+// © 2016 and later: Unicode, Inc. and others.
+// License & terms of use: http://www.unicode.org/copyright.html
/*
**************************************************************************
-* Copyright (C) 2002-2013 International Business Machines Corporation *
-* and others. All rights reserved. *
+* Copyright (C) 2002-2016 International Business Machines Corporation
+* and others. All rights reserved.
**************************************************************************
*/
//
#include "unicode/utf16.h"
#include "uassert.h"
#include "cmemory.h"
+#include "cstr.h"
#include "uvector.h"
#include "uvectr32.h"
#include "uvectr64.h"
// #include <malloc.h> // Needed for heapcheck testing
-// Find progress callback
-// ----------------------
-// Macro to inline test & call to ReportFindProgress(). Eliminates unnecessary function call.
-//
-#define REGEXFINDPROGRESS_INTERRUPT(pos, status) \
- (fFindProgressCallbackFn != NULL) && (ReportFindProgress(pos, status) == FALSE)
-
-
-// Smart Backtracking
-// ------------------
-// When a failure would go back to a LOOP_C instruction,
-// strings, characters, and setrefs scan backwards for a valid start
-// character themselves, pop the stack, and save state, emulating the
-// LOOP_C's effect but assured that the next character of input is a
-// possible matching character.
-//
-// Good idea in theory; unfortunately it only helps out a few specific
-// cases and slows the engine down a little in the rest.
-
U_NAMESPACE_BEGIN
// Default limit for the size of the back track stack, to avoid system
// This constant determines that state saves per tick number.
static const int32_t TIMER_INITIAL_VALUE = 10000;
+
+// Test for any of the Unicode line terminating characters.
+static inline UBool isLineTerminator(UChar32 c) {
+ if (c & ~(0x0a | 0x0b | 0x0c | 0x0d | 0x85 | 0x2028 | 0x2029)) {
+ return false;
+ }
+ return (c<=0x0d && c>=0x0a) || c==0x85 || c==0x2028 || c==0x2029;
+}
+
//-----------------------------------------------------------------------------
//
// Constructor and Destructor
fInput = NULL;
fInputLength = 0;
fInputUniStrMaybeMutable = FALSE;
-
- if (U_FAILURE(status)) {
- fDeferredStatus = status;
- }
}
//
return;
}
- if (fPattern->fDataSize > (int32_t)(sizeof(fSmallData)/sizeof(fSmallData[0]))) {
+ if (fPattern->fDataSize > UPRV_LENGTHOF(fSmallData)) {
fData = (int64_t *)uprv_malloc(fPattern->fDataSize * sizeof(int64_t));
if (fData == NULL) {
status = fDeferredStatus = U_MEMORY_ALLOCATION_ERROR;
static const UChar BACKSLASH = 0x5c;
static const UChar DOLLARSIGN = 0x24;
+static const UChar LEFTBRACKET = 0x7b;
+static const UChar RIGHTBRACKET = 0x7d;
+
//--------------------------------------------------------------------------------
//
// appendReplacement
// TODO: optimize this loop by efficiently scanning for '$' or '\',
// move entire ranges not containing substitutions.
UTEXT_SETNATIVEINDEX(replacement, 0);
- UChar32 c = UTEXT_NEXT32(replacement);
- while (c != U_SENTINEL) {
+ for (UChar32 c = UTEXT_NEXT32(replacement); U_SUCCESS(status) && c != U_SENTINEL; c = UTEXT_NEXT32(replacement)) {
if (c == BACKSLASH) {
// Backslash Escape. Copy the following char out without further checks.
// Note: Surrogate pairs don't need any special handling
}
}
} else {
- // We've got a $. Pick up a capture group number if one follows.
- // Consume at most the number of digits necessary for the largest capture
- // number that is valid for this pattern.
+ // We've got a $. Pick up a capture group name or number if one follows.
+ // Consume digits so long as the resulting group number <= the number of
+ // number of capture groups in the pattern.
- int32_t numDigits = 0;
int32_t groupNum = 0;
- UChar32 digitC;
- for (;;) {
- digitC = UTEXT_CURRENT32(replacement);
- if (digitC == U_SENTINEL) {
- break;
- }
- if (u_isdigit(digitC) == FALSE) {
- break;
+ int32_t numDigits = 0;
+ UChar32 nextChar = utext_current32(replacement);
+ if (nextChar == LEFTBRACKET) {
+ // Scan for a Named Capture Group, ${name}.
+ UnicodeString groupName;
+ utext_next32(replacement);
+ while(U_SUCCESS(status) && nextChar != RIGHTBRACKET) {
+ nextChar = utext_next32(replacement);
+ if (nextChar == U_SENTINEL) {
+ status = U_REGEX_INVALID_CAPTURE_GROUP_NAME;
+ } else if ((nextChar >= 0x41 && nextChar <= 0x5a) || // A..Z
+ (nextChar >= 0x61 && nextChar <= 0x7a) || // a..z
+ (nextChar >= 0x31 && nextChar <= 0x39)) { // 0..9
+ groupName.append(nextChar);
+ } else if (nextChar == RIGHTBRACKET) {
+ groupNum = uhash_geti(fPattern->fNamedCaptureMap, &groupName);
+ if (groupNum == 0) {
+ status = U_REGEX_INVALID_CAPTURE_GROUP_NAME;
+ }
+ } else {
+ // Character was something other than a name char or a closing '}'
+ status = U_REGEX_INVALID_CAPTURE_GROUP_NAME;
+ }
}
- (void)UTEXT_NEXT32(replacement);
- groupNum=groupNum*10 + u_charDigitValue(digitC);
- numDigits++;
- if (numDigits >= fPattern->fMaxCaptureDigits) {
- break;
+
+ } else if (u_isdigit(nextChar)) {
+ // $n Scan for a capture group number
+ int32_t numCaptureGroups = fPattern->fGroupMap->size();
+ for (;;) {
+ nextChar = UTEXT_CURRENT32(replacement);
+ if (nextChar == U_SENTINEL) {
+ break;
+ }
+ if (u_isdigit(nextChar) == FALSE) {
+ break;
+ }
+ int32_t nextDigitVal = u_charDigitValue(nextChar);
+ if (groupNum*10 + nextDigitVal > numCaptureGroups) {
+ // Don't consume the next digit if it makes the capture group number too big.
+ if (numDigits == 0) {
+ status = U_INDEX_OUTOFBOUNDS_ERROR;
+ }
+ break;
+ }
+ (void)UTEXT_NEXT32(replacement);
+ groupNum=groupNum*10 + nextDigitVal;
+ ++numDigits;
}
+ } else {
+ // $ not followed by capture group name or number.
+ status = U_REGEX_INVALID_CAPTURE_GROUP_NAME;
}
-
- if (numDigits == 0) {
- // The $ didn't introduce a group number at all.
- // Treat it as just part of the substitution text.
- UChar c16 = DOLLARSIGN;
- destLen += utext_replace(dest, destLen, destLen, &c16, 1, &status);
- } else {
- // Finally, append the capture group data to the destination.
+ if (U_SUCCESS(status)) {
destLen += appendGroup(groupNum, dest, status);
- if (U_FAILURE(status)) {
- // Can fail if group number is out of range.
