+// © 2016 and later: Unicode, Inc. and others.
+// License & terms of use: http://www.unicode.org/copyright.html
/*
******************************************************************************
-* Copyright (C) 1997-2014, International Business Machines
+* Copyright (C) 1997-2015, International Business Machines
* Corporation and others. All Rights Reserved.
******************************************************************************
* file name: nfrule.cpp
-* encoding: US-ASCII
+* encoding: UTF-8
* tab size: 8 (not used)
* indentation:4
*
#include "unicode/localpointer.h"
#include "unicode/rbnf.h"
#include "unicode/tblcoll.h"
+#include "unicode/plurfmt.h"
+#include "unicode/upluralrules.h"
#include "unicode/coleitr.h"
#include "unicode/uchar.h"
#include "nfrs.h"
#include "nfrlist.h"
#include "nfsubs.h"
#include "patternprops.h"
+#include "putilimp.h"
U_NAMESPACE_BEGIN
-NFRule::NFRule(const RuleBasedNumberFormat* _rbnf)
+NFRule::NFRule(const RuleBasedNumberFormat* _rbnf, const UnicodeString &_ruleText, UErrorCode &status)
: baseValue((int32_t)0)
- , radix(0)
+ , radix(10)
, exponent(0)
- , ruleText()
+ , decimalPoint(0)
+ , fRuleText(_ruleText)
, sub1(NULL)
, sub2(NULL)
, formatter(_rbnf)
+ , rulePatternFormat(NULL)
{
+ if (!fRuleText.isEmpty()) {
+ parseRuleDescriptor(fRuleText, status);
+ }
}
NFRule::~NFRule()
{
- delete sub1;
- delete sub2;
+ if (sub1 != sub2) {
+ delete sub2;
+ sub2 = NULL;
+ }
+ delete sub1;
+ sub1 = NULL;
+ delete rulePatternFormat;
+ rulePatternFormat = NULL;
}
static const UChar gLeftBracket = 0x005b;
static const UChar gTick = 0x0027;
//static const UChar gMinus = 0x002d;
static const UChar gSemicolon = 0x003b;
+static const UChar gX = 0x0078;
static const UChar gMinusX[] = {0x2D, 0x78, 0}; /* "-x" */
-static const UChar gXDotX[] = {0x78, 0x2E, 0x78, 0}; /* "x.x" */
-static const UChar gXDotZero[] = {0x78, 0x2E, 0x30, 0}; /* "x.0" */
-static const UChar gZeroDotX[] = {0x30, 0x2E, 0x78, 0}; /* "0.x" */
+static const UChar gInf[] = {0x49, 0x6E, 0x66, 0}; /* "Inf" */
+static const UChar gNaN[] = {0x4E, 0x61, 0x4E, 0}; /* "NaN" */
+
+static const UChar gDollarOpenParenthesis[] = {0x24, 0x28, 0}; /* "$(" */
+static const UChar gClosedParenthesisDollar[] = {0x29, 0x24, 0}; /* ")$" */
static const UChar gLessLess[] = {0x3C, 0x3C, 0}; /* "<<" */
static const UChar gLessPercent[] = {0x3C, 0x25, 0}; /* "<%" */
static const UChar gEqualZero[] = {0x3D, 0x30, 0}; /* "=0" */
static const UChar gGreaterGreaterGreater[] = {0x3E, 0x3E, 0x3E, 0}; /* ">>>" */
-static const UChar * const tokenStrings[] = {
+static const UChar * const RULE_PREFIXES[] = {
gLessLess, gLessPercent, gLessHash, gLessZero,
gGreaterGreater, gGreaterPercent,gGreaterHash, gGreaterZero,
gEqualPercent, gEqualHash, gEqualZero, NULL
void
NFRule::makeRules(UnicodeString& description,
- const NFRuleSet *ruleSet,
+ NFRuleSet *owner,
const NFRule *predecessor,
const RuleBasedNumberFormat *rbnf,
NFRuleList& rules,
// new it up and initialize its basevalue and divisor
// (this also strips the rule descriptor, if any, off the
// descripton string)
- NFRule* rule1 = new NFRule(rbnf);
+ NFRule* rule1 = new NFRule(rbnf, description, status);
/* test for NULL */
if (rule1 == 0) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
- rule1->parseRuleDescriptor(description, status);
+ description = rule1->fRuleText;
// check the description to see whether there's text enclosed
// in brackets
int32_t brack1 = description.indexOf(gLeftBracket);
- int32_t brack2 = description.indexOf(gRightBracket);
+ int32_t brack2 = brack1 < 0 ? -1 : description.indexOf(gRightBracket);
// if the description doesn't contain a matched pair of brackets,
// or if it's of a type that doesn't recognize bracketed text,
// then leave the description alone, initialize the rule's
// rule text and substitutions, and return that rule
- if (brack1 == -1 || brack2 == -1 || brack1 > brack2
+ if (brack2 < 0 || brack1 > brack2
|| rule1->getType() == kProperFractionRule
- || rule1->getType() == kNegativeNumberRule) {
- rule1->ruleText = description;
- rule1->extractSubstitutions(ruleSet, predecessor, rbnf, status);
- rules.add(rule1);
- } else {
+ || rule1->getType() == kNegativeNumberRule
+ || rule1->getType() == kInfinityRule
+ || rule1->getType() == kNaNRule)
+ {
+ rule1->extractSubstitutions(owner, description, predecessor, status);
+ }
+ else {
// if the description does contain a matched pair of brackets,
// then it's really shorthand for two rules (with one exception)
NFRule* rule2 = NULL;
