/*
*******************************************************************************
-* Copyright (C) 1996-2004, International Business Machines
+* Copyright (C) 1996-2009, International Business Machines
* Corporation and others. All Rights Reserved.
*******************************************************************************
* file name: ucol.cpp
*/
#include "unicode/utypes.h"
-#include "ustrenum.h"
-#include "uassert.h"
#if !UCONFIG_NO_COLLATION
-#include "unicode/uloc.h"
-#include "unicode/coll.h"
-#include "unicode/tblcoll.h"
#include "unicode/coleitr.h"
#include "unicode/unorm.h"
#include "unicode/udata.h"
-#include "unicode/uchar.h"
-#include "unicode/caniter.h"
+#include "unicode/ustring.h"
-#include "ucol_bld.h"
#include "ucol_imp.h"
-#include "ucol_tok.h"
-#include "ucol_elm.h"
#include "bocsu.h"
#include "unormimp.h"
#include "unorm_it.h"
-#include "uresimp.h"
#include "umutex.h"
-#include "uhash.h"
+#include "cmemory.h"
#include "ucln_in.h"
#include "cstring.h"
#include "utracimp.h"
#include "putilimp.h"
+#include "uassert.h"
#ifdef UCOL_DEBUG
#include <stdio.h>
#define ZERO_CC_LIMIT_ 0xC0
-// static UCA. There is only one. Collators don't use it.
-// It is referenced only in ucol_initUCA and ucol_cleanup
-static UCollator* _staticUCA = NULL;
-// static pointer to udata memory. Inited in ucol_initUCA
-// used for cleanup in ucol_cleanup
-static UDataMemory* UCA_DATA_MEM = NULL;
-
// this is static pointer to the normalizer fcdTrieIndex
// it is always the same between calls to u_cleanup
// and therefore writing to it is not synchronized.
// It is cleaned in ucol_cleanup
static const uint16_t *fcdTrieIndex=NULL;
+// These are values from UCA required for
+// implicit generation and supressing sort key compression
+// they should regularly be in the UCA, but if one
+// is running without UCA, it could be a problem
+static const int32_t maxRegularPrimary = 0xA0;
+static const int32_t minImplicitPrimary = 0xE0;
+static const int32_t maxImplicitPrimary = 0xE4;
+
U_CDECL_BEGIN
static UBool U_CALLCONV
-isAcceptableUCA(void * /*context*/,
- const char * /*type*/, const char * /*name*/,
- const UDataInfo *pInfo){
- /* context, type & name are intentionally not used */
- if( pInfo->size>=20 &&
- pInfo->isBigEndian==U_IS_BIG_ENDIAN &&
- pInfo->charsetFamily==U_CHARSET_FAMILY &&
- pInfo->dataFormat[0]==UCA_DATA_FORMAT_0 && /* dataFormat="UCol" */
- pInfo->dataFormat[1]==UCA_DATA_FORMAT_1 &&
- pInfo->dataFormat[2]==UCA_DATA_FORMAT_2 &&
- pInfo->dataFormat[3]==UCA_DATA_FORMAT_3 &&
- pInfo->formatVersion[0]==UCA_FORMAT_VERSION_0 &&
- pInfo->formatVersion[1]>=UCA_FORMAT_VERSION_1// &&
- //pInfo->formatVersion[1]==UCA_FORMAT_VERSION_1 &&
- //pInfo->formatVersion[2]==UCA_FORMAT_VERSION_2 && // Too harsh
- //pInfo->formatVersion[3]==UCA_FORMAT_VERSION_3 && // Too harsh
- ) {
- UVersionInfo UCDVersion;
- u_getUnicodeVersion(UCDVersion);
- if(pInfo->dataVersion[0]==UCDVersion[0] &&
- pInfo->dataVersion[1]==UCDVersion[1]) { // &&
- //pInfo->dataVersion[2]==ucaDataInfo.dataVersion[2] &&
- //pInfo->dataVersion[3]==ucaDataInfo.dataVersion[3]) {
- return TRUE;
- } else {
- return FALSE;
- }
- } else {
- return FALSE;
- }
+ucol_cleanup(void)
+{
+ fcdTrieIndex = NULL;
+ return TRUE;
}
-
static int32_t U_CALLCONV
_getFoldingOffset(uint32_t data) {
return (int32_t)(data&0xFFFFFF);
U_CDECL_END
static
-inline void IInit_collIterate(const UCollator *collator, const UChar *sourceString,
- int32_t sourceLen, collIterate *s) {
+inline void IInit_collIterate(const UCollator *collator, const UChar *sourceString,
+ int32_t sourceLen, collIterate *s)
+{
(s)->string = (s)->pos = (UChar *)(sourceString);
(s)->origFlags = 0;
(s)->flags = 0;
/* change to enable easier checking for end of string for fcdpositon */
(s)->endp = NULL;
}
+ (s)->extendCEs = NULL;
+ (s)->extendCEsSize = 0;
(s)->CEpos = (s)->toReturn = (s)->CEs;
+ (s)->offsetBuffer = NULL;
+ (s)->offsetBufferSize = 0;
+ (s)->offsetReturn = (s)->offsetStore = NULL;
+ (s)->offsetRepeatCount = (s)->offsetRepeatValue = 0;
(s)->writableBuffer = (s)->stackWritableBuffer;
(s)->writableBufSize = UCOL_WRITABLE_BUFFER_SIZE;
(s)->coll = (collator);
(s)->flags |= UCOL_ITER_NORM;
}
if(collator->hiraganaQ == UCOL_ON && collator->strength >= UCOL_QUATERNARY) {
- (s)->flags |= UCOL_HIRAGANA_Q;
+ (s)->flags |= UCOL_HIRAGANA_Q;
}
(s)->iterator = NULL;
//(s)->iteratorIndex = 0;
backup->pos = data->pos;
backup->bufferaddress = data->writableBuffer;
backup->buffersize = data->writableBufSize;
+ backup->iteratorMove = 0;
+ backup->iteratorIndex = 0;
if(data->iterator != NULL) {
- //backup->iteratorIndex = data->iterator->getIndex(data->iterator, UITER_CURRENT);
- backup->iteratorIndex = data->iterator->getState(data->iterator);
- // no we try to fixup if we're using a normalizing iterator and we get UITER_NO_STATE
- backup->iteratorMove = 0;
- if(backup->iteratorIndex == UITER_NO_STATE) {
- while((backup->iteratorIndex = data->iterator->getState(data->iterator)) == UITER_NO_STATE) {
- backup->iteratorMove++;
- data->iterator->move(data->iterator, -1, UITER_CURRENT);
- }
- data->iterator->move(data->iterator, backup->iteratorMove, UITER_CURRENT);
- }
+ //backup->iteratorIndex = data->iterator->getIndex(data->iterator, UITER_CURRENT);
+ backup->iteratorIndex = data->iterator->getState(data->iterator);
+ // no we try to fixup if we're using a normalizing iterator and we get UITER_NO_STATE
+ if(backup->iteratorIndex == UITER_NO_STATE) {
+ while((backup->iteratorIndex = data->iterator->getState(data->iterator)) == UITER_NO_STATE) {
+ backup->iteratorMove++;
+ data->iterator->move(data->iterator, -1, UITER_CURRENT);
+ }
+ data->iterator->move(data->iterator, backup->iteratorMove, UITER_CURRENT);
+ }
}
}
inline void loadState(collIterate *data, const collIterateState *backup,
UBool forwards)
{
- UErrorCode status = U_ZERO_ERROR;
+ UErrorCode status = U_ZERO_ERROR;
data->flags = backup->flags;
data->origFlags = backup->origFlags;
if(data->iterator != NULL) {
- //data->iterator->move(data->iterator, backup->iteratorIndex, UITER_ZERO);
- data->iterator->setState(data->iterator, backup->iteratorIndex, &status);
- if(backup->iteratorMove != 0) {
- data->iterator->move(data->iterator, backup->iteratorMove, UITER_CURRENT);
- }
+ //data->iterator->move(data->iterator, backup->iteratorIndex, UITER_ZERO);
+ data->iterator->setState(data->iterator, backup->iteratorIndex, &status);
+ if(backup->iteratorMove != 0) {
+ data->iterator->move(data->iterator, backup->iteratorMove, UITER_CURRENT);
+ }
}
data->pos = backup->pos;
+
if ((data->flags & UCOL_ITER_INNORMBUF) &&
data->writableBuffer != backup->bufferaddress) {
/*
return FALSE;
}
-static
+/*static
inline UBool collIter_SimpleBos(collIterate *source) {
// if we're going backwards, we need to know whether there is more in the
// iterator, even if we are in the side buffer
return TRUE;
}
return FALSE;
-}
+}*/
//return (data->pos == data->string) ||
/* Following are the open/close functions */
/* */
/****************************************************************************/
-static UCollator*
-tryOpeningFromRules(UResourceBundle *collElem, UErrorCode *status) {
- int32_t rulesLen = 0;
- const UChar *rules = ures_getStringByKey(collElem, "Sequence", &rulesLen, status);
- return ucol_openRules(rules, rulesLen, UCOL_DEFAULT, UCOL_DEFAULT, NULL, status);
+static UCollator*
+ucol_initFromBinary(const uint8_t *bin, int32_t length,
+ const UCollator *base,
+ UCollator *fillIn,
+ UErrorCode *status)
+{
+ UCollator *result = fillIn;
+ if(U_FAILURE(*status)) {
+ return NULL;
+ }
+ /*
+ if(base == NULL) {
+ // we don't support null base yet
+ *status = U_ILLEGAL_ARGUMENT_ERROR;
+ return NULL;
+ }
+ */
+ // We need these and we could be running without UCA
+ uprv_uca_initImplicitConstants(status);
+ UCATableHeader *colData = (UCATableHeader *)bin;
+ // do we want version check here? We're trying to figure out whether collators are compatible
+ if((base && (uprv_memcmp(colData->UCAVersion, base->image->UCAVersion, sizeof(UVersionInfo)) != 0 ||
+ uprv_memcmp(colData->UCDVersion, base->image->UCDVersion, sizeof(UVersionInfo)) != 0)) ||
+ colData->version[0] != UCOL_BUILDER_VERSION)
+ {
+ *status = U_COLLATOR_VERSION_MISMATCH;
+ return NULL;
+ }
+ else {
+ if((uint32_t)length > (paddedsize(sizeof(UCATableHeader)) + paddedsize(sizeof(UColOptionSet)))) {
+ result = ucol_initCollator((const UCATableHeader *)bin, result, base, status);
+ if(U_FAILURE(*status)){
+ return NULL;
+ }
+ result->hasRealData = TRUE;
+ }
+ else {
+ if(base) {
+ result = ucol_initCollator(base->image, result, base, status);
+ ucol_setOptionsFromHeader(result, (UColOptionSet *)(bin+((const UCATableHeader *)bin)->options), status);
+ if(U_FAILURE(*status)){
+ return NULL;
+ }
+ result->hasRealData = FALSE;
+ }
+ else {
+ *status = U_USELESS_COLLATOR_ERROR;
+ return NULL;
+ }
+ }
+ result->freeImageOnClose = FALSE;
+ }
+ result->actualLocale = NULL;
+ result->validLocale = NULL;
+ result->requestedLocale = NULL;
+ result->rules = NULL;
+ result->rulesLength = 0;
+ result->freeRulesOnClose = FALSE;
+ result->ucaRules = NULL;
+ return result;
}
-
-U_CAPI UCollator*
-ucol_open(const char *loc,
- UErrorCode *status)
+U_CAPI UCollator* U_EXPORT2
+ucol_openBinary(const uint8_t *bin, int32_t length,
+ const UCollator *base,
+ UErrorCode *status)
{
- UTRACE_ENTRY_OC(UTRACE_UCOL_OPEN);
- UTRACE_DATA1(UTRACE_INFO, "locale = \"%s\"", loc);
- UCollator *result = NULL;
-
- u_init(status);
-#if !UCONFIG_NO_SERVICE
- result = Collator::createUCollator(loc, status);
- if (result == NULL)
-#endif
- {
- result = ucol_open_internal(loc, status);
- }
- UTRACE_EXIT_PTR_STATUS(result, *status);
- return result;
+ return ucol_initFromBinary(bin, length, base, NULL, status);
}
-// API in ucol_imp.h
-
-U_CFUNC UCollator*
-ucol_open_internal(const char *loc,
- UErrorCode *status)
+U_CAPI int32_t U_EXPORT2
+ucol_cloneBinary(const UCollator *coll,
+ uint8_t *buffer, int32_t capacity,
+ UErrorCode *status)
{
- const UCollator* UCA = ucol_initUCA(status);
+ int32_t length = 0;
+ if(U_FAILURE(*status)) {
+ return length;
+ }
+ if(capacity < 0) {
+ *status = U_ILLEGAL_ARGUMENT_ERROR;
+ return length;
+ }
+ if(coll->hasRealData == TRUE) {
+ length = coll->image->size;
+ if(length <= capacity) {
+ uprv_memcpy(buffer, coll->image, length);
+ } else {
+ *status = U_BUFFER_OVERFLOW_ERROR;
+ }
+ } else {
+ length = (int32_t)(paddedsize(sizeof(UCATableHeader))+paddedsize(sizeof(UColOptionSet)));
+ if(length <= capacity) {
+ /* build the UCATableHeader with minimal entries */
+ /* do not copy the header from the UCA file because its values are wrong! */
+ /* uprv_memcpy(result, UCA->image, sizeof(UCATableHeader)); */
- /* New version */
- if(U_FAILURE(*status)) return 0;
+ /* reset everything */
+ uprv_memset(buffer, 0, length);
+ /* set the tailoring-specific values */
+ UCATableHeader *myData = (UCATableHeader *)buffer;
+ myData->size = length;
+ /* offset for the options, the only part of the data that is present after the header */
+ myData->options = sizeof(UCATableHeader);
- UCollator *result = NULL;
- UResourceBundle *b = ures_open(U_ICUDATA_COLL, loc, status);
+ /* need to always set the expansion value for an upper bound of the options */
+ myData->expansion = myData->options + sizeof(UColOptionSet);
- /* we try to find stuff from keyword */
- UResourceBundle *collations = ures_getByKey(b, "collations", NULL, status);
- UResourceBundle *collElem = NULL;
- char keyBuffer[256];
- // if there is a keyword, we pick it up and try to get elements
- if(!uloc_getKeywordValue(loc, "collation", keyBuffer, 256, status)) {
- // no keyword. we try to find the default setting, which will give us the keyword value
- UResourceBundle *defaultColl = ures_getByKeyWithFallback(collations, "default", NULL, status);
- if(U_SUCCESS(*status)) {
- int32_t defaultKeyLen = 0;
- const UChar *defaultKey = ures_getString(defaultColl, &defaultKeyLen, status);
- u_UCharsToChars(defaultKey, keyBuffer, defaultKeyLen);
- keyBuffer[defaultKeyLen] = 0;
- } else {
- *status = U_INTERNAL_PROGRAM_ERROR;
- return NULL;
- }
- ures_close(defaultColl);
- }
- collElem = ures_getByKeyWithFallback(collations, keyBuffer, collElem, status);
+ myData->magic = UCOL_HEADER_MAGIC;
+ myData->isBigEndian = U_IS_BIG_ENDIAN;
+ myData->charSetFamily = U_CHARSET_FAMILY;
- UResourceBundle *binary = NULL;
- UErrorCode binaryStatus = U_ZERO_ERROR;
+ /* copy UCA's version; genrb will override all but the builder version with tailoring data */
+ uprv_memcpy(myData->version, coll->image->version, sizeof(UVersionInfo));
- if(*status == U_MISSING_RESOURCE_ERROR) { /* We didn't find the tailoring data, we fallback to the UCA */
- *status = U_USING_DEFAULT_WARNING;
- result = ucol_initCollator(UCA->image, result, UCA, status);
- // if we use UCA, real locale is root
- result->rb = ures_open(U_ICUDATA_COLL, "", status);
- result->elements = ures_open(U_ICUDATA_COLL, "", status);
- if(U_FAILURE(*status)) {
- goto clean;
- }
- ures_close(b);
- result->hasRealData = FALSE;
- } else if(U_SUCCESS(*status)) {
- binary = ures_getByKey(collElem, "%%CollationBin", NULL, &binaryStatus);
-
- if(binaryStatus == U_MISSING_RESOURCE_ERROR) { /* we didn't find the binary image, we should use the rules */
- binary = NULL;
- result = tryOpeningFromRules(collElem, status);
- if(U_FAILURE(*status)) {
- goto clean;
- }
- } else if(U_SUCCESS(*status)) { /* otherwise, we'll pick a collation data that exists */
- int32_t len = 0;
- const uint8_t *inData = ures_getBinary(binary, &len, status);
- UCATableHeader *colData = (UCATableHeader *)inData;
- if(uprv_memcmp(colData->UCAVersion, UCA->image->UCAVersion, sizeof(UVersionInfo)) != 0 ||
- uprv_memcmp(colData->UCDVersion, UCA->image->UCDVersion, sizeof(UVersionInfo)) != 0 ||
- colData->version[0] != UCOL_BUILDER_VERSION) {
- *status = U_DIFFERENT_UCA_VERSION;
- result = tryOpeningFromRules(collElem, status);
- } else {
- if(U_FAILURE(*status)){
- goto clean;
- }
- if((uint32_t)len > (paddedsize(sizeof(UCATableHeader)) + paddedsize(sizeof(UColOptionSet)))) {
- result = ucol_initCollator((const UCATableHeader *)inData, result, UCA, status);
- if(U_FAILURE(*status)){
- goto clean;
- }
- result->hasRealData = TRUE;
+ uprv_memcpy(myData->UCAVersion, coll->image->UCAVersion, sizeof(UVersionInfo));
+ uprv_memcpy(myData->UCDVersion, coll->image->UCDVersion, sizeof(UVersionInfo));
+ uprv_memcpy(myData->formatVersion, coll->image->formatVersion, sizeof(UVersionInfo));
+ myData->jamoSpecial = coll->image->jamoSpecial;
+
+ /* copy the collator options */
+ uprv_memcpy(buffer+paddedsize(sizeof(UCATableHeader)), coll->options, sizeof(UColOptionSet));
} else {
- result = ucol_initCollator(UCA->image, result, UCA, status);
- ucol_setOptionsFromHeader(result, (UColOptionSet *)(inData+((const UCATableHeader *)inData)->options), status);
- if(U_FAILURE(*status)){
- goto clean;
- }
- result->hasRealData = FALSE;
+ *status = U_BUFFER_OVERFLOW_ERROR;
}
- result->freeImageOnClose = FALSE;
- }
}
- result->rb = b;
- result->elements = collElem;
- } else { /* There is another error, and we're just gonna clean up */
-clean:
- ures_close(b);
- ures_close(collElem);
- ures_close(collations);
- ures_close(binary);
- return NULL;
- }
+ return length;
+}
- result->validLocale = NULL; // default is to use rb info
+U_CAPI UCollator* U_EXPORT2
+ucol_safeClone(const UCollator *coll, void *stackBuffer, int32_t * pBufferSize, UErrorCode *status)
+{
+ UCollator * localCollator;
+ int32_t bufferSizeNeeded = (int32_t)sizeof(UCollator);
+ char *stackBufferChars = (char *)stackBuffer;
+ int32_t imageSize = 0;
+ int32_t rulesSize = 0;
+ int32_t rulesPadding = 0;
+ uint8_t *image;
+ UChar *rules;
+ UBool colAllocated = FALSE;
+ UBool imageAllocated = FALSE;
- if(loc == NULL) {
- loc = ures_getLocale(result->rb, status);
- }
- result->requestedLocale = (char *)uprv_malloc((uprv_strlen(loc)+1)*sizeof(char));
- /* test for NULL */
- if (result->requestedLocale == NULL) {
- *status = U_MEMORY_ALLOCATION_ERROR;
- ures_close(b); // ??? appears needed
- ures_close(collElem);
- ures_close(collations);
- ures_close(binary); // ??? appears needed
- return NULL;
- }
- uprv_strcpy(result->requestedLocale, loc);
+ if (status == NULL || U_FAILURE(*status)){
+ return 0;
+ }
+ if ((stackBuffer && !pBufferSize) || !coll){
+ *status = U_ILLEGAL_ARGUMENT_ERROR;
+ return 0;
+ }
+ if (coll->rules && coll->freeRulesOnClose) {
+ rulesSize = (int32_t)(coll->rulesLength + 1)*sizeof(UChar);
+ rulesPadding = (int32_t)(bufferSizeNeeded % sizeof(UChar));
+ bufferSizeNeeded += rulesSize + rulesPadding;
+ }
- ures_close(binary);
- ures_close(collations); //??? we have to decide on that. Probably affects something :)
- return result;
-}
+ if (stackBuffer && *pBufferSize <= 0){ /* 'preflighting' request - set needed size into *pBufferSize */
+ *pBufferSize = bufferSizeNeeded;
+ return 0;
+ }
+
+ /* Pointers on 64-bit platforms need to be aligned
+ * on a 64-bit boundry in memory.
+ */
+ if (U_ALIGNMENT_OFFSET(stackBuffer) != 0) {
+ int32_t offsetUp = (int32_t)U_ALIGNMENT_OFFSET_UP(stackBufferChars);
+ if (*pBufferSize > offsetUp) {
+ *pBufferSize -= offsetUp;
+ stackBufferChars += offsetUp;
+ }
+ else {
+ /* prevent using the stack buffer but keep the size > 0 so that we do not just preflight */
+ *pBufferSize = 1;
+ }
+ }
+ stackBuffer = (void *)stackBufferChars;
+ if (stackBuffer == NULL || *pBufferSize < bufferSizeNeeded) {
+ /* allocate one here...*/
+ stackBufferChars = (char *)uprv_malloc(bufferSizeNeeded);
+ // Null pointer check.
+ if (stackBufferChars == NULL) {
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ return NULL;
+ }
+ colAllocated = TRUE;
+ if (U_SUCCESS(*status)) {
+ *status = U_SAFECLONE_ALLOCATED_WARNING;
+ }
+ }
+ localCollator = (UCollator *)stackBufferChars;
+ rules = (UChar *)(stackBufferChars + sizeof(UCollator) + rulesPadding);
+ {
+ UErrorCode tempStatus = U_ZERO_ERROR;
+ imageSize = ucol_cloneBinary(coll, NULL, 0, &tempStatus);
+ }
+ if (coll->freeImageOnClose) {
+ image = (uint8_t *)uprv_malloc(imageSize);
+ // Null pointer check
+ if (image == NULL) {
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ return NULL;
+ }
+ ucol_cloneBinary(coll, image, imageSize, status);
+ imageAllocated = TRUE;
+ }
+ else {
+ image = (uint8_t *)coll->image;
+ }
+ localCollator = ucol_initFromBinary(image, imageSize, coll->UCA, localCollator, status);
+ if (U_FAILURE(*status)) {
+ return NULL;
+ }
-U_CAPI void U_EXPORT2
-ucol_setReqValidLocales(UCollator *coll, char *requestedLocaleToAdopt, char *validLocaleToAdopt)
-{
- if (coll) {
- if (coll->validLocale) {
- uprv_free(coll->validLocale);
+ if (coll->rules) {
+ if (coll->freeRulesOnClose) {
+ localCollator->rules = u_strcpy(rules, coll->rules);
+ //bufferEnd += rulesSize;
+ }
+ else {
+ localCollator->rules = coll->rules;
+ }
+ localCollator->freeRulesOnClose = FALSE;
+ localCollator->rulesLength = coll->rulesLength;
}
- coll->validLocale = validLocaleToAdopt;
- if (coll->requestedLocale) { // should always have
- uprv_free(coll->requestedLocale);
+
+ int32_t i;
+ for(i = 0; i < UCOL_ATTRIBUTE_COUNT; i++) {
+ ucol_setAttribute(localCollator, (UColAttribute)i, ucol_getAttribute(coll, (UColAttribute)i, status), status);
}
- coll->requestedLocale = requestedLocaleToAdopt;
- }
+ // zero copies of pointers
+ localCollator->actualLocale = NULL;
+ localCollator->validLocale = NULL;
+ localCollator->requestedLocale = NULL;
+ localCollator->ucaRules = coll->ucaRules; // There should only be one copy here.
+ localCollator->freeOnClose = colAllocated;
+ localCollator->freeImageOnClose = imageAllocated;
+ return localCollator;
}
U_CAPI void U_EXPORT2
ucol_close(UCollator *coll)
{
- UTRACE_ENTRY_OC(UTRACE_UCOL_CLOSE);
- UTRACE_DATA1(UTRACE_INFO, "coll = %p", coll);
- if(coll != NULL) {
- // these are always owned by each UCollator struct,
- // so we always free them
- if(coll->validLocale != NULL) {
- uprv_free(coll->validLocale);
- }
- if(coll->requestedLocale != NULL) {
- uprv_free(coll->requestedLocale);
- }
+ UTRACE_ENTRY_OC(UTRACE_UCOL_CLOSE);
+ UTRACE_DATA1(UTRACE_INFO, "coll = %p", coll);
+ if(coll != NULL) {
+ // these are always owned by each UCollator struct,
+ // so we always free them
+ if(coll->validLocale != NULL) {
+ uprv_free(coll->validLocale);
+ }
+ if(coll->actualLocale != NULL) {
+ uprv_free(coll->actualLocale);
+ }
+ if(coll->requestedLocale != NULL) {
+ uprv_free(coll->requestedLocale);
+ }
+ if(coll->latinOneCEs != NULL) {
+ uprv_free(coll->latinOneCEs);
+ }
+ if(coll->options != NULL && coll->freeOptionsOnClose) {
+ uprv_free(coll->options);
+ }
+ if(coll->rules != NULL && coll->freeRulesOnClose) {
+ uprv_free((UChar *)coll->rules);
+ }
+ if(coll->image != NULL && coll->freeImageOnClose) {
+ uprv_free((UCATableHeader *)coll->image);
+ }
- /* Here, it would be advisable to close: */
- /* - UData for UCA (unless we stuff it in the root resb */
- /* Again, do we need additional housekeeping... HMMM! */
- UTRACE_DATA1(UTRACE_INFO, "coll->freeOnClose: %d", coll->freeOnClose);
- if(coll->freeOnClose){
- /* for safeClone, if freeOnClose is FALSE,
- don't free the other instance data */
- if(coll->freeOptionsOnClose != FALSE) {
- if(coll->options != NULL) {
- uprv_free(coll->options);
- }
- }
- if(coll->mapping != NULL) {
- /*ucmpe32_close(coll->mapping);*/
- uprv_free(coll->mapping);
- }
- if(coll->rules != NULL && coll->freeRulesOnClose) {
- uprv_free((UChar *)coll->rules);
- }
- if(coll->rb != NULL) { /* pointing to read-only memory */
- ures_close(coll->rb);
- }
- if(coll->freeImageOnClose == TRUE) {
- uprv_free((UCATableHeader *)coll->image);
- }
- if(coll->elements != NULL) {
- ures_close(coll->elements);
- }
- if(coll->latinOneCEs != NULL) {
- uprv_free(coll->latinOneCEs);
- }
- uprv_free(coll);
- }
- }
- UTRACE_EXIT();
+ /* Here, it would be advisable to close: */
+ /* - UData for UCA (unless we stuff it in the root resb */
+ /* Again, do we need additional housekeeping... HMMM! */
+ UTRACE_DATA1(UTRACE_INFO, "coll->freeOnClose: %d", coll->freeOnClose);
+ if(coll->freeOnClose){
+ /* for safeClone, if freeOnClose is FALSE,
+ don't free the other instance data */
+ uprv_free(coll);
+ }
+ }
+ UTRACE_EXIT();
}
-U_CAPI UCollator* U_EXPORT2
-ucol_openRules( const UChar *rules,
- int32_t rulesLength,
- UColAttributeValue normalizationMode,
- UCollationStrength strength,
- UParseError *parseError,
- UErrorCode *status)
+/* This one is currently used by genrb & tests. After constructing from rules (tailoring),*/
+/* you should be able to get the binary chunk to write out... Doesn't look very full now */
+U_CFUNC uint8_t* U_EXPORT2
+ucol_cloneRuleData(const UCollator *coll, int32_t *length, UErrorCode *status)
{
- uint32_t listLen = 0;
- UColTokenParser src;
- UColAttributeValue norm;
- UParseError tErr;
-
- if(status == NULL || U_FAILURE(*status)){
- return 0;
- }
+ uint8_t *result = NULL;
+ if(U_FAILURE(*status)) {
+ return NULL;
+ }
+ if(coll->hasRealData == TRUE) {
+ *length = coll->image->size;
+ result = (uint8_t *)uprv_malloc(*length);
+ /* test for NULL */
+ if (result == NULL) {
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ return NULL;
+ }
+ uprv_memcpy(result, coll->image, *length);
+ } else {
+ *length = (int32_t)(paddedsize(sizeof(UCATableHeader))+paddedsize(sizeof(UColOptionSet)));
+ result = (uint8_t *)uprv_malloc(*length);
+ /* test for NULL */
+ if (result == NULL) {
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ return NULL;
+ }
- u_init(status);
- if (U_FAILURE(*status)) {
- return NULL;
- }
+ /* build the UCATableHeader with minimal entries */
+ /* do not copy the header from the UCA file because its values are wrong! */
+ /* uprv_memcpy(result, UCA->image, sizeof(UCATableHeader)); */
- if(rulesLength < -1 || (rules == NULL && rulesLength != 0)) {
- *status = U_ILLEGAL_ARGUMENT_ERROR;
- return 0;
- }
+ /* reset everything */
+ uprv_memset(result, 0, *length);
- if(rulesLength == -1) {
- rulesLength = u_strlen(rules);
- }
+ /* set the tailoring-specific values */
+ UCATableHeader *myData = (UCATableHeader *)result;
+ myData->size = *length;
- if(parseError == NULL){
- parseError = &tErr;
- }
+ /* offset for the options, the only part of the data that is present after the header */
+ myData->options = sizeof(UCATableHeader);
- switch(normalizationMode) {
- case UCOL_OFF:
- case UCOL_ON:
- case UCOL_DEFAULT:
- norm = normalizationMode;
- break;
- default:
- *status = U_ILLEGAL_ARGUMENT_ERROR;
- return 0;
- }
+ /* need to always set the expansion value for an upper bound of the options */
+ myData->expansion = myData->options + sizeof(UColOptionSet);
- UCollator *UCA = ucol_initUCA(status);
+ myData->magic = UCOL_HEADER_MAGIC;
+ myData->isBigEndian = U_IS_BIG_ENDIAN;
+ myData->charSetFamily = U_CHARSET_FAMILY;
- if(U_FAILURE(*status)){
- return NULL;
- }
+ /* copy UCA's version; genrb will override all but the builder version with tailoring data */
+ uprv_memcpy(myData->version, coll->image->version, sizeof(UVersionInfo));
- ucol_tok_initTokenList(&src, rules, rulesLength, UCA, status);
- listLen = ucol_tok_assembleTokenList(&src,parseError, status);
+ uprv_memcpy(myData->UCAVersion, coll->image->UCAVersion, sizeof(UVersionInfo));
+ uprv_memcpy(myData->UCDVersion, coll->image->UCDVersion, sizeof(UVersionInfo));
+ uprv_memcpy(myData->formatVersion, coll->image->formatVersion, sizeof(UVersionInfo));
+ myData->jamoSpecial = coll->image->jamoSpecial;
- if(U_FAILURE(*status)) {
- /* if status is U_ILLEGAL_ARGUMENT_ERROR, src->current points at the offending option */
- /* if status is U_INVALID_FORMAT_ERROR, src->current points after the problematic part of the rules */
- /* so something might be done here... or on lower level */
-#ifdef UCOL_DEBUG
- if(*status == U_ILLEGAL_ARGUMENT_ERROR) {
- fprintf(stderr, "bad option starting at offset %i\n", src.current-src.source);
- } else {
- fprintf(stderr, "invalid rule just before offset %i\n", src.current-src.source);
+ /* copy the collator options */
+ uprv_memcpy(result+paddedsize(sizeof(UCATableHeader)), coll->options, sizeof(UColOptionSet));
}
-#endif
- ucol_tok_closeTokenList(&src);
- return NULL;
- }
- UCollator *result = NULL;
- UCATableHeader *table = NULL;
+ return result;
+}
- if(src.resultLen > 0 || src.removeSet != NULL) { /* we have a set of rules, let's make something of it */
- /* also, if we wanted to remove some contractions, we should make a tailoring */
- table = ucol_assembleTailoringTable(&src, status);
- if(U_SUCCESS(*status)) {
- // builder version
- table->version[0] = UCOL_BUILDER_VERSION;
- // no tailoring information on this level
- table->version[1] = table->version[2] = table->version[3] = 0;
- // set UCD version
- u_getUnicodeVersion(table->UCDVersion);
- // set UCA version
- uprv_memcpy(table->UCAVersion, UCA->image->UCAVersion, sizeof(UVersionInfo));
- result = ucol_initCollator(table, 0, UCA, status);
- result->hasRealData = TRUE;
- result->freeImageOnClose = TRUE;
- }
- } else { /* no rules, but no error either */
- // must be only options
- // We will init the collator from UCA
- result = ucol_initCollator(UCA->image, 0, UCA, status);
- // And set only the options
- UColOptionSet *opts = (UColOptionSet *)uprv_malloc(sizeof(UColOptionSet));
- /* test for NULL */
- if (opts == NULL) {
- *status = U_MEMORY_ALLOCATION_ERROR;
- goto cleanup;
+void ucol_setOptionsFromHeader(UCollator* result, UColOptionSet * opts, UErrorCode *status) {
+ if(U_FAILURE(*status)) {
+ return;
}
- uprv_memcpy(opts, src.opts, sizeof(UColOptionSet));
- ucol_setOptionsFromHeader(result, opts, status);
- result->freeOptionsOnClose = TRUE;
- result->hasRealData = FALSE;
- result->freeImageOnClose = FALSE;
- }
-
- if(U_SUCCESS(*status)) {
- UChar *newRules;
- result->dataInfo.dataVersion[0] = UCOL_BUILDER_VERSION;
- if(rulesLength > 0) {
- newRules = (UChar *)uprv_malloc((rulesLength+1)*U_SIZEOF_UCHAR);
- /* test for NULL */
- if (newRules == NULL) {
- *status = U_MEMORY_ALLOCATION_ERROR;
- goto cleanup;
- }
- uprv_memcpy(newRules, rules, rulesLength*U_SIZEOF_UCHAR);
- newRules[rulesLength]=0;
- result->rules = newRules;
- result->rulesLength = rulesLength;
- result->freeRulesOnClose = TRUE;
- }
- result->rb = NULL;
- result->elements = NULL;
- result->validLocale = NULL;
- result->requestedLocale = NULL;
- ucol_setAttribute(result, UCOL_STRENGTH, strength, status);
- ucol_setAttribute(result, UCOL_NORMALIZATION_MODE, norm, status);
- } else {
-cleanup:
- if(result != NULL) {
- ucol_close(result);
- } else {
- if(table != NULL) {
- uprv_free(table);
- }
- }
- result = NULL;
- }
-
- ucol_tok_closeTokenList(&src);
-
- return result;
-}
-
-/* This one is currently used by genrb & tests. After constructing from rules (tailoring),*/
-/* you should be able to get the binary chunk to write out... Doesn't look very full now */
-U_CAPI uint8_t* U_EXPORT2
-ucol_cloneRuleData(const UCollator *coll, int32_t *length, UErrorCode *status)
-{
- uint8_t *result = NULL;
- if(U_FAILURE(*status)) {
- return NULL;
- }
- if(coll->hasRealData == TRUE) {
- *length = coll->image->size;
- result = (uint8_t *)uprv_malloc(*length);
- /* test for NULL */
- if (result == NULL) {
- *status = U_MEMORY_ALLOCATION_ERROR;
- return NULL;
- }
- uprv_memcpy(result, coll->image, *length);
- } else {
- *length = (int32_t)(paddedsize(sizeof(UCATableHeader))+paddedsize(sizeof(UColOptionSet)));
- result = (uint8_t *)uprv_malloc(*length);
- /* test for NULL */
- if (result == NULL) {
- *status = U_MEMORY_ALLOCATION_ERROR;
- return NULL;
- }
-
- /* build the UCATableHeader with minimal entries */
- /* do not copy the header from the UCA file because its values are wrong! */
- /* uprv_memcpy(result, UCA->image, sizeof(UCATableHeader)); */
-
- /* reset everything */
- uprv_memset(result, 0, *length);
-
- /* set the tailoring-specific values */
- UCATableHeader *myData = (UCATableHeader *)result;
- myData->size = *length;
-
- /* offset for the options, the only part of the data that is present after the header */
- myData->options = sizeof(UCATableHeader);
-
- /* need to always set the expansion value for an upper bound of the options */
- myData->expansion = myData->options + sizeof(UColOptionSet);
-
- myData->magic = UCOL_HEADER_MAGIC;
- myData->isBigEndian = U_IS_BIG_ENDIAN;
- myData->charSetFamily = U_CHARSET_FAMILY;
-
- /* copy UCA's version; genrb will override all but the builder version with tailoring data */
- uprv_memcpy(myData->version, coll->image->version, sizeof(UVersionInfo));
-
- uprv_memcpy(myData->UCAVersion, coll->image->UCAVersion, sizeof(UVersionInfo));
- uprv_memcpy(myData->UCDVersion, coll->image->UCDVersion, sizeof(UVersionInfo));
- uprv_memcpy(myData->formatVersion, coll->image->formatVersion, sizeof(UVersionInfo));
- myData->jamoSpecial = coll->image->jamoSpecial;
-
- /* copy the collator options */
- uprv_memcpy(result+paddedsize(sizeof(UCATableHeader)), coll->options, sizeof(UColOptionSet));
- }
- return result;
-}
-
-void ucol_setOptionsFromHeader(UCollator* result, UColOptionSet * opts, UErrorCode *status) {
- if(U_FAILURE(*status)) {
- return;
- }
result->caseFirst = (UColAttributeValue)opts->caseFirst;
result->caseLevel = (UColAttributeValue)opts->caseLevel;
result->frenchCollation = (UColAttributeValue)opts->frenchCollation;
result->options = opts;
}
-#if 0
-// doesn't look like anybody is using this
-void ucol_putOptionsToHeader(UCollator* result, UColOptionSet * opts, UErrorCode *status) {
- if(U_FAILURE(*status)) {
- return;
- }
- opts->caseFirst = result->caseFirst;
- opts->caseLevel = result->caseLevel;
- opts->frenchCollation = result->frenchCollation;
- opts->normalizationMode = result->normalizationMode;
- opts->strength = result->strength;
- opts->variableTopValue = result->variableTopValue;
- opts->alternateHandling = result->alternateHandling;
- opts->hiraganaQ = result->hiraganaQ;
- opts->numericCollation = result->numericCollation;
-}
-#endif
-
/**
* Approximate determination if a character is at a contraction end.
