+// © 2016 and later: Unicode, Inc. and others.
+// License & terms of use: http://www.unicode.org/copyright.html
/**
*******************************************************************************
- * Copyright (C) 2006-2014, International Business Machines Corporation
+ * Copyright (C) 2006-2016, International Business Machines Corporation
* and others. All Rights Reserved.
*******************************************************************************
*/
#include "unicode/uniset.h"
#include "unicode/chariter.h"
#include "unicode/ubrk.h"
+#include "uvectr32.h"
#include "uvector.h"
#include "uassert.h"
#include "unicode/normlzr.h"
c = utext_previous32(text);
isDict = fSet.contains(c);
}
- rangeStart = (current < startPos) ? startPos : current+(isDict ? 0 : 1);
- rangeEnd = start + 1;
+ if (current < startPos) {
+ rangeStart = startPos;
+ } else {
+ rangeStart = current;
+ if (!isDict) {
+ utext_next32(text);
+ rangeStart = (int32_t)utext_getNativeIndex(text);
+ }
+ }
+ // rangeEnd = start + 1;
+ utext_setNativeIndex(text, start);
+ utext_next32(text);
+ rangeEnd = (int32_t)utext_getNativeIndex(text);
}
else {
while((current = (int32_t)utext_getNativeIndex(text)) < endPos && fSet.contains(c)) {
// List size, limited by the maximum number of words in the dictionary
// that form a nested sequence.
-#define POSSIBLE_WORD_LIST_MAX 20
+static const int32_t POSSIBLE_WORD_LIST_MAX = 20;
class PossibleWord {
private:
// list of word candidate lengths, in increasing length order
- int32_t lengths[POSSIBLE_WORD_LIST_MAX];
+ // TODO: bytes would be sufficient for word lengths.
int32_t count; // Count of candidates
int32_t prefix; // The longest match with a dictionary word
int32_t offset; // Offset in the text of these candidates
- int mark; // The preferred candidate's offset
- int current; // The candidate we're currently looking at
+ int32_t mark; // The preferred candidate's offset
+ int32_t current; // The candidate we're currently looking at
+ int32_t cuLengths[POSSIBLE_WORD_LIST_MAX]; // Word Lengths, in code units.
+ int32_t cpLengths[POSSIBLE_WORD_LIST_MAX]; // Word Lengths, in code points.
public:
- PossibleWord();
- ~PossibleWord();
+ PossibleWord() : count(0), prefix(0), offset(-1), mark(0), current(0) {};
+ ~PossibleWord() {};
// Fill the list of candidates if needed, select the longest, and return the number found
- int candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd );
+ int32_t candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd );
// Select the currently marked candidate, point after it in the text, and invalidate self
int32_t acceptMarked( UText *text );
UBool backUp( UText *text );
// Return the longest prefix this candidate location shares with a dictionary word
- int32_t longestPrefix();
+ // Return value is in code points.
+ int32_t longestPrefix() { return prefix; };
// Mark the current candidate as the one we like
- void markCurrent();
+ void markCurrent() { mark = current; };
+
+ // Get length in code points of the marked word.
+ int32_t markedCPLength() { return cpLengths[mark]; };
};
-inline
-PossibleWord::PossibleWord() {
- offset = -1;
-}
-inline
-PossibleWord::~PossibleWord() {
-}
-
-inline int
-PossibleWord::candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd ) {
+int32_t PossibleWord::candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd ) {
// TODO: If getIndex is too slow, use offset < 0 and add discardAll()
int32_t start = (int32_t)utext_getNativeIndex(text);
if (start != offset) {
offset = start;
- prefix = dict->matches(text, rangeEnd-start, lengths, count, sizeof(lengths)/sizeof(lengths[0]));
+ count = dict->matches(text, rangeEnd-start, UPRV_LENGTHOF(cuLengths), cuLengths, cpLengths, NULL, &prefix);
// Dictionary leaves text after longest prefix, not longest word. Back up.
if (count <= 0) {
utext_setNativeIndex(text, start);
}
}
if (count > 0) {
- utext_setNativeIndex(text, start+lengths[count-1]);
+ utext_setNativeIndex(text, start+cuLengths[count-1]);
}
current = count-1;
mark = current;
return count;
}
-inline int32_t
+int32_t
PossibleWord::acceptMarked( UText *text ) {
- utext_setNativeIndex(text, offset + lengths[mark]);
- return lengths[mark];
+ utext_setNativeIndex(text, offset + cuLengths[mark]);
+ return cuLengths[mark];
}
-inline UBool
+
+UBool
PossibleWord::backUp( UText *text ) {
if (current > 0) {
- utext_setNativeIndex(text, offset + lengths[--current]);
+ utext_setNativeIndex(text, offset + cuLengths[--current]);
return TRUE;
}
return FALSE;
}
-inline int32_t
-PossibleWord::longestPrefix() {
- return prefix;
-}
-
-inline void
-PossibleWord::markCurrent() {
- mark = current;
-}
-
/*
******************************************************************
* ThaiBreakEngine
*/
// How many words in a row are "good enough"?
-#define THAI_LOOKAHEAD 3
+static const int32_t THAI_LOOKAHEAD = 3;
// Will not combine a non-word with a preceding dictionary word longer than this
-#define THAI_ROOT_COMBINE_THRESHOLD 3
+static const int32_t THAI_ROOT_COMBINE_THRESHOLD = 3;
// Will not combine a non-word that shares at least this much prefix with a
// dictionary word, with a preceding word
-#define THAI_PREFIX_COMBINE_THRESHOLD 3
+static const int32_t THAI_PREFIX_COMBINE_THRESHOLD = 3;
// Ellision character
-#define THAI_PAIYANNOI 0x0E2F
+static const int32_t THAI_PAIYANNOI = 0x0E2F;
// Repeat character
-#define THAI_MAIYAMOK 0x0E46
+static const int32_t THAI_MAIYAMOK = 0x0E46;
// Minimum word size
-#define THAI_MIN_WORD 2
+static const int32_t THAI_MIN_WORD = 2;
// Minimum number of characters for two words
-#define THAI_MIN_WORD_SPAN (THAI_MIN_WORD * 2)
+static const int32_t THAI_MIN_WORD_SPAN = THAI_MIN_WORD * 2;
ThaiBreakEngine::ThaiBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status)
: DictionaryBreakEngine((1<<UBRK_WORD) | (1<<UBRK_LINE)),
int32_t rangeStart,
int32_t rangeEnd,
UStack &foundBreaks ) const {
- if ((rangeEnd - rangeStart) < THAI_MIN_WORD_SPAN) {
+ utext_setNativeIndex(text, rangeStart);
+ utext_moveIndex32(text, THAI_MIN_WORD_SPAN);
+ if (utext_getNativeIndex(text) >= rangeEnd) {
return 0; // Not enough characters for two words
}
+ utext_setNativeIndex(text, rangeStart);
+
uint32_t wordsFound = 0;
- int32_t wordLength;
+ int32_t cpWordLength = 0; // Word Length in Code Points.