// set, they both have the same base value; otherwise,
// increment the original rule's base value ("rule1" actually
// goes SECOND in the rule set's rule list)
- rule2 = new NFRule(rbnf);
+ rule2 = new NFRule(rbnf, UnicodeString(), status);
/* test for NULL */
if (rule2 == 0) {
status = U_MEMORY_ALLOCATION_ERROR;
}
if (rule1->baseValue >= 0) {
rule2->baseValue = rule1->baseValue;
- if (!ruleSet->isFractionRuleSet()) {
+ if (!owner->isFractionRuleSet()) {
++rule1->baseValue;
}
}
if (brack2 + 1 < description.length()) {
sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
}
- rule2->ruleText.setTo(sbuf);
- rule2->extractSubstitutions(ruleSet, predecessor, rbnf, status);
+ rule2->extractSubstitutions(owner, sbuf, predecessor, status);
}
// rule1's text includes the text in the brackets but omits
if (brack2 + 1 < description.length()) {
sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
}
- rule1->ruleText.setTo(sbuf);
- rule1->extractSubstitutions(ruleSet, predecessor, rbnf, status);
+ rule1->extractSubstitutions(owner, sbuf, predecessor, status);
// if we only have one rule, return it; if we have two, return
// a two-element array containing them (notice that rule2 goes
// material in the brackets and rule1 INCLUDES the material
// in the brackets)
if (rule2 != NULL) {
- rules.add(rule2);
+ if (rule2->baseValue >= kNoBase) {
+ rules.add(rule2);
+ }
+ else {
+ owner->setNonNumericalRule(rule2);
+ }
}
+ }
+ if (rule1->baseValue >= kNoBase) {
rules.add(rule1);
}
+ else {
+ owner->setNonNumericalRule(rule1);
+ }
}
/**
// separated by a colon. The rule descriptor is optional. If
// it's omitted, just set the base value to 0.
int32_t p = description.indexOf(gColon);
- if (p == -1) {
- setBaseValue((int32_t)0, status);
- } else {
+ if (p != -1) {
// copy the descriptor out into its own string and strip it,
// along with any trailing whitespace, out of the original
// description
// check first to see if the rule descriptor matches the token
// for one of the special rules. If it does, set the base
- // value to the correct identfier value
- if (0 == descriptor.compare(gMinusX, 2)) {
- setType(kNegativeNumberRule);
- }
- else if (0 == descriptor.compare(gXDotX, 3)) {
- setType(kImproperFractionRule);
- }
- else if (0 == descriptor.compare(gZeroDotX, 3)) {
- setType(kProperFractionRule);
- }
- else if (0 == descriptor.compare(gXDotZero, 3)) {
- setType(kMasterRule);
- }
-
- // if the rule descriptor begins with a digit, it's a descriptor
- // for a normal rule
- // since we don't have Long.parseLong, and this isn't much work anyway,
- // just build up the value as we encounter the digits.
- else if (descriptor.charAt(0) >= gZero && descriptor.charAt(0) <= gNine) {
+ // value to the correct identifier value
+ int descriptorLength = descriptor.length();
+ UChar firstChar = descriptor.charAt(0);
+ UChar lastChar = descriptor.charAt(descriptorLength - 1);
+ if (firstChar >= gZero && firstChar <= gNine && lastChar != gX) {
+ // if the rule descriptor begins with a digit, it's a descriptor
+ // for a normal rule
+ // since we don't have Long.parseLong, and this isn't much work anyway,
+ // just build up the value as we encounter the digits.
int64_t val = 0;
p = 0;
UChar c = gSpace;
// stop on a slash or > sign (or at the end of the string),
// and throw an exception on any other character
int64_t ll_10 = 10;
- while (p < descriptor.length()) {
+ while (p < descriptorLength) {
c = descriptor.charAt(p);
if (c >= gZero && c <= gNine) {
val = val * ll_10 + (int32_t)(c - gZero);
if (c == gSlash) {
val = 0;
++p;
- int64_t ll_10 = 10;
- while (p < descriptor.length()) {
+ ll_10 = 10;
+ while (p < descriptorLength) {
c = descriptor.charAt(p);
if (c >= gZero && c <= gNine) {
val = val * ll_10 + (int32_t)(c - gZero);
}
}
}
+ else if (0 == descriptor.compare(gMinusX, 2)) {
+ setType(kNegativeNumberRule);
+ }
+ else if (descriptorLength == 3) {
+ if (firstChar == gZero && lastChar == gX) {
+ setBaseValue(kProperFractionRule, status);
+ decimalPoint = descriptor.charAt(1);
+ }
+ else if (firstChar == gX && lastChar == gX) {
+ setBaseValue(kImproperFractionRule, status);
+ decimalPoint = descriptor.charAt(1);
+ }
+ else if (firstChar == gX && lastChar == gZero) {
+ setBaseValue(kMasterRule, status);
+ decimalPoint = descriptor.charAt(1);
+ }
+ else if (descriptor.compare(gNaN, 3) == 0) {
+ setBaseValue(kNaNRule, status);
+ }
+ else if (descriptor.compare(gInf, 3) == 0) {
+ setBaseValue(kInfinityRule, status);
+ }
+ }
}
+ // else use the default base value for now.