*/
static
inline UBool ucol_contractionEndCP(UChar c, const UCollator *coll) {
- if (UTF_IS_TRAIL(c)) {
- return TRUE;
- }
-
if (c < coll->minContrEndCP) {
return FALSE;
}
int32_t hash = c;
uint8_t htbyte;
if (hash >= UCOL_UNSAFECP_TABLE_SIZE*8) {
+ if (U16_IS_TRAIL(c)) {
+ return TRUE;
+ }
hash = (hash & UCOL_UNSAFECP_TABLE_MASK) + 256;
}
htbyte = coll->contrEndCP[hash>>3];
* in contraction processing.
*/
static
-inline uint8_t i_getCombiningClass(UChar c, const UCollator *coll) {
+inline uint8_t i_getCombiningClass(UChar32 c, const UCollator *coll) {
uint8_t sCC = 0;
- if (c >= 0x300 && ucol_unsafeCP(c, coll)) {
+ if ((c >= 0x300 && ucol_unsafeCP(c, coll)) || c > 0xFFFF) {
sCC = u_getCombiningClass(c);
}
return sCC;
}
-
UCollator* ucol_initCollator(const UCATableHeader *image, UCollator *fillIn, const UCollator *UCA, UErrorCode *status) {
UChar c;
UCollator *result = fillIn;
result->freeOnClose = FALSE;
}
+ // init FCD data
+ if (fcdTrieIndex == NULL) {
+ // The result is constant, until the library is reloaded.
+ fcdTrieIndex = unorm_getFCDTrie(status);
+ ucln_i18n_registerCleanup(UCLN_I18N_UCOL, ucol_cleanup);
+ }
+
result->image = image;
+ result->mapping.getFoldingOffset = _getFoldingOffset;
const uint8_t *mapping = (uint8_t*)result->image+result->image->mappingPosition;
- /*CompactEIntArray *newUCAmapping = ucmpe32_openFromData(&mapping, status);*/
- UTrie *newUCAmapping = (UTrie *)uprv_malloc(sizeof(UTrie));
- if(newUCAmapping != NULL) {
- utrie_unserialize(newUCAmapping, mapping, result->image->endExpansionCE - result->image->mappingPosition, status);
- } else {
- *status = U_MEMORY_ALLOCATION_ERROR;
- if(result->freeOnClose == TRUE) {
- uprv_free(result);
- result = NULL;
- }
- return result;
- }
- if(U_SUCCESS(*status)) {
- result->mapping = newUCAmapping;
- } else {
+ utrie_unserialize(&result->mapping, mapping, result->image->endExpansionCE - result->image->mappingPosition, status);
+ if(U_FAILURE(*status)) {
if(result->freeOnClose == TRUE) {
uprv_free(result);
result = NULL;
}
- uprv_free(newUCAmapping);
return result;
}
/*result->latinOneMapping = (uint32_t*)((uint8_t*)result->image+result->image->latinOneMapping);*/
- result->latinOneMapping = UTRIE_GET32_LATIN1(result->mapping);
+ result->latinOneMapping = UTRIE_GET32_LATIN1(&result->mapping);
result->contractionCEs = (uint32_t*)((uint8_t*)result->image+result->image->contractionCEs);
result->contractionIndex = (UChar*)((uint8_t*)result->image+result->image->contractionIndex);
result->expansion = (uint32_t*)((uint8_t*)result->image+result->image->expansion);
result->hiraganaQisDefault = TRUE;
result->numericCollationisDefault = TRUE;
- result->scriptOrder = NULL;
+ /*result->scriptOrder = NULL;*/
result->rules = NULL;
result->rulesLength = 0;
+ result->freeRulesOnClose = FALSE;
/* get the version info from UCATableHeader and populate the Collator struct*/
- result->dataInfo.dataVersion[0] = result->image->version[0]; /* UCA Builder version*/
- result->dataInfo.dataVersion[1] = result->image->version[1]; /* UCA Tailoring rules version*/
+ result->dataVersion[0] = result->image->version[0]; /* UCA Builder version*/
+ result->dataVersion[1] = result->image->version[1]; /* UCA Tailoring rules version*/
+ result->dataVersion[2] = 0;
+ result->dataVersion[3] = 0;
result->unsafeCP = (uint8_t *)result->image + result->image->unsafeCP;
result->minUnsafeCP = 0;
ucol_updateInternalState(result, status);
+ /* Normally these will be set correctly later. This is the default if you use UCA or the default. */
+ result->ucaRules = NULL;
+ result->actualLocale = NULL;
+ result->validLocale = NULL;
+ result->requestedLocale = NULL;
+ result->hasRealData = FALSE; // real data lives in .dat file...
+ result->freeImageOnClose = FALSE;
return result;
}
*/
/**
- * Function used to:
- * a) collapse the 2 different Han ranges from UCA into one (in the right order), and
- * b) bump any non-CJK characters by 10FFFF.
- * The relevant blocks are:
- * A: 4E00..9FFF; CJK Unified Ideographs
- * F900..FAFF; CJK Compatibility Ideographs
- * B: 3400..4DBF; CJK Unified Ideographs Extension A
- * 20000..XX; CJK Unified Ideographs Extension B (and others later on)
- * As long as
- * no new B characters are allocated between 4E00 and FAFF, and
- * no new A characters are outside of this range,
- * (very high probability) this simple code will work.
- * The reordered blocks are:
- * Block1 is CJK
- * Block2 is CJK_COMPAT_USED
- * Block3 is CJK_A
- * (all contiguous)
- * Any other CJK gets its normal code point
- * Any non-CJK gets +10FFFF
- * When we reorder Block1, we make sure that it is at the very start,
- * so that it will use a 3-byte form.
- * Warning: the we only pick up the compatibility characters that are
- * NOT decomposed, so that block is smaller!
- */
+ * Function used to:
+ * a) collapse the 2 different Han ranges from UCA into one (in the right order), and
+ * b) bump any non-CJK characters by 10FFFF.
+ * The relevant blocks are:
+ * A: 4E00..9FFF; CJK Unified Ideographs
+ * F900..FAFF; CJK Compatibility Ideographs
+ * B: 3400..4DBF; CJK Unified Ideographs Extension A
+ * 20000..XX; CJK Unified Ideographs Extension B (and others later on)
+ * As long as
+ * no new B characters are allocated between 4E00 and FAFF, and
+ * no new A characters are outside of this range,
+ * (very high probability) this simple code will work.
+ * The reordered blocks are:
+ * Block1 is CJK
+ * Block2 is CJK_COMPAT_USED
+ * Block3 is CJK_A
+ * (all contiguous)
+ * Any other CJK gets its normal code point
+ * Any non-CJK gets +10FFFF
+ * When we reorder Block1, we make sure that it is at the very start,
+ * so that it will use a 3-byte form.
+ * Warning: the we only pick up the compatibility characters that are
+ * NOT decomposed, so that block is smaller!
+ */
// CONSTANTS
static const UChar32
}
}
-U_CAPI uint32_t U_EXPORT2
+static uint32_t U_EXPORT2
uprv_uca_getImplicitPrimary(UChar32 cp) {
//if (DEBUG) System.out.println("Incoming: " + Utility.hex(cp));
uprv_uca_getRawFromImplicit(uint32_t implicit) {
UChar32 result;
UChar32 b3 = implicit & 0xFF;
- implicit >>= 8;
- UChar32 b2 = implicit & 0xFF;
- implicit >>= 8;
- UChar32 b1 = implicit & 0xFF;
- implicit >>= 8;
- UChar32 b0 = implicit & 0xFF;
+ UChar32 b2 = (implicit >> 8) & 0xFF;
+ UChar32 b1 = (implicit >> 16) & 0xFF;
+ UChar32 b0 = (implicit >> 24) & 0xFF;
// simple parameter checks
if (b0 < min3Primary || b0 > max4Primary
- || b1 < minTrail || b1 > maxTrail) return -1;
+ || b1 < minTrail || b1 > maxTrail)
+ return -1;
// normal offsets
b1 -= minTrail;
// take care of the final values, and compose
if (b0 < min4Primary) {
- if (b2 < minTrail || b2 > max3Trail || b3 != 0) return -1;
+ if (b2 < minTrail || b2 > max3Trail || b3 != 0)
+ return -1;
b2 -= minTrail;
UChar32 remainder = b2 % final3Multiplier;
- if (remainder != 0) return -1;
+ if (remainder != 0)
+ return -1;
b0 -= min3Primary;
b2 /= final3Multiplier;
result = ((b0 * medialCount) + b1) * final3Count + b2;
} else {
- if (b2 < minTrail || b2 > maxTrail
- || b3 < minTrail || b3 > max4Trail) return -1;
+ if (b2 < minTrail || b2 > maxTrail
+ || b3 < minTrail || b3 > max4Trail)
+ return -1;
b2 -= minTrail;
b3 -= minTrail;
UChar32 remainder = b3 % final4Multiplier;
- if (remainder != 0) return -1;
+ if (remainder != 0)
+ return -1;
b3 /= final4Multiplier;
b0 -= min4Primary;
result = (((b0 * medialCount) + b1) * medialCount + b2) * final4Count + b3 + min4Boundary;
}
// final check
- if (result < 0 || result > UCOL_MAX_INPUT) return -1;
+ if (result < 0 || result > UCOL_MAX_INPUT)
+ return -1;
return result;
}
int gap3, int primaries3count,
UErrorCode *status) {
// some simple parameter checks
- if (minPrimary < 0 || minPrimary >= maxPrimary || maxPrimary > 0xFF) {
- *status = U_ILLEGAL_ARGUMENT_ERROR;
- return;
- };
- if (minTrailIn < 0 || minTrailIn >= maxTrailIn || maxTrailIn > 0xFF) {
- *status = U_ILLEGAL_ARGUMENT_ERROR;
- return;
- };
- if (primaries3count < 1) {
+ if ((minPrimary < 0 || minPrimary >= maxPrimary || maxPrimary > 0xFF)
+ || (minTrailIn < 0 || minTrailIn >= maxTrailIn || maxTrailIn > 0xFF)
+ || (primaries3count < 1))
+ {
*status = U_ILLEGAL_ARGUMENT_ERROR;
return;
};
int32_t totalNeeded = UCOL_MAX_INPUT - min4Boundary;
int32_t neededPerPrimaryByte = divideAndRoundUp(totalNeeded, primaries4count);
- //if (DEBUG) System.out.println("neededPerPrimaryByte: " + neededPerPrimaryByte);
int32_t neededPerFinalByte = divideAndRoundUp(neededPerPrimaryByte, medialCount * medialCount);
- //if (DEBUG) System.out.println("neededPerFinalByte: " + neededPerFinalByte);
int32_t gap4 = (maxTrail - minTrail - 1) / neededPerFinalByte;
- //if (DEBUG) System.out.println("expandedGap: " + gap4);
if (gap4 < 1) {
*status = U_ILLEGAL_ARGUMENT_ERROR;
return;
final4Multiplier = gap4 + 1;
final4Count = neededPerFinalByte;
max4Trail = minTrail + (final4Count - 1) * final4Multiplier;
- /*
- if (DEBUG) {
- System.out.println("final4Count: " + final4Count);
- for (int counter = 0; counter <= final4Count; ++counter) {
- int value = minTrail + (1 + counter)*final4Multiplier;
- System.out.println(counter + "\t" + value + "\t" + Utility.hex(value));
- }
- }
- */
}
/**
* Supply parameters for generating implicit CEs
*/
U_CAPI void U_EXPORT2
-uprv_uca_initImplicitConstants(int32_t minPrimary, int32_t maxPrimary, UErrorCode *status) {
+uprv_uca_initImplicitConstants(UErrorCode *status) {
// 13 is the largest 4-byte gap we can use without getting 2 four-byte forms.
- initImplicitConstants(minPrimary, maxPrimary, 0x04, 0xFE, 1, 1, status);
-}
-
-U_CDECL_BEGIN
-static UBool U_CALLCONV
-ucol_cleanup(void)
-{
- if (UCA_DATA_MEM) {
- udata_close(UCA_DATA_MEM);
- UCA_DATA_MEM = NULL;
- }
- if (_staticUCA) {
- ucol_close(_staticUCA);
- _staticUCA = NULL;
- }
- fcdTrieIndex = NULL;
- return TRUE;
-}
-U_CDECL_END
-
-/* do not close UCA returned by ucol_initUCA! */
-UCollator *
-ucol_initUCA(UErrorCode *status) {
- if(U_FAILURE(*status)) {
- return NULL;
- }
- umtx_lock(NULL);
- UBool f = (_staticUCA == NULL);
- umtx_unlock(NULL);
-
- if(f) {
- UCollator *newUCA = NULL;
- UDataMemory *result = udata_openChoice(NULL, UCA_DATA_TYPE, UCA_DATA_NAME, isAcceptableUCA, NULL, status);
-
- if(U_FAILURE(*status)) {
- if (result) {
- udata_close(result);
- }
- uprv_free(newUCA);
- }
-
- // init FCD data
- if (fcdTrieIndex == NULL) {
- fcdTrieIndex = unorm_getFCDTrie(status);
- ucln_i18n_registerCleanup(UCLN_I18N_UCOL, ucol_cleanup);
- }
-
- if(result != NULL) { /* It looks like sometimes we can fail to find the data file */
- newUCA = ucol_initCollator((const UCATableHeader *)udata_getMemory(result), newUCA, newUCA, status);
- if(U_SUCCESS(*status)){
- newUCA->rb = NULL;
- newUCA->elements = NULL;
- newUCA->validLocale = NULL;
- newUCA->requestedLocale = NULL;
- newUCA->hasRealData = FALSE; // real data lives in .dat file...
- newUCA->freeImageOnClose = FALSE;
- umtx_lock(NULL);
- if(_staticUCA == NULL) {
- _staticUCA = newUCA;
- UCA_DATA_MEM = result;
- result = NULL;
- newUCA = NULL;
- }
- umtx_unlock(NULL);
-
- if(newUCA != NULL) {
- udata_close(result);
- uprv_free(newUCA);
- }
- else {
- ucln_i18n_registerCleanup(UCLN_I18N_UCOL, ucol_cleanup);
- }
- // Initalize variables for implicit generation
- const UCAConstants *UCAconsts = (UCAConstants *)((uint8_t *)_staticUCA->image + _staticUCA->image->UCAConsts);
- uprv_uca_initImplicitConstants(UCAconsts->UCA_PRIMARY_IMPLICIT_MIN, UCAconsts->UCA_PRIMARY_IMPLICIT_MAX, status);
- _staticUCA->mapping->getFoldingOffset = _getFoldingOffset;
- }else{
- udata_close(result);
- uprv_free(newUCA);
- _staticUCA= NULL;
- }
- }
- }
- return _staticUCA;
+ //initImplicitConstants(minPrimary, maxPrimary, 0x04, 0xFE, 1, 1, status);
+ initImplicitConstants(minImplicitPrimary, maxImplicitPrimary, 0x04, 0xFE, 1, 1, status);
}
return;
}
- if(collationSource->writableBuffer != collationSource->stackWritableBuffer) {
- collationSource->flags |= UCOL_ITER_ALLOCATED;
- }
- collationSource->pos = collationSource->writableBuffer;
- collationSource->origFlags = collationSource->flags;
- collationSource->flags |= UCOL_ITER_INNORMBUF;
- collationSource->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN | UCOL_USE_ITERATOR);
+ if(collationSource->writableBuffer != collationSource->stackWritableBuffer) {
+ collationSource->flags |= UCOL_ITER_ALLOCATED;
+ }
+ collationSource->pos = collationSource->writableBuffer;
+ collationSource->origFlags = collationSource->flags;
+ collationSource->flags |= UCOL_ITER_INNORMBUF;
+ collationSource->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN | UCOL_USE_ITERATOR);
}
// This function takes the iterator and extracts normalized stuff up to the next boundary
// It is similar in the end results to the collIterNormalize, but for the cases when we
// use an iterator
-static
+/*static
inline void normalizeIterator(collIterate *collationSource) {
UErrorCode status = U_ZERO_ERROR;
UBool wasNormalized = FALSE;
collationSource->origFlags = collationSource->flags;
collationSource->flags |= UCOL_ITER_INNORMBUF;
collationSource->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN | UCOL_USE_ITERATOR);
-}
+}*/
/* Incremental FCD check and normalize */
/* trie access */
fcd = unorm_getFCD16(fcdTrieIndex, c);
if (fcd != 0) {
- if (UTF_IS_FIRST_SURROGATE(c)) {
- if ((endP == NULL || srcP != endP) && UTF_IS_SECOND_SURROGATE(c2=*srcP)) {
+ if (U16_IS_LEAD(c)) {
+ if ((endP == NULL || srcP != endP) && U16_IS_TRAIL(c2=*srcP)) {
++srcP;
fcd = unorm_getFCD16FromSurrogatePair(fcdTrieIndex, fcd, c2);
} else {
c = *srcP++;
/* trie access */
fcd = unorm_getFCD16(fcdTrieIndex, c);
- if (fcd != 0 && UTF_IS_FIRST_SURROGATE(c)) {
- if ((endP == NULL || srcP != endP) && UTF_IS_SECOND_SURROGATE(c2=*srcP)) {
+ if (fcd != 0 && U16_IS_LEAD(c)) {
+ if ((endP == NULL || srcP != endP) && U16_IS_TRAIL(c2=*srcP)) {
++srcP;
fcd = unorm_getFCD16FromSurrogatePair(fcdTrieIndex, fcd, c2);
} else {
/* */
/****************************************************************************/
+static uint32_t getImplicit(UChar32 cp, collIterate *collationSource);
+static uint32_t getPrevImplicit(UChar32 cp, collIterate *collationSource);
+
/* there should be a macro version of this function in the header file */
/* This is the first function that tries to fetch a collation element */
/* If it's not succesfull or it encounters a more difficult situation */
inline uint32_t ucol_IGetNextCE(const UCollator *coll, collIterate *collationSource, UErrorCode *status) {
uint32_t order = 0;
if (collationSource->CEpos > collationSource->toReturn) { /* Are there any CEs from previous expansions? */
- order = *(collationSource->toReturn++); /* if so, return them */
- if(collationSource->CEpos == collationSource->toReturn) {
- collationSource->CEpos = collationSource->toReturn = collationSource->CEs;
- }
- return order;
+ order = *(collationSource->toReturn++); /* if so, return them */
+ if(collationSource->CEpos == collationSource->toReturn) {
+ collationSource->CEpos = collationSource->toReturn = collationSource->extendCEs ? collationSource->extendCEs : collationSource->CEs;
+ }
+ return order;
}
UChar ch = 0;
+ collationSource->offsetReturn = NULL;
for (;;) /* Loop handles case when incremental normalize switches */
{ /* to or from the side buffer / original string, and we */
- /* need to start again to get the next character. */
+ /* need to start again to get the next character. */
if ((collationSource->flags & (UCOL_ITER_HASLEN | UCOL_ITER_INNORMBUF | UCOL_ITER_NORM | UCOL_HIRAGANA_Q | UCOL_USE_ITERATOR)) == 0)
{
else if(collationSource->flags & UCOL_USE_ITERATOR) {
UChar32 iterCh = collationSource->iterator->next(collationSource->iterator);
if(iterCh == U_SENTINEL) {
- return UCOL_NO_MORE_CES;
+ return UCOL_NO_MORE_CES;
}
ch = (UChar)iterCh;
}
}
if(collationSource->flags&UCOL_HIRAGANA_Q) {
- if((ch>=0x3040 && ch<=0x3094) || ch == 0x309d || ch == 0x309e) {
- collationSource->flags |= UCOL_WAS_HIRAGANA;
- } else {
- collationSource->flags &= ~UCOL_WAS_HIRAGANA;
- }
+ /* Codepoints \u3099-\u309C are both Hiragana and Katakana. Set the flag
+ * based on whether the previous codepoint was Hiragana or Katakana.
+ */
+ if(((ch>=0x3040 && ch<=0x3096) || (ch >= 0x309d && ch <= 0x309f)) ||
+ ((collationSource->flags & UCOL_WAS_HIRAGANA) && (ch >= 0x3099 && ch <= 0x309C))) {
+ collationSource->flags |= UCOL_WAS_HIRAGANA;
+ } else {
+ collationSource->flags &= ~UCOL_WAS_HIRAGANA;
+ }
}
// We've got a character. See if there's any fcd and/or normalization stuff to do.
} // end for (;;)
- if (ch <= 0xFF) {
- /* For latin-1 characters we never need to fall back to the UCA table */
- /* because all of the UCA data is replicated in the latinOneMapping array */
- order = coll->latinOneMapping[ch];
- if (order > UCOL_NOT_FOUND) {
- order = ucol_prv_getSpecialCE(coll, ch, order, collationSource, status);
- }
- }
- else
- {
- order = UTRIE_GET32_FROM_LEAD(coll->mapping, ch);
- if(order > UCOL_NOT_FOUND) { /* if a CE is special */
- order = ucol_prv_getSpecialCE(coll, ch, order, collationSource, status); /* and try to get the special CE */
- }
- if(order == UCOL_NOT_FOUND && coll->UCA) { /* We couldn't find a good CE in the tailoring */
+ if (ch <= 0xFF) {
+ /* For latin-1 characters we never need to fall back to the UCA table */
+ /* because all of the UCA data is replicated in the latinOneMapping array */
+ order = coll->latinOneMapping[ch];
+ if (order > UCOL_NOT_FOUND) {
+ order = ucol_prv_getSpecialCE(coll, ch, order, collationSource, status);
+ }
+ }
+ else
+ {
+ order = UTRIE_GET32_FROM_LEAD(&coll->mapping, ch);
+ if(order > UCOL_NOT_FOUND) { /* if a CE is special */
+ order = ucol_prv_getSpecialCE(coll, ch, order, collationSource, status); /* and try to get the special CE */
+ }
+ if(order == UCOL_NOT_FOUND && coll->UCA) { /* We couldn't find a good CE in the tailoring */
/* if we got here, the codepoint MUST be over 0xFF - so we look directly in the trie */
- order = UTRIE_GET32_FROM_LEAD(coll->UCA->mapping, ch);
+ order = UTRIE_GET32_FROM_LEAD(&coll->UCA->mapping, ch);
if(order > UCOL_NOT_FOUND) { /* UCA also gives us a special CE */
- order = ucol_prv_getSpecialCE(coll->UCA, ch, order, collationSource, status);
+ order = ucol_prv_getSpecialCE(coll->UCA, ch, order, collationSource, status);
}
- }
- }
+ }
+ }
+ if(order == UCOL_NOT_FOUND) {
+ order = getImplicit(ch, collationSource);
+ }
return order; /* return the CE */
}
data->writableBuffer = (UChar *)uprv_malloc((normLen + 1) *
sizeof(UChar));
if(data->writableBuffer == NULL) { // something is wrong here, return
- return;
+ data->writableBufSize = 0; // Reset writableBufSize
+ return;
}
data->flags |= UCOL_ITER_ALLOCATED;
/* to handle the zero termination */
unorm_normalize(pStart, (pEnd - pStart) + 1, UNORM_NFD, 0, pStartNorm,
normLen, &status);
+ if (data->offsetBuffer == NULL) {
+ int32_t len = normLen >= UCOL_EXPAND_CE_BUFFER_SIZE ? normLen + 1 : UCOL_EXPAND_CE_BUFFER_SIZE;
+
+ data->offsetBufferSize = len;
+ data->offsetBuffer = (int32_t *) uprv_malloc(sizeof(int32_t) * len);
+ data->offsetStore = data->offsetBuffer;
+ } else if(data->offsetBufferSize < (int32_t) normLen) {
+ int32_t storeIX = data->offsetStore - data->offsetBuffer;
+ int32_t *tob = (int32_t *) uprv_realloc(data->offsetBuffer, sizeof(int32_t) * (normLen + 1));
+
+ if (tob != NULL) {
+ data->offsetBuffer = tob;
+ data->offsetStore = &data->offsetBuffer[storeIX];
+ data->offsetBufferSize = normLen + 1;
+ }
+ }
+
+ /*
+ * The usual case at this point is that we've got a base
+ * character followed by marks that were normalized. If
+ * fcdPosition is NULL, that means that we backed up to
+ * the beginning of the string and there's no base character.
+ *
+ * Forward processing will usually normalize when it sees
+ * the first mark, so that mark will get it's natural offset
+ * and the rest will get the offset of the character following
+ * the marks. The base character will also get its natural offset.
+ *
+ * We write the offset of the base character, if there is one,
+ * followed by the offset of the first mark and then the offsets
+ * of the rest of the marks.
+ */
+ int32_t firstMarkOffset = 0;
+ int32_t trailOffset = data->pos - data->string + 1;
+ int32_t trailCount = normLen - 1;
+
+ if (data->fcdPosition != NULL) {
+ int32_t baseOffset = data->fcdPosition - data->string;
+ UChar baseChar = *data->fcdPosition;
+
+ firstMarkOffset = baseOffset + 1;
+
+ /*
+ * If the base character is the start of a contraction, forward processing
+ * will normalize the marks while checking for the contraction, which means
+ * that the offset of the first mark will the same as the other marks.
+ *
+ * **** THIS IS PROBABLY NOT A COMPLETE TEST ****
+ */
+ if (baseChar >= 0x100) {
+ uint32_t baseOrder = UTRIE_GET32_FROM_LEAD(&data->coll->mapping, baseChar);
+
+ if (baseOrder == UCOL_NOT_FOUND && data->coll->UCA) {
+ baseOrder = UTRIE_GET32_FROM_LEAD(&data->coll->UCA->mapping, baseChar);
+ }
+
+ if (baseOrder > UCOL_NOT_FOUND && getCETag(baseOrder) == CONTRACTION_TAG) {
+ firstMarkOffset = trailOffset;
+ }
+ }
+
+ *(data->offsetStore++) = baseOffset;
+ }
+
+ *(data->offsetStore++) = firstMarkOffset;
+
+ for (int32_t i = 0; i < trailCount; i += 1) {
+ *(data->offsetStore++) = trailOffset;
+ }
+
+ data->offsetRepeatValue = trailOffset;
+
+ data->offsetReturn = data->offsetStore - 1;
+ if (data->offsetReturn == data->offsetBuffer) {
+ data->offsetStore = data->offsetBuffer;
+ }
+
data->pos = data->writableBuffer + data->writableBufSize;
data->origFlags = data->flags;
data->flags |= UCOL_ITER_INNORMBUF;
/* Get the trailing combining class of the current character. */
c = *--src;
- if (!UTF_IS_SURROGATE(c)) {
+ if (!U16_IS_SURROGATE(c)) {
fcd = unorm_getFCD16(fcdTrieIndex, c);
- } else if (UTF_IS_SECOND_SURROGATE(c) && start < src && UTF_IS_FIRST_SURROGATE(c2 = *(src - 1))) {
+ } else if (U16_IS_TRAIL(c) && start < src && U16_IS_LEAD(c2 = *(src - 1))) {
--src;
fcd = unorm_getFCD16(fcdTrieIndex, c2);
if (fcd != 0) {
}
c = *--src;
- if (!UTF_IS_SURROGATE(c)) {
+ if (!U16_IS_SURROGATE(c)) {
fcd = unorm_getFCD16(fcdTrieIndex, c);
- } else if (UTF_IS_SECOND_SURROGATE(c) && start < src && UTF_IS_FIRST_SURROGATE(c2 = *(src - 1))) {
+ } else if (U16_IS_TRAIL(c) && start < src && U16_IS_LEAD(c2 = *(src - 1))) {
--src;
fcd = unorm_getFCD16(fcdTrieIndex, c2);
if (fcd != 0) {
*/
inline static
UChar peekCharacter(collIterate *source, int32_t offset) {
- if(source->pos != NULL) {
- return *(source->pos + offset);
- } else if(source->iterator != NULL) {
- if(offset != 0) {
- source->iterator->move(source->iterator, offset, UITER_CURRENT);
- UChar toReturn = (UChar)source->iterator->next(source->iterator);
- source->iterator->move(source->iterator, -offset-1, UITER_CURRENT);
- return toReturn;
+ if(source->pos != NULL) {
+ return *(source->pos + offset);
+ } else if(source->iterator != NULL) {
+ if(offset != 0) {
+ source->iterator->move(source->iterator, offset, UITER_CURRENT);
+ UChar toReturn = (UChar)source->iterator->next(source->iterator);
+ source->iterator->move(source->iterator, -offset-1, UITER_CURRENT);
+ return toReturn;
+ } else {
+ return (UChar)source->iterator->current(source->iterator);
+ }
} else {
- return (UChar)source->iterator->current(source->iterator);
+ return (UChar)U_SENTINEL;
}
- } else {
- return (UChar)U_SENTINEL;
- }
}
/**
*/
static
inline UBool isAtStartPrevIterate(collIterate *data) {
- if(data->pos == NULL && data->iterator != NULL) {
- return !data->iterator->hasPrevious(data->iterator);
- }
- //return (collIter_bos(data)) ||
- return (data->pos == data->string) ||
- ((data->flags & UCOL_ITER_INNORMBUF) &&
- *(data->pos - 1) == 0 && data->fcdPosition == NULL);
+ if(data->pos == NULL && data->iterator != NULL) {
+ return !data->iterator->hasPrevious(data->iterator);
+ }
+ //return (collIter_bos(data)) ||
+ return (data->pos == data->string) ||
+ ((data->flags & UCOL_ITER_INNORMBUF) &&
+ *(data->pos - 1) == 0 && data->fcdPosition == NULL);
}
static
inline void goBackOne(collIterate *data) {
# if 0
- // somehow, it looks like we need to keep iterator synced up
- // at all times, as above.
- if(data->pos) {
- data->pos--;
- }
- if(data->iterator) {
- data->iterator->previous(data->iterator);
- }
+ // somehow, it looks like we need to keep iterator synced up
+ // at all times, as above.
+ if(data->pos) {
+ data->pos--;
+ }
+ if(data->iterator) {
+ data->iterator->previous(data->iterator);
+ }
#endif
- if(data->iterator && (data->flags & UCOL_USE_ITERATOR)) {
- data->iterator->previous(data->iterator);
- }
- if(data->pos) {
- data->pos --;
- }
+ if(data->iterator && (data->flags & UCOL_USE_ITERATOR)) {
+ data->iterator->previous(data->iterator);
+ }
+ if(data->pos) {
+ data->pos --;
+ }
}
/**
UErrorCode *status)
{
uint32_t result = (uint32_t)UCOL_NULLORDER;
- if (data->toReturn > data->CEs) {
- data->toReturn --;
+
+ if (data->offsetReturn != NULL) {
+ if (data->offsetRepeatCount > 0) {
+ data->offsetRepeatCount -= 1;
+ } else {
+ if (data->offsetReturn == data->offsetBuffer) {
+ data->offsetReturn = NULL;
+ data->offsetStore = data->offsetBuffer;
+ } else {
+ data->offsetReturn -= 1;
+ }
+ }
+ }
+
+ if ((data->extendCEs && data->toReturn > data->extendCEs) ||
+ (!data->extendCEs && data->toReturn > data->CEs))
+ {
+ data->toReturn -= 1;
result = *(data->toReturn);
- if (data->CEs == data->toReturn) {
+ if (data->CEs == data->toReturn || data->extendCEs == data->toReturn) {
data->CEpos = data->toReturn;
}
}
else {
UChar ch = 0;
+
/*
Loop handles case when incremental normalize switches to or from the
side buffer / original string, and we need to start again to get the
Because pointer points to the last accessed character,
hence we have to increment it by one here.