+ int32_t cuWordLength = 0; // Word length in code units (UText native indexing)
int32_t current;
UErrorCode status = U_ZERO_ERROR;
PossibleWord words[THAI_LOOKAHEAD];
- UChar32 uc;
utext_setNativeIndex(text, rangeStart);
while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) {
- wordLength = 0;
+ cpWordLength = 0;
+ cuWordLength = 0;
// Look for candidate words at the current position
- int candidates = words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
+ int32_t candidates = words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
// If we found exactly one, use that
if (candidates == 1) {
- wordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text);
+ cuWordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text);
+ cpWordLength = words[wordsFound % THAI_LOOKAHEAD].markedCPLength();
wordsFound += 1;
}
// If there was more than one, see which one can take us forward the most words
goto foundBest;
}
do {
- int wordsMatched = 1;
+ int32_t wordsMatched = 1;
if (words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) {
if (wordsMatched < 2) {
// Followed by another dictionary word; mark first word as a good candidate
}
while (words[wordsFound % THAI_LOOKAHEAD].backUp(text));
foundBest:
- wordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text);
+ // Set UText position to after the accepted word.
+ cuWordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text);
+ cpWordLength = words[wordsFound % THAI_LOOKAHEAD].markedCPLength();
wordsFound += 1;
}
// We come here after having either found a word or not. We look ahead to the
- // next word. If it's not a dictionary word, we will combine it withe the word we
+ // next word. If it's not a dictionary word, we will combine it with the word we
// just found (if there is one), but only if the preceding word does not exceed
// the threshold.
// The text iterator should now be positioned at the end of the word we found.
- if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength < THAI_ROOT_COMBINE_THRESHOLD) {
+
+ UChar32 uc = 0;
+ if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < THAI_ROOT_COMBINE_THRESHOLD) {
// if it is a dictionary word, do nothing. If it isn't, then if there is
// no preceding word, or the non-word shares less than the minimum threshold
// of characters with a dictionary word, then scan to resynchronize
if (words[wordsFound % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
- && (wordLength == 0
+ && (cuWordLength == 0
|| words[wordsFound%THAI_LOOKAHEAD].longestPrefix() < THAI_PREFIX_COMBINE_THRESHOLD)) {
// Look for a plausible word boundary
- //TODO: This section will need a rework for UText.
- int32_t remaining = rangeEnd - (current+wordLength);
- UChar32 pc = utext_current32(text);
+ int32_t remaining = rangeEnd - (current+cuWordLength);
+ UChar32 pc;
int32_t chars = 0;
for (;;) {
- utext_next32(text);
- uc = utext_current32(text);
- // TODO: Here we're counting on the fact that the SA languages are all
- // in the BMP. This should get fixed with the UText rework.
- chars += 1;
- if (--remaining <= 0) {
+ int32_t pcIndex = (int32_t)utext_getNativeIndex(text);
+ pc = utext_next32(text);
+ int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex;
+ chars += pcSize;
+ remaining -= pcSize;
+ if (remaining <= 0) {
break;
}
+ uc = utext_current32(text);
if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) {
// Maybe. See if it's in the dictionary.
// NOTE: In the original Apple code, checked that the next
// two characters after uc were not 0x0E4C THANTHAKHAT before
// checking the dictionary. That is just a performance filter,
// but it's not clear it's faster than checking the trie.
- int candidates = words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
- utext_setNativeIndex(text, current + wordLength + chars);
+ int32_t candidates = words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
+ utext_setNativeIndex(text, current + cuWordLength + chars);
if (candidates > 0) {
break;
}
}
- pc = uc;
}
// Bump the word count if there wasn't already one
- if (wordLength <= 0) {
+ if (cuWordLength <= 0) {
wordsFound += 1;
}
// Update the length with the passed-over characters
- wordLength += chars;
+ cuWordLength += chars;
}
else {
// Back up to where we were for next iteration
- utext_setNativeIndex(text, current+wordLength);
+ utext_setNativeIndex(text, current+cuWordLength);
}
}
int32_t currPos;
while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) {
utext_next32(text);
- wordLength += (int32_t)utext_getNativeIndex(text) - currPos;
+ cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos;
}
// Look ahead for possible suffixes if a dictionary word does not follow.
// We do this in code rather than using a rule so that the heuristic
// resynch continues to function. For example, one of the suffix characters
// could be a typo in the middle of a word.
- if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength > 0) {
+ if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cuWordLength > 0) {
if (words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
&& fSuffixSet.contains(uc = utext_current32(text))) {
if (uc == THAI_PAIYANNOI) {
if (!fSuffixSet.contains(utext_previous32(text))) {
// Skip over previous end and PAIYANNOI
utext_next32(text);
+ int32_t paiyannoiIndex = (int32_t)utext_getNativeIndex(text);
utext_next32(text);
- wordLength += 1; // Add PAIYANNOI to word
+ cuWordLength += (int32_t)utext_getNativeIndex(text) - paiyannoiIndex; // Add PAIYANNOI to word
uc = utext_current32(text); // Fetch next character
}
else {
if (utext_previous32(text) != THAI_MAIYAMOK) {
// Skip over previous end and MAIYAMOK
utext_next32(text);
+ int32_t maiyamokIndex = (int32_t)utext_getNativeIndex(text);
utext_next32(text);
- wordLength += 1; // Add MAIYAMOK to word
+ cuWordLength += (int32_t)utext_getNativeIndex(text) - maiyamokIndex; // Add MAIYAMOK to word
}
else {
// Restore prior position
}
}
else {
- utext_setNativeIndex(text, current+wordLength);
+ utext_setNativeIndex(text, current+cuWordLength);
}
}
// Did we find a word on this iteration? If so, push it on the break stack
- if (wordLength > 0) {
- foundBreaks.push((current+wordLength), status);
+ if (cuWordLength > 0) {
+ foundBreaks.push((current+cuWordLength), status);
}
}
*/
// How many words in a row are "good enough"?