// finally, if the rule body begins with an apostrophe, strip it off
// (this is generally used to put whitespace at the beginning of
*/
void
NFRule::extractSubstitutions(const NFRuleSet* ruleSet,
+ const UnicodeString &ruleText,
const NFRule* predecessor,
- const RuleBasedNumberFormat* rbnf,
UErrorCode& status)
{
- if (U_SUCCESS(status)) {
- sub1 = extractSubstitution(ruleSet, predecessor, rbnf, status);
- sub2 = extractSubstitution(ruleSet, predecessor, rbnf, status);
+ if (U_FAILURE(status)) {
+ return;
+ }
+ fRuleText = ruleText;
+ sub1 = extractSubstitution(ruleSet, predecessor, status);
+ if (sub1 == NULL) {
+ // Small optimization. There is no need to create a redundant NullSubstitution.
+ sub2 = NULL;
+ }
+ else {
+ sub2 = extractSubstitution(ruleSet, predecessor, status);
+ }
+ int32_t pluralRuleStart = fRuleText.indexOf(gDollarOpenParenthesis, -1, 0);
+ int32_t pluralRuleEnd = (pluralRuleStart >= 0 ? fRuleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart) : -1);
+ if (pluralRuleEnd >= 0) {
+ int32_t endType = fRuleText.indexOf(gComma, pluralRuleStart);
+ if (endType < 0) {
+ status = U_PARSE_ERROR;
+ return;
+ }
+ UnicodeString type(fRuleText.tempSubString(pluralRuleStart + 2, endType - pluralRuleStart - 2));
+ UPluralType pluralType;
+ if (type.startsWith(UNICODE_STRING_SIMPLE("cardinal"))) {
+ pluralType = UPLURAL_TYPE_CARDINAL;
+ }
+ else if (type.startsWith(UNICODE_STRING_SIMPLE("ordinal"))) {
+ pluralType = UPLURAL_TYPE_ORDINAL;
+ }
+ else {
+ status = U_ILLEGAL_ARGUMENT_ERROR;
+ return;
+ }
+ rulePatternFormat = formatter->createPluralFormat(pluralType,
+ fRuleText.tempSubString(endType + 1, pluralRuleEnd - endType - 1), status);
}
}
NFSubstitution *
NFRule::extractSubstitution(const NFRuleSet* ruleSet,
const NFRule* predecessor,
- const RuleBasedNumberFormat* rbnf,
UErrorCode& status)
{
NFSubstitution* result = NULL;
// search the rule's rule text for the first two characters of
// a substitution token
- int32_t subStart = indexOfAny(tokenStrings);
+ int32_t subStart = indexOfAnyRulePrefix();
int32_t subEnd = subStart;
// if we didn't find one, create a null substitution positioned
// at the end of the rule text
if (subStart == -1) {
- return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor,
- ruleSet, rbnf, UnicodeString(), status);
+ return NULL;
}
// special-case the ">>>" token, since searching for the > at the
// end will actually find the > in the middle
- if (ruleText.indexOf(gGreaterGreaterGreater, 3, 0) == subStart) {
+ if (fRuleText.indexOf(gGreaterGreaterGreater, 3, 0) == subStart) {
subEnd = subStart + 2;
// otherwise the substitution token ends with the same character
// it began with
} else {
- UChar c = ruleText.charAt(subStart);
- subEnd = ruleText.indexOf(c, subStart + 1);
+ UChar c = fRuleText.charAt(subStart);
+ subEnd = fRuleText.indexOf(c, subStart + 1);
// special case for '<%foo<<'
- if (c == gLessThan && subEnd != -1 && subEnd < ruleText.length() - 1 && ruleText.charAt(subEnd+1) == c) {
+ if (c == gLessThan && subEnd != -1 && subEnd < fRuleText.length() - 1 && fRuleText.charAt(subEnd+1) == c) {
// ordinals use "=#,##0==%abbrev=" as their rule. Notice that the '==' in the middle
// occurs because of the juxtaposition of two different rules. The check for '<' is a hack
// to get around this. Having the duplicate at the front would cause problems with
// unmatched token character), create a null substitution positioned
// at the end of the rule
if (subEnd == -1) {
- return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor,
- ruleSet, rbnf, UnicodeString(), status);
+ return NULL;
}
// if we get here, we have a real substitution token (or at least
// some text bounded by substitution token characters). Use
// makeSubstitution() to create the right kind of substitution
UnicodeString subToken;
- subToken.setTo(ruleText, subStart, subEnd + 1 - subStart);
+ subToken.setTo(fRuleText, subStart, subEnd + 1 - subStart);
result = NFSubstitution::makeSubstitution(subStart, this, predecessor, ruleSet,
- rbnf, subToken, status);
+ this->formatter, subToken, status);
// remove the substitution from the rule text
- ruleText.removeBetween(subStart, subEnd+1);
+ fRuleText.removeBetween(subStart, subEnd+1);
return result;
}
{
// set the base value
baseValue = newBaseValue;
+ radix = 10;
// if this isn't a special rule, recalculate the radix and exponent
// (the radix always defaults to 10; if it's supposed to be something
// recalculated again-- the only function that does this is
// NFRule.parseRuleDescriptor() )
if (baseValue >= 1) {
- radix = 10;
exponent = expectedExponent();
// this function gets called on a fully-constructed rule whose
// if this is a special rule, its radix and exponent are basically
// ignored. Set them to "safe" default values
} else {
- radix = 10;
exponent = 0;
}
}
/**
* Searches the rule's rule text for any of the specified strings.
