->b = c | c<<16;
+ ut->chunkOffset = 1;
+ ut->chunkLength = 1;
+ ut->chunkNativeStart = index-1;
+ ut->chunkNativeLimit = index;
+ return true;
+ }
+ ut->b = 0;
+ ut->chunkOffset = 0;
+ ut->chunkLength = 0;
+ if (index <= 0) {
+ ut->chunkNativeStart = 0;
+ ut->chunkNativeLimit = 0;
+ } else {
+ ut->chunkNativeStart = length;
+ ut->chunkNativeLimit = length;
+ }
+ return false;
+}
+U_CDECL_END
+
+// Function table to be used with this fragmented text provider.
+// Initialized in the open function.
+UTextFuncs fragmentFuncs;
+
+// Open function for the fragmented text provider.
+UText *
+openFragmentedUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status) {
+ ut = utext_openUnicodeString(ut, s, status);
+ if (U_FAILURE(*status)) {
+ return ut;
+ }
+
+ // Copy of the function table from the stock UnicodeString UText,
+ // and replace the entry for the access function.
+ memcpy(&fragmentFuncs, ut->pFuncs, sizeof(fragmentFuncs));
+ fragmentFuncs.access = fragTextAccess;
+ ut->pFuncs = &fragmentFuncs;
+
+ ut->chunkContents = (UChar *)&ut->b;
+ ut->pFuncs->access(ut, 0, TRUE);
+ return ut;
+}
+
+