- break;
- }
}
- }
-
- if (U_FAILURE(status)) {
- break;
- } else {
- c = UTEXT_NEXT32(replacement);
- }
- }
+ } // End of $ capture group handling
+ } // End of per-character loop through the replacement string.
return *this;
}
return (int32_t)end64(group, err);
}
+//--------------------------------------------------------------------------------
+//
+// findProgressInterrupt This function is called once for each advance in the target
+// string from the find() function, and calls the user progress callback
+// function if there is one installed.
+//
+// Return: TRUE if the find operation is to be terminated.
+// FALSE if the find operation is to continue running.
+//
+//--------------------------------------------------------------------------------
+UBool RegexMatcher::findProgressInterrupt(int64_t pos, UErrorCode &status) {
+ if (fFindProgressCallbackFn && !(*fFindProgressCallbackFn)(fFindProgressCallbackContext, pos)) {
+ status = U_REGEX_STOPPED_BY_CALLER;
+ return TRUE;
+ }
+ return FALSE;
+}
//--------------------------------------------------------------------------------
//
//
//--------------------------------------------------------------------------------
UBool RegexMatcher::find() {
+ if (U_FAILURE(fDeferredStatus)) {
+ return FALSE;
+ }
+ UErrorCode status = U_ZERO_ERROR;
+ UBool result = find(status);
+ return result;
+}
+
+//--------------------------------------------------------------------------------
+//
+// find()
+//
+//--------------------------------------------------------------------------------
+UBool RegexMatcher::find(UErrorCode &status) {
// Start at the position of the last match end. (Will be zero if the
// matcher has been reset.)
//
+ if (U_FAILURE(status)) {
+ return FALSE;
+ }
if (U_FAILURE(fDeferredStatus)) {
+ status = fDeferredStatus;
return FALSE;
}
if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
- return findUsingChunk();
+ return findUsingChunk(status);
}
int64_t startPos = fMatchEnd;
return FALSE;
}
} else {
- // For now, let the matcher discover that it can't match on its own
- // We don't know how long the match len is in native characters
- testStartLimit = fActiveLimit;
+ // We don't know exactly how long the minimum match length is in native characters.
+ // Treat anything > 0 as 1.
+ testStartLimit = fActiveLimit - (fPattern->fMinMatchLen > 0 ? 1 : 0);
}
UChar32 c;
// No optimization was found.
// Try a match at each input position.
for (;;) {
- MatchAt(startPos, FALSE, fDeferredStatus);
- if (U_FAILURE(fDeferredStatus)) {
+ MatchAt(startPos, FALSE, status);
+ if (U_FAILURE(status)) {
return FALSE;
}
if (fMatch) {
// Note that it's perfectly OK for a pattern to have a zero-length
// match at the end of a string, so we must make sure that the loop
// runs with startPos == testStartLimit the last time through.
- if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus))
+ if (findProgressInterrupt(startPos, status))
return FALSE;
}
- U_ASSERT(FALSE);
+ UPRV_UNREACHABLE;
case START_START:
// Matches are only possible at the start of the input string
fMatch = FALSE;
return FALSE;
}
- MatchAt(startPos, FALSE, fDeferredStatus);
- if (U_FAILURE(fDeferredStatus)) {
+ MatchAt(startPos, FALSE, status);
+ if (U_FAILURE(status)) {
return FALSE;
}
return fMatch;
{
// Match may start on any char from a pre-computed set.
U_ASSERT(fPattern->fMinMatchLen > 0);
- int64_t pos;
UTEXT_SETNATIVEINDEX(fInputText, startPos);
for (;;) {
+ int64_t pos = startPos;
c = UTEXT_NEXT32(fInputText);
- pos = UTEXT_GETNATIVEINDEX(fInputText);
+ startPos = UTEXT_GETNATIVEINDEX(fInputText);
// c will be -1 (U_SENTINEL) at end of text, in which case we
// skip this next block (so we don't have a negative array index)
// and handle end of text in the following block.
if (c >= 0 && ((c<256 && fPattern->fInitialChars8->contains(c)) ||
(c>=256 && fPattern->fInitialChars->contains(c)))) {
- MatchAt(startPos, FALSE, fDeferredStatus);
- if (U_FAILURE(fDeferredStatus)) {
+ MatchAt(pos, FALSE, status);
+ if (U_FAILURE(status)) {
return FALSE;
}
if (fMatch) {
}
UTEXT_SETNATIVEINDEX(fInputText, pos);
}
- if (startPos >= testStartLimit) {
+ if (startPos > testStartLimit) {
fMatch = FALSE;
fHitEnd = TRUE;
return FALSE;
}
- startPos = pos;
- if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus))
+ if (findProgressInterrupt(startPos, status))
return FALSE;
}
}
- U_ASSERT(FALSE);
+ UPRV_UNREACHABLE;
case START_STRING:
case START_CHAR:
// Match starts on exactly one char.
U_ASSERT(fPattern->fMinMatchLen > 0);
UChar32 theChar = fPattern->fInitialChar;
- int64_t pos;
UTEXT_SETNATIVEINDEX(fInputText, startPos);
for (;;) {
+ int64_t pos = startPos;
c = UTEXT_NEXT32(fInputText);
- pos = UTEXT_GETNATIVEINDEX(fInputText);
+ startPos = UTEXT_GETNATIVEINDEX(fInputText);
if (c == theChar) {
- MatchAt(startPos, FALSE, fDeferredStatus);
- if (U_FAILURE(fDeferredStatus)) {
+ MatchAt(pos, FALSE, status);
+ if (U_FAILURE(status)) {
return FALSE;
}
if (fMatch) {
return TRUE;
}
- UTEXT_SETNATIVEINDEX(fInputText, pos);
+ UTEXT_SETNATIVEINDEX(fInputText, startPos);
}
- if (startPos >= testStartLimit) {
+ if (startPos > testStartLimit) {
fMatch = FALSE;
fHitEnd = TRUE;
return FALSE;
}
- startPos = pos;
- if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus))
+ if (findProgressInterrupt(startPos, status))
return FALSE;
}
}
- U_ASSERT(FALSE);
+ UPRV_UNREACHABLE;
case START_LINE:
{
- UChar32 c;
+ UChar32 ch;
if (startPos == fAnchorStart) {
- MatchAt(startPos, FALSE, fDeferredStatus);
- if (U_FAILURE(fDeferredStatus)) {
+ MatchAt(startPos, FALSE, status);
+ if (U_FAILURE(status)) {
return FALSE;
}
if (fMatch) {
return TRUE;
}
UTEXT_SETNATIVEINDEX(fInputText, startPos);
- c = UTEXT_NEXT32(fInputText);
+ ch = UTEXT_NEXT32(fInputText);
startPos = UTEXT_GETNATIVEINDEX(fInputText);
} else {
UTEXT_SETNATIVEINDEX(fInputText, startPos);
- c = UTEXT_PREVIOUS32(fInputText);
+ ch = UTEXT_PREVIOUS32(fInputText);
UTEXT_SETNATIVEINDEX(fInputText, startPos);
}
if (fPattern->fFlags & UREGEX_UNIX_LINES) {
for (;;) {
- if (c == 0x0a) {
- MatchAt(startPos, FALSE, fDeferredStatus);
- if (U_FAILURE(fDeferredStatus)) {
+ if (ch == 0x0a) {
+ MatchAt(startPos, FALSE, status);
+ if (U_FAILURE(status)) {
return FALSE;
}
if (fMatch) {
fHitEnd = TRUE;
return FALSE;
}
- c = UTEXT_NEXT32(fInputText);
+ ch = UTEXT_NEXT32(fInputText);
startPos = UTEXT_GETNATIVEINDEX(fInputText);
// Note that it's perfectly OK for a pattern to have a zero-length
// match at the end of a string, so we must make sure that the loop
// runs with startPos == testStartLimit the last time through.