- * @param strings An array of strings to search the rule's rule
- * text for
* @return The index of the first match in the rule's rule text
* (i.e., the first substring in the rule's rule text that matches
* _any_ of the strings in "strings"). If none of the strings in
* "strings" is found in the rule's rule text, returns -1.
*/
int32_t
-NFRule::indexOfAny(const UChar* const strings[]) const
+NFRule::indexOfAnyRulePrefix() const
{
int result = -1;
- for (int i = 0; strings[i]; i++) {
- int32_t pos = ruleText.indexOf(*strings[i]);
+ for (int i = 0; RULE_PREFIXES[i]; i++) {
+ int32_t pos = fRuleText.indexOf(*RULE_PREFIXES[i]);
if (pos != -1 && (result == -1 || pos < result)) {
result = pos;
}
// boilerplate
//-----------------------------------------------------------------------
+static UBool
+util_equalSubstitutions(const NFSubstitution* sub1, const NFSubstitution* sub2)
+{
+ if (sub1) {
+ if (sub2) {
+ return *sub1 == *sub2;
+ }
+ } else if (!sub2) {
+ return TRUE;
+ }
+ return FALSE;
+}
+
/**
* Tests two rules for equality.
* @param that The rule to compare this one against
return baseValue == rhs.baseValue
&& radix == rhs.radix
&& exponent == rhs.exponent
- && ruleText == rhs.ruleText
- && *sub1 == *rhs.sub1
- && *sub2 == *rhs.sub2;
+ && fRuleText == rhs.fRuleText
+ && util_equalSubstitutions(sub1, rhs.sub1)
+ && util_equalSubstitutions(sub2, rhs.sub2);
}
/**
{
switch (getType()) {
case kNegativeNumberRule: result.append(gMinusX, 2); break;
- case kImproperFractionRule: result.append(gXDotX, 3); break;
- case kProperFractionRule: result.append(gZeroDotX, 3); break;
- case kMasterRule: result.append(gXDotZero, 3); break;
+ case kImproperFractionRule: result.append(gX).append(decimalPoint == 0 ? gDot : decimalPoint).append(gX); break;
+ case kProperFractionRule: result.append(gZero).append(decimalPoint == 0 ? gDot : decimalPoint).append(gX); break;
+ case kMasterRule: result.append(gX).append(decimalPoint == 0 ? gDot : decimalPoint).append(gZero); break;
+ case kInfinityRule: result.append(gInf, 3); break;
+ case kNaNRule: result.append(gNaN, 3); break;
default:
// for a normal rule, write out its base value, and if the radix is
// something other than 10, write out the radix (with the preceding
// if the rule text begins with a space, write an apostrophe
// (whitespace after the rule descriptor is ignored; the
// apostrophe is used to make the whitespace significant)
- if (ruleText.charAt(0) == gSpace && sub1->getPos() != 0) {
+ if (fRuleText.charAt(0) == gSpace && (sub1 == NULL || sub1->getPos() != 0)) {
result.append(gTick);
}
// now, write the rule's rule text, inserting appropriate
// substitution tokens in the appropriate places
UnicodeString ruleTextCopy;
- ruleTextCopy.setTo(ruleText);
+ ruleTextCopy.setTo(fRuleText);
UnicodeString temp;
- sub2->toString(temp);
- ruleTextCopy.insert(sub2->getPos(), temp);
- sub1->toString(temp);
- ruleTextCopy.insert(sub1->getPos(), temp);
+ if (sub2 != NULL) {
+ sub2->toString(temp);
+ ruleTextCopy.insert(sub2->getPos(), temp);
+ }
+ if (sub1 != NULL) {
+ sub1->toString(temp);
+ ruleTextCopy.insert(sub1->getPos(), temp);
+ }
result.append(ruleTextCopy);
result.append(gSemicolon);
}
+int64_t NFRule::getDivisor() const
+{
+ return util64_pow(radix, exponent);
+}
+
+
//-----------------------------------------------------------------------
// formatting
//-----------------------------------------------------------------------
* should be inserted
*/
void
-NFRule::doFormat(int64_t number, UnicodeString& toInsertInto, int32_t pos) const
+NFRule::doFormat(int64_t number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const
{
// first, insert the rule's rule text into toInsertInto at the
// specified position, then insert the results of the substitutions
// into the right places in toInsertInto (notice we do the