*/
- if (data->fcdPosition == NULL) {
+ data->flags = data->origFlags;
+ data->offsetRepeatValue = 0;
+
+ if (data->fcdPosition == NULL) {
data->pos = data->string;
return UCOL_NO_MORE_CES;
}
else {
data->pos = data->fcdPosition + 1;
}
- data->flags = data->origFlags;
- continue;
+
+ continue;
}
}
*/
if (ucol_contractionEndCP(ch, coll) && !isAtStartPrevIterate(data)) {
result = ucol_prv_getSpecialPrevCE(coll, ch, UCOL_CONTRACTION, data, status);
- }
- else {
- // TODO: fix me for THAI - I reference *(data->pos-1)
- if ((data->flags & UCOL_ITER_INNORMBUF) == 0 &&
- /*UCOL_ISTHAIBASECONSONANT(ch) &&*/ // This is from the old specs - we now rearrange unconditionally
- // makes sure that we're not at the beggining of the string
- //data->pos > data->string &&
- !collIter_bos(data) &&
- UCOL_ISTHAIPREVOWEL(peekCharacter(data, -1)))
- //UCOL_ISTHAIPREVOWEL(*(data->pos -1)))
+ } else {
+ if (ch <= 0xFF) {
+ result = coll->latinOneMapping[ch];
+ }
+ else {
+ result = UTRIE_GET32_FROM_LEAD(&coll->mapping, ch);
+ }
+ if (result > UCOL_NOT_FOUND) {
+ result = ucol_prv_getSpecialPrevCE(coll, ch, result, data, status);
+ }
+ if (result == UCOL_NOT_FOUND) { // Not found in master list
+ if (!isAtStartPrevIterate(data) &&
+ ucol_contractionEndCP(ch, data->coll))
{
- collIterateState entryState;
- backupState(data, &entryState);
- // we have to check if the previous character is also Thai
- // if not, we can just set the result
- goBackOne(data);
- if(collIter_bos(data) || !UCOL_ISTHAIPREVOWEL(peekCharacter(data, -1))) {
- loadState(data, &entryState, FALSE);
- result = UCOL_THAI;
- } else { // previous is also reordered
- // we need to go back as long as they are being reordered
- // count over the range of reorderable characters and see
- // if there is an even or odd number of them
- // if even, we should not reorder. If odd we should reorder.
- int32_t noReordered = 1; // the one we already detected
- while(!collIter_bos(data) && UCOL_ISTHAIPREVOWEL(peekCharacter(data, -1))) {
- noReordered++;
- goBackOne(data);
- }
- if(noReordered & 1) { // odd number of reorderables
- result = UCOL_THAI;
- } else {
- result = UTRIE_GET32_FROM_LEAD(coll->mapping, ch);
- }
- loadState(data, &entryState, FALSE);
+ result = UCOL_CONTRACTION;
+ } else {
+ if(coll->UCA) {
+ result = UTRIE_GET32_FROM_LEAD(&coll->UCA->mapping, ch);
}
}
- else if (ch <= 0xFF) {
- result = coll->latinOneMapping[ch];
- //if (result > UCOL_NOT_FOUND) {
- //result = ucol_prv_getSpecialPrevCE(coll, ch, result, data, status);
- //}
- }
- else {
- /*result = ucmpe32_get(coll->mapping, ch);*/
- result = UTRIE_GET32_FROM_LEAD(coll->mapping, ch);
- }
- if (result > UCOL_NOT_FOUND) {
- result = ucol_prv_getSpecialPrevCE(coll, ch, result, data, status);
- }
- if (result == UCOL_NOT_FOUND) {
- if (!isAtStartPrevIterate(data) &&
- ucol_contractionEndCP(ch, data->coll)) {
- result = UCOL_CONTRACTION;
- }
- else {
- /*result = ucmpe32_get(UCA->mapping, ch);*/
- if(coll->UCA) {
- result = UTRIE_GET32_FROM_LEAD(coll->UCA->mapping, ch);
- }
- }
- if (result > UCOL_NOT_FOUND && coll->UCA) {
- result = ucol_prv_getSpecialPrevCE(coll->UCA, ch, result, data, status);
- }
+ if (result > UCOL_NOT_FOUND) {
+ if(coll->UCA) {
+ result = ucol_prv_getSpecialPrevCE(coll->UCA, ch, result, data, status);
+ }
}
}
}
+
+ if(result == UCOL_NOT_FOUND) {
+ result = getPrevImplicit(ch, data);
+ }
+ }
+
return result;
}
/* ucol_getPrevCE, out-of-line version for use from other files. */
-U_CAPI uint32_t U_EXPORT2
+U_CFUNC uint32_t U_EXPORT2
ucol_getPrevCE(const UCollator *coll, collIterate *data,
UErrorCode *status) {
return ucol_IGetPrevCE(coll, data, status);
/* this should be connected to special Jamo handling */
-U_CAPI uint32_t U_EXPORT2
+U_CFUNC uint32_t U_EXPORT2
ucol_getFirstCE(const UCollator *coll, UChar u, UErrorCode *status) {
- collIterate colIt;
- uint32_t order;
- IInit_collIterate(coll, &u, 1, &colIt);
- order = ucol_IGetNextCE(coll, &colIt, status);
- /*UCOL_GETNEXTCE(order, coll, colIt, status);*/
- return order;
+ collIterate colIt;
+ uint32_t order;
+ IInit_collIterate(coll, &u, 1, &colIt);
+ order = ucol_IGetNextCE(coll, &colIt, status);
+ /*UCOL_GETNEXTCE(order, coll, colIt, status);*/
+ return order;
}
/**
static
inline UChar * insertBufferEnd(collIterate *data, UChar *pNull, UChar ch)
{
- uint32_t size = data->writableBufSize;
- UChar *newbuffer;
- const uint32_t incsize = 5;
+ uint32_t size = data->writableBufSize;
+ UChar *newbuffer;
+ static const uint32_t INCSIZE = 5;
if ((data->writableBuffer + size) > (pNull + 1)) {
*pNull = ch;
buffer will always be null terminated at the end.
giving extra space since it is likely that more characters will be added.
*/
- size += incsize;
+ size += INCSIZE;
newbuffer = (UChar *)uprv_malloc(sizeof(UChar) * size);
if(newbuffer != NULL) { // something wrong, but no status
- uprv_memcpy(newbuffer, data->writableBuffer,
- data->writableBufSize * sizeof(UChar));
+ uprv_memcpy(newbuffer, data->writableBuffer,
+ data->writableBufSize * sizeof(UChar));
- freeHeapWritableBuffer(data);
- data->writableBufSize = size;
- data->writableBuffer = newbuffer;
+ freeHeapWritableBuffer(data);
+ data->writableBufSize = size;
+ data->writableBuffer = newbuffer;
- newbuffer = newbuffer + data->writableBufSize;
- *newbuffer = ch;
- *(newbuffer + 1) = 0;
+ newbuffer = newbuffer + data->writableBufSize;
+ *newbuffer = ch;
+ *(newbuffer + 1) = 0;
}
return newbuffer;
}
data->writableBuffer = temp;
data->writableBufSize = size;
data->flags |= UCOL_ITER_ALLOCATED;
+ } else {
+ return; // Avoid writing past bound of buffer->writableBuffer.
}
}
/* at the end of the string, dump it into the normalizer */
data->pos = insertBufferEnd(data, data->pos,
*(data->fcdPosition)) + 1;
+ // Check if data->pos received a null pointer
+ if (data->pos == NULL) {
+ return (UChar)-1; // Return to indicate error.
+ }
return *(data->fcdPosition ++);
}
pEndWritableBuffer = data->pos;
int32_t length = data->fcdPosition - data->pos + 1;
data->pos = insertBufferEnd(data, pEndWritableBuffer,
data->pos - 1, length);
+ // Check if data->pos received a null pointer
+ if (data->pos == NULL) {
+ return (UChar)-1; // Return to indicate error.
+ }
return *(data->pos ++);
}
}
appended to the buffer.
*/
data->pos = insertBufferEnd(data, pEndWritableBuffer, ch) + 1;
+ // Check if data->pos received a null pointer
+ if (data->pos == NULL) {
+ return (UChar)-1; // Return to indicate error.
+ }
}
/* points back to the pos in string */
source->writableBuffer =
(UChar *)uprv_malloc((length + 1) * sizeof(UChar));
if(source->writableBuffer == NULL) {
- return;
+ source->writableBufSize = 0; // Reset size
+ return;
}
source->writableBufSize = length;
}
backupState(source, &discState);
//*tempdb = *(source->pos - 1);
- *tempdb = peekCharacter(source, -1);
- tempdb ++;
- while (TRUE) {
+ *tempdb = peekCharacter(source, -1);
+ tempdb++;
+ for (;;) {
UChar *UCharOffset;
UChar schar,
tchar;
static
inline UBool isNonChar(UChar32 cp) {
- if ((cp & 0xFFFE) == 0xFFFE || (0xFDD0 <= cp && cp <= 0xFDEF) || (0xD800 <= cp && cp <= 0xDFFF)) {
- return TRUE;
- }
- return FALSE;
+ return (UBool)((cp & 0xFFFE) == 0xFFFE || (0xFDD0 <= cp && cp <= 0xFDEF) || (0xD800 <= cp && cp <= 0xDFFF));
}
/* now uses Mark's getImplicitPrimary code */
static
inline uint32_t getImplicit(UChar32 cp, collIterate *collationSource) {
- if(isNonChar(cp)) {
- return 0;
- }
- uint32_t r = uprv_uca_getImplicitPrimary(cp);
- *(collationSource->CEpos++) = ((r & 0x0000FFFF)<<16) | 0x000000C0;
- return (r & UCOL_PRIMARYMASK) | 0x00000505; // This was 'order'
+ if(isNonChar(cp)) {
+ return 0;
+ }
+ uint32_t r = uprv_uca_getImplicitPrimary(cp);
+ *(collationSource->CEpos++) = ((r & 0x0000FFFF)<<16) | 0x000000C0;
+ collationSource->offsetRepeatCount += 1;
+ return (r & UCOL_PRIMARYMASK) | 0x00000505; // This was 'order'
}
/**
static
inline UChar * insertBufferFront(collIterate *data, UChar *pNull, UChar ch)
{
- uint32_t size = data->writableBufSize;
- UChar *end;
- UChar *newbuffer;
- const uint32_t incsize = 5;
+ uint32_t size = data->writableBufSize;
+ UChar *end;
+ UChar *newbuffer;
+ static const uint32_t INCSIZE = 5;
if (pNull > data->writableBuffer + 1) {
*pNull = ch;
buffer will always be null terminated infront.
giving extra space since it is likely that more characters will be added.
*/
- size += incsize;
+ size += INCSIZE;
newbuffer = (UChar *)uprv_malloc(sizeof(UChar) * size);
if(newbuffer == NULL) {
- return NULL;
+ return NULL;
}
- end = newbuffer + incsize;
+ end = newbuffer + INCSIZE;
uprv_memcpy(end, data->writableBuffer,
data->writableBufSize * sizeof(UChar));
*end = ch;
* @param data collation iterator data
*/
static
-inline void normalizePrevContraction(collIterate *data)
+inline void normalizePrevContraction(collIterate *data, UErrorCode *status)
{
- UChar *buffer = data->writableBuffer;
- uint32_t buffersize = data->writableBufSize;
uint32_t nulltermsize;
- UErrorCode status = U_ZERO_ERROR;
+ UErrorCode localstatus = U_ZERO_ERROR;
UChar *pEnd = data->pos + 1; /* End normalize + 1 */
UChar *pStart;
uint32_t normLen;
normalization buffer not used yet, we'll pull down the next
character into the end of the buffer
*/
- *(buffer + (buffersize - 1)) = *(data->pos + 1);
- nulltermsize = buffersize - 1;
+ *(data->writableBuffer + (data->writableBufSize - 1)) = *(data->pos + 1);
+ nulltermsize = data->writableBufSize - 1;
}
else {
- nulltermsize = buffersize;
- UChar *temp = buffer + (nulltermsize - 1);
+ nulltermsize = data->writableBufSize;
+ UChar *temp = data->writableBuffer + (nulltermsize - 1);
while (*(temp --) != 0) {
nulltermsize --;
}
pStart = data->fcdPosition + 1;
}
- normLen = unorm_normalize(pStart, pEnd - pStart, UNORM_NFD, 0, buffer, 0,
- &status);
+ normLen = unorm_normalize(pStart, pEnd - pStart, UNORM_NFD, 0, data->writableBuffer, 0,
+ &localstatus);
if (nulltermsize <= normLen) {
- uint32_t size = buffersize - nulltermsize + normLen + 1;
+ uint32_t size = data->writableBufSize - nulltermsize + normLen + 1;
UChar *temp = (UChar *)uprv_malloc(size * sizeof(UChar));
- if(temp != NULL) {
- nulltermsize = normLen + 1;
- uprv_memcpy(temp + normLen, buffer,
- sizeof(UChar) * (buffersize - nulltermsize));
- freeHeapWritableBuffer(data);
- data->writableBuffer = temp;
- data->writableBufSize = size;
+ if (temp == NULL) {
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ return;
}
+ nulltermsize = normLen + 1;
+ uprv_memcpy(temp + normLen, data->writableBuffer,
+ sizeof(UChar) * (data->writableBufSize - nulltermsize));
+ freeHeapWritableBuffer(data);
+ data->writableBuffer = temp;
+ data->writableBufSize = size;
}
- status = U_ZERO_ERROR;
/*
this puts the null termination infront of the normalized string instead
of the end
*/
- pStartNorm = buffer + (nulltermsize - normLen);
+ pStartNorm = data->writableBuffer + (nulltermsize - normLen);
*(pStartNorm - 1) = 0;
unorm_normalize(pStart, pEnd - pStart, UNORM_NFD, 0, pStartNorm, normLen,
- &status);
+ status);
data->pos = data->writableBuffer + nulltermsize;
data->origFlags = data->flags;
* @return previous character
*/
static
-inline UChar getPrevNormalizedChar(collIterate *data)
+inline UChar getPrevNormalizedChar(collIterate *data, UErrorCode *status)
{
UChar prevch;
UChar ch;
}
start = data->pos;
- if (data->flags & UCOL_ITER_HASLEN) {
+ if ((data->fcdPosition==NULL)||(data->flags & UCOL_ITER_HASLEN)) {
/* in data string */
if ((start - 1) == data->string) {
return *(start - 1);
UChar *backuppos = data->pos;
data->pos = start;
if (collPrevIterFCD(data)) {
- normalizePrevContraction(data);
+ normalizePrevContraction(data, status);
return *(data->pos - 1);
}
data->pos = backuppos;
/* This function handles the special CEs like contractions, expansions, surrogates, Thai */
/* It is called by getNextCE */
+/* The following should be even */
+#define UCOL_MAX_DIGITS_FOR_NUMBER 254
+
uint32_t ucol_prv_getSpecialCE(const UCollator *coll, UChar ch, uint32_t CE, collIterate *source, UErrorCode *status) {
- collIterateState entryState;
- backupState(source, &entryState);
- UChar32 cp = ch;
-
- for (;;) {
- // This loop will repeat only in the case of contractions, and only when a contraction
- // is found and the first CE resulting from that contraction is itself a special
- // (an expansion, for example.) All other special CE types are fully handled the
- // first time through, and the loop exits.
-
- const uint32_t *CEOffset = NULL;
- switch(getCETag(CE)) {
- case NOT_FOUND_TAG:
- /* This one is not found, and we'll let somebody else bother about it... no more games */
- return CE;
- case SURROGATE_TAG:
- /* we encountered a leading surrogate. We shall get the CE by using the following code unit */
- /* two things can happen here: next code point can be a trailing surrogate - we will use it */
- /* to retrieve the CE, or it is not a trailing surrogate (or the string is done). In that case */
- /* we return 0 (completely ignorable - per UCA specification */
- {
- UChar trail;
- collIterateState state;
- backupState(source, &state);
- if (collIter_eos(source) || !(UTF16_IS_TRAIL((trail = getNextNormalizedChar(source))))) {
- // we chould have stepped one char forward and it might have turned that it
- // was not a trail surrogate. In that case, we have to backup.
- loadState(source, &state, TRUE);
- return 0;
- } else {
- /* TODO: CE contain the data from the previous CE + the mask. It should at least be unmasked */
- CE = UTRIE_GET32_FROM_OFFSET_TRAIL(coll->mapping, CE&0xFFFFFF, trail);
- if(CE == UCOL_NOT_FOUND) { // there are tailored surrogates in this block, but not this one.
- // We need to backup
- loadState(source, &state, TRUE);
+ collIterateState entryState;
+ backupState(source, &entryState);
+ UChar32 cp = ch;
+
+ for (;;) {
+ // This loop will repeat only in the case of contractions, and only when a contraction
+ // is found and the first CE resulting from that contraction is itself a special
+ // (an expansion, for example.) All other special CE types are fully handled the
+ // first time through, and the loop exits.
+
+ const uint32_t *CEOffset = NULL;
+ switch(getCETag(CE)) {
+ case NOT_FOUND_TAG:
+ /* This one is not found, and we'll let somebody else bother about it... no more games */
return CE;
- }
- // calculate the supplementary code point value, if surrogate was not tailored
- cp = ((((uint32_t)ch)<<10UL)+(trail)-(((uint32_t)0xd800<<10UL)+0xdc00-0x10000));
- }
- }
- break;
- case THAI_TAG:
- /* Thai/Lao reordering */
- if (((source->flags) & UCOL_ITER_INNORMBUF) /* Already Swapped || */
- || collIter_eos(source)) /* At end of string. No swap possible */
- {
- // Treat Thai as a length one expansion */
- CEOffset = (uint32_t *)coll->image+getExpansionOffset(CE); /* find the offset to expansion table */
- CE = *CEOffset++;
- }
- else
- {
- // Move the prevowel and the following base Consonant into the normalization buffer
- // with their order swapped
- // Note: this operation might activate the normalization buffer. We have to check for
- // that and act accordingly.
- UChar thCh = getNextNormalizedChar(source);
- UChar32 cp = 0;
- if(U16_IS_LEAD(thCh)) {
- if(!collIter_eos(source)) {
- collIterateState thaiState;
- backupState(source, &thaiState);
- UChar trailCh = getNextNormalizedChar(source);
- if(U16_IS_TRAIL(trailCh)) {
- cp = U16_GET_SUPPLEMENTARY(thCh, trailCh);
- } else {
- loadState(source, &thaiState, TRUE);
- cp = (UChar32)thCh;
- }
- } else {
- cp = (UChar32)thCh;
- }
- } else {
- cp = (UChar32)thCh;
- }
- // Now we have the character that needs to be decomposed
- // if the normalizing buffer was not used, we can just use our structure and be happy.
- if((source->flags & UCOL_ITER_INNORMBUF) == 0) {
- // decompose into writable buffer
- int32_t decompLen = unorm_getDecomposition(cp, FALSE, &(source->writableBuffer[1]), UCOL_WRITABLE_BUFFER_SIZE-1);
- if(decompLen < 0) {
- decompLen = -decompLen;
- }
- // reorder Thai and the character after it
- if(decompLen >= 2 && U16_IS_LEAD(source->writableBuffer[1]) && U16_IS_TRAIL(source->writableBuffer[2])) {
- source->writableBuffer[0] = source->writableBuffer[1];
- source->writableBuffer[1] = source->writableBuffer[2];
- source->writableBuffer[2] = ch;
- } else {
- source->writableBuffer[0] = source->writableBuffer[1];
- source->writableBuffer[1] = ch;
- }
- // zero terminate, since normalization buffer is always zero terminated
- source->writableBuffer[decompLen+1] = 0; // we added the prevowel
- if(source->pos) {
- source->fcdPosition = source->pos; // Indicate where to continue in main input string
- // after exhausting the writableBuffer
- }
- source->pos = source->writableBuffer;
- source->origFlags = source->flags;
- source->flags |= UCOL_ITER_INNORMBUF;
- source->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN | UCOL_USE_ITERATOR);
- }
- else {
- // stuff is already normalized... what to do here???
-
- // if we are in the normalization buffer, thCh must be in it
- // prove by contradiction
- // if thCh is not in the normalization buffer,
- // that means that trailCh is the normalization buffer
- // that means that trailCh is a trail surrogate by the above
- // bounding if block, this is a contradiction because there
- // are no characters at the moment that decomposes to an
- // unmatched surrogate. qed.
- if (cp >= 0x10000) {
- source->writableBuffer[0] = source->writableBuffer[1];
- source->writableBuffer[1] = source->writableBuffer[2];
- source->writableBuffer[2] = ch;
- }
- else {
- source->writableBuffer[0] = source->writableBuffer[1];
- source->writableBuffer[1] = ch;
- }
- source->pos = source->writableBuffer;
- }
- CE = UCOL_IGNORABLE;
- }
- break;
- case SPEC_PROC_TAG:
- {
- // Special processing is getting a CE that is preceded by a certain prefix
- // Currently this is only needed for optimizing Japanese length and iteration marks.
- // When we encouter a special processing tag, we go backwards and try to see if
- // we have a match.
- // Contraction tables are used - so the whole process is not unlike contraction.
- // prefix data is stored backwards in the table.
- const UChar *UCharOffset;
- UChar schar, tchar;
- collIterateState prefixState;
- backupState(source, &prefixState);
- loadState(source, &entryState, TRUE);
- goBackOne(source); // We want to look at the point where we entered - actually one
- // before that...
+ case SPEC_PROC_TAG:
+ {
+ // Special processing is getting a CE that is preceded by a certain prefix
+ // Currently this is only needed for optimizing Japanese length and iteration marks.
+ // When we encouter a special processing tag, we go backwards and try to see if
+ // we have a match.
+ // Contraction tables are used - so the whole process is not unlike contraction.
+ // prefix data is stored backwards in the table.
+ const UChar *UCharOffset;
+ UChar schar, tchar;
+ collIterateState prefixState;
+ backupState(source, &prefixState);
+ loadState(source, &entryState, TRUE);
+ goBackOne(source); // We want to look at the point where we entered - actually one
+ // before that...
+
+ for(;;) {
+ // This loop will run once per source string character, for as long as we
+ // are matching a potential contraction sequence
+
+ // First we position ourselves at the begining of contraction sequence
+ const UChar *ContractionStart = UCharOffset = (UChar *)coll->image+getContractOffset(CE);
+ if (collIter_bos(source)) {
+ CE = *(coll->contractionCEs + (UCharOffset - coll->contractionIndex));
+ break;
+ }
+ schar = getPrevNormalizedChar(source, status);
+ goBackOne(source);
- for(;;) {
- // This loop will run once per source string character, for as long as we
- // are matching a potential contraction sequence
+ while(schar > (tchar = *UCharOffset)) { /* since the contraction codepoints should be ordered, we skip all that are smaller */
+ UCharOffset++;
+ }
- // First we position ourselves at the begining of contraction sequence
- const UChar *ContractionStart = UCharOffset = (UChar *)coll->image+getContractOffset(CE);
- if (collIter_bos(source)) {
- CE = *(coll->contractionCEs + (UCharOffset - coll->contractionIndex));
- break;
- }
- schar = getPrevNormalizedChar(source);
- goBackOne(source);
-
- while(schar > (tchar = *UCharOffset)) { /* since the contraction codepoints should be ordered, we skip all that are smaller */
- UCharOffset++;
- }
+ if (schar == tchar) {
+ // Found the source string char in the table.
+ // Pick up the corresponding CE from the table.
+ CE = *(coll->contractionCEs +
+ (UCharOffset - coll->contractionIndex));
+ }
+ else
+ {
+ // Source string char was not in the table.
+ // We have not found the prefix.
+ CE = *(coll->contractionCEs +
+ (ContractionStart - coll->contractionIndex));
+ }
- if (schar == tchar) {
- // Found the source string char in the table.
- // Pick up the corresponding CE from the table.
- CE = *(coll->contractionCEs +
- (UCharOffset - coll->contractionIndex));
- }
- else
- {
- // if there is a completely ignorable code point in the middle of
- // a prefix, we need to act as if it's not there
- // assumption: 'real' noncharacters (*fffe, *ffff, fdd0-fdef are set to zero)
- // lone surrogates cannot be set to zero as it would break other processing
- uint32_t isZeroCE = UTRIE_GET32_FROM_LEAD(coll->mapping, schar);
- // it's easy for BMP code points
- if(isZeroCE == 0) {
- continue;
- } else if(UTF_IS_TRAIL(schar) || UTF_IS_LEAD(schar)) {
- // for supplementary code points, we have to check the next one
- // situations where we are going to ignore
- // 1. beginning of the string: schar is a lone surrogate
- // 2. schar is a lone surrogate
- // 3. schar is a trail surrogate in a valid surrogate sequence
- // that is explicitly set to zero.
- if (!collIter_bos(source)) {
- UChar lead;
- if(UTF_IS_LEAD(lead = getPrevNormalizedChar(source))) {
- isZeroCE = UTRIE_GET32_FROM_LEAD(coll->mapping, lead);
- if(getCETag(isZeroCE) == SURROGATE_TAG) {
- uint32_t finalCE = UTRIE_GET32_FROM_OFFSET_TRAIL(coll->mapping, isZeroCE&0xFFFFFF, schar);
- if(finalCE == 0) {
- // this is a real, assigned completely ignorable code point
- goBackOne(source);
- continue;
- }
+ if(!isPrefix(CE)) {
+ // The source string char was in the contraction table, and the corresponding
+ // CE is not a prefix CE. We found the prefix, break
+ // out of loop, this CE will end up being returned. This is the normal
+ // way out of prefix handling when the source actually contained
+ // the prefix.
+ break;
}
- } else {
- // lone surrogate, completely ignorable
- continue;
- }
- } else {
- // lone surrogate at the beggining, completely ignorable
- continue;
}
- }
- // Source string char was not in the table.
- // We have not found the prefix.
- CE = *(coll->contractionCEs +
- (ContractionStart - coll->contractionIndex));
- }
-
- if(!isPrefix(CE)) {
- // The source string char was in the contraction table, and the corresponding
- // CE is not a prefix CE. We found the prefix, break
- // out of loop, this CE will end up being returned. This is the normal
- // way out of prefix handling when the source actually contained
- // the prefix.
- break;
- }
- }
- if(CE != UCOL_NOT_FOUND) { // we found something and we can merilly continue
- loadState(source, &prefixState, TRUE);
- if(source->origFlags & UCOL_USE_ITERATOR) {
- source->flags = source->origFlags;
- }
- } else { // prefix search was a failure, we have to backup all the way to the start
- loadState(source, &entryState, TRUE);
- }
- break;
- }
- case CONTRACTION_TAG:
- {
- /* This should handle contractions */
- collIterateState state;
- backupState(source, &state);
- uint32_t firstCE = UCOL_NOT_FOUND;
- const UChar *UCharOffset;
- UChar schar, tchar;
-
- for (;;) {
- /* This loop will run once per source string character, for as long as we */
- /* are matching a potential contraction sequence */
-
- /* First we position ourselves at the begining of contraction sequence */
- const UChar *ContractionStart = UCharOffset = (UChar *)coll->image+getContractOffset(CE);
-
- if (collIter_eos(source)) {
- // Ran off the end of the source string.
- CE = *(coll->contractionCEs + (UCharOffset - coll->contractionIndex));
- // So we'll pick whatever we have at the point...
- if (CE == UCOL_NOT_FOUND) {
- // back up the source over all the chars we scanned going into this contraction.
- CE = firstCE;
- loadState(source, &state, TRUE);
- if(source->origFlags & UCOL_USE_ITERATOR) {
- source->flags = source->origFlags;
+ if(CE != UCOL_NOT_FOUND) { // we found something and we can merilly continue
+ loadState(source, &prefixState, TRUE);
+ if(source->origFlags & UCOL_USE_ITERATOR) {
+ source->flags = source->origFlags;
+ }
+ } else { // prefix search was a failure, we have to backup all the way to the start
+ loadState(source, &entryState, TRUE);
}
+ break;
}
- break;
- }
-
- uint8_t maxCC = (uint8_t)(*(UCharOffset)&0xFF); /*get the discontiguos stuff */ /* skip the backward offset, see above */
- uint8_t allSame = (uint8_t)(*(UCharOffset++)>>8);
-
- schar = getNextNormalizedChar(source);
- while(schar > (tchar = *UCharOffset)) { /* since the contraction codepoints should be ordered, we skip all that are smaller */
- UCharOffset++;
- }
-
- if (schar == tchar) {
- // Found the source string char in the contraction table.
- // Pick up the corresponding CE from the table.
- CE = *(coll->contractionCEs +
- (UCharOffset - coll->contractionIndex));
- }
- else
- {
- // if there is a completely ignorable code point in the middle of
- // contraction, we need to act as if it's not there
- uint32_t isZeroCE = UTRIE_GET32_FROM_LEAD(coll->mapping, schar);
- // it's easy for BMP code points
- if(isZeroCE == 0) {
- continue;
- } else if(UTF_IS_LEAD(schar)) {
- if(!collIter_eos(source)) {
+ case CONTRACTION_TAG:
+ {
+ /* This should handle contractions */
+ collIterateState state;
backupState(source, &state);
- UChar trail = getNextNormalizedChar(source);
- if(UTF_IS_TRAIL(trail)) { // do stuff with trail
- if(getCETag(isZeroCE) == SURROGATE_TAG) {
- uint32_t finalCE = UTRIE_GET32_FROM_OFFSET_TRAIL(coll->mapping, isZeroCE&0xFFFFFF, trail);
- if(finalCE == 0) {
- continue;
- }
- }
- } else {
- // broken surrogate sequence, thus completely ignorable
- loadState(source, &state, TRUE);
- continue;
- }
- loadState(source, &state, TRUE);
- } else { // no more characters, so broken surrogate pair...
- // this contraction will ultimately fail, but not because of us
- continue;
- }
- } // else if(UTF_IS_LEAD(schar))
-
- // Source string char was not in contraction table.
- // Unless we have a discontiguous contraction, we have finished
- // with this contraction.
- uint8_t sCC;
- if (schar < 0x300 ||
- maxCC == 0 ||
- (sCC = i_getCombiningClass(schar, coll)) == 0 ||
- sCC>maxCC ||
- (allSame != 0 && sCC == maxCC) ||
- collIter_eos(source)) {
- // Contraction can not be discontiguous.
- goBackOne(source); // back up the source string by one,
- // because the character we just looked at was
- // not part of the contraction. */
- CE = *(coll->contractionCEs +
- (ContractionStart - coll->contractionIndex));
- } else {
- //
- // Contraction is possibly discontiguous.
- // Scan more of source string looking for a match
- //
- UChar tempchar;
- /* find the next character if schar is not a base character
- and we are not yet at the end of the string */
- tempchar = getNextNormalizedChar(source);
- goBackOne(source);
- if (i_getCombiningClass(tempchar, coll) == 0) {
- goBackOne(source);
- /* Spit out the last char of the string, wasn't tasty enough */
- CE = *(coll->contractionCEs +
- (ContractionStart - coll->contractionIndex));
- } else {
- CE = getDiscontiguous(coll, source, ContractionStart);
- }
- }
- } // else after if(schar == tchar)
+ uint32_t firstCE = *(coll->contractionCEs + ((UChar *)coll->image+getContractOffset(CE) - coll->contractionIndex)); //UCOL_NOT_FOUND;
+ const UChar *UCharOffset;
+ UChar schar, tchar;
+
+ for (;;) {
+ /* This loop will run once per source string character, for as long as we */
+ /* are matching a potential contraction sequence */
+
+ /* First we position ourselves at the begining of contraction sequence */
+ const UChar *ContractionStart = UCharOffset = (UChar *)coll->image+getContractOffset(CE);
+
+ if (collIter_eos(source)) {
+ // Ran off the end of the source string.
+ CE = *(coll->contractionCEs + (UCharOffset - coll->contractionIndex));
+ // So we'll pick whatever we have at the point...
+ if (CE == UCOL_NOT_FOUND) {
+ // back up the source over all the chars we scanned going into this contraction.
+ CE = firstCE;
+ loadState(source, &state, TRUE);
+ if(source->origFlags & UCOL_USE_ITERATOR) {
+ source->flags = source->origFlags;
+ }
+ }
+ break;
+ }
- if(CE == UCOL_NOT_FOUND) {
- /* The Source string did not match the contraction that we were checking. */
- /* Back up the source position to undo the effects of having partially */
- /* scanned through what ultimately proved to not be a contraction. */
- loadState(source, &state, TRUE);
- CE = firstCE;
- break;
- }
+ uint8_t maxCC = (uint8_t)(*(UCharOffset)&0xFF); /*get the discontiguos stuff */ /* skip the backward offset, see above */
+ uint8_t allSame = (uint8_t)(*(UCharOffset++)>>8);
- if(!isContraction(CE)) {
- // The source string char was in the contraction table, and the corresponding
- // CE is not a contraction CE. We completed the contraction, break
- // out of loop, this CE will end up being returned. This is the normal
- // way out of contraction handling when the source actually contained
- // the contraction.
- break;
- }
+ schar = getNextNormalizedChar(source);
+ while(schar > (tchar = *UCharOffset)) { /* since the contraction codepoints should be ordered, we skip all that are smaller */
+ UCharOffset++;
+ }
+ if (schar == tchar) {
+ // Found the source string char in the contraction table.
+ // Pick up the corresponding CE from the table.
+ CE = *(coll->contractionCEs +
+ (UCharOffset - coll->contractionIndex));
+ }
+ else
+ {
+ // Source string char was not in contraction table.
+ // Unless we have a discontiguous contraction, we have finished
+ // with this contraction.
+ // in order to do the proper detection, we
+ // need to see if we're dealing with a supplementary
+ /* We test whether the next two char are surrogate pairs.
+ * This test is done if the iterator is not NULL.
+ * If there is no surrogate pair, the iterator
+ * goes back one if needed. */
+ UChar32 miss = schar;
+ if (source->iterator) {
+ UChar32 surrNextChar; /* the next char in the iteration to test */
+ int32_t prevPos; /* holds the previous position before move forward of the source iterator */
+ if(U16_IS_LEAD(schar) && source->iterator->hasNext(source->iterator)) {
+ prevPos = source->iterator->index;
+ surrNextChar = getNextNormalizedChar(source);
+ if (U16_IS_TRAIL(surrNextChar)) {
+ miss = U16_GET_SUPPLEMENTARY(schar, surrNextChar);
+ } else if (prevPos < source->iterator->index){
+ goBackOne(source);
+ }
+ }
+ } else if (U16_IS_LEAD(schar)) {
+ miss = U16_GET_SUPPLEMENTARY(schar, getNextNormalizedChar(source));
+ }
- // The source string char was in the contraction table, and the corresponding
- // CE is IS a contraction CE. We will continue looping to check the source
- // string for the remaining chars in the contraction.
- uint32_t tempCE = *(coll->contractionCEs + (ContractionStart - coll->contractionIndex));
- if(tempCE != UCOL_NOT_FOUND) {
- // We have scanned a a section of source string for which there is a
- // CE from the contraction table. Remember the CE and scan position, so
- // that we can return to this point if further scanning fails to
- // match a longer contraction sequence.
- firstCE = tempCE;
-
- goBackOne(source);
- backupState(source, &state);
- getNextNormalizedChar(source);
-
- // Another way to do this is:
- //collIterateState tempState;
- //backupState(source, &tempState);
- //goBackOne(source);
- //backupState(source, &state);
- //loadState(source, &tempState, TRUE);
-
- // The problem is that for incomplete contractions we have to remember the previous
- // position. Before, the only thing I needed to do was state.pos--;
- // After iterator introduction and especially after introduction of normalizing
- // iterators, it became much more difficult to decrease the saved state.
- // I'm not yet sure which of the two methods above is faster.