- if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus))
+ if (findProgressInterrupt(startPos, status))
return FALSE;
}
} else {
for (;;) {
- if (((c & 0x7f) <= 0x29) && // First quickly bypass as many chars as possible
- ((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029 )) {
- if (c == 0x0d && startPos < fActiveLimit && UTEXT_CURRENT32(fInputText) == 0x0a) {
- (void)UTEXT_NEXT32(fInputText);
- startPos = UTEXT_GETNATIVEINDEX(fInputText);
- }
- MatchAt(startPos, FALSE, fDeferredStatus);
- if (U_FAILURE(fDeferredStatus)) {
- return FALSE;
- }
- if (fMatch) {
- return TRUE;
- }
- UTEXT_SETNATIVEINDEX(fInputText, startPos);
+ if (isLineTerminator(ch)) {
+ if (ch == 0x0d && startPos < fActiveLimit && UTEXT_CURRENT32(fInputText) == 0x0a) {
+ (void)UTEXT_NEXT32(fInputText);
+ startPos = UTEXT_GETNATIVEINDEX(fInputText);
+ }
+ MatchAt(startPos, FALSE, status);
+ if (U_FAILURE(status)) {
+ return FALSE;
+ }
+ if (fMatch) {
+ return TRUE;
+ }
+ UTEXT_SETNATIVEINDEX(fInputText, startPos);
}
if (startPos >= testStartLimit) {
fMatch = FALSE;
fHitEnd = TRUE;
return FALSE;
}
- c = UTEXT_NEXT32(fInputText);
+ ch = UTEXT_NEXT32(fInputText);
startPos = UTEXT_GETNATIVEINDEX(fInputText);
// Note that it's perfectly OK for a pattern to have a zero-length
// match at the end of a string, so we must make sure that the loop
// runs with startPos == testStartLimit the last time through.
- if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus))
+ if (findProgressInterrupt(startPos, status))
return FALSE;
}
}
}
default:
- U_ASSERT(FALSE);
+ UPRV_UNREACHABLE;
}
- U_ASSERT(FALSE);
- return FALSE;
+ UPRV_UNREACHABLE;
}
return FALSE;
}
fMatchEnd = nativeStart;
- return find();
+ return find(status);
}
// entire string is available in the UText's chunk buffer.
//
//--------------------------------------------------------------------------------
-UBool RegexMatcher::findUsingChunk() {
+UBool RegexMatcher::findUsingChunk(UErrorCode &status) {
// Start at the position of the last match end. (Will be zero if the
// matcher has been reset.
//
// the minimum length match would extend past the end of the input.
// Note: some patterns that cannot match anything will have fMinMatchLength==Max Int.
// Be aware of possible overflows if making changes here.
+ // Note: a match can begin at inputBuf + testLen; it is an inclusive limit.
int32_t testLen = (int32_t)(fActiveLimit - fPattern->fMinMatchLen);
if (startPos > testLen) {
fMatch = FALSE;
// No optimization was found.
// Try a match at each input position.
for (;;) {
- MatchChunkAt(startPos, FALSE, fDeferredStatus);
- if (U_FAILURE(fDeferredStatus)) {
+ MatchChunkAt(startPos, FALSE, status);
+ if (U_FAILURE(status)) {
return FALSE;
}
if (fMatch) {
// Note that it's perfectly OK for a pattern to have a zero-length
// match at the end of a string, so we must make sure that the loop
// runs with startPos == testLen the last time through.
- if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus))
+ if (findProgressInterrupt(startPos, status))
return FALSE;
}
- U_ASSERT(FALSE);
+ UPRV_UNREACHABLE;
case START_START:
// Matches are only possible at the start of the input string
fMatch = FALSE;
return FALSE;
}
- MatchChunkAt(startPos, FALSE, fDeferredStatus);
- if (U_FAILURE(fDeferredStatus)) {
+ MatchChunkAt(startPos, FALSE, status);
+ if (U_FAILURE(status)) {
return FALSE;
}
return fMatch;
U16_NEXT(inputBuf, startPos, fActiveLimit, c); // like c = inputBuf[startPos++];
if ((c<256 && fPattern->fInitialChars8->contains(c)) ||
(c>=256 && fPattern->fInitialChars->contains(c))) {
- MatchChunkAt(pos, FALSE, fDeferredStatus);
- if (U_FAILURE(fDeferredStatus)) {
+ MatchChunkAt(pos, FALSE, status);
+ if (U_FAILURE(status)) {
return FALSE;
}
if (fMatch) {
return TRUE;
}
}
- if (pos >= testLen) {
+ if (startPos > testLen) {
fMatch = FALSE;
fHitEnd = TRUE;
return FALSE;
}
- if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus))
+ if (findProgressInterrupt(startPos, status))
return FALSE;
}
}
- U_ASSERT(FALSE);
+ UPRV_UNREACHABLE;
case START_STRING:
case START_CHAR:
int32_t pos = startPos;
U16_NEXT(inputBuf, startPos, fActiveLimit, c); // like c = inputBuf[startPos++];
if (c == theChar) {
- MatchChunkAt(pos, FALSE, fDeferredStatus);
- if (U_FAILURE(fDeferredStatus)) {
+ MatchChunkAt(pos, FALSE, status);
+ if (U_FAILURE(status)) {
return FALSE;
}
if (fMatch) {
return TRUE;
}
}
- if (pos >= testLen) {
+ if (startPos > testLen) {
fMatch = FALSE;
fHitEnd = TRUE;
return FALSE;
}
- if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus))
+ if (findProgressInterrupt(startPos, status))
return FALSE;
}
}
- U_ASSERT(FALSE);
+ UPRV_UNREACHABLE;
case START_LINE:
{
- UChar32 c;
+ UChar32 ch;
if (startPos == fAnchorStart) {
- MatchChunkAt(startPos, FALSE, fDeferredStatus);
- if (U_FAILURE(fDeferredStatus)) {
+ MatchChunkAt(startPos, FALSE, status);
+ if (U_FAILURE(status)) {
return FALSE;
}
if (fMatch) {
return TRUE;
}
+ // In bug 31063104 which has a zero-length text buffer we get here with
+ // inputBuf=NULL, startPos=fActiveLimit=0 (and fMatch F) which violates the
+ // requirement for U16_FWD_1 (utf16.h) that startPos < fActiveLimit. Having
+ // inputBuf=NULL (chunkContexts NULL) is probably due to an error in the
+ // CFStringUText functions. Nevertheless, to be defensive, add test below.
+ if (startPos >= testLen) {
+ fHitEnd = TRUE;
+ return FALSE;
+ }
U16_FWD_1(inputBuf, startPos, fActiveLimit);
}
if (fPattern->fFlags & UREGEX_UNIX_LINES) {
for (;;) {
- c = inputBuf[startPos-1];
- if (c == 0x0a) {
- MatchChunkAt(startPos, FALSE, fDeferredStatus);
- if (U_FAILURE(fDeferredStatus)) {
+ ch = inputBuf[startPos-1];
+ if (ch == 0x0a) {
+ MatchChunkAt(startPos, FALSE, status);
+ if (U_FAILURE(status)) {
return FALSE;
}
if (fMatch) {
// Note that it's perfectly OK for a pattern to have a zero-length
// match at the end of a string, so we must make sure that the loop
// runs with startPos == testLen the last time through.