// substitutions in reverse order so that the offsets don't get
// messed up)
- toInsertInto.insert(pos, ruleText);
- sub2->doSubstitution(number, toInsertInto, pos);
- sub1->doSubstitution(number, toInsertInto, pos);
+ int32_t pluralRuleStart = fRuleText.length();
+ int32_t lengthOffset = 0;
+ if (!rulePatternFormat) {
+ toInsertInto.insert(pos, fRuleText);
+ }
+ else {
+ pluralRuleStart = fRuleText.indexOf(gDollarOpenParenthesis, -1, 0);
+ int pluralRuleEnd = fRuleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart);
+ int initialLength = toInsertInto.length();
+ if (pluralRuleEnd < fRuleText.length() - 1) {
+ toInsertInto.insert(pos, fRuleText.tempSubString(pluralRuleEnd + 2));
+ }
+ toInsertInto.insert(pos,
+ rulePatternFormat->format((int32_t)(number/util64_pow(radix, exponent)), status));
+ if (pluralRuleStart > 0) {
+ toInsertInto.insert(pos, fRuleText.tempSubString(0, pluralRuleStart));
+ }
+ lengthOffset = fRuleText.length() - (toInsertInto.length() - initialLength);
+ }
+
+ if (sub2 != NULL) {
+ sub2->doSubstitution(number, toInsertInto, pos - (sub2->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status);
+ }
+ if (sub1 != NULL) {
+ sub1->doSubstitution(number, toInsertInto, pos - (sub1->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status);
+ }
}
/**
* should be inserted
*/
void
-NFRule::doFormat(double number, UnicodeString& toInsertInto, int32_t pos) const
+NFRule::doFormat(double number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const
{
// first, insert the rule's rule text into toInsertInto at the
// specified position, then insert the results of the substitutions
// [again, we have two copies of this routine that do the same thing
// so that we don't sacrifice precision in a long by casting it
// to a double]
- toInsertInto.insert(pos, ruleText);
- sub2->doSubstitution(number, toInsertInto, pos);
- sub1->doSubstitution(number, toInsertInto, pos);
+ int32_t pluralRuleStart = fRuleText.length();
+ int32_t lengthOffset = 0;
+ if (!rulePatternFormat) {
+ toInsertInto.insert(pos, fRuleText);
+ }
+ else {
+ pluralRuleStart = fRuleText.indexOf(gDollarOpenParenthesis, -1, 0);
+ int pluralRuleEnd = fRuleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart);
+ int initialLength = toInsertInto.length();
+ if (pluralRuleEnd < fRuleText.length() - 1) {
+ toInsertInto.insert(pos, fRuleText.tempSubString(pluralRuleEnd + 2));
+ }
+ double pluralVal = number;
+ if (0 <= pluralVal && pluralVal < 1) {
+ // We're in a fractional rule, and we have to match the NumeratorSubstitution behavior.
+ // 2.3 can become 0.2999999999999998 for the fraction due to rounding errors.
+ pluralVal = uprv_round(pluralVal * util64_pow(radix, exponent));
+ }
+ else {
+ pluralVal = pluralVal / util64_pow(radix, exponent);
+ }
+ toInsertInto.insert(pos, rulePatternFormat->format((int32_t)(pluralVal), status));
+ if (pluralRuleStart > 0) {
+ toInsertInto.insert(pos, fRuleText.tempSubString(0, pluralRuleStart));
+ }
+ lengthOffset = fRuleText.length() - (toInsertInto.length() - initialLength);
+ }
+
+ if (sub2 != NULL) {
+ sub2->doSubstitution(number, toInsertInto, pos - (sub2->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status);
+ }
+ if (sub1 != NULL) {
+ sub1->doSubstitution(number, toInsertInto, pos - (sub1->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status);
+ }
}
/**
* this one in its list; false if it should use this rule
*/
UBool
-NFRule::shouldRollBack(double number) const
+NFRule::shouldRollBack(int64_t number) const
{
// we roll back if the rule contains a modulus substitution,
// the number being formatted is an even multiple of the rule's
// a modulus substitution, its base value isn't an even multiple
// of 100, and the value we're trying to format _is_ an even
// multiple of 100. This is called the "rollback rule."