-#define LAO_LOOKAHEAD 3
+static const int32_t LAO_LOOKAHEAD = 3;
// Will not combine a non-word with a preceding dictionary word longer than this
-#define LAO_ROOT_COMBINE_THRESHOLD 3
+static const int32_t LAO_ROOT_COMBINE_THRESHOLD = 3;
// Will not combine a non-word that shares at least this much prefix with a
// dictionary word, with a preceding word
-#define LAO_PREFIX_COMBINE_THRESHOLD 3
+static const int32_t LAO_PREFIX_COMBINE_THRESHOLD = 3;
// Minimum word size
-#define LAO_MIN_WORD 2
+static const int32_t LAO_MIN_WORD = 2;
// Minimum number of characters for two words
-#define LAO_MIN_WORD_SPAN (LAO_MIN_WORD * 2)
+static const int32_t LAO_MIN_WORD_SPAN = LAO_MIN_WORD * 2;
LaoBreakEngine::LaoBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status)
: DictionaryBreakEngine((1<<UBRK_WORD) | (1<<UBRK_LINE)),
}
uint32_t wordsFound = 0;
- int32_t wordLength;
+ int32_t cpWordLength = 0;
+ int32_t cuWordLength = 0;
int32_t current;
UErrorCode status = U_ZERO_ERROR;
PossibleWord words[LAO_LOOKAHEAD];
- UChar32 uc;
utext_setNativeIndex(text, rangeStart);
while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) {
- wordLength = 0;
+ cuWordLength = 0;
+ cpWordLength = 0;
// Look for candidate words at the current position
- int candidates = words[wordsFound%LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
+ int32_t candidates = words[wordsFound%LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
// If we found exactly one, use that
if (candidates == 1) {
- wordLength = words[wordsFound % LAO_LOOKAHEAD].acceptMarked(text);
+ cuWordLength = words[wordsFound % LAO_LOOKAHEAD].acceptMarked(text);
+ cpWordLength = words[wordsFound % LAO_LOOKAHEAD].markedCPLength();
wordsFound += 1;
}
// If there was more than one, see which one can take us forward the most words
else if (candidates > 1) {
// If we're already at the end of the range, we're done
- if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
+ if (utext_getNativeIndex(text) >= rangeEnd) {
goto foundBest;
}
do {
- int wordsMatched = 1;
+ int32_t wordsMatched = 1;
if (words[(wordsFound + 1) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) {
if (wordsMatched < 2) {
// Followed by another dictionary word; mark first word as a good candidate
}
while (words[wordsFound % LAO_LOOKAHEAD].backUp(text));
foundBest:
- wordLength = words[wordsFound % LAO_LOOKAHEAD].acceptMarked(text);
+ cuWordLength = words[wordsFound % LAO_LOOKAHEAD].acceptMarked(text);
+ cpWordLength = words[wordsFound % LAO_LOOKAHEAD].markedCPLength();
wordsFound += 1;
}
// just found (if there is one), but only if the preceding word does not exceed
// the threshold.
// The text iterator should now be positioned at the end of the word we found.
- if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength < LAO_ROOT_COMBINE_THRESHOLD) {
+ if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < LAO_ROOT_COMBINE_THRESHOLD) {
// if it is a dictionary word, do nothing. If it isn't, then if there is
// no preceding word, or the non-word shares less than the minimum threshold
// of characters with a dictionary word, then scan to resynchronize
if (words[wordsFound % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
- && (wordLength == 0
+ && (cuWordLength == 0
|| words[wordsFound%LAO_LOOKAHEAD].longestPrefix() < LAO_PREFIX_COMBINE_THRESHOLD)) {
// Look for a plausible word boundary
- //TODO: This section will need a rework for UText.
- int32_t remaining = rangeEnd - (current+wordLength);
- UChar32 pc = utext_current32(text);
+ int32_t remaining = rangeEnd - (current + cuWordLength);
+ UChar32 pc;
+ UChar32 uc;
int32_t chars = 0;
for (;;) {
- utext_next32(text);
- uc = utext_current32(text);
- // TODO: Here we're counting on the fact that the SA languages are all
- // in the BMP. This should get fixed with the UText rework.
- chars += 1;
- if (--remaining <= 0) {
+ int32_t pcIndex = (int32_t)utext_getNativeIndex(text);
+ pc = utext_next32(text);
+ int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex;
+ chars += pcSize;
+ remaining -= pcSize;
+ if (remaining <= 0) {
break;
}
+ uc = utext_current32(text);
if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) {
// Maybe. See if it's in the dictionary.
- int candidates = words[(wordsFound + 1) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
- utext_setNativeIndex(text, current + wordLength + chars);
+ // TODO: this looks iffy; compare with old code.
+ int32_t candidates = words[(wordsFound + 1) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
+ utext_setNativeIndex(text, current + cuWordLength + chars);
if (candidates > 0) {
break;
}
}
- pc = uc;
}
// Bump the word count if there wasn't already one
- if (wordLength <= 0) {
+ if (cuWordLength <= 0) {
wordsFound += 1;
}
// Update the length with the passed-over characters
- wordLength += chars;
+ cuWordLength += chars;
}
else {
// Back up to where we were for next iteration
- utext_setNativeIndex(text, current+wordLength);
+ utext_setNativeIndex(text, current + cuWordLength);
}
}
int32_t currPos;
while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) {
utext_next32(text);
- wordLength += (int32_t)utext_getNativeIndex(text) - currPos;
+ cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos;
}
// Look ahead for possible suffixes if a dictionary word does not follow.
// NOT CURRENTLY APPLICABLE TO LAO
// Did we find a word on this iteration? If so, push it on the break stack
- if (wordLength > 0) {
- foundBreaks.push((current+wordLength), status);
+ if (cuWordLength > 0) {
+ foundBreaks.push((current+cuWordLength), status);
+ }
+ }
+
+ // Don't return a break for the end of the dictionary range if there is one there.
+ if (foundBreaks.peeki() >= rangeEnd) {
+ (void) foundBreaks.popi();
+ wordsFound -= 1;
+ }
+
+ return wordsFound;
+}
+
+/*
+ ******************************************************************
+ * BurmeseBreakEngine
+ */
+
+// How many words in a row are "good enough"?