- if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus))
+ if (findProgressInterrupt(startPos, status))
return FALSE;
}
} else {
for (;;) {
- c = inputBuf[startPos-1];
- if (((c & 0x7f) <= 0x29) && // First quickly bypass as many chars as possible
- ((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029 )) {
- if (c == 0x0d && startPos < fActiveLimit && inputBuf[startPos] == 0x0a) {
+ ch = inputBuf[startPos-1];
+ if (isLineTerminator(ch)) {
+ if (ch == 0x0d && startPos < fActiveLimit && inputBuf[startPos] == 0x0a) {
startPos++;
}
- MatchChunkAt(startPos, FALSE, fDeferredStatus);
- if (U_FAILURE(fDeferredStatus)) {
+ MatchChunkAt(startPos, FALSE, status);
+ if (U_FAILURE(status)) {
return FALSE;
}
if (fMatch) {
// Note that it's perfectly OK for a pattern to have a zero-length
// match at the end of a string, so we must make sure that the loop
// runs with startPos == testLen the last time through.
- if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus))
+ if (findProgressInterrupt(startPos, status))
return FALSE;
}
}
}
default:
- U_ASSERT(FALSE);
+ UPRV_UNREACHABLE;
}
- U_ASSERT(FALSE);
- return FALSE;
+ UPRV_UNREACHABLE;
}
UnicodeString RegexMatcher::group(int32_t groupNum, UErrorCode &status) const {
UnicodeString result;
- if (U_FAILURE(status)) {
+ int64_t groupStart = start64(groupNum, status);
+ int64_t groupEnd = end64(groupNum, status);
+ if (U_FAILURE(status) || groupStart == -1 || groupStart == groupEnd) {
return result;
}
- UText resultText = UTEXT_INITIALIZER;
- utext_openUnicodeString(&resultText, &result, &status);
- group(groupNum, &resultText, status);
- utext_close(&resultText);
- return result;
-}
-
-
-// Return deep (mutable) clone
-// Technology Preview (as an API), but note that the UnicodeString API is implemented
-// using this function.
-UText *RegexMatcher::group(int32_t groupNum, UText *dest, UErrorCode &status) const {
- if (U_FAILURE(status)) {
- return dest;
- }
-
- if (U_FAILURE(fDeferredStatus)) {
- status = fDeferredStatus;
- } else if (fMatch == FALSE) {
- status = U_REGEX_INVALID_STATE;
- } else if (groupNum < 0 || groupNum > fPattern->fGroupMap->size()) {
- status = U_INDEX_OUTOFBOUNDS_ERROR;
- }
- if (U_FAILURE(status)) {
- return dest;
- }
-
- int64_t s, e;
- if (groupNum == 0) {
- s = fMatchStart;
- e = fMatchEnd;
- } else {
- int32_t groupOffset = fPattern->fGroupMap->elementAti(groupNum-1);
- U_ASSERT(groupOffset < fPattern->fFrameSize);
- U_ASSERT(groupOffset >= 0);
- s = fFrame->fExtra[groupOffset];
- e = fFrame->fExtra[groupOffset+1];
- }
- if (s < 0) {
- // A capture group wasn't part of the match
- if (dest) {
- utext_replace(dest, 0, utext_nativeLength(dest), NULL, 0, &status);
- return dest;
- } else {
- return utext_openUChars(NULL, NULL, 0, &status);
- }
+ // Get the group length using a utext_extract preflight.
+ // UText is actually pretty efficient at this when underlying encoding is UTF-16.
+ int32_t length = utext_extract(fInputText, groupStart, groupEnd, NULL, 0, &status);
+ if (status != U_BUFFER_OVERFLOW_ERROR) {
+ return result;
}
- U_ASSERT(s <= e);
- if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
- U_ASSERT(e <= fInputLength);
- if (dest) {
- utext_replace(dest, 0, utext_nativeLength(dest), fInputText->chunkContents+s, (int32_t)(e-s), &status);
- } else {
- UText groupText = UTEXT_INITIALIZER;
- utext_openUChars(&groupText, fInputText->chunkContents+s, e-s, &status);
- dest = utext_clone(NULL, &groupText, TRUE, FALSE, &status);
- utext_close(&groupText);
- }
+ status = U_ZERO_ERROR;
+ UChar *buf = result.getBuffer(length);
+ if (buf == NULL) {
+ status = U_MEMORY_ALLOCATION_ERROR;
} else {
- int32_t len16;
- if (UTEXT_USES_U16(fInputText)) {
- len16 = (int32_t)(e-s);
- } else {
- UErrorCode lengthStatus = U_ZERO_ERROR;
- len16 = utext_extract(fInputText, s, e, NULL, 0, &lengthStatus);
- }
- UChar *groupChars = (UChar *)uprv_malloc(sizeof(UChar)*(len16+1));
- if (groupChars == NULL) {
- status = U_MEMORY_ALLOCATION_ERROR;
- return dest;
- }
- utext_extract(fInputText, s, e, groupChars, len16+1, &status);
-
- if (dest) {
- utext_replace(dest, 0, utext_nativeLength(dest), groupChars, len16, &status);
- } else {
- UText groupText = UTEXT_INITIALIZER;
- utext_openUChars(&groupText, groupChars, len16, &status);
- dest = utext_clone(NULL, &groupText, TRUE, FALSE, &status);
- utext_close(&groupText);
- }
-
- uprv_free(groupChars);
+ int32_t extractLength = utext_extract(fInputText, groupStart, groupEnd, buf, length, &status);
+ result.releaseBuffer(extractLength);
+ U_ASSERT(length == extractLength);
}
- return dest;
+ return result;
}
+
//--------------------------------------------------------------------------------
//
// appendGroup() -- currently internal only, appends a group to a UText rather
return fPattern->fGroupMap->size();
}
-
-
//--------------------------------------------------------------------------------
//
// hasAnchoringBounds()
if (fPattern->fNeedsAltInput) {
fAltInputText = utext_clone(fAltInputText, fInputText, FALSE, TRUE, &fDeferredStatus);
}
+ if (U_FAILURE(fDeferredStatus)) {
+ return *this;
+ }
fInputLength = utext_nativeLength(fInputText);
reset();
if (fInputText != input) {
fInputText = utext_clone(fInputText, input, FALSE, TRUE, &fDeferredStatus);
if (fPattern->fNeedsAltInput) fAltInputText = utext_clone(fAltInputText, fInputText, FALSE, TRUE, &fDeferredStatus);
+ if (U_FAILURE(fDeferredStatus)) {
+ return *this;
+ }
fInputLength = utext_nativeLength(fInputText);
delete fInput;
+/**
+ * UText, replace entire contents of the destination UText with a substring of the source UText.
+ *
+ * @param src The source UText
+ * @param dest The destination UText. Must be writable.
+ * May be NULL, in which case a new UText will be allocated.
+ * @param start Start index of source substring.
+ * @param limit Limit index of source substring.
+ * @param status An error code.