- if ((sub1->isModulusSubstitution()) || (sub2->isModulusSubstitution())) {
+ if ((sub1 != NULL && sub1->isModulusSubstitution()) || (sub2 != NULL && sub2->isModulusSubstitution())) {
int64_t re = util64_pow(radix, exponent);
- return uprv_fmod(number, (double)re) == 0 && (baseValue % re) != 0;
+ return (number % re) == 0 && (baseValue % re) != 0;
}
return FALSE;
}
}
}
#endif
-
UBool
NFRule::doParse(const UnicodeString& text,
ParsePosition& parsePosition,
UBool isFractionRule,
double upperBound,
+ uint32_t nonNumericalExecutedRuleMask,
Formattable& resVal,
UBool isDecimFmtParseable) const
{
ParsePosition pp;
UnicodeString workText(text);
+ int32_t sub1Pos = sub1 != NULL ? sub1->getPos() : fRuleText.length();
+ int32_t sub2Pos = sub2 != NULL ? sub2->getPos() : fRuleText.length();
+
// check to see whether the text before the first substitution
// matches the text at the beginning of the string being
// parsed. If it does, strip that off the front of workText;
// otherwise, dump out with a mismatch
UnicodeString prefix;
- prefix.setTo(ruleText, 0, sub1->getPos());
+ prefix.setTo(fRuleText, 0, sub1Pos);
#ifdef RBNF_DEBUG
- fprintf(stderr, "doParse %x ", this);
+ fprintf(stderr, "doParse %p ", this);
{
UnicodeString rt;
_appendRuleText(rt);
dumpUS(stderr, rt);
}
- fprintf(stderr, " text: '", this);
+ fprintf(stderr, " text: '");
dumpUS(stderr, text);
fprintf(stderr, "' prefix: '");
dumpUS(stderr, prefix);
int32_t prefixLength = text.length() - workText.length();
#ifdef RBNF_DEBUG
- fprintf(stderr, "' pl: %d ppi: %d s1p: %d\n", prefixLength, pp.getIndex(), sub1->getPos());
+ fprintf(stderr, "' pl: %d ppi: %d s1p: %d\n", prefixLength, pp.getIndex(), sub1Pos);
#endif
- if (pp.getIndex() == 0 && sub1->getPos() != 0) {
+ if (pp.getIndex() == 0 && sub1Pos != 0) {
// commented out because ParsePosition doesn't have error index in 1.1.x
// restored for ICU4C port
parsePosition.setErrorIndex(pp.getErrorIndex());
resVal.setLong(0);
return TRUE;
}
+ if (baseValue == kInfinityRule) {
+ // If you match this, don't try to perform any calculations on it.
+ parsePosition.setIndex(pp.getIndex());
+ resVal.setDouble(uprv_getInfinity());
+ return TRUE;
+ }
+ if (baseValue == kNaNRule) {
+ // If you match this, don't try to perform any calculations on it.
+ parsePosition.setIndex(pp.getIndex());
+ resVal.setDouble(uprv_getNaN());
+ return TRUE;
+ }
// Detect when this rule's main job is to parse a decimal format and we're not
// supposed to.
- if (!isDecimFmtParseable) {
- // The following tries to detect a rule like "x.x: =#,##0.#=;"
- if ( sub1->isDecimalFormatSubstitutionOnly() && sub2->isRuleSetSubstitutionOnly() ) {
- parsePosition.setErrorIndex(pp.getErrorIndex());
- resVal.setLong(0);
- return TRUE;
- }
+ if (!isDecimFmtParseable && sub1 != NULL && sub1->isDecimalFormatSubstitutionOnly()) {
+ // This is trying to detect a rule like "x.x: =#,##0.#=;"
+ // We used to also check sub2->isRuleSetSubstitutionOnly() to detect this
+ // but now sub2 is usually NULL when we get here, and that test no longer seems to matter.
+ // Need to check into this more.
+ parsePosition.setErrorIndex(pp.getErrorIndex());
+ resVal.setLong(0);
+ return TRUE;
}
// this is the fun part. The basic guts of the rule-matching
// the substitution, giving us a new partial parse result
pp.setIndex(0);
- temp.setTo(ruleText, sub1->getPos(), sub2->getPos() - sub1->getPos());
+ temp.setTo(fRuleText, sub1Pos, sub2Pos - sub1Pos);
double partialResult = matchToDelimiter(workText, start, tempBaseValue,
temp, pp, sub1,
+ nonNumericalExecutedRuleMask,
upperBound);
// if we got a successful match (or were trying to match a
// null substitution), pp is now pointing at the first unmatched
// character. Take note of that, and try matchToDelimiter()
// on the input text again
- if (pp.getIndex() != 0 || sub1->isNullSubstitution()) {
+ if (pp.getIndex() != 0 || sub1 == NULL) {
start = pp.getIndex();
UnicodeString workText2;
// partial result with whatever it gets back from its
// substitution if there's a successful match, giving us
// a real result
- temp.setTo(ruleText, sub2->getPos(), ruleText.length() - sub2->getPos());
+ temp.setTo(fRuleText, sub2Pos, fRuleText.length() - sub2Pos);
partialResult = matchToDelimiter(workText2, 0, partialResult,
temp, pp2, sub2,
+ nonNumericalExecutedRuleMask,
upperBound);
// if we got a successful match on this second
// matchToDelimiter() call, update the high-water mark
// and result (if necessary)
- if (pp2.getIndex() != 0 || sub2->isNullSubstitution()) {
+ if (pp2.getIndex() != 0 || sub2 == NULL) {
if (prefixLength + pp.getIndex() + pp2.getIndex() > highWaterMark) {
highWaterMark = prefixLength + pp.getIndex() + pp2.getIndex();
result = partialResult;
}
}
- // commented out because ParsePosition doesn't have error index in 1.1.x
- // restored for ICU4C port
else {
- int32_t temp = pp2.getErrorIndex() + sub1->getPos() + pp.getIndex();
- if (temp> parsePosition.getErrorIndex()) {
- parsePosition.setErrorIndex(temp);
+ // commented out because ParsePosition doesn't have error index in 1.1.x
+ // restored for ICU4C port
+ int32_t i_temp = pp2.getErrorIndex() + sub1Pos + pp.getIndex();
+ if (i_temp> parsePosition.getErrorIndex()) {
+ parsePosition.setErrorIndex(i_temp);
}
}
}
- // commented out because ParsePosition doesn't have error index in 1.1.x
- // restored for ICU4C port
else {
- int32_t temp = sub1->getPos() + pp.getErrorIndex();
- if (temp > parsePosition.getErrorIndex()) {
- parsePosition.setErrorIndex(temp);
+ // commented out because ParsePosition doesn't have error index in 1.1.x
+ // restored for ICU4C port
+ int32_t i_temp = sub1Pos + pp.getErrorIndex();
+ if (i_temp > parsePosition.getErrorIndex()) {
+ parsePosition.setErrorIndex(i_temp);
}
}
// keep trying to match things until the outer matchToDelimiter()
// call fails to make a match (each time, it picks up where it
// left off the previous time)
- } while (sub1->getPos() != sub2->getPos()
+ } while (sub1Pos != sub2Pos
&& pp.getIndex() > 0
&& pp.getIndex() < workText.length()
&& pp.getIndex() != start);
// we have to account for it here. By definition, if the matching
// rule in a fraction rule set has no substitutions, its numerator
// is 1, and so the result is the reciprocal of its base value.