+static const int32_t BURMESE_LOOKAHEAD = 3;
+
+// Will not combine a non-word with a preceding dictionary word longer than this
+static const int32_t BURMESE_ROOT_COMBINE_THRESHOLD = 3;
+
+// Will not combine a non-word that shares at least this much prefix with a
+// dictionary word, with a preceding word
+static const int32_t BURMESE_PREFIX_COMBINE_THRESHOLD = 3;
+
+// Minimum word size
+static const int32_t BURMESE_MIN_WORD = 2;
+
+// Minimum number of characters for two words
+static const int32_t BURMESE_MIN_WORD_SPAN = BURMESE_MIN_WORD * 2;
+
+BurmeseBreakEngine::BurmeseBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status)
+ : DictionaryBreakEngine((1<<UBRK_WORD) | (1<<UBRK_LINE)),
+ fDictionary(adoptDictionary)
+{
+ fBurmeseWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Mymr:]&[:LineBreak=SA:]]"), status);
+ if (U_SUCCESS(status)) {
+ setCharacters(fBurmeseWordSet);
+ }
+ fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Mymr:]&[:LineBreak=SA:]&[:M:]]"), status);
+ fMarkSet.add(0x0020);
+ fEndWordSet = fBurmeseWordSet;
+ fBeginWordSet.add(0x1000, 0x102A); // basic consonants and independent vowels
+
+ // Compact for caching.
+ fMarkSet.compact();
+ fEndWordSet.compact();
+ fBeginWordSet.compact();
+}
+
+BurmeseBreakEngine::~BurmeseBreakEngine() {
+ delete fDictionary;
+}
+
+int32_t
+BurmeseBreakEngine::divideUpDictionaryRange( UText *text,
+ int32_t rangeStart,
+ int32_t rangeEnd,
+ UStack &foundBreaks ) const {
+ if ((rangeEnd - rangeStart) < BURMESE_MIN_WORD_SPAN) {
+ return 0; // Not enough characters for two words
+ }
+
+ uint32_t wordsFound = 0;
+ int32_t cpWordLength = 0;
+ int32_t cuWordLength = 0;
+ int32_t current;
+ UErrorCode status = U_ZERO_ERROR;
+ PossibleWord words[BURMESE_LOOKAHEAD];
+
+ utext_setNativeIndex(text, rangeStart);
+
+ while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) {
+ cuWordLength = 0;
+ cpWordLength = 0;
+
+ // Look for candidate words at the current position
+ int32_t candidates = words[wordsFound%BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
+
+ // If we found exactly one, use that
+ if (candidates == 1) {
+ cuWordLength = words[wordsFound % BURMESE_LOOKAHEAD].acceptMarked(text);
+ cpWordLength = words[wordsFound % BURMESE_LOOKAHEAD].markedCPLength();
+ wordsFound += 1;
+ }
+ // If there was more than one, see which one can take us forward the most words
+ else if (candidates > 1) {
+ // If we're already at the end of the range, we're done
+ if (utext_getNativeIndex(text) >= rangeEnd) {
+ goto foundBest;
+ }
+ do {
+ int32_t wordsMatched = 1;
+ if (words[(wordsFound + 1) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) {
+ if (wordsMatched < 2) {
+ // Followed by another dictionary word; mark first word as a good candidate
+ words[wordsFound%BURMESE_LOOKAHEAD].markCurrent();
+ wordsMatched = 2;
+ }
+
+ // If we're already at the end of the range, we're done
+ if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
+ goto foundBest;
+ }
+
+ // See if any of the possible second words is followed by a third word
+ do {
+ // If we find a third word, stop right away
+ if (words[(wordsFound + 2) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) {
+ words[wordsFound % BURMESE_LOOKAHEAD].markCurrent();
+ goto foundBest;
+ }
+ }
+ while (words[(wordsFound + 1) % BURMESE_LOOKAHEAD].backUp(text));
+ }
+ }
+ while (words[wordsFound % BURMESE_LOOKAHEAD].backUp(text));
+foundBest:
+ cuWordLength = words[wordsFound % BURMESE_LOOKAHEAD].acceptMarked(text);
+ cpWordLength = words[wordsFound % BURMESE_LOOKAHEAD].markedCPLength();
+ wordsFound += 1;
+ }
+
+ // We come here after having either found a word or not. We look ahead to the
+ // next word. If it's not a dictionary word, we will combine it withe the word we
+ // just found (if there is one), but only if the preceding word does not exceed
+ // the threshold.
+ // The text iterator should now be positioned at the end of the word we found.
+ if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < BURMESE_ROOT_COMBINE_THRESHOLD) {
+ // if it is a dictionary word, do nothing. If it isn't, then if there is
+ // no preceding word, or the non-word shares less than the minimum threshold
+ // of characters with a dictionary word, then scan to resynchronize
+ if (words[wordsFound % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
+ && (cuWordLength == 0
+ || words[wordsFound%BURMESE_LOOKAHEAD].longestPrefix() < BURMESE_PREFIX_COMBINE_THRESHOLD)) {
+ // Look for a plausible word boundary
+ int32_t remaining = rangeEnd - (current + cuWordLength);
+ UChar32 pc;
+ UChar32 uc;
+ int32_t chars = 0;
+ for (;;) {
+ int32_t pcIndex = (int32_t)utext_getNativeIndex(text);
+ pc = utext_next32(text);
+ int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex;
+ chars += pcSize;
+ remaining -= pcSize;
+ if (remaining <= 0) {
+ break;
+ }
+ uc = utext_current32(text);
+ if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) {
+ // Maybe. See if it's in the dictionary.
+ // TODO: this looks iffy; compare with old code.
+ int32_t candidates = words[(wordsFound + 1) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
+ utext_setNativeIndex(text, current + cuWordLength + chars);
+ if (candidates > 0) {
+ break;
+ }
+ }
+ }
+
+ // Bump the word count if there wasn't already one
+ if (cuWordLength <= 0) {
+ wordsFound += 1;
+ }
+
+ // Update the length with the passed-over characters
+ cuWordLength += chars;
+ }
+ else {
+ // Back up to where we were for next iteration
+ utext_setNativeIndex(text, current + cuWordLength);
+ }
+ }
+
+ // Never stop before a combining mark.
+ int32_t currPos;
+ while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) {
+ utext_next32(text);
+ cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos;
+ }
+
+ // Look ahead for possible suffixes if a dictionary word does not follow.
+ // We do this in code rather than using a rule so that the heuristic
+ // resynch continues to function. For example, one of the suffix characters
+ // could be a typo in the middle of a word.