+ */
+static UText *utext_extract_replace(UText *src, UText *dest, int64_t start, int64_t limit, UErrorCode *status) {
+ if (U_FAILURE(*status)) {
+ return dest;
+ }
+ if (start == limit) {
+ if (dest) {
+ utext_replace(dest, 0, utext_nativeLength(dest), NULL, 0, status);
+ return dest;
+ } else {
+ return utext_openUChars(NULL, NULL, 0, status);
+ }
+ }
+ int32_t length = utext_extract(src, start, limit, NULL, 0, status);
+ if (*status != U_BUFFER_OVERFLOW_ERROR && U_FAILURE(*status)) {
+ return dest;
+ }
+ *status = U_ZERO_ERROR;
+ MaybeStackArray<UChar, 40> buffer;
+ if (length >= buffer.getCapacity()) {
+ UChar *newBuf = buffer.resize(length+1); // Leave space for terminating Nul.
+ if (newBuf == NULL) {
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ }
+ }
+ utext_extract(src, start, limit, buffer.getAlias(), length+1, status);
+ if (dest) {
+ utext_replace(dest, 0, utext_nativeLength(dest), buffer.getAlias(), length, status);
+ return dest;
+ }
+
+ // Caller did not provide a prexisting UText.
+ // Open a new one, and have it adopt the text buffer storage.
+ if (U_FAILURE(*status)) {
+ return NULL;
+ }
+ int32_t ownedLength = 0;
+ UChar *ownedBuf = buffer.orphanOrClone(length+1, ownedLength);
+ if (ownedBuf == NULL) {
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ return NULL;
+ }
+ UText *result = utext_openUChars(NULL, ownedBuf, length, status);
+ if (U_FAILURE(*status)) {
+ uprv_free(ownedBuf);
+ return NULL;
+ }
+ result->providerProperties |= (1 << UTEXT_PROVIDER_OWNS_TEXT);
+ return result;
+}
+
+
//---------------------------------------------------------------------
//
// split
break;
}
i++;
- dest[i] = group(groupNum, dest[i], status);
+ dest[i] = utext_extract_replace(fInputText, dest[i],
+ start64(groupNum, status), end64(groupNum, status), &status);
}
if (nextOutputStringStart == fActiveLimit) {
if (dest[i] == NULL) {
dest[i] = utext_openUChars(NULL, NULL, 0, &status);
} else {
- static UChar emptyString[] = {(UChar)0};
+ static const UChar emptyString[] = {(UChar)0};
utext_replace(dest[i], 0, utext_nativeLength(dest[i]), emptyString, 0, &status);
}
}
fStack->removeAllElements();
REStackFrame *iFrame = (REStackFrame *)fStack->reserveBlock(fPattern->fFrameSize, fDeferredStatus);
+ if(U_FAILURE(fDeferredStatus)) {
+ return NULL;
+ }
+
int32_t i;
for (i=0; i<fPattern->fFrameSize-RESTACKFRAME_HDRCOUNT; i++) {
iFrame->fExtra[i] = -1;
}
}
-//--------------------------------------------------------------------------------
-//
-// ReportFindProgress This function is called once for each advance in the target
-// string from the find() function, and calls the user progress callback
-// function if there is one installed.
-//
-// NOTE:
-//
-// If the match operation needs to be aborted because the user
-// callback asked for it, just set an error status.
-// The engine will pick that up and stop in its outer loop.
-//
-//--------------------------------------------------------------------------------
-UBool RegexMatcher::ReportFindProgress(int64_t matchIndex, UErrorCode &status) {
- if (fFindProgressCallbackFn != NULL) {
- if ((*fFindProgressCallbackFn)(fFindProgressCallbackContext, matchIndex) == FALSE) {
- status = U_ZERO_ERROR /*U_REGEX_STOPPED_BY_CALLER*/;
- return FALSE;
- }
- }
- return TRUE;
-}
-
//--------------------------------------------------------------------------------
//
// StateSave
//
//--------------------------------------------------------------------------------
inline REStackFrame *RegexMatcher::StateSave(REStackFrame *fp, int64_t savePatIdx, UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return fp;
+ }
// push storage for a new frame.
int64_t *newFP = fStack->reserveBlock(fFrameSize, status);
- if (newFP == NULL) {
+ if (U_FAILURE(status)) {
// Failure on attempted stack expansion.
// Stack function set some other error code, change it to a more
// specific one for regular expressions.
return (REStackFrame *)newFP;
}
+#if defined(REGEX_DEBUG)
+namespace {
+UnicodeString StringFromUText(UText *ut) {
+ UnicodeString result;
+ for (UChar32 c = utext_next32From(ut, 0); c != U_SENTINEL; c = UTEXT_NEXT32(ut)) {
+ result.append(c);
+ }
+ return result;
+}
+}
+#endif // REGEX_DEBUG
+
//--------------------------------------------------------------------------------
//
int32_t opValue; // and the operand value.
#ifdef REGEX_RUN_DEBUG
- if (fTraceDebug)
- {
+ if (fTraceDebug) {
printf("MatchAt(startIdx=%ld)\n", startIdx);
- printf("Original Pattern: ");
- UChar32 c = utext_next32From(fPattern->fPattern, 0);
- while (c != U_SENTINEL) {
- if (c<32 || c>256) {
- c = '.';
- }
- printf("%c", c);
-
- c = UTEXT_NEXT32(fPattern->fPattern);
- }
- printf("\n");
- printf("Input String: ");
- c = utext_next32From(fInputText, 0);
- while (c != U_SENTINEL) {
- if (c<32 || c>256) {
- c = '.';
- }
- printf("%c", c);
-
- c = UTEXT_NEXT32(fInputText);
- }
- printf("\n");
- printf("\n");
+ printf("Original Pattern: \"%s\"\n", CStr(StringFromUText(fPattern->fPattern))());
+ printf("Input String: \"%s\"\n\n", CStr(StringFromUText(fInputText))());
}
#endif
int64_t *pat = fPattern->fCompiledPat->getBuffer();
const UChar *litText = fPattern->fLiteralText.getBuffer();
- UVector *sets = fPattern->fSets;
+ UVector *fSets = fPattern->fSets;
fFrameSize = fPattern->fFrameSize;
REStackFrame *fp = resetStack();
+ if (U_FAILURE(fDeferredStatus)) {
+ status = fDeferredStatus;
+ return;
+ }
fp->fPatIdx = 0;
fp->fInputIdx = startIdx;
// end of input, succeed.
UChar32 c = UTEXT_NEXT32(fInputText);
if (UTEXT_GETNATIVEINDEX(fInputText) >= fAnchorLimit) {
- if ((c>=0x0a && c<=0x0d) || c==0x85 || c==0x2028 || c==0x2029) {
+ if (isLineTerminator(c)) {
// If not in the middle of a CR/LF sequence
- if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && ((void)UTEXT_PREVIOUS32(fInputText), UTEXT_PREVIOUS32(fInputText))==0x0d)) {
+ if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && ((void)UTEXT_PREVIOUS32(fInputText), UTEXT_PREVIOUS32(fInputText))==0x0d)) {
// At new-line at end of input. Success
fHitEnd = TRUE;
fRequireEnd = TRUE;
// It makes no difference where the new-line is within the input.
UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
UChar32 c = UTEXT_CURRENT32(fInputText);
- if ((c>=0x0a && c<=0x0d) || c==0x85 ||c==0x2028 || c==0x2029) {
+ if (isLineTerminator(c)) {
// At a line end, except for the odd chance of being in the middle of a CR/LF sequence
// In multi-line mode, hitting a new-line just before the end of input does not
// set the hitEnd or requireEnd flags
// unless we are at the end of input
UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
UChar32 c = UTEXT_PREVIOUS32(fInputText);
- if ((fp->fInputIdx < fAnchorLimit) &&
- ((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029)) {
+ if ((fp->fInputIdx < fAnchorLimit) && isLineTerminator(c)) {
// It's a new-line. ^ is true. Success.