- }
- } // for(;;)
- break;
- } // case CONTRACTION_TAG:
- case LONG_PRIMARY_TAG:
- {
- *(source->CEpos++) = ((CE & 0xFF)<<24)|UCOL_CONTINUATION_MARKER;
- CE = ((CE & 0xFFFF00) << 8) | (UCOL_BYTE_COMMON << 8) | UCOL_BYTE_COMMON;
- return CE;
- }
- case EXPANSION_TAG:
- {
- /* This should handle expansion. */
- /* NOTE: we can encounter both continuations and expansions in an expansion! */
- /* I have to decide where continuations are going to be dealt with */
- uint32_t size;
- uint32_t i; /* general counter */
- CEOffset = (uint32_t *)coll->image+getExpansionOffset(CE); /* find the offset to expansion table */
- size = getExpansionCount(CE);
- CE = *CEOffset++;
- if(size != 0) { /* if there are less than 16 elements in expansion, we don't terminate */
- for(i = 1; i<size; i++) {
- *(source->CEpos++) = *CEOffset++;
- }
- } else { /* else, we do */
- while(*CEOffset != 0) {
- *(source->CEpos++) = *CEOffset++;
- }
- }
- return CE;
- }
- case DIGIT_TAG:
- {
- /*
- We do a check to see if we want to collate digits as numbers; if so we generate
- a custom collation key. Otherwise we pull out the value stored in the expansion table.
- */
- uint32_t size;
- uint32_t i; /* general counter */
- collIterateState digitState;
+ uint8_t sCC;
+ if (miss < 0x300 ||
+ maxCC == 0 ||
+ (sCC = i_getCombiningClass(miss, coll)) == 0 ||
+ sCC>maxCC ||
+ (allSame != 0 && sCC == maxCC) ||
+ collIter_eos(source))
+ {
+ // Contraction can not be discontiguous.
+ goBackOne(source); // back up the source string by one,
+ // because the character we just looked at was
+ // not part of the contraction. */
+ if(U_IS_SUPPLEMENTARY(miss)) {
+ goBackOne(source);
+ }
+ CE = *(coll->contractionCEs +
+ (ContractionStart - coll->contractionIndex));
+ } else {
+ //
+ // Contraction is possibly discontiguous.
+ // Scan more of source string looking for a match
+ //
+ UChar tempchar;
+ /* find the next character if schar is not a base character
+ and we are not yet at the end of the string */
+ tempchar = getNextNormalizedChar(source);
+ // probably need another supplementary thingie here
+ goBackOne(source);
+ if (i_getCombiningClass(tempchar, coll) == 0) {
+ goBackOne(source);
+ if(U_IS_SUPPLEMENTARY(miss)) {
+ goBackOne(source);
+ }
+ /* Spit out the last char of the string, wasn't tasty enough */
+ CE = *(coll->contractionCEs +
+ (ContractionStart - coll->contractionIndex));
+ } else {
+ CE = getDiscontiguous(coll, source, ContractionStart);
+ }
+ }
+ } // else after if(schar == tchar)
+
+ if(CE == UCOL_NOT_FOUND) {
+ /* The Source string did not match the contraction that we were checking. */
+ /* Back up the source position to undo the effects of having partially */
+ /* scanned through what ultimately proved to not be a contraction. */
+ loadState(source, &state, TRUE);
+ CE = firstCE;
+ break;
+ }
- if (source->coll->numericCollation == UCOL_ON){
- UChar32 char32 = 0;
+ if(!isContraction(CE)) {
+ // The source string char was in the contraction table, and the corresponding
+ // CE is not a contraction CE. We completed the contraction, break
+ // out of loop, this CE will end up being returned. This is the normal
+ // way out of contraction handling when the source actually contained
+ // the contraction.
+ break;
+ }
- uint32_t digIndx = 0;
- uint32_t endIndex = 0;
- uint32_t trailingZeroIndex = 0;
- uint32_t primWeight = 0;
+ // The source string char was in the contraction table, and the corresponding
+ // CE is IS a contraction CE. We will continue looping to check the source
+ // string for the remaining chars in the contraction.
+ uint32_t tempCE = *(coll->contractionCEs + (ContractionStart - coll->contractionIndex));
+ if(tempCE != UCOL_NOT_FOUND) {
+ // We have scanned a a section of source string for which there is a
+ // CE from the contraction table. Remember the CE and scan position, so
+ // that we can return to this point if further scanning fails to
+ // match a longer contraction sequence.
+ firstCE = tempCE;
- int32_t digVal = 0;
- uint8_t collateVal = 0;
+ goBackOne(source);
+ backupState(source, &state);
+ getNextNormalizedChar(source);
+
+ // Another way to do this is:
+ //collIterateState tempState;
+ //backupState(source, &tempState);
+ //goBackOne(source);
+ //backupState(source, &state);
+ //loadState(source, &tempState, TRUE);
+
+ // The problem is that for incomplete contractions we have to remember the previous
+ // position. Before, the only thing I needed to do was state.pos--;
+ // After iterator introduction and especially after introduction of normalizing
+ // iterators, it became much more difficult to decrease the saved state.
+ // I'm not yet sure which of the two methods above is faster.
+ }
+ } // for(;;)
+ break;
+ } // case CONTRACTION_TAG:
+ case LONG_PRIMARY_TAG:
+ {
+ *(source->CEpos++) = ((CE & 0xFF)<<24)|UCOL_CONTINUATION_MARKER;
+ CE = ((CE & 0xFFFF00) << 8) | (UCOL_BYTE_COMMON << 8) | UCOL_BYTE_COMMON;
+ source->offsetRepeatCount += 1;
+ return CE;
+ }
+ case EXPANSION_TAG:
+ {
+ /* This should handle expansion. */
+ /* NOTE: we can encounter both continuations and expansions in an expansion! */
+ /* I have to decide where continuations are going to be dealt with */
+ uint32_t size;
+ uint32_t i; /* general counter */
- UBool nonZeroValReached = FALSE;
+ CEOffset = (uint32_t *)coll->image+getExpansionOffset(CE); /* find the offset to expansion table */
+ size = getExpansionCount(CE);
+ CE = *CEOffset++;
+ //source->offsetRepeatCount = -1;
- uint8_t *numTempBuf;
- uint8_t stackNumTempBuf[UCOL_MAX_BUFFER]; // I just need a temporary place to store my generated CEs.
- uint32_t numTempBufSize = UCOL_MAX_BUFFER;
+ if(size != 0) { /* if there are less than 16 elements in expansion, we don't terminate */
+ for(i = 1; i<size; i++) {
+ *(source->CEpos++) = *CEOffset++;
+ source->offsetRepeatCount += 1;
+ }
+ } else { /* else, we do */
+ while(*CEOffset != 0) {
+ *(source->CEpos++) = *CEOffset++;
+ source->offsetRepeatCount += 1;
+ }
+ }
- numTempBuf = stackNumTempBuf;
- /*
- We parse the source string until we hit a char that's NOT a digit.
- Use this u_charDigitValue. This might be slow because we have to
- handle surrogates...
- */
-/*
- if (U16_IS_LEAD(ch)){
- if (!collIter_eos(source)) {
- backupState(source, &digitState);
- UChar trail = getNextNormalizedChar(source);
- if(U16_IS_TRAIL(trail)) {
- char32 = U16_GET_SUPPLEMENTARY(ch, trail);
- } else {
- loadState(source, &digitState, TRUE);
- char32 = ch;
+ return CE;
}
- } else {
- char32 = ch;
- }
- } else {
- char32 = ch;
- }
- digVal = u_charDigitValue(char32);
-*/
- digVal = u_charDigitValue(cp); // if we have arrived here, we have
- // already processed possible supplementaries that trigered the digit tag -
- // all supplementaries are marked in the UCA.
- /*
- We pad a zero in front of the first element anyways. This takes
- care of the (probably) most common case where people are sorting things followed
- by a single digit
- */
- digIndx++;
- for(;;){
- // Make sure we have enough space.
- if (digIndx >= ((numTempBufSize - 2) * 2) + 1)
- {
- numTempBufSize *= 2;
- if (numTempBuf == stackNumTempBuf){
- numTempBuf = (uint8_t *)uprv_malloc(sizeof(uint8_t) * numTempBufSize);
- uprv_memcpy(numTempBuf, stackNumTempBuf, UCOL_MAX_BUFFER);
- }else
- uprv_realloc(numTempBuf, numTempBufSize);
- }
-
- // Skipping over leading zeroes.
- if (digVal != 0 || nonZeroValReached){
- if (digVal != 0 && !nonZeroValReached)
- nonZeroValReached = TRUE;
-
+ case DIGIT_TAG:
+ {
/*
- We parse the digit string into base 100 numbers (this fits into a byte).
- We only add to the buffer in twos, thus if we are parsing an odd character,
- that serves as the 'tens' digit while the if we are parsing an even one, that
- is the 'ones' digit. We dumped the parsed base 100 value (collateVal) into
- a buffer. We multiply each collateVal by 2 (to give us room) and add 5 (to avoid
- overlapping magic CE byte values). The last byte we subtract 1 to ensure it is less
- than all the other bytes.
- */
+ We do a check to see if we want to collate digits as numbers; if so we generate
+ a custom collation key. Otherwise we pull out the value stored in the expansion table.
+ */
+ //uint32_t size;
+ uint32_t i; /* general counter */
- if (digIndx % 2 == 1){
- collateVal += (uint8_t)digVal;
+ if (source->coll->numericCollation == UCOL_ON){
+ collIterateState digitState = {0,0,0,0,0,0,0,0,0};
+ UChar32 char32 = 0;
+ int32_t digVal = 0;
- // We don't enter the low-order-digit case unless we've already seen
- // the high order, or for the first digit, which is always non-zero.
- if (collateVal != 0)
- trailingZeroIndex = 0;
+ uint32_t digIndx = 0;
+ uint32_t endIndex = 0;
+ uint32_t trailingZeroIndex = 0;
- numTempBuf[(digIndx/2) + 2] = collateVal*2 + 6;
- collateVal = 0;
- }
- else{
- // We drop the collation value into the buffer so if we need to do
- // a "front patch" we don't have to check to see if we're hitting the
- // last element.
- collateVal = (uint8_t)(digVal * 10);
+ uint8_t collateVal = 0;
- // Check for trailing zeroes.
- if (collateVal == 0)
- {
- if (!trailingZeroIndex)
- trailingZeroIndex = (digIndx/2) + 2;
- }
- else
- trailingZeroIndex = 0;
+ UBool nonZeroValReached = FALSE;
- numTempBuf[(digIndx/2) + 2] = collateVal*2 + 6;
- }
- digIndx++;
- }
-
- // Get next character.
- if (!collIter_eos(source)){
- ch = getNextNormalizedChar(source);
- if (U16_IS_LEAD(ch)){
- if (!collIter_eos(source)) {
- backupState(source, &digitState);
- UChar trail = getNextNormalizedChar(source);
- if(U16_IS_TRAIL(trail)) {
- char32 = U16_GET_SUPPLEMENTARY(ch, trail);
+ uint8_t numTempBuf[UCOL_MAX_DIGITS_FOR_NUMBER/2 + 3]; // I just need a temporary place to store my generated CEs.
+ /*
+ We parse the source string until we hit a char that's NOT a digit.
+ Use this u_charDigitValue. This might be slow because we have to
+ handle surrogates...
+ */
+ /*
+ if (U16_IS_LEAD(ch)){
+ if (!collIter_eos(source)) {
+ backupState(source, &digitState);
+ UChar trail = getNextNormalizedChar(source);
+ if(U16_IS_TRAIL(trail)) {
+ char32 = U16_GET_SUPPLEMENTARY(ch, trail);
+ } else {
+ loadState(source, &digitState, TRUE);
+ char32 = ch;
+ }
+ } else {
+ char32 = ch;
+ }
} else {
- loadState(source, &digitState, TRUE);
char32 = ch;
}
- }
- } else {
- char32 = ch;
- }
-
- if ((digVal = u_charDigitValue(char32)) == -1){
- // Resetting position to point to the next unprocessed char. We
- // overshot it when doing our test/set for numbers.
- if (char32 > 0xFFFF) { // For surrogates.
- loadState(source, &digitState, TRUE);
- //goBackOne(source);
- }
- goBackOne(source);
- break;
- }
- } else {
- break;
- }
- }
+ digVal = u_charDigitValue(char32);
+ */
+ digVal = u_charDigitValue(cp); // if we have arrived here, we have
+ // already processed possible supplementaries that trigered the digit tag -
+ // all supplementaries are marked in the UCA.
+ /*
+ We pad a zero in front of the first element anyways. This takes
+ care of the (probably) most common case where people are sorting things followed
+ by a single digit
+ */
+ digIndx++;
+ for(;;){
+ // Make sure we have enough space. No longer needed;
+ // at this point digIndx now has a max value of UCOL_MAX_DIGITS_FOR_NUMBER
+ // (it has been pre-incremented) so we just ensure that numTempBuf is big enough
+ // (UCOL_MAX_DIGITS_FOR_NUMBER/2 + 3).
+
+ // Skipping over leading zeroes.
+ if (digVal != 0) {
+ nonZeroValReached = TRUE;
+ }
+ if (nonZeroValReached) {
+ /*
+ We parse the digit string into base 100 numbers (this fits into a byte).
+ We only add to the buffer in twos, thus if we are parsing an odd character,
+ that serves as the 'tens' digit while the if we are parsing an even one, that
+ is the 'ones' digit. We dumped the parsed base 100 value (collateVal) into
+ a buffer. We multiply each collateVal by 2 (to give us room) and add 5 (to avoid
+ overlapping magic CE byte values). The last byte we subtract 1 to ensure it is less
+ than all the other bytes.
+ */
+
+ if (digIndx % 2 == 1){
+ collateVal += (uint8_t)digVal;
+
+ // We don't enter the low-order-digit case unless we've already seen
+ // the high order, or for the first digit, which is always non-zero.
+ if (collateVal != 0)
+ trailingZeroIndex = 0;
+
+ numTempBuf[(digIndx/2) + 2] = collateVal*2 + 6;
+ collateVal = 0;
+ }
+ else{
+ // We drop the collation value into the buffer so if we need to do
+ // a "front patch" we don't have to check to see if we're hitting the
+ // last element.
+ collateVal = (uint8_t)(digVal * 10);
+
+ // Check for trailing zeroes.
+ if (collateVal == 0)
+ {
+ if (!trailingZeroIndex)
+ trailingZeroIndex = (digIndx/2) + 2;
+ }
+ else
+ trailingZeroIndex = 0;
+
+ numTempBuf[(digIndx/2) + 2] = collateVal*2 + 6;
+ }
+ digIndx++;
+ }
- if (nonZeroValReached == FALSE){
- digIndx = 2;
- numTempBuf[2] = 6;
- }
+ // Get next character.
+ if (!collIter_eos(source)){
+ ch = getNextNormalizedChar(source);
+ if (U16_IS_LEAD(ch)){
+ if (!collIter_eos(source)) {
+ backupState(source, &digitState);
+ UChar trail = getNextNormalizedChar(source);
+ if(U16_IS_TRAIL(trail)) {
+ char32 = U16_GET_SUPPLEMENTARY(ch, trail);
+ } else {
+ loadState(source, &digitState, TRUE);
+ char32 = ch;
+ }
+ }
+ } else {
+ char32 = ch;
+ }
+
+ if ((digVal = u_charDigitValue(char32)) == -1 || digIndx > UCOL_MAX_DIGITS_FOR_NUMBER){
+ // Resetting position to point to the next unprocessed char. We
+ // overshot it when doing our test/set for numbers.
+ if (char32 > 0xFFFF) { // For surrogates.
+ loadState(source, &digitState, TRUE);
+ //goBackOne(source);
+ }
+ goBackOne(source);
+ break;
+ }
+ } else {
+ break;
+ }
+ }
- endIndex = trailingZeroIndex ? trailingZeroIndex : ((digIndx/2) + 2) ;
- if (digIndx % 2 != 0){
- /*
- We missed a value. Since digIndx isn't even, stuck too many values into the buffer (this is what
- we get for padding the first byte with a zero). "Front-patch" now by pushing all nybbles forward.
- Doing it this way ensures that at least 50% of the time (statistically speaking) we'll only be doing a
- single pass and optimizes for strings with single digits. I'm just assuming that's the more common case.
- */
+ if (nonZeroValReached == FALSE){
+ digIndx = 2;
+ numTempBuf[2] = 6;
+ }
- for(i = 2; i < endIndex; i++){
- numTempBuf[i] = (((((numTempBuf[i] - 6)/2) % 10) * 10) +
- (((numTempBuf[i+1])-6)/2) / 10) * 2 + 6;
- }
- --digIndx;
- }
+ endIndex = trailingZeroIndex ? trailingZeroIndex : ((digIndx/2) + 2) ;
+ if (digIndx % 2 != 0){
+ /*
+ We missed a value. Since digIndx isn't even, stuck too many values into the buffer (this is what
+ we get for padding the first byte with a zero). "Front-patch" now by pushing all nybbles forward.
+ Doing it this way ensures that at least 50% of the time (statistically speaking) we'll only be doing a
+ single pass and optimizes for strings with single digits. I'm just assuming that's the more common case.
+ */
+
+ for(i = 2; i < endIndex; i++){
+ numTempBuf[i] = (((((numTempBuf[i] - 6)/2) % 10) * 10) +
+ (((numTempBuf[i+1])-6)/2) / 10) * 2 + 6;
+ }
+ --digIndx;
+ }
- // Subtract one off of the last byte.
- numTempBuf[endIndex-1] -= 1;
+ // Subtract one off of the last byte.
+ numTempBuf[endIndex-1] -= 1;
- /*
- We want to skip over the first two slots in the buffer. The first slot
- is reserved for the header byte UCOL_CODAN_PLACEHOLDER. The second slot is for the
- sign/exponent byte: 0x80 + (decimalPos/2) & 7f.
- */
- numTempBuf[0] = UCOL_CODAN_PLACEHOLDER;
- numTempBuf[1] = (uint8_t)(0x80 + ((digIndx/2) & 0x7F));
-
- // Now transfer the collation key to our collIterate struct.
- // The total size for our collation key is endIndx bumped up to the next largest even value divided by two.
- size = ((endIndex+1) & ~1)/2;
- CE = (((numTempBuf[0] << 8) | numTempBuf[1]) << UCOL_PRIMARYORDERSHIFT) | //Primary weight
- (UCOL_BYTE_COMMON << UCOL_SECONDARYORDERSHIFT) | // Secondary weight
- UCOL_BYTE_COMMON; // Tertiary weight.
- i = 2; // Reset the index into the buffer.
- while(i < endIndex)
- {
- primWeight = numTempBuf[i++] << 8;
- if ( i < endIndex)
- primWeight |= numTempBuf[i++];
- *(source->CEpos++) = (primWeight << UCOL_PRIMARYORDERSHIFT) | UCOL_CONTINUATION_MARKER;
- }
+ /*
+ We want to skip over the first two slots in the buffer. The first slot
+ is reserved for the header byte UCOL_CODAN_PLACEHOLDER. The second slot is for the
+ sign/exponent byte: 0x80 + (decimalPos/2) & 7f.
+ */
+ numTempBuf[0] = UCOL_CODAN_PLACEHOLDER;
+ numTempBuf[1] = (uint8_t)(0x80 + ((digIndx/2) & 0x7F));
+
+ // Now transfer the collation key to our collIterate struct.
+ // The total size for our collation key is endIndx bumped up to the next largest even value divided by two.
+ //size = ((endIndex+1) & ~1)/2;
+ CE = (((numTempBuf[0] << 8) | numTempBuf[1]) << UCOL_PRIMARYORDERSHIFT) | //Primary weight
+ (UCOL_BYTE_COMMON << UCOL_SECONDARYORDERSHIFT) | // Secondary weight
+ UCOL_BYTE_COMMON; // Tertiary weight.
+ i = 2; // Reset the index into the buffer.
+ while(i < endIndex)
+ {
+ uint32_t primWeight = numTempBuf[i++] << 8;
+ if ( i < endIndex)
+ primWeight |= numTempBuf[i++];
+ *(source->CEpos++) = (primWeight << UCOL_PRIMARYORDERSHIFT) | UCOL_CONTINUATION_MARKER;
+ }
- if (numTempBuf != stackNumTempBuf)
- uprv_free(numTempBuf);
- } else {
- // no numeric mode, we'll just switch to whatever we stashed and continue
- CEOffset = (uint32_t *)coll->image+getExpansionOffset(CE); /* find the offset to expansion table */
- CE = *CEOffset++;
- break;
-#if 0
- CEOffset = (uint32_t *)coll->image+getExpansionOffset(CE); /* find the offset to expansion table */
- size = getExpansionCount(CE);
- CE = *CEOffset++;
- if(size != 0) { /* if there are less than 16 elements in expansion, we don't terminate */
- for(i = 1; i<size; i++) {
- *(source->CEpos++) = *CEOffset++;
- }
- } else { /* else, we do */
- while(*CEOffset != 0) {
- *(source->CEpos++) = *CEOffset++;
- }
- }
-#endif
- }
- return CE;
- }
- /* various implicits optimization */
- // TODO: remove CJK_IMPLICIT_TAG completely - handled by the getImplicit
- case CJK_IMPLICIT_TAG: /* 0x3400-0x4DB5, 0x4E00-0x9FA5, 0xF900-0xFA2D*/
- //return getImplicit(cp, source, 0x04000000);
- return getImplicit(cp, source);
- case IMPLICIT_TAG: /* everything that is not defined otherwise */
- /* UCA is filled with these. Tailorings are NOT_FOUND */
- //return getImplicit(cp, source, 0);
- return getImplicit(cp, source);
- case TRAIL_SURROGATE_TAG: /* DC00-DFFF*/
- return 0; /* broken surrogate sequence */
- case LEAD_SURROGATE_TAG: /* D800-DBFF*/
- UChar nextChar;
- if( source->flags & UCOL_USE_ITERATOR) {
- if(U_IS_TRAIL(nextChar = (UChar)source->iterator->current(source->iterator))) {
- cp = U16_GET_SUPPLEMENTARY(ch, nextChar);
- source->iterator->next(source->iterator);
- return getImplicit(cp, source);
- } else {
- return 0;
- }
- } else if((((source->flags & UCOL_ITER_HASLEN) == 0 ) || (source->pos<source->endp)) &&
- U_IS_TRAIL((nextChar=*source->pos))) {
- cp = U16_GET_SUPPLEMENTARY(ch, nextChar);
- source->pos++;
- return getImplicit(cp, source);
- } else {
- return 0; /* completely ignorable */
- }
- case HANGUL_SYLLABLE_TAG: /* AC00-D7AF*/
- {
- const uint32_t
- SBase = 0xAC00, LBase = 0x1100, VBase = 0x1161, TBase = 0x11A7;
- //const uint32_t LCount = 19;
- const uint32_t VCount = 21;
- const uint32_t TCount = 28;
- //const uint32_t NCount = VCount * TCount; // 588
- //const uint32_t SCount = LCount * NCount; // 11172
- uint32_t L = ch - SBase;
-
- // divide into pieces
-
- uint32_t T = L % TCount; // we do it in this order since some compilers can do % and / in one operation
- L /= TCount;
- uint32_t V = L % VCount;
- L /= VCount;
-
- // offset them
-
- L += LBase;
- V += VBase;
- T += TBase;
-
- // return the first CE, but first put the rest into the expansion buffer
- if (!source->coll->image->jamoSpecial) { // FAST PATH
-
- /**(source->CEpos++) = ucmpe32_get(UCA->mapping, V);*/
- /**(source->CEpos++) = UTRIE_GET32_FROM_LEAD(UCA->mapping, V);*/
- *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(coll->mapping, V);
- if (T != TBase) {
- /**(source->CEpos++) = ucmpe32_get(UCA->mapping, T);*/
- /**(source->CEpos++) = UTRIE_GET32_FROM_LEAD(UCA->mapping, T);*/
- *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(coll->mapping, T);
- }
+ } else {
+ // no numeric mode, we'll just switch to whatever we stashed and continue
+ CEOffset = (uint32_t *)coll->image+getExpansionOffset(CE); /* find the offset to expansion table */
+ CE = *CEOffset++;
+ break;
+ }
+ return CE;
+ }
+ /* various implicits optimization */
+ case IMPLICIT_TAG: /* everything that is not defined otherwise */
+ /* UCA is filled with these. Tailorings are NOT_FOUND */
+ return getImplicit(cp, source);
+ case CJK_IMPLICIT_TAG: /* 0x3400-0x4DB5, 0x4E00-0x9FA5, 0xF900-0xFA2D*/
+ // TODO: remove CJK_IMPLICIT_TAG completely - handled by the getImplicit
+ return getImplicit(cp, source);
+ case HANGUL_SYLLABLE_TAG: /* AC00-D7AF*/
+ {
+ static const uint32_t
+ SBase = 0xAC00, LBase = 0x1100, VBase = 0x1161, TBase = 0x11A7;
+ //const uint32_t LCount = 19;
+ static const uint32_t VCount = 21;
+ static const uint32_t TCount = 28;
+ //const uint32_t NCount = VCount * TCount; // 588
+ //const uint32_t SCount = LCount * NCount; // 11172
+ uint32_t L = ch - SBase;
+
+ // divide into pieces
+
+ uint32_t T = L % TCount; // we do it in this order since some compilers can do % and / in one operation
+ L /= TCount;
+ uint32_t V = L % VCount;
+ L /= VCount;
+
+ // offset them
+
+ L += LBase;
+ V += VBase;
+ T += TBase;
+
+ // return the first CE, but first put the rest into the expansion buffer
+ if (!source->coll->image->jamoSpecial) { // FAST PATH
+
+ *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(&coll->mapping, V);
+ if (T != TBase) {
+ *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(&coll->mapping, T);
+ }
- /*return ucmpe32_get(UCA->mapping, L);*/ // return first one
- /*return UTRIE_GET32_FROM_LEAD(UCA->mapping, L);*/
- return UTRIE_GET32_FROM_LEAD(coll->mapping, L);
-
- } else { // Jamo is Special
- // Since Hanguls pass the FCD check, it is
- // guaranteed that we won't be in
- // the normalization buffer if something like this happens
- // However, if we are using a uchar iterator and normalization
- // is ON, the Hangul that lead us here is going to be in that
- // normalization buffer. Here we want to restore the uchar
- // iterator state and pull out of the normalization buffer
- if(source->iterator != NULL && source->flags & UCOL_ITER_INNORMBUF) {
- source->flags = source->origFlags; // restore the iterator
- source->pos = NULL;
- }
- // Move Jamos into normalization buffer
- source->writableBuffer[0] = (UChar)L;
- source->writableBuffer[1] = (UChar)V;
- if (T != TBase) {
- source->writableBuffer[2] = (UChar)T;
- source->writableBuffer[3] = 0;
- } else {
- source->writableBuffer[2] = 0;
- }
+ return UTRIE_GET32_FROM_LEAD(&coll->mapping, L);
+
+ } else { // Jamo is Special
+ // Since Hanguls pass the FCD check, it is
+ // guaranteed that we won't be in
+ // the normalization buffer if something like this happens
+ // However, if we are using a uchar iterator and normalization
+ // is ON, the Hangul that lead us here is going to be in that
+ // normalization buffer. Here we want to restore the uchar
+ // iterator state and pull out of the normalization buffer
+ if(source->iterator != NULL && source->flags & UCOL_ITER_INNORMBUF) {
+ source->flags = source->origFlags; // restore the iterator
+ source->pos = NULL;
+ }
+ // Move Jamos into normalization buffer
+ source->writableBuffer[0] = (UChar)L;
+ source->writableBuffer[1] = (UChar)V;
+ if (T != TBase) {
+ source->writableBuffer[2] = (UChar)T;
+ source->writableBuffer[3] = 0;
+ } else {
+ source->writableBuffer[2] = 0;
+ }
- source->fcdPosition = source->pos; // Indicate where to continue in main input string
- // after exhausting the writableBuffer
- source->pos = source->writableBuffer;
- source->origFlags = source->flags;
- source->flags |= UCOL_ITER_INNORMBUF;
- source->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN);
+ source->fcdPosition = source->pos; // Indicate where to continue in main input string
+ // after exhausting the writableBuffer
+ source->pos = source->writableBuffer;
+ source->origFlags = source->flags;
+ source->flags |= UCOL_ITER_INNORMBUF;
+ source->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN);
- return(UCOL_IGNORABLE);
- }
- }
- case CHARSET_TAG:
- /* not yet implemented */
- /* probably after 1.8 */
- return UCOL_NOT_FOUND;
- default:
- *status = U_INTERNAL_PROGRAM_ERROR;
- CE=0;
- break;
+ return(UCOL_IGNORABLE);
+ }
+ }
+ case SURROGATE_TAG:
+ /* we encountered a leading surrogate. We shall get the CE by using the following code unit */
+ /* two things can happen here: next code point can be a trailing surrogate - we will use it */
+ /* to retrieve the CE, or it is not a trailing surrogate (or the string is done). In that case */
+ /* we return 0 (completely ignorable - per UCA specification */
+ {
+ UChar trail;
+ collIterateState state;
+ backupState(source, &state);
+ if (collIter_eos(source) || !(U16_IS_TRAIL((trail = getNextNormalizedChar(source))))) {
+ // we chould have stepped one char forward and it might have turned that it
+ // was not a trail surrogate. In that case, we have to backup.
+ loadState(source, &state, TRUE);
+ return 0;
+ } else {
+ /* TODO: CE contain the data from the previous CE + the mask. It should at least be unmasked */
+ CE = UTRIE_GET32_FROM_OFFSET_TRAIL(&coll->mapping, CE&0xFFFFFF, trail);
+ if(CE == UCOL_NOT_FOUND) { // there are tailored surrogates in this block, but not this one.
+ // We need to backup
+ loadState(source, &state, TRUE);
+ return CE;
+ }
+ // calculate the supplementary code point value, if surrogate was not tailored
+ cp = ((((uint32_t)ch)<<10UL)+(trail)-(((uint32_t)0xd800<<10UL)+0xdc00-0x10000));
+ }
+ }
+ break;
+ case LEAD_SURROGATE_TAG: /* D800-DBFF*/
+ UChar nextChar;
+ if( source->flags & UCOL_USE_ITERATOR) {
+ if(U_IS_TRAIL(nextChar = (UChar)source->iterator->current(source->iterator))) {
+ cp = U16_GET_SUPPLEMENTARY(ch, nextChar);
+ source->iterator->next(source->iterator);
+ return getImplicit(cp, source);
+ } else {
+ return 0;
+ }
+ } else if((((source->flags & UCOL_ITER_HASLEN) == 0 ) || (source->pos<source->endp)) &&
+ U_IS_TRAIL((nextChar=*source->pos))) {
+ cp = U16_GET_SUPPLEMENTARY(ch, nextChar);
+ source->pos++;
+ return getImplicit(cp, source);
+ } else {
+ return 0; /* completely ignorable */
+ }
+ case TRAIL_SURROGATE_TAG: /* DC00-DFFF*/
+ return 0; /* broken surrogate sequence */
+ case CHARSET_TAG:
+ /* not yet implemented */
+ /* probably after 1.8 */
+ return UCOL_NOT_FOUND;
+ default:
+ *status = U_INTERNAL_PROGRAM_ERROR;
+ CE=0;
+ break;
}
if (CE <= UCOL_NOT_FOUND) break;
}
/* now uses Mark's getImplicitPrimary code */
static
inline uint32_t getPrevImplicit(UChar32 cp, collIterate *collationSource) {
- if(isNonChar(cp)) {
- return 0;
- }
+ if(isNonChar(cp)) {
+ return 0;
+ }
+
+ uint32_t r = uprv_uca_getImplicitPrimary(cp);
+
+ *(collationSource->CEpos++) = (r & UCOL_PRIMARYMASK) | 0x00000505;
+ collationSource->toReturn = collationSource->CEpos;
+
+ if (collationSource->offsetBuffer == NULL) {
+ collationSource->offsetBufferSize = UCOL_EXPAND_CE_BUFFER_SIZE;
+ collationSource->offsetBuffer = (int32_t *) uprv_malloc(sizeof(int32_t) * UCOL_EXPAND_CE_BUFFER_SIZE);
+ collationSource->offsetStore = collationSource->offsetBuffer;
+ }
+
+ // **** doesn't work if using iterator ****
+ if (collationSource->flags & UCOL_ITER_INNORMBUF) {
+ collationSource->offsetRepeatCount = 1;
+ } else {
+ int32_t firstOffset = (int32_t)(collationSource->pos - collationSource->string);
- uint32_t r = uprv_uca_getImplicitPrimary(cp);
+ *(collationSource->offsetStore++) = firstOffset;
+ *(collationSource->offsetStore++) = firstOffset + 1;
- *(collationSource->CEpos++) = (r & UCOL_PRIMARYMASK) | 0x00000505;
- collationSource->toReturn = collationSource->CEpos;
- return ((r & 0x0000FFFF)<<16) | 0x000000C0;
+ collationSource->offsetReturn = collationSource->offsetStore - 1;
+ *(collationSource->offsetBuffer) = firstOffset;
+ if (collationSource->offsetReturn == collationSource->offsetBuffer) {
+ collationSource->offsetStore = collationSource->offsetBuffer;
+ }
+ }
+
+ return ((r & 0x0000FFFF)<<16) | 0x000000C0;
}
/**
collIterate *source,
UErrorCode *status)
{
- const uint32_t *CEOffset = NULL;
- UChar *UCharOffset = NULL;
- UChar schar;
- const UChar *constart = NULL;
- uint32_t size;
- UChar buffer[UCOL_MAX_BUFFER];
- uint32_t *endCEBuffer;
- UChar *strbuffer;
- int32_t noChars = 0;
-
- for(;;)
- {
- /* the only ces that loops are thai and contractions */
- switch (getCETag(CE))
+ const uint32_t *CEOffset = NULL;
+ UChar *UCharOffset = NULL;
+ UChar schar;
+ const UChar *constart = NULL;
+ uint32_t size;
+ UChar buffer[UCOL_MAX_BUFFER];
+ uint32_t *endCEBuffer;
+ UChar *strbuffer;
+ int32_t noChars = 0;
+ int32_t CECount = 0;
+
+ for(;;)
{
- case NOT_FOUND_TAG: /* this tag always returns */
- return CE;
- case SURROGATE_TAG: /* This is a surrogate pair */
- /* essentialy an engaged lead surrogate. */
- /* if you have encountered it here, it means that a */
- /* broken sequence was encountered and this is an error */
- return 0;
- case THAI_TAG:
- if ((source->flags & UCOL_ITER_INNORMBUF) || /* Already Swapped || */
- source->string == source->pos || /* At start of string.|| */
- /* previous char not Thai prevowel */
- /*UCOL_ISTHAIBASECONSONANT(*(source->pos)) == FALSE ||*/ // This is from the old specs - we now rearrange unconditionally
- UCOL_ISTHAIPREVOWEL(peekCharacter(source, -1)) == FALSE)
- //UCOL_ISTHAIPREVOWEL(*(source->pos - 1)) == FALSE)
- {
- /* Treat Thai as a length one expansion */
- /* find the offset to expansion table */
- CEOffset = (uint32_t *)coll->image+getExpansionOffset(CE);
- CE = *CEOffset ++;
- }
- else
- {
- /*
- Move the prevowel and the following base Consonant into the
- normalization buffer with their order swapped
- */
- UChar32 cp = (UChar32)peekCharacter(source, 0);
- UBool reorder = TRUE;
-
- int32_t decompLen = unorm_getDecomposition(cp, FALSE, source->writableBuffer, UCOL_WRITABLE_BUFFER_SIZE-1);
- if(decompLen < 0) {
- decompLen = -decompLen; // there was no decomposition
- } else { // we need to check if we will hit a contraction trigger because of decomposition
- int32_t i = decompLen;
- for(i = 0; i < decompLen; i++) {
- if(ucol_contractionEndCP(source->writableBuffer[i], coll)) {
- reorder = FALSE;
+ /* the only ces that loops are thai and contractions */
+ switch (getCETag(CE))
+ {
+ case NOT_FOUND_TAG: /* this tag always returns */
+ return CE;
+
+ case SPEC_PROC_TAG:
+ {
+ // Special processing is getting a CE that is preceded by a certain prefix
+ // Currently this is only needed for optimizing Japanese length and iteration marks.