+ // NOT CURRENTLY APPLICABLE TO BURMESE
+
+ // Did we find a word on this iteration? If so, push it on the break stack
+ if (cuWordLength > 0) {
+ foundBreaks.push((current+cuWordLength), status);
}
}
*/
// How many words in a row are "good enough"?
-#define KHMER_LOOKAHEAD 3
+static const int32_t KHMER_LOOKAHEAD = 3;
// Will not combine a non-word with a preceding dictionary word longer than this
-#define KHMER_ROOT_COMBINE_THRESHOLD 3
+static const int32_t KHMER_ROOT_COMBINE_THRESHOLD = 3;
// Will not combine a non-word that shares at least this much prefix with a
// dictionary word, with a preceding word
-#define KHMER_PREFIX_COMBINE_THRESHOLD 3
+static const int32_t KHMER_PREFIX_COMBINE_THRESHOLD = 3;
// Minimum word size
-#define KHMER_MIN_WORD 2
+static const int32_t KHMER_MIN_WORD = 2;
// Minimum number of characters for two words
-#define KHMER_MIN_WORD_SPAN (KHMER_MIN_WORD * 2)
+static const int32_t KHMER_MIN_WORD_SPAN = KHMER_MIN_WORD * 2;
KhmerBreakEngine::KhmerBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status)
: DictionaryBreakEngine((1 << UBRK_WORD) | (1 << UBRK_LINE)),
}
uint32_t wordsFound = 0;
- int32_t wordLength;
+ int32_t cpWordLength = 0;
+ int32_t cuWordLength = 0;
int32_t current;
UErrorCode status = U_ZERO_ERROR;
PossibleWord words[KHMER_LOOKAHEAD];
- UChar32 uc;
utext_setNativeIndex(text, rangeStart);
while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) {
- wordLength = 0;
+ cuWordLength = 0;
+ cpWordLength = 0;
// Look for candidate words at the current position
- int candidates = words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
+ int32_t candidates = words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
// If we found exactly one, use that
if (candidates == 1) {
- wordLength = words[wordsFound%KHMER_LOOKAHEAD].acceptMarked(text);
+ cuWordLength = words[wordsFound % KHMER_LOOKAHEAD].acceptMarked(text);
+ cpWordLength = words[wordsFound % KHMER_LOOKAHEAD].markedCPLength();
wordsFound += 1;
}
goto foundBest;
}
do {
- int wordsMatched = 1;
+ int32_t wordsMatched = 1;
if (words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) {
if (wordsMatched < 2) {
// Followed by another dictionary word; mark first word as a good candidate
}
while (words[wordsFound % KHMER_LOOKAHEAD].backUp(text));
foundBest:
- wordLength = words[wordsFound % KHMER_LOOKAHEAD].acceptMarked(text);
+ cuWordLength = words[wordsFound % KHMER_LOOKAHEAD].acceptMarked(text);
+ cpWordLength = words[wordsFound % KHMER_LOOKAHEAD].markedCPLength();
wordsFound += 1;
}
// just found (if there is one), but only if the preceding word does not exceed
// the threshold.
// The text iterator should now be positioned at the end of the word we found.
- if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength < KHMER_ROOT_COMBINE_THRESHOLD) {
+ if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < KHMER_ROOT_COMBINE_THRESHOLD) {
// if it is a dictionary word, do nothing. If it isn't, then if there is
// no preceding word, or the non-word shares less than the minimum threshold
// of characters with a dictionary word, then scan to resynchronize
if (words[wordsFound % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
- && (wordLength == 0
+ && (cuWordLength == 0
|| words[wordsFound % KHMER_LOOKAHEAD].longestPrefix() < KHMER_PREFIX_COMBINE_THRESHOLD)) {
// Look for a plausible word boundary
- //TODO: This section will need a rework for UText.
- int32_t remaining = rangeEnd - (current+wordLength);
- UChar32 pc = utext_current32(text);
+ int32_t remaining = rangeEnd - (current+cuWordLength);
+ UChar32 pc;
+ UChar32 uc;
int32_t chars = 0;
for (;;) {
- utext_next32(text);
- uc = utext_current32(text);
- // TODO: Here we're counting on the fact that the SA languages are all
- // in the BMP. This should get fixed with the UText rework.
- chars += 1;
- if (--remaining <= 0) {
+ int32_t pcIndex = (int32_t)utext_getNativeIndex(text);
+ pc = utext_next32(text);
+ int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex;
+ chars += pcSize;
+ remaining -= pcSize;
+ if (remaining <= 0) {
break;
}
+ uc = utext_current32(text);
if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) {
// Maybe. See if it's in the dictionary.
- int candidates = words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
- utext_setNativeIndex(text, current+wordLength+chars);
+ int32_t candidates = words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
+ utext_setNativeIndex(text, current+cuWordLength+chars);
if (candidates > 0) {
break;
}
}
- pc = uc;
}
// Bump the word count if there wasn't already one
- if (wordLength <= 0) {
+ if (cuWordLength <= 0) {
wordsFound += 1;
}
// Update the length with the passed-over characters
- wordLength += chars;
+ cuWordLength += chars;
}
else {
// Back up to where we were for next iteration
- utext_setNativeIndex(text, current+wordLength);
+ utext_setNativeIndex(text, current+cuWordLength);
}
}
int32_t currPos;
while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) {
utext_next32(text);
- wordLength += (int32_t)utext_getNativeIndex(text) - currPos;
+ cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos;
}
// Look ahead for possible suffixes if a dictionary word does not follow.
// }
// Did we find a word on this iteration? If so, push it on the break stack
- if (wordLength > 0) {
- foundBreaks.push((current+wordLength), status);
+ if (cuWordLength > 0) {
+ foundBreaks.push((current+cuWordLength), status);
}
}
fHanWordSet.applyPattern(UNICODE_STRING_SIMPLE("[:Han:]"), status);
fKatakanaWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Katakana:]\\uff9e\\uff9f]"), status);
fHiraganaWordSet.applyPattern(UNICODE_STRING_SIMPLE("[:Hiragana:]"), status);
+ nfkcNorm2 = Normalizer2::getNFKCInstance(status);
if (U_SUCCESS(status)) {
// handle Korean and Japanese/Chinese using different dictionaries
// The katakanaCost values below are based on the length frequencies of all
// katakana phrases in the dictionary
-static const int kMaxKatakanaLength = 8;
-static const int kMaxKatakanaGroupLength = 20;
+static const int32_t kMaxKatakanaLength = 8;
+static const int32_t kMaxKatakanaGroupLength = 20;
static const uint32_t maxSnlp = 255;
-static inline uint32_t getKatakanaCost(int wordLength){
+static inline uint32_t getKatakanaCost(int32_t wordLength){
//TODO: fill array with actual values from dictionary!
static const uint32_t katakanaCost[kMaxKatakanaLength + 1]
= {8192, 984, 408, 240, 204, 252, 300, 372, 480};
(value >= 0xFF66u && value <= 0xFF9fu);
}
-// A very simple helper class to streamline the buffer handling in
-// divideUpDictionaryRange.