// TODO: what should be done with positions between a CR and LF?
break;
break;
+ case URX_BACKSLASH_H: // Test for \h, horizontal white space.
+ {
+ if (fp->fInputIdx >= fActiveLimit) {
+ fHitEnd = TRUE;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+ UChar32 c = UTEXT_NEXT32(fInputText);
+ int8_t ctype = u_charType(c);
+ UBool success = (ctype == U_SPACE_SEPARATOR || c == 9); // SPACE_SEPARATOR || TAB
+ success ^= (UBool)(opValue != 0); // flip sense for \H
+ if (success) {
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ } else {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+
+ case URX_BACKSLASH_R: // Test for \R, any line break sequence.
+ {
+ if (fp->fInputIdx >= fActiveLimit) {
+ fHitEnd = TRUE;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+ UChar32 c = UTEXT_NEXT32(fInputText);
+ if (isLineTerminator(c)) {
+ if (c == 0x0d && utext_current32(fInputText) == 0x0a) {
+ utext_next32(fInputText);
+ }
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ } else {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+
+ case URX_BACKSLASH_V: // \v, any single line ending character.
+ {
+ if (fp->fInputIdx >= fActiveLimit) {
+ fHitEnd = TRUE;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+ UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
+ UChar32 c = UTEXT_NEXT32(fInputText);
+ UBool success = isLineTerminator(c);
+ success ^= (UBool)(opValue != 0); // flip sense for \V
+ if (success) {
+ fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ } else {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+
case URX_BACKSLASH_X:
// Match a Grapheme, as defined by Unicode TR 29.
// Differs slightly from Perl, which consumes combining marks independently
// There is input left. Pick up one char and test it for set membership.
UChar32 c = UTEXT_NEXT32(fInputText);
- U_ASSERT(opValue > 0 && opValue < sets->size());
+ U_ASSERT(opValue > 0 && opValue < fSets->size());
if (c<256) {
Regex8BitSet *s8 = &fPattern->fSets8[opValue];
if (s8->contains(c)) {
break;
}
} else {
- UnicodeSet *s = (UnicodeSet *)sets->elementAt(opValue);
+ UnicodeSet *s = (UnicodeSet *)fSets->elementAt(opValue);
if (s->contains(c)) {
// The character is in the set. A Match.
fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
// There is input left. Advance over one char, unless we've hit end-of-line
UChar32 c = UTEXT_NEXT32(fInputText);
- if (((c & 0x7f) <= 0x29) && // First quickly bypass as many chars as possible
- ((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029)) {
+ if (isLineTerminator(c)) {
// End of line in normal mode. . does not match.
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
break;
}
}
fp = StateSave(fp, fp->fPatIdx, status);
+ } else {
+ // Increment time-out counter. (StateSave() does it if count >= minCount)
+ fTickCounter--;
+ if (fTickCounter <= 0) {
+ IncrementTime(status); // Re-initializes fTickCounter
+ }
}
+
fp->fPatIdx = opValue + 4; // Loop back.
}
break;
// We haven't met the minimum number of matches yet.
// Loop back for another one.
fp->fPatIdx = opValue + 4; // Loop back.
+ // Increment time-out counter. (StateSave() does it if count >= minCount)
+ fTickCounter--;
+ if (fTickCounter <= 0) {
+ IncrementTime(status); // Re-initializes fTickCounter
+ }
} else {
// We do have the minimum number of matches.
if (newFP == (int64_t *)fp) {
break;
}
- int32_t i;
- for (i=0; i<fFrameSize; i++) {
- newFP[i] = ((int64_t *)fp)[i];
+ int32_t j;
+ for (j=0; j<fFrameSize; j++) {
+ newFP[j] = ((int64_t *)fp)[j];
}
fp = (REStackFrame *)newFP;
fStack->setSize(newStackSize);
// This makes the capture groups from within the look-ahead
// expression available.
int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize;
- int32_t i;
- for (i=0; i<fFrameSize; i++) {
- newFP[i] = ((int64_t *)fp)[i];
+ int32_t j;
+ for (j=0; j<fFrameSize; j++) {
+ newFP[j] = ((int64_t *)fp)[j];
}
fp = (REStackFrame *)newFP;
fStack->setSize(newStackSize);
// of this op in the pattern.
int32_t minML = (int32_t)pat[fp->fPatIdx++];
int32_t maxML = (int32_t)pat[fp->fPatIdx++];
+ if (!UTEXT_USES_U16(fInputText)) {
+ // utf-8 fix to maximum match length. The pattern compiler assumes utf-16.
+ // The max length need not be exact; it just needs to be >= actual maximum.
+ maxML *= 3;
+ }
U_ASSERT(minML <= maxML);
U_ASSERT(minML >= 0);
// Fetch (from data) the last input index where a match was attempted.
U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
- int64_t *lbStartIdx = &fData[opValue+2];
- if (*lbStartIdx < 0) {
+ int64_t &lbStartIdx = fData[opValue+2];
+ if (lbStartIdx < 0) {
// First time through loop.
- *lbStartIdx = fp->fInputIdx - minML;
+ lbStartIdx = fp->fInputIdx - minML;
+ if (lbStartIdx > 0) {
+ // move index to a code point boudary, if it's not on one already.
+ UTEXT_SETNATIVEINDEX(fInputText, lbStartIdx);
+ lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ }
} else {
// 2nd through nth time through the loop.
// Back up start position for match by one.
- if (*lbStartIdx == 0) {
- (*lbStartIdx)--;
+ if (lbStartIdx == 0) {
+ (lbStartIdx)--;
} else {
- UTEXT_SETNATIVEINDEX(fInputText, *lbStartIdx);
+ UTEXT_SETNATIVEINDEX(fInputText, lbStartIdx);
(void)UTEXT_PREVIOUS32(fInputText);
- *lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText);
}
}
- if (*lbStartIdx < 0 || *lbStartIdx < fp->fInputIdx - maxML) {
+ if (lbStartIdx < 0 || lbStartIdx < fp->fInputIdx - maxML) {
// We have tried all potential match starting points without
// getting a match. Backtrack out, and out of the
// Look Behind altogether.
// Save state to this URX_LB_CONT op, so failure to match will repeat the loop.
// (successful match will fall off the end of the loop.)
fp = StateSave(fp, fp->fPatIdx-3, status);
- fp->fInputIdx = *lbStartIdx;
+ fp->fInputIdx = lbStartIdx;
}
break;
// Fetch the extra parameters of this op.
int32_t minML = (int32_t)pat[fp->fPatIdx++];
int32_t maxML = (int32_t)pat[fp->fPatIdx++];
+ if (!UTEXT_USES_U16(fInputText)) {
+ // utf-8 fix to maximum match length. The pattern compiler assumes utf-16.
+ // The max length need not be exact; it just needs to be >= actual maximum.
+ maxML *= 3;
+ }
int32_t continueLoc = (int32_t)pat[fp->fPatIdx++];
continueLoc = URX_VAL(continueLoc);
U_ASSERT(minML <= maxML);
// Fetch (from data) the last input index where a match was attempted.
U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
- int64_t *lbStartIdx = &fData[opValue+2];
- if (*lbStartIdx < 0) {
+ int64_t &lbStartIdx = fData[opValue+2];
+ if (lbStartIdx < 0) {
// First time through loop.