+ // When we encouter a special processing tag, we go backwards and try to see if
+ // we have a match.
+ // Contraction tables are used - so the whole process is not unlike contraction.
+ // prefix data is stored backwards in the table.
+ const UChar *UCharOffset;
+ UChar schar, tchar;
+ collIterateState prefixState;
+ backupState(source, &prefixState);
+ for(;;) {
+ // This loop will run once per source string character, for as long as we
+ // are matching a potential contraction sequence
+
+ // First we position ourselves at the begining of contraction sequence
+ const UChar *ContractionStart = UCharOffset = (UChar *)coll->image+getContractOffset(CE);
+
+ if (collIter_bos(source)) {
+ CE = *(coll->contractionCEs + (UCharOffset - coll->contractionIndex));
+ break;
+ }
+ schar = getPrevNormalizedChar(source, status);
+ goBackOne(source);
+
+ while(schar > (tchar = *UCharOffset)) { /* since the contraction codepoints should be ordered, we skip all that are smaller */
+ UCharOffset++;
+ }
+
+ if (schar == tchar) {
+ // Found the source string char in the table.
+ // Pick up the corresponding CE from the table.
+ CE = *(coll->contractionCEs +
+ (UCharOffset - coll->contractionIndex));
+ }
+ else
+ {
+ // if there is a completely ignorable code point in the middle of
+ // a prefix, we need to act as if it's not there
+ // assumption: 'real' noncharacters (*fffe, *ffff, fdd0-fdef are set to zero)
+ // lone surrogates cannot be set to zero as it would break other processing
+ uint32_t isZeroCE = UTRIE_GET32_FROM_LEAD(&coll->mapping, schar);
+ // it's easy for BMP code points
+ if(isZeroCE == 0) {
+ continue;
+ } else if(U16_IS_TRAIL(schar) || U16_IS_LEAD(schar)) {
+ // for supplementary code points, we have to check the next one
+ // situations where we are going to ignore
+ // 1. beginning of the string: schar is a lone surrogate
+ // 2. schar is a lone surrogate
+ // 3. schar is a trail surrogate in a valid surrogate sequence
+ // that is explicitly set to zero.
+ if (!collIter_bos(source)) {
+ UChar lead;
+ if(U16_IS_LEAD(lead = getPrevNormalizedChar(source, status))) {
+ isZeroCE = UTRIE_GET32_FROM_LEAD(&coll->mapping, lead);
+ if(getCETag(isZeroCE) == SURROGATE_TAG) {
+ uint32_t finalCE = UTRIE_GET32_FROM_OFFSET_TRAIL(&coll->mapping, isZeroCE&0xFFFFFF, schar);
+ if(finalCE == 0) {
+ // this is a real, assigned completely ignorable code point
+ goBackOne(source);
+ continue;
+ }
+ }
+ } else {
+ // lone surrogate, completely ignorable
+ continue;
+ }
+ } else {
+ // lone surrogate at the beggining, completely ignorable
+ continue;
+ }
+ }
+ // Source string char was not in the table.
+ // We have not found the prefix.
+ CE = *(coll->contractionCEs +
+ (ContractionStart - coll->contractionIndex));
+ }
+
+ if(!isPrefix(CE)) {
+ // The source string char was in the contraction table, and the corresponding
+ // CE is not a prefix CE. We found the prefix, break
+ // out of loop, this CE will end up being returned. This is the normal
+ // way out of prefix handling when the source actually contained
+ // the prefix.
+ break;
+ }
+ }
+ loadState(source, &prefixState, TRUE);
+ break;
+ }
+
+ case CONTRACTION_TAG:
+ /* to ensure that the backwards and forwards iteration matches, we
+ take the current region of most possible match and pass it through
+ the forward iteration. this will ensure that the obstinate problem of
+ overlapping contractions will not occur.
+ */
+ schar = peekCharacter(source, 0);
+ constart = (UChar *)coll->image + getContractOffset(CE);
+ if (isAtStartPrevIterate(source)
+ /* commented away contraction end checks after adding the checks
+ in getPrevCE */) {
+ /* start of string or this is not the end of any contraction */
+ CE = *(coll->contractionCEs +
+ (constart - coll->contractionIndex));
+ break;
+ }
+ strbuffer = buffer;
+ UCharOffset = strbuffer + (UCOL_MAX_BUFFER - 1);
+ *(UCharOffset --) = 0;
+ noChars = 0;
+ // have to swap thai characters
+ while (ucol_unsafeCP(schar, coll)) {
+ *(UCharOffset) = schar;
+ noChars++;
+ UCharOffset --;
+ schar = getPrevNormalizedChar(source, status);
+ goBackOne(source);
+ // TODO: when we exhaust the contraction buffer,
+ // it needs to get reallocated. The problem is
+ // that the size depends on the string which is
+ // not iterated over. However, since we're travelling
+ // backwards, we already had to set the iterator at
+ // the end - so we might as well know where we are?
+ if (UCharOffset + 1 == buffer) {
+ /* we have exhausted the buffer */
+ int32_t newsize = 0;
+ if(source->pos) { // actually dealing with a position
+ newsize = source->pos - source->string + 1;
+ } else { // iterator
+ newsize = 4 * UCOL_MAX_BUFFER;
+ }
+ strbuffer = (UChar *)uprv_malloc(sizeof(UChar) *
+ (newsize + UCOL_MAX_BUFFER));
+ /* test for NULL */
+ if (strbuffer == NULL) {
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ return UCOL_NO_MORE_CES;
+ }
+ UCharOffset = strbuffer + newsize;
+ uprv_memcpy(UCharOffset, buffer,
+ UCOL_MAX_BUFFER * sizeof(UChar));
+ UCharOffset --;
+ }
+ if ((source->pos && (source->pos == source->string ||
+ ((source->flags & UCOL_ITER_INNORMBUF) &&
+ *(source->pos - 1) == 0 && source->fcdPosition == NULL)))
+ || (source->iterator && !source->iterator->hasPrevious(source->iterator))) {
+ break;
+ }
+ }
+ /* adds the initial base character to the string */
+ *(UCharOffset) = schar;
+ noChars++;
+
+ int32_t offsetBias;
+
+#if 0
+ if (source->offsetReturn != NULL) {
+ source->offsetStore = source->offsetReturn - noChars;
+ }
+
+ // **** doesn't work if using iterator ****
+ if (source->flags & UCOL_ITER_INNORMBUF) {
+ if (source->fcdPosition == NULL) {
+ offsetBias = 0;
+ } else {
+ offsetBias = (int32_t)(source->fcdPosition - source->string);
+ }
+ } else {
+ offsetBias = (int32_t)(source->pos - source->string);
+ }
+
+#else
+ // **** doesn't work if using iterator ****
+ if (source->flags & UCOL_ITER_INNORMBUF) {
+#if 1
+ offsetBias = -1;
+#else
+ if (source->fcdPosition == NULL) {
+ offsetBias = 0;
+ } else {
+ offsetBias = (int32_t)(source->fcdPosition - source->string);
}
+#endif
+ } else {
+ offsetBias = (int32_t)(source->pos - source->string);
}
- }
+#endif
- UChar *tempbuffer = source->writableBuffer +
- (source->writableBufSize - 1);
- uprv_memcpy(tempbuffer-decompLen + 1, source->writableBuffer, sizeof(UChar)*decompLen);
- if(reorder) {
- *(tempbuffer - decompLen) = *(tempbuffer - decompLen + 1);
- *(tempbuffer - decompLen + 1) = peekCharacter(source, -1);
- } else {
- *(tempbuffer - decompLen) = peekCharacter(source, -1);
- }
- *(tempbuffer - decompLen - 1) = 0;
+ /* a new collIterate is used to simplify things, since using the current
+ collIterate will mean that the forward and backwards iteration will
+ share and change the same buffers. we don't want to get into that. */
+ collIterate temp;
+ int32_t rawOffset;
+ //IInit_collIterate(coll, UCharOffset, -1, &temp);
+ IInit_collIterate(coll, UCharOffset, noChars, &temp);
+ temp.flags &= ~UCOL_ITER_NORM;
-/*
- UChar *tempbuffer = source->writableBuffer +
- (source->writableBufSize - 1);
- *(tempbuffer - 2) = 0;
- *(tempbuffer - 1) = peekCharacter(source, 0);
- *(tempbuffer) = peekCharacter(source, -1);
-*/
- /*
- Indicate where to continue in main input string after exhausting
- the writableBuffer
- */
- if (source->pos - 1 == source->string) {
- source->fcdPosition = NULL;
- } else {
- source->fcdPosition = source->pos-2;
- }
+ rawOffset = temp.pos - temp.string; // should always be zero?
+ CE = ucol_IGetNextCE(coll, &temp, status);
- source->pos = tempbuffer+1; // we're doing predecrement, right?
- source->origFlags = source->flags;
- source->flags |= UCOL_ITER_INNORMBUF;
- source->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN);
+ if (source->extendCEs) {
+ endCEBuffer = source->extendCEs + source->extendCEsSize;
+ CECount = (source->CEpos - source->extendCEs)/sizeof(uint32_t);
+ } else {
+ endCEBuffer = source->CEs + UCOL_EXPAND_CE_BUFFER_SIZE;
+ CECount = (source->CEpos - source->CEs)/sizeof(uint32_t);
+ }
- //CE = UCOL_IGNORABLE;
- return(UCOL_IGNORABLE);
- }
- break;
- case SPEC_PROC_TAG:
- {
- // Special processing is getting a CE that is preceded by a certain prefix
- // Currently this is only needed for optimizing Japanese length and iteration marks.
- // When we encouter a special processing tag, we go backwards and try to see if
- // we have a match.
- // Contraction tables are used - so the whole process is not unlike contraction.
- // prefix data is stored backwards in the table.
- const UChar *UCharOffset;
- UChar schar, tchar;
- collIterateState prefixState;
- backupState(source, &prefixState);
- for(;;) {
- // This loop will run once per source string character, for as long as we
- // are matching a potential contraction sequence
+ if (source->offsetBuffer == NULL) {
+ source->offsetBufferSize = UCOL_EXPAND_CE_BUFFER_SIZE;
+ source->offsetBuffer = (int32_t *) uprv_malloc(sizeof(int32_t) * UCOL_EXPAND_CE_BUFFER_SIZE);
+ source->offsetStore = source->offsetBuffer;
+ }
- // First we position ourselves at the begining of contraction sequence
- const UChar *ContractionStart = UCharOffset = (UChar *)coll->image+getContractOffset(CE);
+ while (CE != UCOL_NO_MORE_CES) {
+ *(source->CEpos ++) = CE;
- if (collIter_bos(source)) {
- CE = *(coll->contractionCEs + (UCharOffset - coll->contractionIndex));
- break;
- }
- schar = getPrevNormalizedChar(source);
- goBackOne(source);
+ if (offsetBias >= 0) {
+ *(source->offsetStore ++) = rawOffset + offsetBias;
+ }
- while(schar > (tchar = *UCharOffset)) { /* since the contraction codepoints should be ordered, we skip all that are smaller */
- UCharOffset++;
- }
+ CECount++;
+ if (source->CEpos == endCEBuffer) {
+ /* ran out of CE space, reallocate to new buffer.
+ If reallocation fails, reset pointers and bail out,
+ there's no guarantee of the right character position after
+ this bail*/
+ if (source->extendCEs == NULL) {
+ source->extendCEs = (uint32_t *)uprv_malloc(sizeof(uint32_t) *
+ (source->extendCEsSize =UCOL_EXPAND_CE_BUFFER_SIZE + UCOL_EXPAND_CE_BUFFER_EXTEND_SIZE));
+ if (source->extendCEs == NULL) {
+ // Handle error later.
+ CECount = -1;
+ } else {
+ source->extendCEs = (uint32_t *)uprv_memcpy(source->extendCEs, source->CEs, UCOL_EXPAND_CE_BUFFER_SIZE * sizeof(uint32_t));
+ }
+ } else {
+ uint32_t *tempBufCE = (uint32_t *)uprv_realloc(source->extendCEs,
+ sizeof(uint32_t) * (source->extendCEsSize += UCOL_EXPAND_CE_BUFFER_EXTEND_SIZE));
+ if (tempBufCE == NULL) {
+ // Handle error later.
+ CECount = -1;
+ }
+ else {
+ source->extendCEs = tempBufCE;
+ }
+ }
- if (schar == tchar) {
- // Found the source string char in the table.
- // Pick up the corresponding CE from the table.
- CE = *(coll->contractionCEs +
- (UCharOffset - coll->contractionIndex));
- }
- else
- {
- // if there is a completely ignorable code point in the middle of
- // a prefix, we need to act as if it's not there
- // assumption: 'real' noncharacters (*fffe, *ffff, fdd0-fdef are set to zero)
- // lone surrogates cannot be set to zero as it would break other processing
- uint32_t isZeroCE = UTRIE_GET32_FROM_LEAD(coll->mapping, schar);
- // it's easy for BMP code points
- if(isZeroCE == 0) {
- continue;
- } else if(UTF_IS_TRAIL(schar) || UTF_IS_LEAD(schar)) {
- // for supplementary code points, we have to check the next one
- // situations where we are going to ignore
- // 1. beginning of the string: schar is a lone surrogate
- // 2. schar is a lone surrogate
- // 3. schar is a trail surrogate in a valid surrogate sequence
- // that is explicitly set to zero.
- if (!collIter_bos(source)) {
- UChar lead;
- if(UTF_IS_LEAD(lead = getPrevNormalizedChar(source))) {
- isZeroCE = UTRIE_GET32_FROM_LEAD(coll->mapping, lead);
- if(getCETag(isZeroCE) == SURROGATE_TAG) {
- uint32_t finalCE = UTRIE_GET32_FROM_OFFSET_TRAIL(coll->mapping, isZeroCE&0xFFFFFF, schar);
- if(finalCE == 0) {
- // this is a real, assigned completely ignorable code point
- goBackOne(source);
- continue;
- }
+ if (CECount == -1) {
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ source->extendCEsSize = 0;
+ source->CEpos = source->CEs;
+ freeHeapWritableBuffer(&temp);
+
+ if (strbuffer != buffer) {
+ uprv_free(strbuffer);
+ }
+
+ return (uint32_t)UCOL_NULLORDER;
}
- } else {
- // lone surrogate, completely ignorable
- continue;
- }
- } else {
- // lone surrogate at the beggining, completely ignorable
- continue;
+
+ source->CEpos = source->extendCEs + CECount;
+ endCEBuffer = source->extendCEs + source->extendCEsSize;
}
- }
- // Source string char was not in the table.
- // We have not found the prefix.
- CE = *(coll->contractionCEs +
- (ContractionStart - coll->contractionIndex));
- }
- if(!isPrefix(CE)) {
- // The source string char was in the contraction table, and the corresponding
- // CE is not a prefix CE. We found the prefix, break
- // out of loop, this CE will end up being returned. This is the normal
- // way out of prefix handling when the source actually contained
- // the prefix.
- break;
- }
- }
- loadState(source, &prefixState, TRUE);
- break;
- }
+ if (offsetBias >= 0 && source->offsetStore >= &source->offsetBuffer[source->offsetBufferSize]) {
+ int32_t storeIX = source->offsetStore - source->offsetBuffer;
+ int32_t *tob = (int32_t *) uprv_realloc(source->offsetBuffer,
+ sizeof(int32_t) * (source->offsetBufferSize + UCOL_EXPAND_CE_BUFFER_EXTEND_SIZE));
- case CONTRACTION_TAG:
- /* to ensure that the backwards and forwards iteration matches, we
- take the current region of most possible match and pass it through
- the forward iteration. this will ensure that the obstinate problem of
- overlapping contractions will not occur.
- */
- schar = peekCharacter(source, 0);
- constart = (UChar *)coll->image + getContractOffset(CE);
- if (isAtStartPrevIterate(source)
- /* commented away contraction end checks after adding the checks
- in getPrevCE */) {
- /* start of string or this is not the end of any contraction */
- CE = *(coll->contractionCEs +
- (constart - coll->contractionIndex));
- break;
- }
- strbuffer = buffer;
- UCharOffset = strbuffer + (UCOL_MAX_BUFFER - 1);
- *(UCharOffset --) = 0;
- noChars = 0;
- // have to swap thai characters
- while (ucol_unsafeCP(schar, coll) || UCOL_ISTHAIPREVOWEL(peekCharacter(source, -1))) {
- // we might have ended here after trying to reorder Thai, but seeing that there are unsafe points
- // in the backward processing
- *(UCharOffset) = schar;
- noChars++;
- UCharOffset --;
- schar = getPrevNormalizedChar(source);
- goBackOne(source);
- // TODO: when we exhaust the contraction buffer,
- // it needs to get reallocated. The problem is
- // that the size depends on the string which is
- // not iterated over. However, since we're travelling
- // backwards, we already had to set the iterator at
- // the end - so we might as well know where we are?
- if (UCharOffset + 1 == buffer) {
- /* we have exhausted the buffer */
- int32_t newsize = 0;
- if(source->pos) { // actually dealing with a position
- newsize = source->pos - source->string + 1;
- } else { // iterator
- newsize = 4 * UCOL_MAX_BUFFER;
- }
- strbuffer = (UChar *)uprv_malloc(sizeof(UChar) *
- (newsize + UCOL_MAX_BUFFER));
- /* test for NULL */
- if (strbuffer == NULL) {
- *status = U_MEMORY_ALLOCATION_ERROR;
- return UCOL_NO_MORE_CES;
+ if (tob != NULL) {
+ source->offsetBuffer = tob;
+ source->offsetStore = &source->offsetBuffer[storeIX];
+ source->offsetBufferSize += UCOL_EXPAND_CE_BUFFER_EXTEND_SIZE;
+ } else {
+ // memory error...
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ source->CEpos = source->CEs;
+ freeHeapWritableBuffer(&temp);
+
+ if (strbuffer != buffer) {
+ uprv_free(strbuffer);
+ }
+
+ return (uint32_t) UCOL_NULLORDER;
+ }
}
- UCharOffset = strbuffer + newsize;
- uprv_memcpy(UCharOffset, buffer,
- UCOL_MAX_BUFFER * sizeof(UChar));
- UCharOffset --;
+
+ rawOffset = temp.pos - temp.string;
+ CE = ucol_IGetNextCE(coll, &temp, status);
}
- if ((source->pos && (source->pos == source->string ||
- ((source->flags & UCOL_ITER_INNORMBUF) &&
- *(source->pos - 1) == 0 && source->fcdPosition == NULL)))
- || (source->iterator && !source->iterator->hasPrevious(source->iterator))) {
- break;
+
+ if (source->offsetRepeatValue != 0) {
+ if (CECount > noChars) {
+ source->offsetRepeatCount += temp.offsetRepeatCount;
+ } else {
+ // **** does this really skip the right offsets? ****
+ source->offsetReturn -= (noChars - CECount);
+ }
}
- }
- /* adds the initial base character to the string */
- *(UCharOffset) = schar;
- noChars++;
-
- /* a new collIterate is used to simplify things, since using the current
- collIterate will mean that the forward and backwards iteration will
- share and change the same buffers. we don't want to get into that. */
- collIterate temp;
- //IInit_collIterate(coll, UCharOffset, -1, &temp);
- IInit_collIterate(coll, UCharOffset, noChars, &temp);
- temp.flags &= ~UCOL_ITER_NORM;
-
- CE = ucol_IGetNextCE(coll, &temp, status);
- endCEBuffer = source->CEs + UCOL_EXPAND_CE_BUFFER_SIZE;
- while (CE != UCOL_NO_MORE_CES) {
- *(source->CEpos ++) = CE;
- if (source->CEpos == endCEBuffer) {
- /* ran out of CE space, bail.
- there's no guarantee of the right character position after
- this bail*/
- *status = U_BUFFER_OVERFLOW_ERROR;
- source->CEpos = source->CEs;
- freeHeapWritableBuffer(&temp);
- if (strbuffer != buffer) {
- uprv_free(strbuffer);
+
+ freeHeapWritableBuffer(&temp);
+
+ if (strbuffer != buffer) {
+ uprv_free(strbuffer);
+ }
+
+ if (offsetBias >= 0) {
+ source->offsetReturn = source->offsetStore - 1;
+ if (source->offsetReturn == source->offsetBuffer) {
+ source->offsetStore = source->offsetBuffer;
}
- return (uint32_t)UCOL_NULLORDER;
}
- CE = ucol_IGetNextCE(coll, &temp, status);
- }
- freeHeapWritableBuffer(&temp);
- if (strbuffer != buffer) {
- uprv_free(strbuffer);
- }
- source->toReturn = source->CEpos - 1;
- if (source->toReturn == source->CEs) {
- source->CEpos = source->CEs;
- }
- return *(source->toReturn);
- case LONG_PRIMARY_TAG:
- {
- *(source->CEpos++) = ((CE & 0xFFFF00) << 8) | (UCOL_BYTE_COMMON << 8) | UCOL_BYTE_COMMON;
- *(source->CEpos++) = ((CE & 0xFF)<<24)|UCOL_CONTINUATION_MARKER;
- source->toReturn = source->CEpos - 1;
- return *(source->toReturn);
- }
- case EXPANSION_TAG: /* this tag always returns */
- /*
- This should handle expansion.
- NOTE: we can encounter both continuations and expansions in an expansion!
- I have to decide where continuations are going to be dealt with
- */
- /* find the offset to expansion table */
- CEOffset = (uint32_t *)coll->image + getExpansionOffset(CE);
- size = getExpansionCount(CE);
- if (size != 0) {
- /*
- if there are less than 16 elements in expansion, we don't terminate
- */
- uint32_t count;
- for (count = 0; count < size; count++) {
- *(source->CEpos ++) = *CEOffset++;
- }
- }
- else {
- /* else, we do */
- while (*CEOffset != 0) {
- *(source->CEpos ++) = *CEOffset ++;
- }
- }
- source->toReturn = source->CEpos - 1;
- // in case of one element expansion, we
- // want to immediately return CEpos
- if(source->toReturn == source->CEs) {
- source->CEpos = source->CEs;
- }
- return *(source->toReturn);
- case DIGIT_TAG:
- {
- /*
- We do a check to see if we want to collate digits as numbers; if so we generate
- a custom collation key. Otherwise we pull out the value stored in the expansion table.
- */
- //uint32_t size;
- uint32_t i; /* general counter */
- collIterateState state;
- if (source->coll->numericCollation == UCOL_ON){
- UChar32 char32 = 0;
+ source->toReturn = source->CEpos - 1;
+ if (source->toReturn == source->CEs) {
+ source->CEpos = source->CEs;
+ }
- uint32_t digIndx = 0;
- uint32_t endIndex = 0;
- uint32_t leadingZeroIndex = 0;
- uint32_t trailingZeroCount = 0;
+ return *(source->toReturn);
- uint32_t primWeight = 0;
+ case LONG_PRIMARY_TAG:
+ {
+ *(source->CEpos++) = ((CE & 0xFFFF00) << 8) | (UCOL_BYTE_COMMON << 8) | UCOL_BYTE_COMMON;
+ *(source->CEpos++) = ((CE & 0xFF)<<24)|UCOL_CONTINUATION_MARKER;
+ source->toReturn = source->CEpos - 1;
+
+ if (source->offsetBuffer == NULL) {
+ source->offsetBufferSize = UCOL_EXPAND_CE_BUFFER_SIZE;
+ source->offsetBuffer = (int32_t *) uprv_malloc(sizeof(int32_t) * UCOL_EXPAND_CE_BUFFER_SIZE);
+ source->offsetStore = source->offsetBuffer;
+ }
- int32_t digVal = 0;
- uint8_t collateVal = 0;
+ if (source->flags & UCOL_ITER_INNORMBUF) {
+ source->offsetRepeatCount = 1;
+ } else {
+ int32_t firstOffset = (int32_t)(source->pos - source->string);
- UBool nonZeroValReached = FALSE;
+ *(source->offsetStore++) = firstOffset;
+ *(source->offsetStore++) = firstOffset + 1;
- uint8_t *numTempBuf;
- uint8_t stackNumTempBuf[UCOL_MAX_BUFFER]; // I just need a temporary place to store my generated CEs.
- uint32_t numTempBufSize = UCOL_MAX_BUFFER;
+ source->offsetReturn = source->offsetStore - 1;
+ *(source->offsetBuffer) = firstOffset;
+ if (source->offsetReturn == source->offsetBuffer) {
+ source->offsetStore = source->offsetBuffer;
+ }
+ }
- numTempBuf = stackNumTempBuf;
- /*
- We parse the source string until we hit a char that's NOT a digit.
- Use this u_charDigitValue. This might be slow because we have to
- handle surrogates...
- */
- if (U16_IS_TRAIL (ch)){
- if (!collIter_bos(source)){
- UChar lead = getPrevNormalizedChar(source);
- if(U16_IS_LEAD(lead)) {
- char32 = U16_GET_SUPPLEMENTARY(lead,ch);
- goBackOne(source);
- } else {
- char32 = ch;
- }
- } else {
- char32 = ch;
+ return *(source->toReturn);
}
- } else {
- char32 = ch;
- }
- digVal = u_charDigitValue(char32);
- for(;;){
- // Make sure we have enough space.
- if (digIndx >= ((numTempBufSize - 2) * 2) + 1)
- {
- numTempBufSize *= 2;
- if (numTempBuf == stackNumTempBuf){
- numTempBuf = (uint8_t *)uprv_malloc(sizeof(uint8_t) * numTempBufSize);
- uprv_memcpy(numTempBuf, stackNumTempBuf, UCOL_MAX_BUFFER);
- }else
- uprv_realloc(numTempBuf, numTempBufSize);
- }
-
- // Skip over trailing zeroes, and keep a count of them.
- if (digVal != 0)
- nonZeroValReached = TRUE;
- if (nonZeroValReached){
- /*
- We parse the digit string into base 100 numbers (this fits into a byte).
- We only add to the buffer in twos, thus if we are parsing an odd character,
- that serves as the 'tens' digit while the if we are parsing an even one, that
- is the 'ones' digit. We dumped the parsed base 100 value (collateVal) into
- a buffer. We multiply each collateVal by 2 (to give us room) and add 5 (to avoid
- overlapping magic CE byte values). The last byte we subtract 1 to ensure it is less
- than all the other bytes.
-
- Since we're doing in this reverse we want to put the first digit encountered into the
- ones place and the second digit encountered into the tens place.
- */
+ case EXPANSION_TAG: /* this tag always returns */
+ {
+ /*
+ This should handle expansion.
+ NOTE: we can encounter both continuations and expansions in an expansion!
+ I have to decide where continuations are going to be dealt with
+ */
+ int32_t firstOffset = (int32_t)(source->pos - source->string);
+
+ // **** doesn't work if using iterator ****
+ if (source->offsetReturn != NULL) {
+ if (! (source->flags & UCOL_ITER_INNORMBUF) && source->offsetReturn == source->offsetBuffer) {
+ source->offsetStore = source->offsetBuffer;
+ }else {
+ firstOffset = -1;
+ }
+ }
+
+ if (source->offsetBuffer == NULL) {
+ source->offsetBufferSize = UCOL_EXPAND_CE_BUFFER_SIZE;
+ source->offsetBuffer = (int32_t *) uprv_malloc(sizeof(int32_t) * UCOL_EXPAND_CE_BUFFER_SIZE);
+ source->offsetStore = source->offsetBuffer;
+ }
- if ((digIndx + trailingZeroCount) % 2 == 1){
- // High-order digit case (tens place)
- collateVal += (uint8_t)(digVal * 10);
+ /* find the offset to expansion table */
+ CEOffset = (uint32_t *)coll->image + getExpansionOffset(CE);
+ size = getExpansionCount(CE);
+ if (size != 0) {
+ /*
+ if there are less than 16 elements in expansion, we don't terminate
+ */
+ uint32_t count;
- // We cannot set leadingZeroIndex unless it has been set for the
- // low-order digit. Therefore, all we can do for the high-order
- // digit is turn it off, never on.
- // The only time we will have a high digit without a low is for
- // the very first non-zero digit, so no zero check is necessary.
- if (collateVal != 0)
- leadingZeroIndex = 0;
+ for (count = 0; count < size; count++) {
+ *(source->CEpos ++) = *CEOffset++;
- numTempBuf[(digIndx/2) + 2] = collateVal*2 + 6;
- collateVal = 0;
+ if (firstOffset >= 0) {
+ *(source->offsetStore ++) = firstOffset + 1;
+ }
}
- else{
- // Low-order digit case (ones place)
- collateVal = (uint8_t)digVal;
+ } else {
+ /* else, we do */
+ while (*CEOffset != 0) {
+ *(source->CEpos ++) = *CEOffset ++;
- // Check for leading zeroes.
- if (collateVal == 0)
- {
- if (!leadingZeroIndex)
- leadingZeroIndex = (digIndx/2) + 2;
+ if (firstOffset >= 0) {
+ *(source->offsetStore ++) = firstOffset + 1;
}
- else
- leadingZeroIndex = 0;
+ }
+ }
- // No need to write to buffer; the case of a last odd digit
- // is handled below.
+ if (firstOffset >= 0) {
+ source->offsetReturn = source->offsetStore - 1;
+ *(source->offsetBuffer) = firstOffset;
+ if (source->offsetReturn == source->offsetBuffer) {
+ source->offsetStore = source->offsetBuffer;
}
- ++digIndx;
+ } else {
+ source->offsetRepeatCount += size - 1;
}
- else
- ++trailingZeroCount;
- if (!collIter_bos(source)){
- ch = getPrevNormalizedChar(source);
- //goBackOne(source);
- if (U16_IS_TRAIL(ch)){
- backupState(source, &state);
- if (!collIter_bos(source))
- {
- goBackOne(source);
- UChar lead = getPrevNormalizedChar(source);
- if(U16_IS_LEAD(lead)) {
- char32 = U16_GET_SUPPLEMENTARY(lead,ch);
+ source->toReturn = source->CEpos - 1;
+ // in case of one element expansion, we
+ // want to immediately return CEpos
+ if(source->toReturn == source->CEs) {
+ source->CEpos = source->CEs;
+ }
+
+ return *(source->toReturn);
+ }
+
+ case DIGIT_TAG:
+ {
+ /*
+ We do a check to see if we want to collate digits as numbers; if so we generate
+ a custom collation key. Otherwise we pull out the value stored in the expansion table.
+ */
+ //uint32_t size;
+ uint32_t i; /* general counter */
+
+ if (source->coll->numericCollation == UCOL_ON){
+ uint32_t digIndx = 0;
+ uint32_t endIndex = 0;
+ uint32_t leadingZeroIndex = 0;
+ uint32_t trailingZeroCount = 0;
+
+ uint8_t collateVal = 0;
+
+ UBool nonZeroValReached = FALSE;
+
+ uint8_t numTempBuf[UCOL_MAX_DIGITS_FOR_NUMBER/2 + 2]; // I just need a temporary place to store my generated CEs.
+ /*
+ We parse the source string until we hit a char that's NOT a digit.
+ Use this u_charDigitValue. This might be slow because we have to
+ handle surrogates...
+ */
+ /*
+ We need to break up the digit string into collection elements of UCOL_MAX_DIGITS_FOR_NUMBER or less,
+ with any chunks smaller than that being on the right end of the digit string - i.e. the first collation
+ element we process when going backward. To determine how long that chunk might be, we may need to make
+ two passes through the loop that collects digits - one to see how long the string is (and how much is
+ leading zeros) to determine the length of that right-hand chunk, and a second (if the whole string has
+ more than UCOL_MAX_DIGITS_FOR_NUMBER non-leading-zero digits) to actually process that collation
+ element chunk after resetting the state to the initialState at the right side of the digit string.
+ */
+ uint32_t ceLimit = 0;
+ UChar initial_ch = ch;
+ collIterateState initialState = {0,0,0,0,0,0,0,0,0};
+ backupState(source, &initialState);
+
+ for(;;) {
+ collIterateState state = {0,0,0,0,0,0,0,0,0};
+ UChar32 char32 = 0;
+ int32_t digVal = 0;
+
+ if (U16_IS_TRAIL (ch)) {
+ if (!collIter_bos(source)){
+ UChar lead = getPrevNormalizedChar(source, status);
+ if(U16_IS_LEAD(lead)) {
+ char32 = U16_GET_SUPPLEMENTARY(lead,ch);
+ goBackOne(source);
+ } else {
+ char32 = ch;
+ }
+ } else {
+ char32 = ch;
+ }
} else {
- loadState(source, &state, FALSE);
- char32 = ch;
+ char32 = ch;
+ }
+ digVal = u_charDigitValue(char32);
+
+ for(;;) {
+ // Make sure we have enough space. No longer needed;
+ // at this point the largest value of digIndx when we need to save data in numTempBuf
+ // is UCOL_MAX_DIGITS_FOR_NUMBER-1 (digIndx is post-incremented) so we just ensure
+ // that numTempBuf is big enough (UCOL_MAX_DIGITS_FOR_NUMBER/2 + 2).
+
+ // Skip over trailing zeroes, and keep a count of them.
+ if (digVal != 0)
+ nonZeroValReached = TRUE;
+
+ if (nonZeroValReached) {
+ /*
+ We parse the digit string into base 100 numbers (this fits into a byte).
+ We only add to the buffer in twos, thus if we are parsing an odd character,
+ that serves as the 'tens' digit while the if we are parsing an even one, that
+ is the 'ones' digit. We dumped the parsed base 100 value (collateVal) into
+ a buffer. We multiply each collateVal by 2 (to give us room) and add 5 (to avoid
+ overlapping magic CE byte values). The last byte we subtract 1 to ensure it is less
+ than all the other bytes.
+
+ Since we're doing in this reverse we want to put the first digit encountered into the
+ ones place and the second digit encountered into the tens place.
+ */
+
+ if ((digIndx + trailingZeroCount) % 2 == 1) {
+ // High-order digit case (tens place)
+ collateVal += (uint8_t)(digVal * 10);
+
+ // We cannot set leadingZeroIndex unless it has been set for the
+ // low-order digit. Therefore, all we can do for the high-order
+ // digit is turn it off, never on.
+ // The only time we will have a high digit without a low is for
+ // the very first non-zero digit, so no zero check is necessary.
+ if (collateVal != 0)
+ leadingZeroIndex = 0;
+
+ // The first pass through, digIndx may exceed the limit, but in that case
+ // we no longer care about numTempBuf contents since they will be discarded
+ if ( digIndx < UCOL_MAX_DIGITS_FOR_NUMBER ) {
+ numTempBuf[(digIndx/2) + 2] = collateVal*2 + 6;
+ }
+ collateVal = 0;
+ } else {
+ // Low-order digit case (ones place)
+ collateVal = (uint8_t)digVal;
+
+ // Check for leading zeroes.