- if (isFractionRule &&
- highWaterMark > 0 &&
- sub1->isNullSubstitution()) {
+ if (isFractionRule && highWaterMark > 0 && sub1 == NULL) {
result = 1 / result;
}
const UnicodeString& delimiter,
ParsePosition& pp,
const NFSubstitution* sub,
+ uint32_t nonNumericalExecutedRuleMask,
double upperBound) const
{
UErrorCode status = U_ZERO_ERROR;
#else
formatter->isLenient(),
#endif
+ nonNumericalExecutedRuleMask,
result);
// if the substitution could match all the text up to
pp.setIndex(dPos + dLen);
return result.getDouble();
}
- // commented out because ParsePosition doesn't have error index in 1.1.x
- // restored for ICU4C port
else {
+ // commented out because ParsePosition doesn't have error index in 1.1.x
+ // restored for ICU4C port
if (tempPP.getErrorIndex() > 0) {
pp.setErrorIndex(tempPP.getErrorIndex());
} else {
// (i.e., is semantically empty), thwe we obviously can't search
// for "delimiter". Instead, just use "sub" to parse as much of
// "text" as possible.
- } else {
+ }
+ else if (sub == NULL) {
+ return _baseValue;
+ }
+ else {
ParsePosition tempPP;
Formattable result;
#else
formatter->isLenient(),
#endif
+ nonNumericalExecutedRuleMask,
result);
- if (success && (tempPP.getIndex() != 0 || sub->isNullSubstitution())) {
+ if (success && (tempPP.getIndex() != 0)) {
// if there's a successful match (or it's a null
// substitution), update pp to point to the first
// character we didn't match, and pass the result from
pp.setIndex(tempPP.getIndex());
return result.getDouble();
}
- // commented out because ParsePosition doesn't have error index in 1.1.x
- // restored for ICU4C port
else {
+ // commented out because ParsePosition doesn't have error index in 1.1.x
+ // restored for ICU4C port
pp.setErrorIndex(tempPP.getErrorIndex());
}
int32_t startingAt,
int32_t* length) const
{
-#if !UCONFIG_NO_COLLATION
- // if lenient parsing is turned off, this is easy: just call
- // String.indexOf() and we're done
+ if (rulePatternFormat) {
+ Formattable result;
+ FieldPosition position(UNUM_INTEGER_FIELD);
+ position.setBeginIndex(startingAt);
+ rulePatternFormat->parseType(str, this, result, position);
+ int start = position.getBeginIndex();
+ if (start >= 0) {
+ int32_t pluralRuleStart = fRuleText.indexOf(gDollarOpenParenthesis, -1, 0);
+ int32_t pluralRuleSuffix = fRuleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart) + 2;
+ int32_t matchLen = position.getEndIndex() - start;
+ UnicodeString prefix(fRuleText.tempSubString(0, pluralRuleStart));
+ UnicodeString suffix(fRuleText.tempSubString(pluralRuleSuffix));
+ if (str.compare(start - prefix.length(), prefix.length(), prefix, 0, prefix.length()) == 0
+ && str.compare(start + matchLen, suffix.length(), suffix, 0, suffix.length()) == 0)
+ {
+ *length = matchLen + prefix.length() + suffix.length();
+ return start - prefix.length();
+ }
+ }
+ *length = 0;
+ return -1;
+ }
if (!formatter->isLenient()) {
+ // if lenient parsing is turned off, this is easy: just call
+ // String.indexOf() and we're done
*length = key.length();
return str.indexOf(key, startingAt);
-
+ }
+ else {
// but if lenient parsing is turned ON, we've got some work
// ahead of us
- } else
-#endif
- {
- //----------------------------------------------------------------
- // JDK 1.1 HACK (take out of 1.2-specific code)
-
- // in JDK 1.2, CollationElementIterator provides us with an
- // API to map between character offsets and collation elements
- // and we can do this by marching through the string comparing
- // collation elements. We can't do that in JDK 1.1. Insted,
- // we have to go through this horrible slow mess:
- int32_t p = startingAt;
- int32_t keyLen = 0;
-
- // basically just isolate smaller and smaller substrings of
- // the target string (each running to the end of the string,
- // and with the first one running from startingAt to the end)
- // and then use prefixLength() to see if the search key is at
- // the beginning of each substring. This is excruciatingly
- // slow, but it will locate the key and tell use how long the
- // matching text was.