- *lbStartIdx = fp->fInputIdx - minML;
+ lbStartIdx = fp->fInputIdx - minML;
+ if (lbStartIdx > 0) {
+ // move index to a code point boudary, if it's not on one already.
+ UTEXT_SETNATIVEINDEX(fInputText, lbStartIdx);
+ lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ }
} else {
// 2nd through nth time through the loop.
// Back up start position for match by one.
- if (*lbStartIdx == 0) {
- (*lbStartIdx)--;
+ if (lbStartIdx == 0) {
+ (lbStartIdx)--;
} else {
- UTEXT_SETNATIVEINDEX(fInputText, *lbStartIdx);
+ UTEXT_SETNATIVEINDEX(fInputText, lbStartIdx);
(void)UTEXT_PREVIOUS32(fInputText);
- *lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText);
+ lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText);
}
}
- if (*lbStartIdx < 0 || *lbStartIdx < fp->fInputIdx - maxML) {
+ if (lbStartIdx < 0 || lbStartIdx < fp->fInputIdx - maxML) {
// We have tried all potential match starting points without
// getting a match, which means that the negative lookbehind as
// a whole has succeeded. Jump forward to the continue location
// Save state to this URX_LB_CONT op, so failure to match will repeat the loop.
// (successful match will cause a FAIL out of the loop altogether.)
fp = StateSave(fp, fp->fPatIdx-4, status);
- fp->fInputIdx = *lbStartIdx;
+ fp->fInputIdx = lbStartIdx;
}
break;
// This op scans through all matching input.
// The following LOOP_C op emulates stack unwinding if the following pattern fails.
{
- U_ASSERT(opValue > 0 && opValue < sets->size());
+ U_ASSERT(opValue > 0 && opValue < fSets->size());
Regex8BitSet *s8 = &fPattern->fSets8[opValue];
- UnicodeSet *s = (UnicodeSet *)sets->elementAt(opValue);
+ UnicodeSet *s = (UnicodeSet *)fSets->elementAt(opValue);
// Loop through input, until either the input is exhausted or
// we reach a character that is not a member of the set.
if ((c & 0x7f) <= 0x29) { // Fast filter of non-new-line-s
if ((c == 0x0a) || // 0x0a is newline in both modes.
(((opValue & 2) == 0) && // IF not UNIX_LINES mode
- (c<=0x0d && c>=0x0a)) || c==0x85 ||c==0x2028 || c==0x2029) {
+ isLineTerminator(c))) {
// char is a line ending. Exit the scanning loop.
break;
}
default:
// Trouble. The compiled pattern contains an entry with an
// unrecognized type tag.
- U_ASSERT(FALSE);
+ UPRV_UNREACHABLE;
}
if (U_FAILURE(status)) {
#ifdef REGEX_RUN_DEBUG
if (fTraceDebug) {
printf("MatchAt(startIdx=%d)\n", startIdx);
- printf("Original Pattern: ");
- UChar32 c = utext_next32From(fPattern->fPattern, 0);
- while (c != U_SENTINEL) {
- if (c<32 || c>256) {
- c = '.';
- }
- printf("%c", c);
-
- c = UTEXT_NEXT32(fPattern->fPattern);
- }
- printf("\n");
- printf("Input String: ");
- c = utext_next32From(fInputText, 0);
- while (c != U_SENTINEL) {
- if (c<32 || c>256) {
- c = '.';
- }
- printf("%c", c);
-
- c = UTEXT_NEXT32(fInputText);
- }
- printf("\n");
- printf("\n");
+ printf("Original Pattern: \"%s\"\n", CStr(StringFromUText(fPattern->fPattern))());
+ printf("Input String: \"%s\"\n\n", CStr(StringFromUText(fInputText))());
}
#endif
int64_t *pat = fPattern->fCompiledPat->getBuffer();
const UChar *litText = fPattern->fLiteralText.getBuffer();
- UVector *sets = fPattern->fSets;
+ UVector *fSets = fPattern->fSets;
const UChar *inputBuf = fInputText->chunkContents;
fFrameSize = fPattern->fFrameSize;
REStackFrame *fp = resetStack();
+ if (U_FAILURE(fDeferredStatus)) {
+ status = fDeferredStatus;
+ return;
+ }
fp->fPatIdx = 0;
fp->fInputIdx = startIdx;
UChar32 c;
U16_GET(inputBuf, fAnchorStart, fp->fInputIdx, fAnchorLimit, c);
- if ((c>=0x0a && c<=0x0d) || c==0x85 || c==0x2028 || c==0x2029) {
+ if (isLineTerminator(c)) {
if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && inputBuf[fp->fInputIdx-1]==0x0d)) {
// At new-line at end of input. Success
fHitEnd = TRUE;
// If we are positioned just before a new-line, succeed.
// It makes no difference where the new-line is within the input.
UChar32 c = inputBuf[fp->fInputIdx];
- if ((c>=0x0a && c<=0x0d) || c==0x85 ||c==0x2028 || c==0x2029) {
+ if (isLineTerminator(c)) {
// At a line end, except for the odd chance of being in the middle of a CR/LF sequence
// In multi-line mode, hitting a new-line just before the end of input does not
// set the hitEnd or requireEnd flags
// unless we are at the end of input
UChar c = inputBuf[fp->fInputIdx - 1];
if ((fp->fInputIdx < fAnchorLimit) &&
- ((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029)) {
+ isLineTerminator(c)) {
// It's a new-line. ^ is true. Success.
// TODO: what should be done with positions between a CR and LF?
break;
break;
+ case URX_BACKSLASH_H: // Test for \h, horizontal white space.
+ {
+ if (fp->fInputIdx >= fActiveLimit) {
+ fHitEnd = TRUE;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+ UChar32 c;
+ U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
+ int8_t ctype = u_charType(c);
+ UBool success = (ctype == U_SPACE_SEPARATOR || c == 9); // SPACE_SEPARATOR || TAB
+ success ^= (UBool)(opValue != 0); // flip sense for \H
+ if (!success) {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+
+ case URX_BACKSLASH_R: // Test for \R, any line break sequence.
+ {
+ if (fp->fInputIdx >= fActiveLimit) {
+ fHitEnd = TRUE;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+ UChar32 c;
+ U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
+ if (isLineTerminator(c)) {
+ if (c == 0x0d && fp->fInputIdx < fActiveLimit) {
+ // Check for CR/LF sequence. Consume both together when found.
+ UChar c2;
+ U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c2);
+ if (c2 != 0x0a) {
+ U16_PREV(inputBuf, 0, fp->fInputIdx, c2);
+ }
+ }
+ } else {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+
+ case URX_BACKSLASH_V: // Any single code point line ending.
+ {
+ if (fp->fInputIdx >= fActiveLimit) {
+ fHitEnd = TRUE;
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ break;
+ }
+ UChar32 c;
+ U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
+ UBool success = isLineTerminator(c);
+ success ^= (UBool)(opValue != 0); // flip sense for \V
+ if (!success) {
+ fp = (REStackFrame *)fStack->popFrame(fFrameSize);
+ }
+ }
+ break;
+
+
+
case URX_BACKSLASH_X:
// Match a Grapheme, as defined by Unicode TR 29.
// Differs slightly from Perl, which consumes combining marks independently
break;
}
- U_ASSERT(opValue > 0 && opValue < sets->size());
+ U_ASSERT(opValue > 0 && opValue < fSets->size());
// There is input left. Pick up one char and test it for set membership.