+ if (collateVal == 0) {
+ if (!leadingZeroIndex)
+ leadingZeroIndex = (digIndx/2) + 2;
+ } else
+ leadingZeroIndex = 0;
+
+ // No need to write to buffer; the case of a last odd digit
+ // is handled below.
+ }
+ ++digIndx;
+ } else
+ ++trailingZeroCount;
+
+ if (!collIter_bos(source)) {
+ ch = getPrevNormalizedChar(source, status);
+ //goBackOne(source);
+ if (U16_IS_TRAIL(ch)) {
+ backupState(source, &state);
+ if (!collIter_bos(source)) {
+ goBackOne(source);
+ UChar lead = getPrevNormalizedChar(source, status);
+
+ if(U16_IS_LEAD(lead)) {
+ char32 = U16_GET_SUPPLEMENTARY(lead,ch);
+ } else {
+ loadState(source, &state, FALSE);
+ char32 = ch;
+ }
+ }
+ } else
+ char32 = ch;
+
+ if ((digVal = u_charDigitValue(char32)) == -1 || (ceLimit > 0 && (digIndx + trailingZeroCount) >= ceLimit)) {
+ if (char32 > 0xFFFF) {// For surrogates.
+ loadState(source, &state, FALSE);
+ }
+ // Don't need to "reverse" the goBackOne call,
+ // as this points to the next position to process..
+ //if (char32 > 0xFFFF) // For surrogates.
+ //getNextNormalizedChar(source);
+ break;
+ }
+
+ goBackOne(source);
+ }else
+ break;
+ }
+
+ if (digIndx + trailingZeroCount <= UCOL_MAX_DIGITS_FOR_NUMBER) {
+ // our collation element is not too big, go ahead and finish with it
+ break;
}
+ // our digit string is too long for a collation element;
+ // set the limit for it, reset the state and begin again
+ ceLimit = (digIndx + trailingZeroCount) % UCOL_MAX_DIGITS_FOR_NUMBER;
+ if ( ceLimit == 0 ) {
+ ceLimit = UCOL_MAX_DIGITS_FOR_NUMBER;
+ }
+ ch = initial_ch;
+ loadState(source, &initialState, FALSE);
+ digIndx = endIndex = leadingZeroIndex = trailingZeroCount = 0;
+ collateVal = 0;
+ nonZeroValReached = FALSE;
}
- }
- else
- char32 = ch;
-
- if ((digVal = u_charDigitValue(char32)) == -1){
- if (char32 > 0xFFFF) {// For surrogates.
- loadState(source, &state, FALSE);
- }
- // Don't need to "reverse" the goBackOne call,
- // as this points to the next position to process..
- //if (char32 > 0xFFFF) // For surrogates.
- //getNextNormalizedChar(source);
+
+ if (! nonZeroValReached) {
+ digIndx = 2;
+ trailingZeroCount = 0;
+ numTempBuf[2] = 6;
+ }
+
+ if ((digIndx + trailingZeroCount) % 2 != 0) {
+ numTempBuf[((digIndx)/2) + 2] = collateVal*2 + 6;
+ digIndx += 1; // The implicit leading zero
+ }
+ if (trailingZeroCount % 2 != 0) {
+ // We had to consume one trailing zero for the low digit
+ // of the least significant byte
+ digIndx += 1; // The trailing zero not in the exponent
+ trailingZeroCount -= 1;
+ }
+
+ endIndex = leadingZeroIndex ? leadingZeroIndex : ((digIndx/2) + 2) ;
+
+ // Subtract one off of the last byte. Really the first byte here, but it's reversed...
+ numTempBuf[2] -= 1;
+
+ /*
+ We want to skip over the first two slots in the buffer. The first slot
+ is reserved for the header byte UCOL_CODAN_PLACEHOLDER. The second slot is for the
+ sign/exponent byte: 0x80 + (decimalPos/2) & 7f.
+ The exponent must be adjusted by the number of leading zeroes, and the number of
+ trailing zeroes.
+ */
+ numTempBuf[0] = UCOL_CODAN_PLACEHOLDER;
+ uint32_t exponent = (digIndx+trailingZeroCount)/2;
+ if (leadingZeroIndex)
+ exponent -= ((digIndx/2) + 2 - leadingZeroIndex);
+ numTempBuf[1] = (uint8_t)(0x80 + (exponent & 0x7F));
+
+ // Now transfer the collation key to our collIterate struct.
+ // The total size for our collation key is endIndx bumped up to the next largest even value divided by two.
+ //size = ((endIndex+1) & ~1)/2;
+ *(source->CEpos++) = (((numTempBuf[0] << 8) | numTempBuf[1]) << UCOL_PRIMARYORDERSHIFT) | //Primary weight
+ (UCOL_BYTE_COMMON << UCOL_SECONDARYORDERSHIFT) | // Secondary weight
+ UCOL_BYTE_COMMON; // Tertiary weight.
+ i = endIndex - 1; // Reset the index into the buffer.
+ while(i >= 2) {
+ uint32_t primWeight = numTempBuf[i--] << 8;
+ if ( i >= 2)
+ primWeight |= numTempBuf[i--];
+ *(source->CEpos++) = (primWeight << UCOL_PRIMARYORDERSHIFT) | UCOL_CONTINUATION_MARKER;
+ }
+
+ source->toReturn = source->CEpos -1;
+ return *(source->toReturn);
+ } else {
+ CEOffset = (uint32_t *)coll->image + getExpansionOffset(CE);
+ CE = *(CEOffset++);
break;
}
- goBackOne(source);
- }else
- break;
- }
+ }
- if (nonZeroValReached == FALSE){
- digIndx = 2;
- trailingZeroCount = 0;
- numTempBuf[2] = 6;
- }
+ case HANGUL_SYLLABLE_TAG: /* AC00-D7AF*/
+ {
+ static const uint32_t
+ SBase = 0xAC00, LBase = 0x1100, VBase = 0x1161, TBase = 0x11A7;
+ //const uint32_t LCount = 19;
+ static const uint32_t VCount = 21;
+ static const uint32_t TCount = 28;
+ //const uint32_t NCount = VCount * TCount; /* 588 */
+ //const uint32_t SCount = LCount * NCount; /* 11172 */
+
+ uint32_t L = ch - SBase;
+ /*
+ divide into pieces.
+ we do it in this order since some compilers can do % and / in one
+ operation
+ */
+ uint32_t T = L % TCount;
+ L /= TCount;
+ uint32_t V = L % VCount;
+ L /= VCount;
+
+ /* offset them */
+ L += LBase;
+ V += VBase;
+ T += TBase;
+
+ if (source->offsetBuffer == NULL) {
+ source->offsetBufferSize = UCOL_EXPAND_CE_BUFFER_SIZE;
+ source->offsetBuffer = (int32_t *) uprv_malloc(sizeof(int32_t) * UCOL_EXPAND_CE_BUFFER_SIZE);
+ source->offsetStore = source->offsetBuffer;
+ }
- if ((digIndx + trailingZeroCount) % 2 != 0){
- numTempBuf[((digIndx)/2) + 2] = collateVal*2 + 6;
- digIndx += 1; // The implicit leading zero
- }
- if (trailingZeroCount % 2 != 0){
- // We had to consume one trailing zero for the low digit
- // of the least significant byte
- digIndx += 1; // The trailing zero not in the exponent
- trailingZeroCount -= 1;
- }
+ int32_t firstOffset = (int32_t)(source->pos - source->string);
- endIndex = leadingZeroIndex ? leadingZeroIndex : ((digIndx/2) + 2) ;
+ *(source->offsetStore++) = firstOffset;
- // Subtract one off of the last byte. Really the first byte here, but it's reversed...
- numTempBuf[2] -= 1;
+ /*
+ * return the first CE, but first put the rest into the expansion buffer
+ */
+ if (!source->coll->image->jamoSpecial) {
+ *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(&coll->mapping, L);
+ *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(&coll->mapping, V);
+ *(source->offsetStore++) = firstOffset + 1;
+
+ if (T != TBase) {
+ *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(&coll->mapping, T);
+ *(source->offsetStore++) = firstOffset + 1;
+ }
- /*
- We want to skip over the first two slots in the buffer. The first slot
- is reserved for the header byte UCOL_CODAN_PLACEHOLDER. The second slot is for the
- sign/exponent byte: 0x80 + (decimalPos/2) & 7f.
- The exponent must be adjusted by the number of leading zeroes, and the number of
- trailing zeroes.
- */
- numTempBuf[0] = UCOL_CODAN_PLACEHOLDER;
- uint32_t exponent = (digIndx+trailingZeroCount)/2;
- if (leadingZeroIndex)
- exponent -= ((digIndx/2) + 2 - leadingZeroIndex);
- numTempBuf[1] = (uint8_t)(0x80 + (exponent & 0x7F));
-
- // Now transfer the collation key to our collIterate struct.
- // The total size for our collation key is endIndx bumped up to the next largest even value divided by two.
- //size = ((endIndex+1) & ~1)/2;
- *(source->CEpos++) = (((numTempBuf[0] << 8) | numTempBuf[1]) << UCOL_PRIMARYORDERSHIFT) | //Primary weight
- (UCOL_BYTE_COMMON << UCOL_SECONDARYORDERSHIFT) | // Secondary weight
- UCOL_BYTE_COMMON; // Tertiary weight.
- i = endIndex - 1; // Reset the index into the buffer.
- while(i >= 2)
- {
- primWeight = numTempBuf[i--] << 8;
- if ( i >= 2)
- primWeight |= numTempBuf[i--];
- *(source->CEpos++) = (primWeight << UCOL_PRIMARYORDERSHIFT) | UCOL_CONTINUATION_MARKER;
- }
- if (numTempBuf != stackNumTempBuf)
- uprv_free(numTempBuf);
+ source->toReturn = source->CEpos - 1;
- source->toReturn = source->CEpos -1;
- return *(source->toReturn);
- }
- else {
- CEOffset = (uint32_t *)coll->image + getExpansionOffset(CE);
- CE = *(CEOffset++);
- break;
+ source->offsetReturn = source->offsetStore - 1;
+ if (source->offsetReturn == source->offsetBuffer) {
+ source->offsetStore = source->offsetBuffer;
+ }
+
+ return *(source->toReturn);
+ } else {
+ // Since Hanguls pass the FCD check, it is
+ // guaranteed that we won't be in
+ // the normalization buffer if something like this happens
+ // Move Jamos into normalization buffer
+ /*
+ Move the Jamos into the
+ normalization buffer
+ */
+ UChar *tempbuffer = source->writableBuffer +
+ (source->writableBufSize - 1);
+ *(tempbuffer) = 0;
+ if (T != TBase) {
+ *(tempbuffer - 1) = (UChar)T;
+ *(tempbuffer - 2) = (UChar)V;
+ *(tempbuffer - 3) = (UChar)L;
+ *(tempbuffer - 4) = 0;
+ } else {
+ *(tempbuffer - 1) = (UChar)V;
+ *(tempbuffer - 2) = (UChar)L;
+ *(tempbuffer - 3) = 0;
+ }
+
+ /*
+ Indicate where to continue in main input string after exhausting
+ the writableBuffer
+ */
+ if (source->pos == source->string) {
+ source->fcdPosition = NULL;
+ } else {
+ source->fcdPosition = source->pos-1;
+ }
+
+ source->pos = tempbuffer;
+ source->origFlags = source->flags;
+ source->flags |= UCOL_ITER_INNORMBUF;
+ source->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN);
+
+ return(UCOL_IGNORABLE);
+ }
+ }
+
+ case IMPLICIT_TAG: /* everything that is not defined otherwise */
#if 0
- /* find the offset to expansion table */
- CEOffset = (uint32_t *)coll->image + getExpansionOffset(CE);
- size = getExpansionCount(CE);
- if (size != 0) {
- /*
- if there are less than 16 elements in expansion, we don't terminate
- */
- uint32_t count;
- for (count = 0; count < size; count++) {
- *(source->CEpos ++) = *CEOffset++;
+ if (source->offsetBuffer == NULL) {
+ source->offsetBufferSize = UCOL_EXPAND_CE_BUFFER_SIZE;
+ source->offsetBuffer = (int32_t *) uprv_malloc(sizeof(int32_t) * UCOL_EXPAND_CE_BUFFER_SIZE);
+ source->offsetStore = source->offsetBuffer;
}
- }
- else {
- /* else, we do */
- while (*CEOffset != 0) {
- *(source->CEpos ++) = *CEOffset ++;
+
+ // **** doesn't work if using iterator ****
+ if (source->flags & UCOL_ITER_INNORMBUF) {
+ source->offsetRepeatCount = 1;
+ } else {
+ int32_t firstOffset = (int32_t)(source->pos - source->string);
+
+ *(source->offsetStore++) = firstOffset;
+ *(source->offsetStore++) = firstOffset + 1;
+
+ source->offsetReturn = source->offsetStore - 1;
+ if (source->offsetReturn == source->offsetBuffer) {
+ source->offsetStore = source->offsetBuffer;
+ }
}
- }
- source->toReturn = source->CEpos - 1;
- // in case of one element expansion, we
- // want to immediately return CEpos
- if(source->toReturn == source->CEs) {
- source->CEpos = source->CEs;
- }
- return *(source->toReturn);
#endif
- }
- }
- case HANGUL_SYLLABLE_TAG: /* AC00-D7AF*/
- {
- const uint32_t
- SBase = 0xAC00, LBase = 0x1100, VBase = 0x1161, TBase = 0x11A7;
- //const uint32_t LCount = 19;
- const uint32_t VCount = 21;
- const uint32_t TCount = 28;
- //const uint32_t NCount = VCount * TCount; /* 588 */
- //const uint32_t SCount = LCount * NCount; /* 11172 */
-
- uint32_t L = ch - SBase;
- /*
- divide into pieces.
- we do it in this order since some compilers can do % and / in one
- operation
- */
- uint32_t T = L % TCount;
- L /= TCount;
- uint32_t V = L % VCount;
- L /= VCount;
- /* offset them */
- L += LBase;
- V += VBase;
- T += TBase;
+ return getPrevImplicit(ch, source);
- /*
- return the first CE, but first put the rest into the expansion buffer
- */
- if (!source->coll->image->jamoSpecial)
- {
- /**(source->CEpos ++) = ucmpe32_get(UCA->mapping, L);*/
- /**(source->CEpos++) = UTRIE_GET32_FROM_LEAD(UCA->mapping, L);*/
- *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(coll->mapping, L);
- /**(source->CEpos ++) = ucmpe32_get(UCA->mapping, V);*/
- /**(source->CEpos++) = UTRIE_GET32_FROM_LEAD(UCA->mapping, V);*/
- *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(coll->mapping, V);
- if (T != TBase)
- /**(source->CEpos ++) = ucmpe32_get(UCA->mapping, T);*/
- /**(source->CEpos++) = UTRIE_GET32_FROM_LEAD(UCA->mapping, T);*/
- *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(coll->mapping, T);
-
- source->toReturn = source->CEpos - 1;
- return *(source->toReturn);
- } else {
- // Since Hanguls pass the FCD check, it is
- // guaranteed that we won't be in
- // the normalization buffer if something like this happens
- // Move Jamos into normalization buffer
- /*
- Move the Jamos into the
- normalization buffer
- */
- UChar *tempbuffer = source->writableBuffer +
- (source->writableBufSize - 1);
- *(tempbuffer) = 0;
- if (T != TBase) {
- *(tempbuffer - 1) = (UChar)T;
- *(tempbuffer - 2) = (UChar)V;
- *(tempbuffer - 3) = (UChar)L;
- *(tempbuffer - 4) = 0;
- } else {
- *(tempbuffer - 1) = (UChar)V;
- *(tempbuffer - 2) = (UChar)L;
- *(tempbuffer - 3) = 0;
- }
+ // TODO: Remove CJK implicits as they are handled by the getImplicitPrimary function
+ case CJK_IMPLICIT_TAG: /* 0x3400-0x4DB5, 0x4E00-0x9FA5, 0xF900-0xFA2D*/
+ return getPrevImplicit(ch, source);
- /*
- Indicate where to continue in main input string after exhausting
- the writableBuffer
- */
- if (source->pos == source->string) {
- source->fcdPosition = NULL;
- } else {
- source->fcdPosition = source->pos-1;
- }
+ case SURROGATE_TAG: /* This is a surrogate pair */
+ /* essentialy an engaged lead surrogate. */
+ /* if you have encountered it here, it means that a */
+ /* broken sequence was encountered and this is an error */
+ return 0;
+
+ case LEAD_SURROGATE_TAG: /* D800-DBFF*/
+ return 0; /* broken surrogate sequence */
+
+ case TRAIL_SURROGATE_TAG: /* DC00-DFFF*/
+ {
+ UChar32 cp = 0;
+ UChar prevChar;
+ UChar *prev;
+ if (isAtStartPrevIterate(source)) {
+ /* we are at the start of the string, wrong place to be at */
+ return 0;
+ }
+ if (source->pos != source->writableBuffer) {
+ prev = source->pos - 1;
+ } else {
+ prev = source->fcdPosition;
+ }
+ prevChar = *prev;
+
+ /* Handles Han and Supplementary characters here.*/
+ if (U16_IS_LEAD(prevChar)) {
+ cp = ((((uint32_t)prevChar)<<10UL)+(ch)-(((uint32_t)0xd800<<10UL)+0xdc00-0x10000));
+ source->pos = prev;
+ } else {
+ return 0; /* completely ignorable */
+ }
+
+ return getPrevImplicit(cp, source);
+ }
- source->pos = tempbuffer;
- source->origFlags = source->flags;
- source->flags |= UCOL_ITER_INNORMBUF;
- source->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN);
+ /* UCA is filled with these. Tailorings are NOT_FOUND */
+ /* not yet implemented */
+ case CHARSET_TAG: /* this tag always returns */
+ /* probably after 1.8 */
+ return UCOL_NOT_FOUND;
- return(UCOL_IGNORABLE);
+ default: /* this tag always returns */
+ *status = U_INTERNAL_PROGRAM_ERROR;
+ CE=0;
+ break;
}
- }
- case LEAD_SURROGATE_TAG: /* D800-DBFF*/
- return 0; /* broken surrogate sequence */
- case TRAIL_SURROGATE_TAG: /* DC00-DFFF*/
- {
- UChar32 cp = 0;
- UChar prevChar;
- UChar *prev;
- if (isAtStartPrevIterate(source)) {
- /* we are at the start of the string, wrong place to be at */
- return 0;
- }
- if (source->pos != source->writableBuffer) {
- prev = source->pos - 1;
- } else {
- prev = source->fcdPosition;
- }
- prevChar = *prev;
- /* Handles Han and Supplementary characters here.*/
- if (UTF_IS_FIRST_SURROGATE(prevChar)) {
- cp = ((((uint32_t)prevChar)<<10UL)+(ch)-(((uint32_t)0xd800<<10UL)+0xdc00-0x10000));
- source->pos = prev;
- } else {
- return 0; /* completely ignorable */
- }
- return getPrevImplicit(cp, source);
- }
- // TODO: Remove CJK implicits as they are handled by the getImplicitPrimary function
- case CJK_IMPLICIT_TAG: /* 0x3400-0x4DB5, 0x4E00-0x9FA5, 0xF900-0xFA2D*/
- return getPrevImplicit(ch, source);
- case IMPLICIT_TAG: /* everything that is not defined otherwise */
- return getPrevImplicit(ch, source);
- /* UCA is filled with these. Tailorings are NOT_FOUND */
- /* not yet implemented */
- case CHARSET_TAG: /* this tag always returns */
- /* probably after 1.8 */
- return UCOL_NOT_FOUND;
- default: /* this tag always returns */
- *status = U_INTERNAL_PROGRAM_ERROR;
- CE=0;
- break;
- }
- if (CE <= UCOL_NOT_FOUND) {
- break;
+ if (CE <= UCOL_NOT_FOUND) {
+ break;
+ }
}
- }
- return CE;
+
+ return CE;
}
/* This should really be a macro */
static
uint8_t *reallocateBuffer(uint8_t **secondaries, uint8_t *secStart, uint8_t *second, uint32_t *secSize, uint32_t newSize, UErrorCode *status) {
#ifdef UCOL_DEBUG
- fprintf(stderr, ".");
+ fprintf(stderr, ".");
#endif
- uint8_t *newStart = NULL;
- uint32_t offset = *secondaries-secStart;
+ uint8_t *newStart = NULL;
+ uint32_t offset = *secondaries-secStart;
- if(secStart==second) {
- newStart=(uint8_t*)uprv_malloc(newSize);
- if(newStart==NULL) {
- *status = U_MEMORY_ALLOCATION_ERROR;
- return NULL;
- }
- uprv_memcpy(newStart, secStart, *secondaries-secStart);
- } else {
- newStart=(uint8_t*)uprv_realloc(secStart, newSize);
- if(newStart==NULL) {
- *status = U_MEMORY_ALLOCATION_ERROR;
- return NULL;
+ if(secStart==second) {
+ newStart=(uint8_t*)uprv_malloc(newSize);
+ if(newStart==NULL) {
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ return NULL;
+ }
+ uprv_memcpy(newStart, secStart, *secondaries-secStart);
+ } else {
+ newStart=(uint8_t*)uprv_realloc(secStart, newSize);
+ if(newStart==NULL) {
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ /* Since we're reallocating, return original reference so we don't loose it. */
+ return secStart;
+ }
}
- }
- *secondaries=newStart+offset;
- *secSize=newSize;
- return newStart;
+ *secondaries=newStart+offset;
+ *secSize=newSize;
+ return newStart;
}
uint8_t *result,
int32_t resultLength)
{
- UTRACE_ENTRY(UTRACE_UCOL_GET_SORTKEY);
- if (UTRACE_LEVEL(UTRACE_VERBOSE)) {
- int32_t actualSrcLen = sourceLength;
- if (actualSrcLen==-1 && source!=NULL) {
- actualSrcLen = u_strlen(source);
- }
- UTRACE_DATA3(UTRACE_VERBOSE, "coll=%p, source string = %vh ", coll, source, actualSrcLen);
- }
-
- UErrorCode status = U_ZERO_ERROR;
- int32_t keySize = 0;
-
- if(source != NULL) {
- // source == NULL is actually an error situation, but we would need to
- // have an error code to return it. Until we introduce a new
- // API, it stays like this
-
- /* this uses the function pointer that is set in updateinternalstate */
- /* currently, there are two funcs: */
- /*ucol_calcSortKey(...);*/
- /*ucol_calcSortKeySimpleTertiary(...);*/
+ UTRACE_ENTRY(UTRACE_UCOL_GET_SORTKEY);
+ if (UTRACE_LEVEL(UTRACE_VERBOSE)) {
+ UTRACE_DATA3(UTRACE_VERBOSE, "coll=%p, source string = %vh ", coll, source,
+ ((sourceLength==-1 && source!=NULL) ? u_strlen(source) : sourceLength));
+ }
- keySize = coll->sortKeyGen(coll, source, sourceLength, &result, resultLength, FALSE, &status);
- //((UCollator *)coll)->errorCode = status; /*semantically const */
- }
- UTRACE_DATA2(UTRACE_VERBOSE, "Sort Key = %vb", result, keySize);
- UTRACE_EXIT_STATUS(status);
- return keySize;
+ UErrorCode status = U_ZERO_ERROR;
+ int32_t keySize = 0;
+
+ if(source != NULL) {
+ // source == NULL is actually an error situation, but we would need to
+ // have an error code to return it. Until we introduce a new
+ // API, it stays like this
+
+ /* this uses the function pointer that is set in updateinternalstate */
+ /* currently, there are two funcs: */
+ /*ucol_calcSortKey(...);*/
+ /*ucol_calcSortKeySimpleTertiary(...);*/
+
+ keySize = coll->sortKeyGen(coll, source, sourceLength, &result, resultLength, FALSE, &status);
+ //if (U_FAILURE(status) && status != U_BUFFER_OVERFLOW_ERROR && result && resultLength > 0) {
+ // That's not good. Something unusual happened.
+ // We don't know how much we initialized before we failed.
+ // NULL terminate for safety.
+ // We have no way say that we have generated a partial sort key.
+ //result[0] = 0;
+ //keySize = 0;
+ //}
+ }
+ UTRACE_DATA2(UTRACE_VERBOSE, "Sort Key = %vb", result, keySize);
+ UTRACE_EXIT_STATUS(status);
+ return keySize;
}
/* this function is called by the C++ API for sortkey generation */
/* or if we run out of space while making a sortkey and want to return ASAP */
int32_t ucol_getSortKeySize(const UCollator *coll, collIterate *s, int32_t currentSize, UColAttributeValue strength, int32_t len) {
UErrorCode status = U_ZERO_ERROR;
- const UCAConstants *UCAconsts = (UCAConstants *)((uint8_t *)coll->UCA->image + coll->image->UCAConsts);
+ //const UCAConstants *UCAconsts = (UCAConstants *)((uint8_t *)coll->UCA->image + coll->image->UCAConsts);
uint8_t compareSec = (uint8_t)((strength >= UCOL_SECONDARY)?0:0xFF);
uint8_t compareTer = (uint8_t)((strength >= UCOL_TERTIARY)?0:0xFF);
uint8_t compareQuad = (uint8_t)((strength >= UCOL_QUATERNARY)?0:0xFF);
uint32_t variableTopValue = coll->variableTopValue;
uint8_t UCOL_COMMON_BOT4 = (uint8_t)((coll->variableTopValue>>8)+1);
if(doHiragana) {
- UCOL_COMMON_BOT4++;
- /* allocate one more space for hiragana */
+ UCOL_COMMON_BOT4++;
+ /* allocate one more space for hiragana */
}
uint8_t UCOL_BOT_COUNT4 = (uint8_t)(0xFF - UCOL_COMMON_BOT4);
for(;;) {
- order = ucol_IGetNextCE(coll, s, &status);
- if(order == UCOL_NO_MORE_CES) {
- break;
- }
+ order = ucol_IGetNextCE(coll, s, &status);
+ if(order == UCOL_NO_MORE_CES) {
+ break;
+ }
- if(order == 0) {
+ if(order == 0) {
continue;
- }
+ }
- notIsContinuation = !isContinuation(order);
+ notIsContinuation = !isContinuation(order);
- if(notIsContinuation) {
+ if(notIsContinuation) {
tertiary = (uint8_t)((order & UCOL_BYTE_SIZE_MASK));
- } else {
+ } else {
tertiary = (uint8_t)((order & UCOL_REMOVE_CONTINUATION));
- }
- secondary = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK);
- primary2 = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK);
- primary1 = (uint8_t)(order >> 8);
+ }
+ secondary = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK);
+ primary2 = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK);
+ primary1 = (uint8_t)(order >> 8);
- if(shifted && ((notIsContinuation && order <= variableTopValue && primary1 > 0)
+ if(shifted && ((notIsContinuation && order <= variableTopValue && primary1 > 0)
|| (!notIsContinuation && wasShifted))
|| (wasShifted && primary1 == 0)) { /* amendment to the UCA says that primary ignorables */
- /* and other ignorables should be removed if following a shifted code point */
- if(primary1 == 0) { /* if we were shifted and we got an ignorable code point */
- /* we should just completely ignore it */
- continue;
- }
- if(compareQuad == 0) {
- if(c4 > 0) {
- currentSize += (c2/UCOL_BOT_COUNT4)+1;
- c4 = 0;
- }
- currentSize++;
- if(primary2 != 0) {
- currentSize++;
- }
- }
- wasShifted = TRUE;
- } else {
+ /* and other ignorables should be removed if following a shifted code point */
+ if(primary1 == 0) { /* if we were shifted and we got an ignorable code point */
+ /* we should just completely ignore it */
+ continue;
+ }
+ if(compareQuad == 0) {
+ if(c4 > 0) {
+ currentSize += (c2/UCOL_BOT_COUNT4)+1;
+ c4 = 0;
+ }
+ currentSize++;
+ if(primary2 != 0) {
+ currentSize++;
+ }
+ }
+ wasShifted = TRUE;
+ } else {
wasShifted = FALSE;
/* Note: This code assumes that the table is well built i.e. not having 0 bytes where they are not supposed to be. */
/* Usually, we'll have non-zero primary1 & primary2, except in cases of LatinOne and friends, when primary2 will */
/* calculate sortkey size */
if(primary1 != UCOL_IGNORABLE) {
- if(notIsContinuation) {
- if(leadPrimary == primary1) {
- currentSize++;
- } else {
- if(leadPrimary != 0) {
+ if(notIsContinuation) {
+ if(leadPrimary == primary1) {
+ currentSize++;
+ } else {
+ if(leadPrimary != 0) {
+ currentSize++;
+ }
+ if(primary2 == UCOL_IGNORABLE) {
+ /* one byter, not compressed */
+ currentSize++;
+ leadPrimary = 0;
+ }
+ else if(primary1<UCOL_BYTE_FIRST_NON_LATIN_PRIMARY ||
+ //(primary1 > (UCOL_RESET_TOP_VALUE>>24) && primary1 < (UCOL_NEXT_TOP_VALUE>>24))) {
+ //(primary1 > (*UCAconsts->UCA_LAST_NON_VARIABLE>>24) && primary1 < (*UCAconsts->UCA_FIRST_IMPLICIT>>24))) {
+ (primary1 > maxRegularPrimary && primary1 < minImplicitPrimary))
+ {
+ /* not compressible */
+ leadPrimary = 0;
+ currentSize+=2;
+ }
+ else { /* compress */
+ leadPrimary = primary1;
+ currentSize+=2;
+ }
+ }
+ } else { /* we are in continuation, so we're gonna add primary to the key don't care about compression */
currentSize++;
- }
- if(primary2 == UCOL_IGNORABLE) {
- /* one byter, not compressed */
- currentSize++;
- leadPrimary = 0;
- } else if(primary1<UCOL_BYTE_FIRST_NON_LATIN_PRIMARY ||
- //(primary1 > (UCOL_RESET_TOP_VALUE>>24) && primary1 < (UCOL_NEXT_TOP_VALUE>>24))) {
- (primary1 > (*UCAconsts->UCA_LAST_NON_VARIABLE>>24) && primary1 < (*UCAconsts->UCA_FIRST_IMPLICIT>>24))) {
- /* not compressible */
- leadPrimary = 0;
- currentSize+=2;
- } else { /* compress */
- leadPrimary = primary1;
- currentSize+=2;
- }
- }
- } else { /* we are in continuation, so we're gonna add primary to the key don't care about compression */
- currentSize++;
- if(primary2 != UCOL_IGNORABLE) {
- currentSize++;
+ if(primary2 != UCOL_IGNORABLE) {
+ currentSize++;
+ }
}
- }
}
if(secondary > compareSec) { /* I think that != 0 test should be != IGNORABLE */
- if(!isFrenchSec){
- if (secondary == UCOL_COMMON2 && notIsContinuation) {
- c2++;
- } else {
- if(c2 > 0) {
- if (secondary > UCOL_COMMON2) { // not necessary for 4th level.
- currentSize += (c2/(uint32_t)UCOL_TOP_COUNT2)+1;
+ if(!isFrenchSec){
+ if (secondary == UCOL_COMMON2 && notIsContinuation) {
+ c2++;
} else {
- currentSize += (c2/(uint32_t)UCOL_BOT_COUNT2)+1;
+ if(c2 > 0) {
+ if (secondary > UCOL_COMMON2) { // not necessary for 4th level.
+ currentSize += (c2/(uint32_t)UCOL_TOP_COUNT2)+1;
+ } else {
+ currentSize += (c2/(uint32_t)UCOL_BOT_COUNT2)+1;
+ }
+ c2 = 0;
+ }
+ currentSize++;
}
- c2 = 0;
- }
- currentSize++;
- }
- } else {
- fSecs[fSecsLen++] = secondary;
- if(fSecsLen == fSecsMaxLen) {
- if(fSecs == fSecsBuff) {
- fSecs = (uint8_t *)uprv_malloc(2*fSecsLen);
- } else {
- fSecs = (uint8_t *)uprv_realloc(fSecs, 2*fSecsLen);
- }
- if(fSecs == NULL) {
- status = U_MEMORY_ALLOCATION_ERROR;
- return -1;
- }
- fSecsMaxLen *= 2;
- }
- if(notIsContinuation) {
- if (frenchStartPtr != NULL) {
- /* reverse secondaries from frenchStartPtr up to frenchEndPtr */
- uprv_ucol_reverse_buffer(uint8_t, frenchStartPtr, frenchEndPtr);
- frenchStartPtr = NULL;
- }
} else {
- if (frenchStartPtr == NULL) {
- frenchStartPtr = fSecs+fSecsLen-2;
- }
- frenchEndPtr = fSecs+fSecsLen-1;
+ fSecs[fSecsLen++] = secondary;
+ if(fSecsLen == fSecsMaxLen) {
+ uint8_t *fSecsTemp;
+ if(fSecs == fSecsBuff) {
+ fSecsTemp = (uint8_t *)uprv_malloc(2*fSecsLen);
+ } else {
+ fSecsTemp = (uint8_t *)uprv_realloc(fSecs, 2*fSecsLen);
+ }
+ if(fSecsTemp == NULL) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ return 0;
+ }
+ fSecs = fSecsTemp;
+ fSecsMaxLen *= 2;
+ }
+ if(notIsContinuation) {
+ if (frenchStartPtr != NULL) {
+ /* reverse secondaries from frenchStartPtr up to frenchEndPtr */
+ uprv_ucol_reverse_buffer(uint8_t, frenchStartPtr, frenchEndPtr);
+ frenchStartPtr = NULL;
+ }
+ } else {
+ if (frenchStartPtr == NULL) {
+ frenchStartPtr = fSecs+fSecsLen-2;
+ }
+ frenchEndPtr = fSecs+fSecsLen-1;
+ }
}
- }
}
- if(doCase) {
- if (caseShift == 0) {
- currentSize++;
- caseShift = UCOL_CASE_SHIFT_START;
- }
- if((tertiary&0x3F) > 0 && notIsContinuation) {
- caseShift--;
- if((tertiary &0xC0) != 0) {
- if (caseShift == 0) {
+ if(doCase && (primary1 > 0 || strength >= UCOL_SECONDARY)) {
+ // do the case level if we need to do it. We don't want to calculate
+ // case level for primary ignorables if we have only primary strength and case level
+ // otherwise we would break well formedness of CEs
+ if (caseShift == 0) {
currentSize++;
caseShift = UCOL_CASE_SHIFT_START;
- }
- caseShift--;
}
- }
+ if((tertiary&0x3F) > 0 && notIsContinuation) {
+ caseShift--;
+ if((tertiary &0xC0) != 0) {
+ if (caseShift == 0) {
+ currentSize++;
+ caseShift = UCOL_CASE_SHIFT_START;
+ }
+ caseShift--;
+ }
+ }
} else {
- if(notIsContinuation) {
- tertiary ^= caseSwitch;
- }
+ if(notIsContinuation) {
+ tertiary ^= caseSwitch;
+ }
}
tertiary &= tertiaryMask;
if(tertiary > compareTer) { /* I think that != 0 test should be != IGNORABLE */
- if (tertiary == tertiaryCommon && notIsContinuation) {
- c3++;
- } else {
- if(c3 > 0) {
- if((tertiary > tertiaryCommon && tertiaryCommon == UCOL_COMMON3_NORMAL)
- || (tertiary <= tertiaryCommon && tertiaryCommon == UCOL_COMMON3_UPPERFIRST)) {
- currentSize += (c3/(uint32_t)coll->tertiaryTopCount)+1;
- } else {
- currentSize += (c3/(uint32_t)coll->tertiaryBottomCount)+1;
- }
- c3 = 0;
+ if (tertiary == tertiaryCommon && notIsContinuation) {
+ c3++;
+ } else {
+ if(c3 > 0) {
+ if((tertiary > tertiaryCommon && tertiaryCommon == UCOL_COMMON3_NORMAL)
+ || (tertiary <= tertiaryCommon && tertiaryCommon == UCOL_COMMON3_UPPERFIRST)) {
+ currentSize += (c3/(uint32_t)coll->tertiaryTopCount)+1;
+ } else {
+ currentSize += (c3/(uint32_t)coll->tertiaryBottomCount)+1;
+ }
+ c3 = 0;
+ }
+ currentSize++;
}
- currentSize++;
- }
}
if(/*qShifted*/(compareQuad==0) && notIsContinuation) {
- if(s->flags & UCOL_WAS_HIRAGANA) { // This was Hiragana and we need to note it
- if(c4>0) { // Close this part
- currentSize += (c4/UCOL_BOT_COUNT4)+1;
- c4 = 0;
- }
- currentSize++; // Add the Hiragana
- } else { // This wasn't Hiragana, so we can continue adding stuff
- c4++;
- }
+ if(s->flags & UCOL_WAS_HIRAGANA) { // This was Hiragana and we need to note it
+ if(c4>0) { // Close this part
+ currentSize += (c4/UCOL_BOT_COUNT4)+1;
+ c4 = 0;
+ }
+ currentSize++; // Add the Hiragana
+ } else { // This wasn't Hiragana, so we can continue adding stuff
+ c4++;
+ }
}
-
- }
+ }
}
if(!isFrenchSec){
- if(c2 > 0) {
- currentSize += (c2/(uint32_t)UCOL_BOT_COUNT2)+((c2%(uint32_t)UCOL_BOT_COUNT2 != 0)?1:0);
- }
+ if(c2 > 0) {
+ currentSize += (c2/(uint32_t)UCOL_BOT_COUNT2)+((c2%(uint32_t)UCOL_BOT_COUNT2 != 0)?1:0);
+ }
} else {
- uint32_t i = 0;
- if(frenchStartPtr != NULL) {
- uprv_ucol_reverse_buffer(uint8_t, frenchStartPtr, frenchEndPtr);
- }
- for(i = 0; i<fSecsLen; i++) {
- secondary = *(fSecs+fSecsLen-i-1);
- /* This is compression code. */
- if (secondary == UCOL_COMMON2) {
- ++c2;
- } else {
- if(c2 > 0) {
- if (secondary > UCOL_COMMON2) { // not necessary for 4th level.