-template<class T, size_t N>
-class AutoBuffer {
-public:
- AutoBuffer(size_t size) : buffer(stackBuffer), capacity(N) {
- if (size > N) {
- buffer = reinterpret_cast<T*>(uprv_malloc(sizeof(T)*size));
- capacity = size;
- }
- }
- ~AutoBuffer() {
- if (buffer != stackBuffer)
- uprv_free(buffer);
- }
-
- T* elems() {
- return buffer;
- }
-
- const T& operator[] (size_t i) const {
- return buffer[i];
- }
- T& operator[] (size_t i) {
- return buffer[i];
- }
-
- // resize without copy
- void resize(size_t size) {
- if (size <= capacity)
- return;
- if (buffer != stackBuffer)
- uprv_free(buffer);
- buffer = reinterpret_cast<T*>(uprv_malloc(sizeof(T)*size));
- capacity = size;
- }
-
-private:
- T stackBuffer[N];
- T* buffer;
- AutoBuffer();
- size_t capacity;
-};
+// Function for accessing internal utext flags.
+// Replicates an internal UText function.
+static inline int32_t utext_i32_flag(int32_t bitIndex) {
+ return (int32_t)1 << bitIndex;
+}
+
/*
* @param text A UText representing the text
* @param rangeStart The start of the range of dictionary characters
* @return The number of breaks found
*/
int32_t
-CjkBreakEngine::divideUpDictionaryRange( UText *text,
+CjkBreakEngine::divideUpDictionaryRange( UText *inText,
int32_t rangeStart,
int32_t rangeEnd,
UStack &foundBreaks ) const {
return 0;
}
- const size_t defaultInputLength = 80;
- size_t inputLength = rangeEnd - rangeStart;
- // TODO: Replace by UnicodeString.
- AutoBuffer<UChar, defaultInputLength> charString(inputLength);
+ // UnicodeString version of input UText, NFKC normalized if necessary.
+ UnicodeString inString;
+
+ // inputMap[inStringIndex] = corresponding native index from UText inText.
+ // If NULL then mapping is 1:1
+ LocalPointer<UVector32> inputMap;
+
+ UErrorCode status = U_ZERO_ERROR;
- // Normalize the input string and put it in normalizedText.
- // The map from the indices of the normalized input to the raw
- // input is kept in charPositions.
- UErrorCode status = U_ZERO_ERROR;
- utext_extract(text, rangeStart, rangeEnd, charString.elems(), inputLength, &status);
- if (U_FAILURE(status)) {
- return 0;
- }
- UnicodeString inputString(charString.elems(), inputLength);
- // TODO: Use Normalizer2.
- UNormalizationMode norm_mode = UNORM_NFKC;
- UBool isNormalized =
- Normalizer::quickCheck(inputString, norm_mode, status) == UNORM_YES ||
- Normalizer::isNormalized(inputString, norm_mode, status);
-
- // TODO: Replace by UVector32.
- AutoBuffer<int32_t, defaultInputLength> charPositions(inputLength + 1);
- int numChars = 0;
- UText normalizedText = UTEXT_INITIALIZER;
- // Needs to be declared here because normalizedText holds onto its buffer.
- UnicodeString normalizedString;
- if (isNormalized) {
- int32_t index = 0;
- charPositions[0] = 0;
- while(index < inputString.length()) {
- index = inputString.moveIndex32(index, 1);
- charPositions[++numChars] = index;
+ // if UText has the input string as one contiguous UTF-16 chunk
+ if ((inText->providerProperties & utext_i32_flag(UTEXT_PROVIDER_STABLE_CHUNKS)) &&
+ inText->chunkNativeStart <= rangeStart &&
+ inText->chunkNativeLimit >= rangeEnd &&
+ inText->nativeIndexingLimit >= rangeEnd - inText->chunkNativeStart) {
+
+ // Input UText is in one contiguous UTF-16 chunk.
+ // Use Read-only aliasing UnicodeString.
+ inString.setTo(FALSE,
+ inText->chunkContents + rangeStart - inText->chunkNativeStart,
+ rangeEnd - rangeStart);
+ } else {
+ // Copy the text from the original inText (UText) to inString (UnicodeString).
+ // Create a map from UnicodeString indices -> UText offsets.
+ utext_setNativeIndex(inText, rangeStart);
+ int32_t limit = rangeEnd;
+ U_ASSERT(limit <= utext_nativeLength(inText));
+ if (limit > utext_nativeLength(inText)) {
+ limit = (int32_t)utext_nativeLength(inText);
}
- utext_openUnicodeString(&normalizedText, &inputString, &status);
- }
- else {
- Normalizer::normalize(inputString, norm_mode, 0, normalizedString, status);
+ inputMap.adoptInsteadAndCheckErrorCode(new UVector32(status), status);
if (U_FAILURE(status)) {
return 0;
}
- charPositions.resize(normalizedString.length() + 1);
- Normalizer normalizer(charString.elems(), inputLength, norm_mode);
- int32_t index = 0;
- charPositions[0] = 0;
- while(index < normalizer.endIndex()){
- /* UChar32 uc = */ normalizer.next();
- charPositions[++numChars] = index = normalizer.getIndex();
+ while (utext_getNativeIndex(inText) < limit) {
+ int32_t nativePosition = (int32_t)utext_getNativeIndex(inText);
+ UChar32 c = utext_next32(inText);
+ U_ASSERT(c != U_SENTINEL);
+ inString.append(c);
+ while (inputMap->size() < inString.length()) {
+ inputMap->addElement(nativePosition, status);
+ }
}
- utext_openUnicodeString(&normalizedText, &normalizedString, &status);
+ inputMap->addElement(limit, status);
}
- if (U_FAILURE(status)) {
- return 0;
- }
- // From this point on, all the indices refer to the indices of
- // the normalized input string.
+ if (!nfkcNorm2->isNormalized(inString, status)) {
+ UnicodeString normalizedInput;
+ // normalizedMap[normalizedInput position] == original UText position.