UChar32 c;
break;
}
} else {
- UnicodeSet *s = (UnicodeSet *)sets->elementAt(opValue);
+ UnicodeSet *s = (UnicodeSet *)fSets->elementAt(opValue);
if (s->contains(c)) {
// The character is in the set. A Match.
break;
// There is input left. Advance over one char, unless we've hit end-of-line
UChar32 c;
U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
- if (((c & 0x7f) <= 0x29) && // First quickly bypass as many chars as possible
- ((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029)) {
+ if (isLineTerminator(c)) {
// End of line in normal mode. . does not match.
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
break;
}
}
fp = StateSave(fp, fp->fPatIdx, status);
+ } else {
+ // Increment time-out counter. (StateSave() does it if count >= minCount)
+ fTickCounter--;
+ if (fTickCounter <= 0) {
+ IncrementTime(status); // Re-initializes fTickCounter
+ }
}
fp->fPatIdx = opValue + 4; // Loop back.
}
// We haven't met the minimum number of matches yet.
// Loop back for another one.
fp->fPatIdx = opValue + 4; // Loop back.
+ fTickCounter--;
+ if (fTickCounter <= 0) {
+ IncrementTime(status); // Re-initializes fTickCounter
+ }
} else {
// We do have the minimum number of matches.
if (newFP == (int64_t *)fp) {
break;
}
- int32_t i;
- for (i=0; i<fFrameSize; i++) {
- newFP[i] = ((int64_t *)fp)[i];
+ int32_t j;
+ for (j=0; j<fFrameSize; j++) {
+ newFP[j] = ((int64_t *)fp)[j];
}
fp = (REStackFrame *)newFP;
fStack->setSize(newStackSize);
break;
}
}
+ if (success && groupStartIdx < groupEndIdx && U16_IS_LEAD(inputBuf[groupEndIdx-1]) &&
+ inputIndex < fActiveLimit && U16_IS_TRAIL(inputBuf[inputIndex])) {
+ // Capture group ended with an unpaired lead surrogate.
+ // Back reference is not permitted to match lead only of a surrogatge pair.
+ success = FALSE;
+ }
if (success) {
fp->fInputIdx = inputIndex;
} else {
// This makes the capture groups from within the look-ahead
// expression available.
int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize;
- int32_t i;
- for (i=0; i<fFrameSize; i++) {
- newFP[i] = ((int64_t *)fp)[i];
+ int32_t j;
+ for (j=0; j<fFrameSize; j++) {
+ newFP[j] = ((int64_t *)fp)[j];
}
fp = (REStackFrame *)newFP;
fStack->setSize(newStackSize);
// Fetch (from data) the last input index where a match was attempted.
U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
- int64_t *lbStartIdx = &fData[opValue+2];
- if (*lbStartIdx < 0) {
+ int64_t &lbStartIdx = fData[opValue+2];
+ if (lbStartIdx < 0) {
// First time through loop.
- *lbStartIdx = fp->fInputIdx - minML;
+ lbStartIdx = fp->fInputIdx - minML;
+ if (lbStartIdx > 0 && lbStartIdx < fInputLength) {
+ U16_SET_CP_START(inputBuf, 0, lbStartIdx);
+ }
} else {
// 2nd through nth time through the loop.
// Back up start position for match by one.
- if (*lbStartIdx == 0) {
- (*lbStartIdx)--;
+ if (lbStartIdx == 0) {
+ lbStartIdx--;
} else {
- U16_BACK_1(inputBuf, 0, *lbStartIdx);
+ U16_BACK_1(inputBuf, 0, lbStartIdx);
}
}
- if (*lbStartIdx < 0 || *lbStartIdx < fp->fInputIdx - maxML) {
+ if (lbStartIdx < 0 || lbStartIdx < fp->fInputIdx - maxML) {
// We have tried all potential match starting points without
// getting a match. Backtrack out, and out of the
// Look Behind altogether.
// Save state to this URX_LB_CONT op, so failure to match will repeat the loop.
// (successful match will fall off the end of the loop.)
fp = StateSave(fp, fp->fPatIdx-3, status);
- fp->fInputIdx = *lbStartIdx;
+ fp->fInputIdx = lbStartIdx;
}
break;
// Fetch (from data) the last input index where a match was attempted.
U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
- int64_t *lbStartIdx = &fData[opValue+2];
- if (*lbStartIdx < 0) {
+ int64_t &lbStartIdx = fData[opValue+2];
+ if (lbStartIdx < 0) {
// First time through loop.
- *lbStartIdx = fp->fInputIdx - minML;
+ lbStartIdx = fp->fInputIdx - minML;
+ if (lbStartIdx > 0 && lbStartIdx < fInputLength) {
+ U16_SET_CP_START(inputBuf, 0, lbStartIdx);
+ }
} else {
// 2nd through nth time through the loop.
// Back up start position for match by one.
- if (*lbStartIdx == 0) {
- (*lbStartIdx)--; // Because U16_BACK is unsafe starting at 0.
+ if (lbStartIdx == 0) {
+ lbStartIdx--; // Because U16_BACK is unsafe starting at 0.
} else {
- U16_BACK_1(inputBuf, 0, *lbStartIdx);
+ U16_BACK_1(inputBuf, 0, lbStartIdx);
}
}
- if (*lbStartIdx < 0 || *lbStartIdx < fp->fInputIdx - maxML) {
+ if (lbStartIdx < 0 || lbStartIdx < fp->fInputIdx - maxML) {
// We have tried all potential match starting points without
// getting a match, which means that the negative lookbehind as
// a whole has succeeded. Jump forward to the continue location
// Save state to this URX_LB_CONT op, so failure to match will repeat the loop.
// (successful match will cause a FAIL out of the loop altogether.)
fp = StateSave(fp, fp->fPatIdx-4, status);
- fp->fInputIdx = *lbStartIdx;
+ fp->fInputIdx = lbStartIdx;
}
break;
// This op scans through all matching input.
// The following LOOP_C op emulates stack unwinding if the following pattern fails.
{
- U_ASSERT(opValue > 0 && opValue < sets->size());
+ U_ASSERT(opValue > 0 && opValue < fSets->size());
Regex8BitSet *s8 = &fPattern->fSets8[opValue];
- UnicodeSet *s = (UnicodeSet *)sets->elementAt(opValue);
+ UnicodeSet *s = (UnicodeSet *)fSets->elementAt(opValue);
// Loop through input, until either the input is exhausted or
// we reach a character that is not a member of the set.
if ((c & 0x7f) <= 0x29) { // Fast filter of non-new-line-s
if ((c == 0x0a) || // 0x0a is newline in both modes.
(((opValue & 2) == 0) && // IF not UNIX_LINES mode
- ((c<=0x0d && c>=0x0a) || c==0x85 || c==0x2028 || c==0x2029))) {
+ isLineTerminator(c))) {
// char is a line ending. Put the input pos back to the
// line ending char, and exit the scanning loop.
U16_BACK_1(inputBuf, 0, ix);
default:
// Trouble. The compiled pattern contains an entry with an
// unrecognized type tag.
- U_ASSERT(FALSE);
+ UPRV_UNREACHABLE;
}
if (U_FAILURE(status)) {
U_NAMESPACE_END
#endif // !UCONFIG_NO_REGULAR_EXPRESSIONS
+