- currentSize += (c2/(uint32_t)UCOL_TOP_COUNT2)+((c2%(uint32_t)UCOL_TOP_COUNT2 != 0)?1:0);
+ uint32_t i = 0;
+ if(frenchStartPtr != NULL) {
+ uprv_ucol_reverse_buffer(uint8_t, frenchStartPtr, frenchEndPtr);
+ }
+ for(i = 0; i<fSecsLen; i++) {
+ secondary = *(fSecs+fSecsLen-i-1);
+ /* This is compression code. */
+ if (secondary == UCOL_COMMON2) {
+ ++c2;
} else {
- currentSize += (c2/(uint32_t)UCOL_BOT_COUNT2)+((c2%(uint32_t)UCOL_BOT_COUNT2 != 0)?1:0);
+ if(c2 > 0) {
+ if (secondary > UCOL_COMMON2) { // not necessary for 4th level.
+ currentSize += (c2/(uint32_t)UCOL_TOP_COUNT2)+((c2%(uint32_t)UCOL_TOP_COUNT2 != 0)?1:0);
+ } else {
+ currentSize += (c2/(uint32_t)UCOL_BOT_COUNT2)+((c2%(uint32_t)UCOL_BOT_COUNT2 != 0)?1:0);
+ }
+ c2 = 0;
+ }
+ currentSize++;
}
- c2 = 0;
- }
- currentSize++;
}
- }
- if(c2 > 0) {
- currentSize += (c2/(uint32_t)UCOL_BOT_COUNT2)+((c2%(uint32_t)UCOL_BOT_COUNT2 != 0)?1:0);
- }
- if(fSecs != fSecsBuff) {
- uprv_free(fSecs);
- }
+ if(c2 > 0) {
+ currentSize += (c2/(uint32_t)UCOL_BOT_COUNT2)+((c2%(uint32_t)UCOL_BOT_COUNT2 != 0)?1:0);
+ }
+ if(fSecs != fSecsBuff) {
+ uprv_free(fSecs);
+ }
}
if(c3 > 0) {
- currentSize += (c3/(uint32_t)coll->tertiaryBottomCount) + ((c3%(uint32_t)coll->tertiaryBottomCount != 0)?1:0);
+ currentSize += (c3/(uint32_t)coll->tertiaryBottomCount) + ((c3%(uint32_t)coll->tertiaryBottomCount != 0)?1:0);
}
if(c4 > 0 && compareQuad == 0) {
- currentSize += (c4/(uint32_t)UCOL_BOT_COUNT4)+((c4%(uint32_t)UCOL_BOT_COUNT4 != 0)?1:0);
+ currentSize += (c4/(uint32_t)UCOL_BOT_COUNT4)+((c4%(uint32_t)UCOL_BOT_COUNT4 != 0)?1:0);
}
if(compareIdent) {
- currentSize += u_lengthOfIdenticalLevelRun(s->string, len);
+ currentSize += u_lengthOfIdenticalLevelRun(s->string, len);
}
return currentSize;
-
}
static
inline void doCaseShift(uint8_t **cases, uint32_t &caseShift) {
- if (caseShift == 0) {
- *(*cases)++ = UCOL_CASE_BYTE_START;
- caseShift = UCOL_CASE_SHIFT_START;
- }
+ if (caseShift == 0) {
+ *(*cases)++ = UCOL_CASE_BYTE_START;
+ caseShift = UCOL_CASE_SHIFT_START;
+ }
}
// Adds a value to the buffer if it's safe to add. Increments the number of added values, so that we
// know how many values we wanted to add, even if we didn't add them all
static
inline void addWithIncrement(uint8_t *&primaries, uint8_t *limit, uint32_t &size, const uint8_t value) {
- size++;
- if(primaries < limit) {
- *(primaries)++ = value;
- }
+ size++;
+ if(primaries < limit) {
+ *(primaries)++ = value;
+ }
}
// Packs the secondary buffer when processing French locale. Adds the terminator.
static
inline uint8_t *packFrench(uint8_t *primaries, uint8_t *primEnd, uint8_t *secondaries, uint32_t *secsize, uint8_t *frenchStartPtr, uint8_t *frenchEndPtr) {
- uint8_t secondary;
- int32_t count2 = 0;
- uint32_t i = 0, size = 0;
- // we use i here since the key size already accounts for terminators, so we'll discard the increment
- addWithIncrement(primaries, primEnd, i, UCOL_LEVELTERMINATOR);
- /* If there are any unresolved continuation secondaries, reverse them here so that we can reverse the whole secondary thing */
- if(frenchStartPtr != NULL) {
- uprv_ucol_reverse_buffer(uint8_t, frenchStartPtr, frenchEndPtr);
- }
- for(i = 0; i<*secsize; i++) {
- secondary = *(secondaries-i-1);
- /* This is compression code. */
- if (secondary == UCOL_COMMON2) {
- ++count2;
- } else {
- if (count2 > 0) {
- if (secondary > UCOL_COMMON2) { // not necessary for 4th level.
- while (count2 > UCOL_TOP_COUNT2) {
- addWithIncrement(primaries, primEnd, size, (uint8_t)(UCOL_COMMON_TOP2 - UCOL_TOP_COUNT2));
- count2 -= (uint32_t)UCOL_TOP_COUNT2;
- }
- addWithIncrement(primaries, primEnd, size, (uint8_t)(UCOL_COMMON_TOP2 - (count2-1)));
+ uint8_t secondary;
+ int32_t count2 = 0;
+ uint32_t i = 0, size = 0;
+ // we use i here since the key size already accounts for terminators, so we'll discard the increment
+ addWithIncrement(primaries, primEnd, i, UCOL_LEVELTERMINATOR);
+ /* If there are any unresolved continuation secondaries, reverse them here so that we can reverse the whole secondary thing */
+ if(frenchStartPtr != NULL) {
+ uprv_ucol_reverse_buffer(uint8_t, frenchStartPtr, frenchEndPtr);
+ }
+ for(i = 0; i<*secsize; i++) {
+ secondary = *(secondaries-i-1);
+ /* This is compression code. */
+ if (secondary == UCOL_COMMON2) {
+ ++count2;
} else {
- while (count2 > UCOL_BOT_COUNT2) {
+ if (count2 > 0) {
+ if (secondary > UCOL_COMMON2) { // not necessary for 4th level.
+ while (count2 > UCOL_TOP_COUNT2) {
+ addWithIncrement(primaries, primEnd, size, (uint8_t)(UCOL_COMMON_TOP2 - UCOL_TOP_COUNT2));
+ count2 -= (uint32_t)UCOL_TOP_COUNT2;
+ }
+ addWithIncrement(primaries, primEnd, size, (uint8_t)(UCOL_COMMON_TOP2 - (count2-1)));
+ } else {
+ while (count2 > UCOL_BOT_COUNT2) {
+ addWithIncrement(primaries, primEnd, size, (uint8_t)(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2));
+ count2 -= (uint32_t)UCOL_BOT_COUNT2;
+ }
+ addWithIncrement(primaries, primEnd, size, (uint8_t)(UCOL_COMMON_BOT2 + (count2-1)));
+ }
+ count2 = 0;
+ }
+ addWithIncrement(primaries, primEnd, size, secondary);
+ }
+ }
+ if (count2 > 0) {
+ while (count2 > UCOL_BOT_COUNT2) {
addWithIncrement(primaries, primEnd, size, (uint8_t)(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2));
count2 -= (uint32_t)UCOL_BOT_COUNT2;
- }
- addWithIncrement(primaries, primEnd, size, (uint8_t)(UCOL_COMMON_BOT2 + (count2-1)));
}
- count2 = 0;
- }
- addWithIncrement(primaries, primEnd, size, secondary);
- }
- }
- if (count2 > 0) {
- while (count2 > UCOL_BOT_COUNT2) {
- addWithIncrement(primaries, primEnd, size, (uint8_t)(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2));
- count2 -= (uint32_t)UCOL_BOT_COUNT2;
+ addWithIncrement(primaries, primEnd, size, (uint8_t)(UCOL_COMMON_BOT2 + (count2-1)));
}
- addWithIncrement(primaries, primEnd, size, (uint8_t)(UCOL_COMMON_BOT2 + (count2-1)));
- }
- *secsize = size;
- return primaries;
+ *secsize = size;
+ return primaries;
}
+#define DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY 0
+
/* This is the sortkey work horse function */
U_CFUNC int32_t U_CALLCONV
ucol_calcSortKey(const UCollator *coll,
UBool allocateSKBuffer,
UErrorCode *status)
{
- const UCAConstants *UCAconsts = (UCAConstants *)((uint8_t *)coll->UCA->image + coll->image->UCAConsts);
+ //const UCAConstants *UCAconsts = (UCAConstants *)((uint8_t *)coll->UCA->image + coll->image->UCAConsts);
uint32_t i = 0; /* general purpose counter */
uint8_t *primaries = *result, *secondaries = second, *tertiaries = tert, *cases = caseB, *quads = quad;
if(U_FAILURE(*status)) {
- return 0;
+ return 0;
}
if(primaries == NULL && allocateSKBuffer == TRUE) {
UBool shifted = (coll->alternateHandling == UCOL_SHIFTED);
//UBool qShifted = shifted && (compareQuad == 0);
UBool doHiragana = (coll->hiraganaQ == UCOL_ON) && (compareQuad == 0);
- const uint8_t *scriptOrder = coll->scriptOrder;
+ /*const uint8_t *scriptOrder = coll->scriptOrder;*/
uint32_t variableTopValue = coll->variableTopValue;
// TODO: UCOL_COMMON_BOT4 should be a function of qShifted. If we have no
uint8_t UCOL_COMMON_BOT4 = (uint8_t)((coll->variableTopValue>>8)+1);
uint8_t UCOL_HIRAGANA_QUAD = 0;
if(doHiragana) {
- UCOL_HIRAGANA_QUAD=UCOL_COMMON_BOT4++;
- /* allocate one more space for hiragana, value for hiragana */
+ UCOL_HIRAGANA_QUAD=UCOL_COMMON_BOT4++;
+ /* allocate one more space for hiragana, value for hiragana */
}
uint8_t UCOL_BOT_COUNT4 = (uint8_t)(0xFF - UCOL_COMMON_BOT4);
}
if(resultLength == 0 || primaries == NULL) {
- int32_t keyLen = ucol_getSortKeySize(coll, &s, sortKeySize, strength, len);
- if(normSource != normBuffer) {
- uprv_free(normSource);
- }
- return keyLen;
+ int32_t keyLen = ucol_getSortKeySize(coll, &s, sortKeySize, strength, len);
+ if(normSource != normBuffer) {
+ uprv_free(normSource);
+ }
+ return keyLen;
+ }
+ uint8_t *primarySafeEnd = primaries + resultLength - 1;
+ if(strength > UCOL_PRIMARY) {
+ primarySafeEnd--;
}
- uint8_t *primarySafeEnd = primaries + resultLength - 2;
uint32_t minBufferSize = UCOL_MAX_BUFFER;
uint8_t tertiary = 0;
uint8_t caseSwitch = coll->caseSwitch;
uint8_t tertiaryMask = coll->tertiaryMask;
- int8_t tertiaryAddition = (int8_t)coll->tertiaryAddition;
+ int8_t tertiaryAddition = coll->tertiaryAddition;
uint8_t tertiaryTop = coll->tertiaryTop;
uint8_t tertiaryBottom = coll->tertiaryBottom;
uint8_t tertiaryCommon = coll->tertiaryCommon;
}
if(order == 0) {
- continue;
+ continue;
}
notIsContinuation = !isContinuation(order);
if(notIsContinuation) {
- tertiary = (uint8_t)(order & UCOL_BYTE_SIZE_MASK);
+ tertiary = (uint8_t)(order & UCOL_BYTE_SIZE_MASK);
} else {
- tertiary = (uint8_t)((order & UCOL_REMOVE_CONTINUATION));
+ tertiary = (uint8_t)((order & UCOL_REMOVE_CONTINUATION));
}
secondary = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK);
primary2 = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK);
primary1 = (uint8_t)(order >> 8);
- if(notIsContinuation) {
- if(scriptOrder != NULL) {
- primary1 = scriptOrder[primary1];
- }
- }
+ /*if(notIsContinuation && scriptOrder != NULL) {
+ primary1 = scriptOrder[primary1];
+ }*/
if(shifted && ((notIsContinuation && order <= variableTopValue && primary1 > 0)
- || (!notIsContinuation && wasShifted))
- || (wasShifted && primary1 == 0)) { /* amendment to the UCA says that primary ignorables */
- /* and other ignorables should be removed if following a shifted code point */
- if(primary1 == 0) { /* if we were shifted and we got an ignorable code point */
- /* we should just completely ignore it */
- continue;
- }
- if(compareQuad == 0) {
- if(count4 > 0) {
- while (count4 > UCOL_BOT_COUNT4) {
- *quads++ = (uint8_t)(UCOL_COMMON_BOT4 + UCOL_BOT_COUNT4);
- count4 -= UCOL_BOT_COUNT4;
- }
- *quads++ = (uint8_t)(UCOL_COMMON_BOT4 + (count4-1));
- count4 = 0;
- }
- /* We are dealing with a variable and we're treating them as shifted */
- /* This is a shifted ignorable */
- if(primary1 != 0) { /* we need to check this since we could be in continuation */
- *quads++ = primary1;
+ || (!notIsContinuation && wasShifted))
+ || (wasShifted && primary1 == 0)) /* amendment to the UCA says that primary ignorables */
+ {
+ /* and other ignorables should be removed if following a shifted code point */
+ if(primary1 == 0) { /* if we were shifted and we got an ignorable code point */
+ /* we should just completely ignore it */
+ continue;
}
- if(primary2 != 0) {
- *quads++ = primary2;
+ if(compareQuad == 0) {
+ if(count4 > 0) {
+ while (count4 > UCOL_BOT_COUNT4) {
+ *quads++ = (uint8_t)(UCOL_COMMON_BOT4 + UCOL_BOT_COUNT4);
+ count4 -= UCOL_BOT_COUNT4;
+ }
+ *quads++ = (uint8_t)(UCOL_COMMON_BOT4 + (count4-1));
+ count4 = 0;
+ }
+ /* We are dealing with a variable and we're treating them as shifted */
+ /* This is a shifted ignorable */
+ if(primary1 != 0) { /* we need to check this since we could be in continuation */
+ *quads++ = primary1;
+ }
+ if(primary2 != 0) {
+ *quads++ = primary2;
+ }
}
- }
- wasShifted = TRUE;
+ wasShifted = TRUE;
} else {
- wasShifted = FALSE;
- /* Note: This code assumes that the table is well built i.e. not having 0 bytes where they are not supposed to be. */
- /* Usually, we'll have non-zero primary1 & primary2, except in cases of LatinOne and friends, when primary2 will */
- /* regular and simple sortkey calc */
- if(primary1 != UCOL_IGNORABLE) {
- if(notIsContinuation) {
- if(leadPrimary == primary1) {
- *primaries++ = primary2;
- } else {
- if(leadPrimary != 0) {
- *primaries++ = (uint8_t)((primary1 > leadPrimary) ? UCOL_BYTE_UNSHIFTED_MAX : UCOL_BYTE_UNSHIFTED_MIN);
- }
- if(primary2 == UCOL_IGNORABLE) {
- /* one byter, not compressed */
- *primaries++ = primary1;
- leadPrimary = 0;
- } else if(primary1<UCOL_BYTE_FIRST_NON_LATIN_PRIMARY ||
- (primary1 > (*UCAconsts->UCA_LAST_NON_VARIABLE>>24) && primary1 < (*UCAconsts->UCA_FIRST_IMPLICIT>>24))) {
- /* not compressible */
- leadPrimary = 0;
+ wasShifted = FALSE;
+ /* Note: This code assumes that the table is well built i.e. not having 0 bytes where they are not supposed to be. */
+ /* Usually, we'll have non-zero primary1 & primary2, except in cases of LatinOne and friends, when primary2 will */
+ /* regular and simple sortkey calc */
+ if(primary1 != UCOL_IGNORABLE) {
+ if(notIsContinuation) {
+ if(leadPrimary == primary1) {
+ *primaries++ = primary2;
+ } else {
+ if(leadPrimary != 0) {
+ *primaries++ = (uint8_t)((primary1 > leadPrimary) ? UCOL_BYTE_UNSHIFTED_MAX : UCOL_BYTE_UNSHIFTED_MIN);
+ }
+ if(primary2 == UCOL_IGNORABLE) {
+ /* one byter, not compressed */
+ *primaries++ = primary1;
+ leadPrimary = 0;
+ } else if(primary1<UCOL_BYTE_FIRST_NON_LATIN_PRIMARY ||
+ //(primary1 > (*UCAconsts->UCA_LAST_NON_VARIABLE>>24) && primary1 < (*UCAconsts->UCA_FIRST_IMPLICIT>>24))) {
+ (primary1 > maxRegularPrimary && primary1 < minImplicitPrimary)) {
+ /* not compressible */
+ leadPrimary = 0;
+ *primaries++ = primary1;
+ if(primaries <= primarySafeEnd) {
+ *primaries++ = primary2;
+ }
+ } else { /* compress */
+ *primaries++ = leadPrimary = primary1;
+ if(primaries <= primarySafeEnd) {
+ *primaries++ = primary2;
+ }
+ }
+ }
+ } else { /* we are in continuation, so we're gonna add primary to the key don't care about compression */
*primaries++ = primary1;
- *primaries++ = primary2;
- } else { /* compress */
- *primaries++ = leadPrimary = primary1;
- *primaries++ = primary2;
+ if((primary2 != UCOL_IGNORABLE) && (primaries <= primarySafeEnd)) {
+ *primaries++ = primary2; /* second part */
+ }
}
- }
- } else { /* we are in continuation, so we're gonna add primary to the key don't care about compression */
- *primaries++ = primary1;
- if(primary2 != UCOL_IGNORABLE) {
- *primaries++ = primary2; /* second part */
- }
}
- }
- if(secondary > compareSec) {
- if(!isFrenchSec) {
- /* This is compression code. */
- if (secondary == UCOL_COMMON2 && notIsContinuation) {
- ++count2;
- } else {
- if (count2 > 0) {
- if (secondary > UCOL_COMMON2) { // not necessary for 4th level.
- while (count2 > UCOL_TOP_COUNT2) {
- *secondaries++ = (uint8_t)(UCOL_COMMON_TOP2 - UCOL_TOP_COUNT2);
- count2 -= (uint32_t)UCOL_TOP_COUNT2;
- }
- *secondaries++ = (uint8_t)(UCOL_COMMON_TOP2 - (count2-1));
+ if(secondary > compareSec) {
+ if(!isFrenchSec) {
+ /* This is compression code. */
+ if (secondary == UCOL_COMMON2 && notIsContinuation) {
+ ++count2;
+ } else {
+ if (count2 > 0) {
+ if (secondary > UCOL_COMMON2) { // not necessary for 4th level.
+ while (count2 > UCOL_TOP_COUNT2) {
+ *secondaries++ = (uint8_t)(UCOL_COMMON_TOP2 - UCOL_TOP_COUNT2);
+ count2 -= (uint32_t)UCOL_TOP_COUNT2;
+ }
+ *secondaries++ = (uint8_t)(UCOL_COMMON_TOP2 - (count2-1));
+ } else {
+ while (count2 > UCOL_BOT_COUNT2) {
+ *secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2);
+ count2 -= (uint32_t)UCOL_BOT_COUNT2;
+ }
+ *secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + (count2-1));
+ }
+ count2 = 0;
+ }
+ *secondaries++ = secondary;
+ }
} else {
- while (count2 > UCOL_BOT_COUNT2) {
- *secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2);
- count2 -= (uint32_t)UCOL_BOT_COUNT2;
- }
- *secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + (count2-1));
+ *secondaries++ = secondary;
+ /* Do the special handling for French secondaries */
+ /* We need to get continuation elements and do intermediate restore */
+ /* abc1c2c3de with french secondaries need to be edc1c2c3ba NOT edc3c2c1ba */
+ if(notIsContinuation) {
+ if (frenchStartPtr != NULL) {
+ /* reverse secondaries from frenchStartPtr up to frenchEndPtr */
+ uprv_ucol_reverse_buffer(uint8_t, frenchStartPtr, frenchEndPtr);
+ frenchStartPtr = NULL;
+ }
+ } else {
+ if (frenchStartPtr == NULL) {
+ frenchStartPtr = secondaries - 2;
+ }
+ frenchEndPtr = secondaries-1;
+ }
}
- count2 = 0;
- }
- *secondaries++ = secondary;
- }
- } else {
- *secondaries++ = secondary;
- /* Do the special handling for French secondaries */
- /* We need to get continuation elements and do intermediate restore */
- /* abc1c2c3de with french secondaries need to be edc1c2c3ba NOT edc3c2c1ba */
- if(notIsContinuation) {
- if (frenchStartPtr != NULL) {
- /* reverse secondaries from frenchStartPtr up to frenchEndPtr */
- uprv_ucol_reverse_buffer(uint8_t, frenchStartPtr, frenchEndPtr);
- frenchStartPtr = NULL;
- }
- } else {
- if (frenchStartPtr == NULL) {
- frenchStartPtr = secondaries - 2;
- }
- frenchEndPtr = secondaries-1;
- }
}
- }
- if(doCase) {
- doCaseShift(&cases, caseShift);
- if(notIsContinuation) {
- caseBits = (uint8_t)(tertiary & 0xC0);
+ if(doCase && (primary1 > 0 || strength >= UCOL_SECONDARY)) {
+ // do the case level if we need to do it. We don't want to calculate
+ // case level for primary ignorables if we have only primary strength and case level
+ // otherwise we would break well formedness of CEs
+ doCaseShift(&cases, caseShift);
+ if(notIsContinuation) {
+ caseBits = (uint8_t)(tertiary & 0xC0);
+
+ if(tertiary != 0) {
+ if(coll->caseFirst == UCOL_UPPER_FIRST) {
+ if((caseBits & 0xC0) == 0) {
+ *(cases-1) |= 1 << (--caseShift);
+ } else {
+ *(cases-1) |= 0 << (--caseShift);
+ /* second bit */
+ doCaseShift(&cases, caseShift);
+ *(cases-1) |= ((caseBits>>6)&1) << (--caseShift);
+ }
+ } else {
+ if((caseBits & 0xC0) == 0) {
+ *(cases-1) |= 0 << (--caseShift);
+ } else {
+ *(cases-1) |= 1 << (--caseShift);
+ /* second bit */
+ doCaseShift(&cases, caseShift);
+ *(cases-1) |= ((caseBits>>7)&1) << (--caseShift);
+ }
+ }
+ }
- if(tertiary != 0) {
- if(coll->caseFirst == UCOL_UPPER_FIRST) {
- if((caseBits & 0xC0) == 0) {
- *(cases-1) |= 1 << (--caseShift);
- } else {
- *(cases-1) |= 0 << (--caseShift);
- /* second bit */
- doCaseShift(&cases, caseShift);
- *(cases-1) |= ((caseBits>>6)&1) << (--caseShift);
- }
- } else {
- if((caseBits & 0xC0) == 0) {
- *(cases-1) |= 0 << (--caseShift);
- } else {
- *(cases-1) |= 1 << (--caseShift);
- /* second bit */
- doCaseShift(&cases, caseShift);
- *(cases-1) |= ((caseBits>>7)&1) << (--caseShift);
- }
}
- }
-
- }
- } else {
- if(notIsContinuation) {
- tertiary ^= caseSwitch;
+ } else {
+ if(notIsContinuation) {
+ tertiary ^= caseSwitch;
+ }
}
- }
- tertiary &= tertiaryMask;
- if(tertiary > compareTer) {
- /* This is compression code. */
- /* sequence size check is included in the if clause */
- if (tertiary == tertiaryCommon && notIsContinuation) {
- ++count3;
- } else {
- if((tertiary > tertiaryCommon && tertiaryCommon == UCOL_COMMON3_NORMAL)
- || (tertiary <= tertiaryCommon && tertiaryCommon == UCOL_COMMON3_UPPERFIRST)) {
- tertiary += tertiaryAddition;
- }
- if (count3 > 0) {
- if ((tertiary > tertiaryCommon)) {
- while (count3 > coll->tertiaryTopCount) {
- *tertiaries++ = (uint8_t)(tertiaryTop - coll->tertiaryTopCount);
- count3 -= (uint32_t)coll->tertiaryTopCount;
- }
- *tertiaries++ = (uint8_t)(tertiaryTop - (count3-1));
+ tertiary &= tertiaryMask;
+ if(tertiary > compareTer) {
+ /* This is compression code. */
+ /* sequence size check is included in the if clause */
+ if (tertiary == tertiaryCommon && notIsContinuation) {
+ ++count3;
} else {
- while (count3 > coll->tertiaryBottomCount) {
- *tertiaries++ = (uint8_t)(tertiaryBottom + coll->tertiaryBottomCount);
- count3 -= (uint32_t)coll->tertiaryBottomCount;
- }
- *tertiaries++ = (uint8_t)(tertiaryBottom + (count3-1));
+ if(tertiary > tertiaryCommon && tertiaryCommon == UCOL_COMMON3_NORMAL) {
+ tertiary += tertiaryAddition;
+ } else if(tertiary <= tertiaryCommon && tertiaryCommon == UCOL_COMMON3_UPPERFIRST) {
+ tertiary -= tertiaryAddition;
+ }
+ if (count3 > 0) {
+ if ((tertiary > tertiaryCommon)) {
+ while (count3 > coll->tertiaryTopCount) {
+ *tertiaries++ = (uint8_t)(tertiaryTop - coll->tertiaryTopCount);
+ count3 -= (uint32_t)coll->tertiaryTopCount;
+ }
+ *tertiaries++ = (uint8_t)(tertiaryTop - (count3-1));
+ } else {
+ while (count3 > coll->tertiaryBottomCount) {
+ *tertiaries++ = (uint8_t)(tertiaryBottom + coll->tertiaryBottomCount);
+ count3 -= (uint32_t)coll->tertiaryBottomCount;
+ }
+ *tertiaries++ = (uint8_t)(tertiaryBottom + (count3-1));
+ }
+ count3 = 0;
+ }
+ *tertiaries++ = tertiary;
}
- count3 = 0;
- }
- *tertiaries++ = tertiary;
}
- }
- if(/*qShifted*/(compareQuad==0) && notIsContinuation) {
- if(s.flags & UCOL_WAS_HIRAGANA) { // This was Hiragana and we need to note it
- if(count4>0) { // Close this part
- while (count4 > UCOL_BOT_COUNT4) {
- *quads++ = (uint8_t)(UCOL_COMMON_BOT4 + UCOL_BOT_COUNT4);
- count4 -= UCOL_BOT_COUNT4;
+ if(/*qShifted*/(compareQuad==0) && notIsContinuation) {
+ if(s.flags & UCOL_WAS_HIRAGANA) { // This was Hiragana and we need to note it
+ if(count4>0) { // Close this part
+ while (count4 > UCOL_BOT_COUNT4) {
+ *quads++ = (uint8_t)(UCOL_COMMON_BOT4 + UCOL_BOT_COUNT4);
+ count4 -= UCOL_BOT_COUNT4;
+ }
+ *quads++ = (uint8_t)(UCOL_COMMON_BOT4 + (count4-1));
+ count4 = 0;
+ }
+ *quads++ = UCOL_HIRAGANA_QUAD; // Add the Hiragana
+ } else { // This wasn't Hiragana, so we can continue adding stuff
+ count4++;
}
- *quads++ = (uint8_t)(UCOL_COMMON_BOT4 + (count4-1));
- count4 = 0;
- }
- *quads++ = UCOL_HIRAGANA_QUAD; // Add the Hiragana
- } else { // This wasn't Hiragana, so we can continue adding stuff
- count4++;
}
- }
}
if(primaries > primarySafeEnd) { /* We have stepped over the primary buffer */
- if(allocateSKBuffer == FALSE) { /* need to save our butts if we cannot reallocate */
- IInit_collIterate(coll, (UChar *)source, len, &s);
- if(source == normSource) {
- s.flags &= ~UCOL_ITER_NORM;
- }
- sortKeySize = ucol_getSortKeySize(coll, &s, sortKeySize, strength, len);
- *status = U_BUFFER_OVERFLOW_ERROR;
- finished = TRUE;
- break;
- } else { /* It's much nicer if we can actually reallocate */
- int32_t sks = sortKeySize+(primaries - primStart)+(secondaries - secStart)+(tertiaries - terStart)+(cases-caseStart)+(quads-quadStart);
- primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sks, status);
- if(U_SUCCESS(*status)) {
- *result = primStart;
- primarySafeEnd = primStart + resultLength - 2;
- } else {
- IInit_collIterate(coll, (UChar *)source, len, &s);
- if(source == normSource) {
- s.flags &= ~UCOL_ITER_NORM;
- }
- sortKeySize = ucol_getSortKeySize(coll, &s, sortKeySize, strength, len);
- finished = TRUE;
- break;
+ if(allocateSKBuffer == FALSE) { /* need to save our butts if we cannot reallocate */
+ IInit_collIterate(coll, (UChar *)source, len, &s);
+ if(source == normSource) {
+ s.flags &= ~UCOL_ITER_NORM;
+ }
+ sortKeySize = ucol_getSortKeySize(coll, &s, sortKeySize, strength, len);
+ *status = U_BUFFER_OVERFLOW_ERROR;
+ finished = TRUE;
+ break;
+ } else { /* It's much nicer if we can actually reallocate */
+ int32_t sks = sortKeySize+(primaries - primStart)+(secondaries - secStart)+(tertiaries - terStart)+(cases-caseStart)+(quads-quadStart);
+ primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sks, status);
+ if(U_SUCCESS(*status)) {
+ *result = primStart;
+ primarySafeEnd = primStart + resultLength - 1;
+ if(strength > UCOL_PRIMARY) {
+ primarySafeEnd--;
+ }
+ } else {
+ /* We ran out of memory!? We can't recover. */
+ sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY;
+ finished = TRUE;
+ break;
+ }
}
- }
}
}
if(finished) {
break;
} else {
- prevBuffSize = minBufferSize;
- secStart = reallocateBuffer(&secondaries, secStart, second, &secSize, 2*secSize, status);
- terStart = reallocateBuffer(&tertiaries, terStart, tert, &terSize, 2*terSize, status);
- caseStart = reallocateBuffer(&cases, caseStart, caseB, &caseSize, 2*caseSize, status);
- quadStart = reallocateBuffer(&quads, quadStart, quad, &quadSize, 2*quadSize, status);
- minBufferSize *= 2;
- if(U_FAILURE(*status)) { // if we cannot reallocate buffers, we can at least give the sortkey size
- IInit_collIterate(coll, (UChar *)source, len, &s);
- if(source == normSource) {
- s.flags &= ~UCOL_ITER_NORM;
- }
- sortKeySize = ucol_getSortKeySize(coll, &s, sortKeySize, strength, len);
- break;
- }
- }
- }
-
- /* Here, we are generally done with processing */
- /* bailing out would not be too productive */
-
- if(U_SUCCESS(*status)) {
- sortKeySize += (primaries - primStart);
- /* we have done all the CE's, now let's put them together to form a key */
- if(compareSec == 0) {
- if (count2 > 0) {
- while (count2 > UCOL_BOT_COUNT2) {
- *secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2);
- count2 -= (uint32_t)UCOL_BOT_COUNT2;
- }
- *secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + (count2-1));
- }
- uint32_t secsize = secondaries-secStart;
- if(!isFrenchSec) { // Regular situation, we know the length of secondaries
- sortKeySize += secsize;
- if(sortKeySize <= resultLength) {
- *(primaries++) = UCOL_LEVELTERMINATOR;
- uprv_memcpy(primaries, secStart, secsize);
- primaries += secsize;
- } else {
- if(allocateSKBuffer == TRUE) { /* need to save our butts if we cannot reallocate */
- primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sortKeySize, status);
- if(U_SUCCESS(*status)) {
- *result = primStart;
- *(primaries++) = UCOL_LEVELTERMINATOR;
- uprv_memcpy(primaries, secStart, secsize);
- primaries += secsize;
- }
- } else {
- *status = U_BUFFER_OVERFLOW_ERROR;
- }
- }
- } else { // French secondary is on. We will need to pack French. packFrench will add the level terminator
- uint8_t *newPrim = packFrench(primaries, primStart+resultLength, secondaries, &secsize, frenchStartPtr, frenchEndPtr);
- sortKeySize += secsize;
- if(sortKeySize <= resultLength) { // if we managed to pack fine
- primaries = newPrim; // update the primary pointer
- } else { // overflow, need to reallocate and redo
- if(allocateSKBuffer == TRUE) { /* need to save our butts if we cannot reallocate */
- primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sortKeySize, status);
- if(U_SUCCESS(*status)) {
- primaries = packFrench(primaries, primStart+resultLength, secondaries, &secsize, frenchStartPtr, frenchEndPtr);
- }
- } else {
- *status = U_BUFFER_OVERFLOW_ERROR;
- }
- }
- }
- }
-
- if(doCase) {
- uint32_t casesize = cases - caseStart;
- sortKeySize += casesize;
- if(sortKeySize <= resultLength) {
- *(primaries++) = UCOL_LEVELTERMINATOR;
- uprv_memcpy(primaries, caseStart, casesize);
- primaries += casesize;
- } else {
- if(allocateSKBuffer == TRUE) {
- primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sortKeySize, status);
- if(U_SUCCESS(*status)) {
- *result = primStart;
- *(primaries++) = UCOL_LEVELTERMINATOR;
- uprv_memcpy(primaries, caseStart, casesize);
- }
- } else {
- *status = U_BUFFER_OVERFLOW_ERROR;
- }
- }
- }
-
- if(compareTer == 0) {
- if (count3 > 0) {
- if (coll->tertiaryCommon != UCOL_COMMON_BOT3) {
- while (count3 >= coll->tertiaryTopCount) {
- *tertiaries++ = (uint8_t)(tertiaryTop - coll->tertiaryTopCount);
- count3 -= (uint32_t)coll->tertiaryTopCount;
- }
- *tertiaries++ = (uint8_t)(tertiaryTop - count3);
- } else {
- while (count3 > coll->tertiaryBottomCount) {
- *tertiaries++ = (uint8_t)(tertiaryBottom + coll->tertiaryBottomCount);
- count3 -= (uint32_t)coll->tertiaryBottomCount;
- }
- *tertiaries++ = (uint8_t)(tertiaryBottom + (count3-1));
- }
- }
- uint32_t tersize = tertiaries - terStart;
- sortKeySize += tersize;