+ LocalPointer<UVector32> normalizedMap(new UVector32(status), status);
+ if (U_FAILURE(status)) {
+ return 0;
+ }
+
+ UnicodeString fragment;
+ UnicodeString normalizedFragment;
+ for (int32_t srcI = 0; srcI < inString.length();) { // Once per normalization chunk
+ fragment.remove();
+ int32_t fragmentStartI = srcI;
+ UChar32 c = inString.char32At(srcI);
+ for (;;) {
+ fragment.append(c);
+ srcI = inString.moveIndex32(srcI, 1);
+ if (srcI == inString.length()) {
+ break;
+ }
+ c = inString.char32At(srcI);
+ if (nfkcNorm2->hasBoundaryBefore(c)) {
+ break;
+ }
+ }
+ nfkcNorm2->normalize(fragment, normalizedFragment, status);
+ normalizedInput.append(normalizedFragment);
+
+ // Map every position in the normalized chunk to the start of the chunk
+ // in the original input.
+ int32_t fragmentOriginalStart = inputMap.isValid() ?
+ inputMap->elementAti(fragmentStartI) : fragmentStartI+rangeStart;
+ while (normalizedMap->size() < normalizedInput.length()) {
+ normalizedMap->addElement(fragmentOriginalStart, status);
+ if (U_FAILURE(status)) {
+ break;
+ }
+ }
+ }
+ U_ASSERT(normalizedMap->size() == normalizedInput.length());
+ int32_t nativeEnd = inputMap.isValid() ?
+ inputMap->elementAti(inString.length()) : inString.length()+rangeStart;
+ normalizedMap->addElement(nativeEnd, status);
+
+ inputMap.moveFrom(normalizedMap);
+ inString.moveFrom(normalizedInput);
+ }
+ int32_t numCodePts = inString.countChar32();
+ if (numCodePts != inString.length()) {
+ // There are supplementary characters in the input.
+ // The dictionary will produce boundary positions in terms of code point indexes,
+ // not in terms of code unit string indexes.
+ // Use the inputMap mechanism to take care of this in addition to indexing differences
+ // from normalization and/or UTF-8 input.
+ UBool hadExistingMap = inputMap.isValid();
+ if (!hadExistingMap) {
+ inputMap.adoptInsteadAndCheckErrorCode(new UVector32(status), status);
+ if (U_FAILURE(status)) {
+ return 0;
+ }
+ }
+ int32_t cpIdx = 0;
+ for (int32_t cuIdx = 0; ; cuIdx = inString.moveIndex32(cuIdx, 1)) {
+ U_ASSERT(cuIdx >= cpIdx);
+ if (hadExistingMap) {
+ inputMap->setElementAt(inputMap->elementAti(cuIdx), cpIdx);
+ } else {
+ inputMap->addElement(cuIdx+rangeStart, status);
+ }
+ cpIdx++;
+ if (cuIdx == inString.length()) {
+ break;
+ }
+ }
+ }
+
// bestSnlp[i] is the snlp of the best segmentation of the first i
- // characters in the range to be matched.
- // TODO: Replace by UVector32.
- AutoBuffer<uint32_t, defaultInputLength> bestSnlp(numChars + 1);
- bestSnlp[0] = 0;
- for(int i = 1; i <= numChars; i++) {
- bestSnlp[i] = kuint32max;
+ // code points in the range to be matched.
+ UVector32 bestSnlp(numCodePts + 1, status);
+ bestSnlp.addElement(0, status);
+ for(int32_t i = 1; i <= numCodePts; i++) {
+ bestSnlp.addElement(kuint32max, status);
}
- // prev[i] is the index of the last CJK character in the previous word in
+
+ // prev[i] is the index of the last CJK code point in the previous word in
// the best segmentation of the first i characters.
- // TODO: Replace by UVector32.
- AutoBuffer<int, defaultInputLength> prev(numChars + 1);
- for(int i = 0; i <= numChars; i++){
- prev[i] = -1;
+ UVector32 prev(numCodePts + 1, status);
+ for(int32_t i = 0; i <= numCodePts; i++){
+ prev.addElement(-1, status);
}
- const size_t maxWordSize = 20;
- // TODO: Replace both with UVector32.
- AutoBuffer<int32_t, maxWordSize> values(numChars);
- AutoBuffer<int32_t, maxWordSize> lengths(numChars);
+ const int32_t maxWordSize = 20;
+ UVector32 values(numCodePts, status);
+ values.setSize(numCodePts);
+ UVector32 lengths(numCodePts, status);
+ lengths.setSize(numCodePts);
+
+ UText fu = UTEXT_INITIALIZER;
+ utext_openUnicodeString(&fu, &inString, &status);
// Dynamic programming to find the best segmentation.
+
+ // In outer loop, i is the code point index,
+ // ix is the corresponding string (code unit) index.
+ // They differ when the string contains supplementary characters.
+ int32_t ix = 0;
bool is_prev_katakana = false;
- for (int32_t i = 0; i < numChars; ++i) {
- //utext_setNativeIndex(text, rangeStart + i);
- utext_setNativeIndex(&normalizedText, i);
- if (bestSnlp[i] == kuint32max)
+ for (int32_t i = 0; i < numCodePts; ++i, ix = inString.moveIndex32(ix, 1)) {
+ if ((uint32_t)bestSnlp.elementAti(i) == kuint32max) {
continue;
+ }
int32_t count;
- // limit maximum word length matched to size of current substring
- int32_t maxSearchLength = (i + maxWordSize < (size_t) numChars)? maxWordSize : (numChars - i);
-
- fDictionary->matches(&normalizedText, maxSearchLength, lengths.elems(), count, maxSearchLength, values.elems());
+ utext_setNativeIndex(&fu, ix);
+ count = fDictionary->matches(&fu, maxWordSize, numCodePts,
+ NULL, lengths.getBuffer(), values.getBuffer(), NULL);
+ // Note: lengths is filled with code point lengths
+ // The NULL parameter is the ignored code unit lengths.
// if there are no single character matches found in the dictionary
- // starting with this charcter, treat character as a 1-character word
+ // starting with this character, treat character as a 1-character word
// with the highest value possible, i.e. the least likely to occur.
// Exclude Korean characters from this treatment, as they should be left
// together by default.