- UnicodeString temp;
- UErrorCode status = U_ZERO_ERROR;
- while (p < str.length() && keyLen == 0) {
- temp.setTo(str, p, str.length() - p);
- keyLen = prefixLength(temp, key, status);
- if (U_FAILURE(status)) {
- break;
- }
- if (keyLen != 0) {
- *length = keyLen;
- return p;
- }
- ++p;
- }
- // if we make it to here, we didn't find it. Return -1 for the
- // location. The length should be ignored, but set it to 0,
- // which should be "safe"
- *length = 0;
- return -1;
+ return findTextLenient(str, key, startingAt, length);
+ }
+}
- //----------------------------------------------------------------
- // JDK 1.2 version of this routine
- //RuleBasedCollator collator = (RuleBasedCollator)formatter.getCollator();
- //
- //CollationElementIterator strIter = collator.getCollationElementIterator(str);
- //CollationElementIterator keyIter = collator.getCollationElementIterator(key);
- //
- //int keyStart = -1;
- //
- //str.setOffset(startingAt);
- //
- //int oStr = strIter.next();
- //int oKey = keyIter.next();
- //while (oKey != CollationElementIterator.NULLORDER) {
- // while (oStr != CollationElementIterator.NULLORDER &&
- // CollationElementIterator.primaryOrder(oStr) == 0)
- // oStr = strIter.next();
- //
- // while (oKey != CollationElementIterator.NULLORDER &&
- // CollationElementIterator.primaryOrder(oKey) == 0)
- // oKey = keyIter.next();
- //
- // if (oStr == CollationElementIterator.NULLORDER) {
- // return new int[] { -1, 0 };
- // }
- //
- // if (oKey == CollationElementIterator.NULLORDER) {
- // break;
- // }
- //
- // if (CollationElementIterator.primaryOrder(oStr) ==
- // CollationElementIterator.primaryOrder(oKey)) {
- // keyStart = strIter.getOffset();
- // oStr = strIter.next();
- // oKey = keyIter.next();
- // } else {
- // if (keyStart != -1) {
- // keyStart = -1;
- // keyIter.reset();
- // } else {
- // oStr = strIter.next();
- // }
- // }
- //}
- //
- //if (oKey == CollationElementIterator.NULLORDER) {
- // return new int[] { keyStart, strIter.getOffset() - keyStart };
- //} else {
- // return new int[] { -1, 0 };
- //}
+int32_t
+NFRule::findTextLenient(const UnicodeString& str,
+ const UnicodeString& key,
+ int32_t startingAt,
+ int32_t* length) const
+{
+ //----------------------------------------------------------------
+ // JDK 1.1 HACK (take out of 1.2-specific code)
+
+ // in JDK 1.2, CollationElementIterator provides us with an
+ // API to map between character offsets and collation elements
+ // and we can do this by marching through the string comparing
+ // collation elements. We can't do that in JDK 1.1. Insted,
+ // we have to go through this horrible slow mess:
+ int32_t p = startingAt;
+ int32_t keyLen = 0;
+
+ // basically just isolate smaller and smaller substrings of
+ // the target string (each running to the end of the string,
+ // and with the first one running from startingAt to the end)
+ // and then use prefixLength() to see if the search key is at
+ // the beginning of each substring. This is excruciatingly
+ // slow, but it will locate the key and tell use how long the
+ // matching text was.
+ UnicodeString temp;
+ UErrorCode status = U_ZERO_ERROR;
+ while (p < str.length() && keyLen == 0) {
+ temp.setTo(str, p, str.length() - p);
+ keyLen = prefixLength(temp, key, status);
+ if (U_FAILURE(status)) {
+ break;
+ }
+ if (keyLen != 0) {
+ *length = keyLen;
+ return p;
+ }
+ ++p;
}
+ // if we make it to here, we didn't find it. Return -1 for the
+ // location. The length should be ignored, but set it to 0,
+ // which should be "safe"
+ *length = 0;
+ return -1;
}
/**
return FALSE;
}
+void
+NFRule::setDecimalFormatSymbols(const DecimalFormatSymbols& newSymbols, UErrorCode& status) {
+ if (sub1 != NULL) {
+ sub1->setDecimalFormatSymbols(newSymbols, status);
+ }
+ if (sub2 != NULL) {
+ sub2->setDecimalFormatSymbols(newSymbols, status);
+ }
+}
+
U_NAMESPACE_END
/* U_HAVE_RBNF */