- if((count == 0 || lengths[0] != 1) &&
- !fHangulWordSet.contains(utext_current32(&normalizedText))) {
- values[count] = maxSnlp;
- lengths[count++] = 1;
+ if ((count == 0 || lengths.elementAti(0) != 1) &&
+ !fHangulWordSet.contains(inString.char32At(ix))) {
+ values.setElementAt(maxSnlp, count); // 255
+ lengths.setElementAt(1, count++);
}
- for (int j = 0; j < count; j++) {
- uint32_t newSnlp = bestSnlp[i] + values[j];
- if (newSnlp < bestSnlp[lengths[j] + i]) {
- bestSnlp[lengths[j] + i] = newSnlp;
- prev[lengths[j] + i] = i;
+ for (int32_t j = 0; j < count; j++) {
+ uint32_t newSnlp = (uint32_t)bestSnlp.elementAti(i) + (uint32_t)values.elementAti(j);
+ int32_t ln_j_i = lengths.elementAti(j) + i;
+ if (newSnlp < (uint32_t)bestSnlp.elementAti(ln_j_i)) {
+ bestSnlp.setElementAt(newSnlp, ln_j_i);
+ prev.setElementAt(i, ln_j_i);
}
}
// the following heuristic to Katakana: any continuous run of Katakana
// characters is considered a candidate word with a default cost
// specified in the katakanaCost table according to its length.
- //utext_setNativeIndex(text, rangeStart + i);
- utext_setNativeIndex(&normalizedText, i);
- bool is_katakana = isKatakana(utext_current32(&normalizedText));
+
+ bool is_katakana = isKatakana(inString.char32At(ix));
+ int32_t katakanaRunLength = 1;
if (!is_prev_katakana && is_katakana) {
- int j = i + 1;
- utext_next32(&normalizedText);
+ int32_t j = inString.moveIndex32(ix, 1);
// Find the end of the continuous run of Katakana characters
- while (j < numChars && (j - i) < kMaxKatakanaGroupLength &&
- isKatakana(utext_current32(&normalizedText))) {
- utext_next32(&normalizedText);
- ++j;
+ while (j < inString.length() && katakanaRunLength < kMaxKatakanaGroupLength &&
+ isKatakana(inString.char32At(j))) {
+ j = inString.moveIndex32(j, 1);
+ katakanaRunLength++;
}
- if ((j - i) < kMaxKatakanaGroupLength) {
- uint32_t newSnlp = bestSnlp[i] + getKatakanaCost(j - i);
- if (newSnlp < bestSnlp[j]) {
- bestSnlp[j] = newSnlp;
- prev[j] = i;
+ if (katakanaRunLength < kMaxKatakanaGroupLength) {
+ uint32_t newSnlp = bestSnlp.elementAti(i) + getKatakanaCost(katakanaRunLength);
+ if (newSnlp < (uint32_t)bestSnlp.elementAti(j)) {
+ bestSnlp.setElementAt(newSnlp, j);
+ prev.setElementAt(i, i+katakanaRunLength); // prev[j] = i;
}
}
}
is_prev_katakana = is_katakana;
}
+ utext_close(&fu);
// Start pushing the optimal offset index into t_boundary (t for tentative).
- // prev[numChars] is guaranteed to be meaningful.
+ // prev[numCodePts] is guaranteed to be meaningful.
// We'll first push in the reverse order, i.e.,
- // t_boundary[0] = numChars, and afterwards do a swap.
- // TODO: Replace by UVector32.
- AutoBuffer<int, maxWordSize> t_boundary(numChars + 1);
+ // t_boundary[0] = numCodePts, and afterwards do a swap.
+ UVector32 t_boundary(numCodePts+1, status);
- int numBreaks = 0;
+ int32_t numBreaks = 0;
// No segmentation found, set boundary to end of range
- if (bestSnlp[numChars] == kuint32max) {
- t_boundary[numBreaks++] = numChars;
+ if ((uint32_t)bestSnlp.elementAti(numCodePts) == kuint32max) {
+ t_boundary.addElement(numCodePts, status);
+ numBreaks++;
} else {
- for (int i = numChars; i > 0; i = prev[i]) {
- t_boundary[numBreaks++] = i;
+ for (int32_t i = numCodePts; i > 0; i = prev.elementAti(i)) {
+ t_boundary.addElement(i, status);
+ numBreaks++;
}
- U_ASSERT(prev[t_boundary[numBreaks - 1]] == 0);
+ U_ASSERT(prev.elementAti(t_boundary.elementAti(numBreaks - 1)) == 0);
}
- // Reverse offset index in t_boundary.
- // Don't add a break for the start of the dictionary range if there is one
+ // Add a break for the start of the dictionary range if there is not one
// there already.
if (foundBreaks.size() == 0 || foundBreaks.peeki() < rangeStart) {
- t_boundary[numBreaks++] = 0;
+ t_boundary.addElement(0, status);
+ numBreaks++;
}
- // Now that we're done, convert positions in t_bdry[] (indices in
- // the normalized input string) back to indices in the raw input string
- // while reversing t_bdry and pushing values to foundBreaks.
- for (int i = numBreaks-1; i >= 0; i--) {
- foundBreaks.push(charPositions[t_boundary[i]] + rangeStart, status);
+ // Now that we're done, convert positions in t_boundary[] (indices in
+ // the normalized input string) back to indices in the original input UText
+ // while reversing t_boundary and pushing values to foundBreaks.
+ int32_t prevCPPos = -1;
+ int32_t prevUTextPos = -1;
+ for (int32_t i = numBreaks-1; i >= 0; i--) {
+ int32_t cpPos = t_boundary.elementAti(i);
+ U_ASSERT(cpPos > prevCPPos);
+ int32_t utextPos = inputMap.isValid() ? inputMap->elementAti(cpPos) : cpPos + rangeStart;
+ U_ASSERT(utextPos >= prevUTextPos);
+ if (utextPos > prevUTextPos) {
+ // Boundaries are added to foundBreaks output in ascending order.
+ U_ASSERT(foundBreaks.size() == 0 || foundBreaks.peeki() < utextPos);
+ foundBreaks.push(utextPos, status);
+ } else {
+ // Normalization expanded the input text, the dictionary found a boundary
+ // within the expansion, giving two boundaries with the same index in the
+ // original text. Ignore the second. See ticket #12918.
+ --numBreaks;
+ }
+ prevCPPos = cpPos;
+ prevUTextPos = utextPos;
}
- utext_close(&normalizedText);
+ // inString goes out of scope
+ // inputMap goes out of scope
return numBreaks;
}
#endif