- if(sortKeySize <= resultLength) {
- *(primaries++) = UCOL_LEVELTERMINATOR;
- uprv_memcpy(primaries, terStart, tersize);
- primaries += tersize;
- } else {
- if(allocateSKBuffer == TRUE) {
- primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sortKeySize, status);
- if(U_SUCCESS(*status)) {
- *result = primStart;
- *(primaries++) = UCOL_LEVELTERMINATOR;
- uprv_memcpy(primaries, terStart, tersize);
- }
- } else {
- *status = U_BUFFER_OVERFLOW_ERROR;
- }
+ prevBuffSize = minBufferSize;
+
+ uint32_t frenchStartOffset = 0, frenchEndOffset = 0;
+ if (frenchStartPtr != NULL) {
+ frenchStartOffset = frenchStartPtr - secStart;
+ frenchEndOffset = frenchEndPtr - secStart;
+ }
+ secStart = reallocateBuffer(&secondaries, secStart, second, &secSize, 2*secSize, status);
+ terStart = reallocateBuffer(&tertiaries, terStart, tert, &terSize, 2*terSize, status);
+ caseStart = reallocateBuffer(&cases, caseStart, caseB, &caseSize, 2*caseSize, status);
+ quadStart = reallocateBuffer(&quads, quadStart, quad, &quadSize, 2*quadSize, status);
+ if(U_FAILURE(*status)) {
+ /* We ran out of memory!? We can't recover. */
+ sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY;
+ break;
+ }
+ if (frenchStartPtr != NULL) {
+ frenchStartPtr = secStart + frenchStartOffset;
+ frenchEndPtr = secStart + frenchEndOffset;
+ }
+ minBufferSize *= 2;
}
+ }
- if(compareQuad == 0/*qShifted == TRUE*/) {
- if(count4 > 0) {
- while (count4 > UCOL_BOT_COUNT4) {
- *quads++ = (uint8_t)(UCOL_COMMON_BOT4 + UCOL_BOT_COUNT4);
- count4 -= UCOL_BOT_COUNT4;
- }
- *quads++ = (uint8_t)(UCOL_COMMON_BOT4 + (count4-1));
+ /* Here, we are generally done with processing */
+ /* bailing out would not be too productive */
+
+ if(U_SUCCESS(*status)) {
+ sortKeySize += (primaries - primStart);
+ /* we have done all the CE's, now let's put them together to form a key */
+ if(compareSec == 0) {
+ if (count2 > 0) {
+ while (count2 > UCOL_BOT_COUNT2) {
+ *secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2);
+ count2 -= (uint32_t)UCOL_BOT_COUNT2;
+ }
+ *secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + (count2-1));
+ }
+ uint32_t secsize = secondaries-secStart;
+ if(!isFrenchSec) { // Regular situation, we know the length of secondaries
+ sortKeySize += secsize;
+ if(sortKeySize <= resultLength) {
+ *(primaries++) = UCOL_LEVELTERMINATOR;
+ uprv_memcpy(primaries, secStart, secsize);
+ primaries += secsize;
+ } else {
+ if(allocateSKBuffer == TRUE) { /* need to save our butts if we cannot reallocate */
+ primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sortKeySize, status);
+ if(U_SUCCESS(*status)) {
+ *result = primStart;
+ *(primaries++) = UCOL_LEVELTERMINATOR;
+ uprv_memcpy(primaries, secStart, secsize);
+ primaries += secsize;
+ }
+ else {
+ /* We ran out of memory!? We can't recover. */
+ sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY;
+ goto cleanup;
+ }
+ } else {
+ *status = U_BUFFER_OVERFLOW_ERROR;
+ }
+ }
+ } else { // French secondary is on. We will need to pack French. packFrench will add the level terminator
+ uint8_t *newPrim = packFrench(primaries, primStart+resultLength, secondaries, &secsize, frenchStartPtr, frenchEndPtr);
+ sortKeySize += secsize;
+ if(sortKeySize <= resultLength) { // if we managed to pack fine
+ primaries = newPrim; // update the primary pointer
+ } else { // overflow, need to reallocate and redo
+ if(allocateSKBuffer == TRUE) { /* need to save our butts if we cannot reallocate */
+ primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sortKeySize, status);
+ if(U_SUCCESS(*status)) {
+ primaries = packFrench(primaries, primStart+resultLength, secondaries, &secsize, frenchStartPtr, frenchEndPtr);
+ }
+ else {
+ /* We ran out of memory!? We can't recover. */
+ sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY;
+ goto cleanup;
+ }
+ } else {
+ *status = U_BUFFER_OVERFLOW_ERROR;
+ }
+ }
}
- uint32_t quadsize = quads - quadStart;
- sortKeySize += quadsize;
+ }
+
+ if(doCase) {
+ uint32_t casesize = cases - caseStart;
+ sortKeySize += casesize;
if(sortKeySize <= resultLength) {
- *(primaries++) = UCOL_LEVELTERMINATOR;
- uprv_memcpy(primaries, quadStart, quadsize);
- primaries += quadsize;
+ *(primaries++) = UCOL_LEVELTERMINATOR;
+ uprv_memcpy(primaries, caseStart, casesize);
+ primaries += casesize;
} else {
- if(allocateSKBuffer == TRUE) {
- primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sortKeySize, status);
- if(U_SUCCESS(*status)) {
- *result = primStart;
- *(primaries++) = UCOL_LEVELTERMINATOR;
- uprv_memcpy(primaries, quadStart, quadsize);
+ if(allocateSKBuffer == TRUE) {
+ primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sortKeySize, status);
+ if(U_SUCCESS(*status)) {
+ *result = primStart;
+ *(primaries++) = UCOL_LEVELTERMINATOR;
+ uprv_memcpy(primaries, caseStart, casesize);
+ }
+ else {
+ /* We ran out of memory!? We can't recover. */
+ sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY;
+ goto cleanup;
+ }
+ } else {
+ *status = U_BUFFER_OVERFLOW_ERROR;
}
- } else {
- *status = U_BUFFER_OVERFLOW_ERROR;
- }
}
}
- if(compareIdent) {
- sortKeySize += u_lengthOfIdenticalLevelRun(s.string, len);
- if(sortKeySize <= resultLength) {
- *(primaries++) = UCOL_LEVELTERMINATOR;
- primaries += u_writeIdenticalLevelRun(s.string, len, primaries);
- } else {
- if(allocateSKBuffer == TRUE) {
- primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, sortKeySize, status);
- if(U_SUCCESS(*status)) {
- *result = primStart;
+ if(compareTer == 0) {
+ if (count3 > 0) {
+ if (coll->tertiaryCommon != UCOL_COMMON_BOT3) {
+ while (count3 >= coll->tertiaryTopCount) {
+ *tertiaries++ = (uint8_t)(tertiaryTop - coll->tertiaryTopCount);
+ count3 -= (uint32_t)coll->tertiaryTopCount;
+ }
+ *tertiaries++ = (uint8_t)(tertiaryTop - count3);
+ } else {
+ while (count3 > coll->tertiaryBottomCount) {
+ *tertiaries++ = (uint8_t)(tertiaryBottom + coll->tertiaryBottomCount);
+ count3 -= (uint32_t)coll->tertiaryBottomCount;
+ }
+ *tertiaries++ = (uint8_t)(tertiaryBottom + (count3-1));
+ }
+ }
+ uint32_t tersize = tertiaries - terStart;
+ sortKeySize += tersize;
+ if(sortKeySize <= resultLength) {
*(primaries++) = UCOL_LEVELTERMINATOR;
- u_writeIdenticalLevelRun(s.string, len, primaries);
- }
+ uprv_memcpy(primaries, terStart, tersize);
+ primaries += tersize;
} else {
- *status = U_BUFFER_OVERFLOW_ERROR;
+ if(allocateSKBuffer == TRUE) {
+ primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sortKeySize, status);
+ if(U_SUCCESS(*status)) {
+ *result = primStart;
+ *(primaries++) = UCOL_LEVELTERMINATOR;
+ uprv_memcpy(primaries, terStart, tersize);
+ }
+ else {
+ /* We ran out of memory!? We can't recover. */
+ sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY;
+ goto cleanup;
+ }
+ } else {
+ *status = U_BUFFER_OVERFLOW_ERROR;
+ }
+ }
+
+ if(compareQuad == 0/*qShifted == TRUE*/) {
+ if(count4 > 0) {
+ while (count4 > UCOL_BOT_COUNT4) {
+ *quads++ = (uint8_t)(UCOL_COMMON_BOT4 + UCOL_BOT_COUNT4);
+ count4 -= UCOL_BOT_COUNT4;
+ }
+ *quads++ = (uint8_t)(UCOL_COMMON_BOT4 + (count4-1));
+ }
+ uint32_t quadsize = quads - quadStart;
+ sortKeySize += quadsize;
+ if(sortKeySize <= resultLength) {
+ *(primaries++) = UCOL_LEVELTERMINATOR;
+ uprv_memcpy(primaries, quadStart, quadsize);
+ primaries += quadsize;
+ } else {
+ if(allocateSKBuffer == TRUE) {
+ primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sortKeySize, status);
+ if(U_SUCCESS(*status)) {
+ *result = primStart;
+ *(primaries++) = UCOL_LEVELTERMINATOR;
+ uprv_memcpy(primaries, quadStart, quadsize);
+ }
+ else {
+ /* We ran out of memory!? We can't recover. */
+ sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY;
+ goto cleanup;
+ }
+ } else {
+ *status = U_BUFFER_OVERFLOW_ERROR;
+ }
+ }
+ }
+
+ if(compareIdent) {
+ sortKeySize += u_lengthOfIdenticalLevelRun(s.string, len);
+ if(sortKeySize <= resultLength) {
+ *(primaries++) = UCOL_LEVELTERMINATOR;
+ primaries += u_writeIdenticalLevelRun(s.string, len, primaries);
+ } else {
+ if(allocateSKBuffer == TRUE) {
+ primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, sortKeySize, status);
+ if(U_SUCCESS(*status)) {
+ *result = primStart;
+ *(primaries++) = UCOL_LEVELTERMINATOR;
+ u_writeIdenticalLevelRun(s.string, len, primaries);
+ }
+ else {
+ /* We ran out of memory!? We can't recover. */
+ sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY;
+ goto cleanup;
+ }
+ } else {
+ *status = U_BUFFER_OVERFLOW_ERROR;
+ }
+ }
}
- }
}
- }
- *(primaries++) = '\0';
+ *(primaries++) = '\0';
+ }
+
+ if(allocateSKBuffer == TRUE) {
+ *result = (uint8_t*)uprv_malloc(sortKeySize);
+ /* test for NULL */
+ if (*result == NULL) {
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ goto cleanup;
+ }
+ uprv_memcpy(*result, primStart, sortKeySize);
+ if(primStart != prim) {
+ uprv_free(primStart);
+ }
}
+cleanup:
+ if (allocateSKBuffer == FALSE && resultLength > 0 && U_FAILURE(*status) && *status != U_BUFFER_OVERFLOW_ERROR) {
+ /* NULL terminate for safety */
+ **result = 0;
+ }
if(terStart != tert) {
uprv_free(terStart);
uprv_free(secStart);
uprv_free(quadStart);
}
+ /* To avoid memory leak, free the offset buffer if necessary. */
+ freeOffsetBuffer(&s);
+
if(normSource != normBuffer) {
uprv_free(normSource);
}
- if(allocateSKBuffer == TRUE) {
- *result = (uint8_t*)uprv_malloc(sortKeySize);
- /* test for NULL */
- if (*result == NULL) {
- *status = U_MEMORY_ALLOCATION_ERROR;
- return sortKeySize;
- }
- uprv_memcpy(*result, primStart, sortKeySize);
- if(primStart != prim) {
- uprv_free(primStart);
- }
- }
-
return sortKeySize;
}
{
U_ALIGN_CODE(16);
- const UCAConstants *UCAconsts = (UCAConstants *)((uint8_t *)coll->UCA->image + coll->image->UCAConsts);
+ //const UCAConstants *UCAconsts = (UCAConstants *)((uint8_t *)coll->UCA->image + coll->image->UCAConsts);
uint32_t i = 0; /* general purpose counter */
/* Stack allocated buffers for buffers we use */
uint8_t *primaries = *result, *secondaries = second, *tertiaries = tert;
if(U_FAILURE(*status)) {
- return 0;
+ return 0;
}
if(primaries == NULL && allocateSKBuffer == TRUE) {
source, len,
UNORM_FCD, FALSE,
status);
+ if(U_FAILURE(*status)) {
+ /* Should never happen. */
+ uprv_free(normSource);
+ normSource = normBuffer;
+ }
}
if(U_FAILURE(*status)) {
uint8_t tertiary = 0;
uint8_t caseSwitch = coll->caseSwitch;
uint8_t tertiaryMask = coll->tertiaryMask;
- int8_t tertiaryAddition = (int8_t)coll->tertiaryAddition;
+ int8_t tertiaryAddition = coll->tertiaryAddition;
uint8_t tertiaryTop = coll->tertiaryTop;
uint8_t tertiaryBottom = coll->tertiaryBottom;
uint8_t tertiaryCommon = coll->tertiaryCommon;
order = ucol_IGetNextCE(coll, &s, status);
if(order == 0) {
- continue;
+ continue;
}
if(order == UCOL_NO_MORE_CES) {
notIsContinuation = !isContinuation(order);
if(notIsContinuation) {
- tertiary = (uint8_t)((order & tertiaryMask));
+ tertiary = (uint8_t)((order & tertiaryMask));
} else {
- tertiary = (uint8_t)((order & UCOL_REMOVE_CONTINUATION));
+ tertiary = (uint8_t)((order & UCOL_REMOVE_CONTINUATION));
}
secondary = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK);
primary2 = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK);
/* be zero with non zero primary1. primary3 is different than 0 only for long primaries - see above. */
/* regular and simple sortkey calc */
if(primary1 != UCOL_IGNORABLE) {
- if(notIsContinuation) {
- if(leadPrimary == primary1) {
- *primaries++ = primary2;
- } else {
- if(leadPrimary != 0) {
- *primaries++ = (uint8_t)((primary1 > leadPrimary) ? UCOL_BYTE_UNSHIFTED_MAX : UCOL_BYTE_UNSHIFTED_MIN);
- }
- if(primary2 == UCOL_IGNORABLE) {
- /* one byter, not compressed */
- *primaries++ = primary1;
- leadPrimary = 0;
- } else if(primary1<UCOL_BYTE_FIRST_NON_LATIN_PRIMARY ||
- //(primary1 > (UCOL_RESET_TOP_VALUE>>24) && primary1 < (UCOL_NEXT_TOP_VALUE>>24)))
- (primary1 > (*UCAconsts->UCA_LAST_NON_VARIABLE>>24) && primary1 < (*UCAconsts->UCA_FIRST_IMPLICIT>>24))) {
- /* not compressible */
- leadPrimary = 0;
- *primaries++ = primary1;
- *primaries++ = primary2;
- } else { /* compress */
- *primaries++ = leadPrimary = primary1;
- *primaries++ = primary2;
- }
- }
- } else { /* we are in continuation, so we're gonna add primary to the key don't care about compression */
- *primaries++ = primary1;
- if(primary2 != UCOL_IGNORABLE) {
- *primaries++ = primary2; /* second part */
+ if(notIsContinuation) {
+ if(leadPrimary == primary1) {
+ *primaries++ = primary2;
+ } else {
+ if(leadPrimary != 0) {
+ *primaries++ = (uint8_t)((primary1 > leadPrimary) ? UCOL_BYTE_UNSHIFTED_MAX : UCOL_BYTE_UNSHIFTED_MIN);
+ }
+ if(primary2 == UCOL_IGNORABLE) {
+ /* one byter, not compressed */
+ *primaries++ = primary1;
+ leadPrimary = 0;
+ } else if(primary1<UCOL_BYTE_FIRST_NON_LATIN_PRIMARY ||
+ //(primary1 > (UCOL_RESET_TOP_VALUE>>24) && primary1 < (UCOL_NEXT_TOP_VALUE>>24)))
+ //(primary1 > (*UCAconsts->UCA_LAST_NON_VARIABLE>>24) && primary1 < (*UCAconsts->UCA_FIRST_IMPLICIT>>24))) {
+ (primary1 > maxRegularPrimary && primary1 < minImplicitPrimary)) {
+ /* not compressible */
+ leadPrimary = 0;
+ *primaries++ = primary1;
+ *primaries++ = primary2;
+ } else { /* compress */
+ *primaries++ = leadPrimary = primary1;
+ *primaries++ = primary2;
+ }
+ }
+ } else { /* we are in continuation, so we're gonna add primary to the key don't care about compression */
+ *primaries++ = primary1;
+ if(primary2 != UCOL_IGNORABLE) {
+ *primaries++ = primary2; /* second part */
+ }
}
- }
}
if(secondary > 0) { /* I think that != 0 test should be != IGNORABLE */
- /* This is compression code. */
- if (secondary == UCOL_COMMON2 && notIsContinuation) {
- ++count2;
- } else {
- if (count2 > 0) {
- if (secondary > UCOL_COMMON2) { // not necessary for 4th level.
- while (count2 > UCOL_TOP_COUNT2) {
- *secondaries++ = (uint8_t)(UCOL_COMMON_TOP2 - UCOL_TOP_COUNT2);
- count2 -= (uint32_t)UCOL_TOP_COUNT2;
- }
- *secondaries++ = (uint8_t)(UCOL_COMMON_TOP2 - (count2-1));
- } else {
- while (count2 > UCOL_BOT_COUNT2) {
- *secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2);
- count2 -= (uint32_t)UCOL_BOT_COUNT2;
+ /* This is compression code. */
+ if (secondary == UCOL_COMMON2 && notIsContinuation) {
+ ++count2;
+ } else {
+ if (count2 > 0) {
+ if (secondary > UCOL_COMMON2) { // not necessary for 4th level.
+ while (count2 > UCOL_TOP_COUNT2) {
+ *secondaries++ = (uint8_t)(UCOL_COMMON_TOP2 - UCOL_TOP_COUNT2);
+ count2 -= (uint32_t)UCOL_TOP_COUNT2;
+ }
+ *secondaries++ = (uint8_t)(UCOL_COMMON_TOP2 - (count2-1));
+ } else {
+ while (count2 > UCOL_BOT_COUNT2) {
+ *secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2);
+ count2 -= (uint32_t)UCOL_BOT_COUNT2;
+ }
+ *secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + (count2-1));
+ }
+ count2 = 0;
}
- *secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + (count2-1));
- }
- count2 = 0;
+ *secondaries++ = secondary;
}
- *secondaries++ = secondary;
- }
}
if(notIsContinuation) {
- tertiary ^= caseSwitch;
+ tertiary ^= caseSwitch;
}
- if(tertiary > 0) {
- /* This is compression code. */
- /* sequence size check is included in the if clause */
- if (tertiary == tertiaryCommon && notIsContinuation) {
- ++count3;
- } else {
- if(tertiary > tertiaryCommon && tertiaryCommon == UCOL_COMMON3_NORMAL) {
- tertiary += tertiaryAddition;
- } else if (tertiary <= tertiaryCommon && tertiaryCommon == UCOL_COMMON3_UPPERFIRST) {
- tertiary -= tertiaryAddition;
- }
- if (count3 > 0) {
- if ((tertiary > tertiaryCommon)) {
- while (count3 > coll->tertiaryTopCount) {
- *tertiaries++ = (uint8_t)(tertiaryTop - coll->tertiaryTopCount);
- count3 -= (uint32_t)coll->tertiaryTopCount;
- }
- *tertiaries++ = (uint8_t)(tertiaryTop - (count3-1));
- } else {
- while (count3 > coll->tertiaryBottomCount) {
- *tertiaries++ = (uint8_t)(tertiaryBottom + coll->tertiaryBottomCount);
- count3 -= (uint32_t)coll->tertiaryBottomCount;
+ if(tertiary > 0) {
+ /* This is compression code. */
+ /* sequence size check is included in the if clause */
+ if (tertiary == tertiaryCommon && notIsContinuation) {
+ ++count3;
+ } else {
+ if(tertiary > tertiaryCommon && tertiaryCommon == UCOL_COMMON3_NORMAL) {
+ tertiary += tertiaryAddition;
+ } else if (tertiary <= tertiaryCommon && tertiaryCommon == UCOL_COMMON3_UPPERFIRST) {
+ tertiary -= tertiaryAddition;
}
- *tertiaries++ = (uint8_t)(tertiaryBottom + (count3-1));
- }
- count3 = 0;
+ if (count3 > 0) {
+ if ((tertiary > tertiaryCommon)) {
+ while (count3 > coll->tertiaryTopCount) {
+ *tertiaries++ = (uint8_t)(tertiaryTop - coll->tertiaryTopCount);
+ count3 -= (uint32_t)coll->tertiaryTopCount;
+ }
+ *tertiaries++ = (uint8_t)(tertiaryTop - (count3-1));
+ } else {
+ while (count3 > coll->tertiaryBottomCount) {
+ *tertiaries++ = (uint8_t)(tertiaryBottom + coll->tertiaryBottomCount);
+ count3 -= (uint32_t)coll->tertiaryBottomCount;
+ }
+ *tertiaries++ = (uint8_t)(tertiaryBottom + (count3-1));
+ }
+ count3 = 0;
+ }
+ *tertiaries++ = tertiary;
}
- *tertiaries++ = tertiary;
- }
}
if(primaries > primarySafeEnd) { /* We have stepped over the primary buffer */
- if(allocateSKBuffer == FALSE) { /* need to save our butts if we cannot reallocate */
- IInit_collIterate(coll, (UChar *)source, len, &s);
- if(source == normSource) {
- s.flags &= ~UCOL_ITER_NORM;
- }
- sortKeySize = ucol_getSortKeySize(coll, &s, sortKeySize, coll->strength, len);
- *status = U_BUFFER_OVERFLOW_ERROR;
- finished = TRUE;
- break;
- } else { /* It's much nicer if we can actually reallocate */
- int32_t sks = sortKeySize+(primaries - primStart)+(secondaries - secStart)+(tertiaries - terStart);
- primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sks, status);
- if(U_SUCCESS(*status)) {
- *result = primStart;
- primarySafeEnd = primStart + resultLength - 2;
- } else {
- IInit_collIterate(coll, (UChar *)source, len, &s);
- if(source == normSource) {
- s.flags &= ~UCOL_ITER_NORM;
- }
- sortKeySize = ucol_getSortKeySize(coll, &s, sortKeySize, coll->strength, len);
- finished = TRUE;
- break;
+ if(allocateSKBuffer == FALSE) { /* need to save our butts if we cannot reallocate */
+ IInit_collIterate(coll, (UChar *)source, len, &s);
+ if(source == normSource) {
+ s.flags &= ~UCOL_ITER_NORM;
+ }
+ sortKeySize = ucol_getSortKeySize(coll, &s, sortKeySize, coll->strength, len);
+ *status = U_BUFFER_OVERFLOW_ERROR;
+ finished = TRUE;
+ break;
+ } else { /* It's much nicer if we can actually reallocate */
+ int32_t sks = sortKeySize+(primaries - primStart)+(secondaries - secStart)+(tertiaries - terStart);
+ primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sks, status);
+ if(U_SUCCESS(*status)) {
+ *result = primStart;
+ primarySafeEnd = primStart + resultLength - 2;
+ } else {
+ /* We ran out of memory!? We can't recover. */
+ sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY;
+ finished = TRUE;
+ break;
+ }
}
- }
}
}
if(finished) {
break;
} else {
- prevBuffSize = minBufferSize;
- secStart = reallocateBuffer(&secondaries, secStart, second, &secSize, 2*secSize, status);
- terStart = reallocateBuffer(&tertiaries, terStart, tert, &terSize, 2*terSize, status);
- minBufferSize *= 2;
- if(U_FAILURE(*status)) { // if we cannot reallocate buffers, we can at least give the sortkey size
- IInit_collIterate(coll, (UChar *)source, len, &s);
- if(source == normSource) {
- s.flags &= ~UCOL_ITER_NORM;
- }
- sortKeySize = ucol_getSortKeySize(coll, &s, sortKeySize, coll->strength, len);
- break;
- }
+ prevBuffSize = minBufferSize;
+ secStart = reallocateBuffer(&secondaries, secStart, second, &secSize, 2*secSize, status);
+ terStart = reallocateBuffer(&tertiaries, terStart, tert, &terSize, 2*terSize, status);
+ minBufferSize *= 2;
+ if(U_FAILURE(*status)) { // if we cannot reallocate buffers, we can at least give the sortkey size
+ /* We ran out of memory!? We can't recover. */
+ sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY;
+ break;
+ }
}
}
if(U_SUCCESS(*status)) {
- sortKeySize += (primaries - primStart);
- /* we have done all the CE's, now let's put them together to form a key */
- if (count2 > 0) {
- while (count2 > UCOL_BOT_COUNT2) {
- *secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2);
- count2 -= (uint32_t)UCOL_BOT_COUNT2;
+ sortKeySize += (primaries - primStart);
+ /* we have done all the CE's, now let's put them together to form a key */
+ if (count2 > 0) {
+ while (count2 > UCOL_BOT_COUNT2) {
+ *secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2);
+ count2 -= (uint32_t)UCOL_BOT_COUNT2;
+ }
+ *secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + (count2-1));
}
- *secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + (count2-1));
- }
- uint32_t secsize = secondaries-secStart;
- sortKeySize += secsize;
- if(sortKeySize <= resultLength) {
- *(primaries++) = UCOL_LEVELTERMINATOR;
- uprv_memcpy(primaries, secStart, secsize);
- primaries += secsize;
- } else {
- if(allocateSKBuffer == TRUE) {
- primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sortKeySize, status);
- if(U_SUCCESS(*status)) {
+ uint32_t secsize = secondaries-secStart;
+ sortKeySize += secsize;
+ if(sortKeySize <= resultLength) {
*(primaries++) = UCOL_LEVELTERMINATOR;
- *result = primStart;
uprv_memcpy(primaries, secStart, secsize);
- }
+ primaries += secsize;
} else {
- *status = U_BUFFER_OVERFLOW_ERROR;
+ if(allocateSKBuffer == TRUE) {
+ primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sortKeySize, status);
+ if(U_SUCCESS(*status)) {
+ *(primaries++) = UCOL_LEVELTERMINATOR;
+ *result = primStart;
+ uprv_memcpy(primaries, secStart, secsize);
+ }
+ else {
+ /* We ran out of memory!? We can't recover. */
+ sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY;
+ goto cleanup;
+ }
+ } else {
+ *status = U_BUFFER_OVERFLOW_ERROR;
+ }
}
- }
- if (count3 > 0) {
- if (coll->tertiaryCommon != UCOL_COMMON3_NORMAL) {
- while (count3 >= coll->tertiaryTopCount) {
- *tertiaries++ = (uint8_t)(tertiaryTop - coll->tertiaryTopCount);
- count3 -= (uint32_t)coll->tertiaryTopCount;
- }
- *tertiaries++ = (uint8_t)(tertiaryTop - count3);
- } else {
- while (count3 > coll->tertiaryBottomCount) {
- *tertiaries++ = (uint8_t)(tertiaryBottom + coll->tertiaryBottomCount);
- count3 -= (uint32_t)coll->tertiaryBottomCount;
- }
- *tertiaries++ = (uint8_t)(tertiaryBottom + (count3-1));
+ if (count3 > 0) {
+ if (coll->tertiaryCommon != UCOL_COMMON3_NORMAL) {
+ while (count3 >= coll->tertiaryTopCount) {
+ *tertiaries++ = (uint8_t)(tertiaryTop - coll->tertiaryTopCount);
+ count3 -= (uint32_t)coll->tertiaryTopCount;
+ }
+ *tertiaries++ = (uint8_t)(tertiaryTop - count3);
+ } else {
+ while (count3 > coll->tertiaryBottomCount) {
+ *tertiaries++ = (uint8_t)(tertiaryBottom + coll->tertiaryBottomCount);
+ count3 -= (uint32_t)coll->tertiaryBottomCount;
+ }
+ *tertiaries++ = (uint8_t)(tertiaryBottom + (count3-1));
+ }
}
- }
- uint32_t tersize = tertiaries - terStart;
- sortKeySize += tersize;
- if(sortKeySize <= resultLength) {
- *(primaries++) = UCOL_LEVELTERMINATOR;
- uprv_memcpy(primaries, terStart, tersize);
- primaries += tersize;
- } else {
- if(allocateSKBuffer == TRUE) {
- primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sortKeySize, status);
- if(U_SUCCESS(*status)) {
- *result = primStart;
+ uint32_t tersize = tertiaries - terStart;
+ sortKeySize += tersize;
+ if(sortKeySize <= resultLength) {
*(primaries++) = UCOL_LEVELTERMINATOR;
uprv_memcpy(primaries, terStart, tersize);
- }
+ primaries += tersize;
} else {
- *status = U_MEMORY_ALLOCATION_ERROR;
+ if(allocateSKBuffer == TRUE) {
+ primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sortKeySize, status);
+ if(U_SUCCESS(*status)) {
+ *result = primStart;
+ *(primaries++) = UCOL_LEVELTERMINATOR;
+ uprv_memcpy(primaries, terStart, tersize);
+ }
+ else {
+ /* We ran out of memory!? We can't recover. */
+ sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY;
+ goto cleanup;
+ }
+ } else {
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ }
}
- }
- *(primaries++) = '\0';
+ *(primaries++) = '\0';
+ }
+
+ if(allocateSKBuffer == TRUE) {
+ *result = (uint8_t*)uprv_malloc(sortKeySize);
+ /* test for NULL */
+ if (*result == NULL) {
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ goto cleanup;
+ }
+ uprv_memcpy(*result, primStart, sortKeySize);
+ if(primStart != prim) {
+ uprv_free(primStart);
+ }
}
+cleanup:
+ if (allocateSKBuffer == FALSE && resultLength > 0 && U_FAILURE(*status) && *status != U_BUFFER_OVERFLOW_ERROR) {
+ /* NULL terminate for safety */
+ **result = 0;
+ }
if(terStart != tert) {
uprv_free(terStart);
uprv_free(secStart);
}
+ /* To avoid memory leak, free the offset buffer if necessary. */
+ freeOffsetBuffer(&s);
+
if(normSource != normBuffer) {
uprv_free(normSource);
}
- if(allocateSKBuffer == TRUE) {
- *result = (uint8_t*)uprv_malloc(sortKeySize);
- /* test for NULL */
- if (*result == NULL) {
- *status = U_MEMORY_ALLOCATION_ERROR;
- return sortKeySize;
- }
- uprv_memcpy(*result, primStart, sortKeySize);
- if(primStart != prim) {
- uprv_free(primStart);
- }
- }
-
return sortKeySize;
}
static inline
UBool isShiftedCE(uint32_t CE, uint32_t LVT, UBool *wasShifted) {
- UBool notIsContinuation = !isContinuation(CE);
- uint8_t primary1 = (uint8_t)((CE >> 24) & 0xFF);
- if(LVT && ((notIsContinuation && (CE & 0xFFFF0000)<= LVT && primary1 > 0)
- || (!notIsContinuation && *wasShifted))
- || (*wasShifted && primary1 == 0)) { /* amendment to the UCA says that primary ignorables */
- // The stuff below should probably be in the sortkey code... maybe not...
- if(primary1 != 0) { /* if we were shifted and we got an ignorable code point */
- /* we should just completely ignore it */
- *wasShifted = TRUE;
- //continue;
- }
- //*wasShifted = TRUE;
- return TRUE;
- } else {
- *wasShifted = FALSE;
- return FALSE;
- }
+ UBool notIsContinuation = !isContinuation(CE);
+ uint8_t primary1 = (uint8_t)((CE >> 24) & 0xFF);
+ if(LVT && ((notIsContinuation && (CE & 0xFFFF0000)<= LVT && primary1 > 0)
+ || (!notIsContinuation && *wasShifted))
+ || (*wasShifted && primary1 == 0)) /* amendment to the UCA says that primary ignorables */
+ {
+ // The stuff below should probably be in the sortkey code... maybe not...
+ if(primary1 != 0) { /* if we were shifted and we got an ignorable code point */
+ /* we should just completely ignore it */
+ *wasShifted = TRUE;
+ //continue;
+ }
+ //*wasShifted = TRUE;
+ return TRUE;
+ } else {
+ *wasShifted = FALSE;
+ return FALSE;
+ }
}
static inline
void terminatePSKLevel(int32_t level, int32_t maxLevel, int32_t &i, uint8_t *dest) {
- if(level < maxLevel) {
- dest[i++] = UCOL_LEVELTERMINATOR;
- } else {
- dest[i++] = 0;
- }
+ if(level < maxLevel) {
+ dest[i++] = UCOL_LEVELTERMINATOR;
+ } else {
+ dest[i++] = 0;
+ }
}
/** enumeration of level identifiers for partial sort key generation */
/** When we do French we need to reverse secondary values. However, continuations
* need to stay the same. So if you had abc1c2c3de, you need to have edc1c2c3ba
*/
- UCOL_PSK_USED_ELEMENTS_SHIFT = 7,
- UCOL_PSK_USED_ELEMENTS_MASK = 0x3FF,
- UCOL_PSK_ITER_SKIP_SHIFT = 17,
- UCOL_PSK_ITER_SKIP_MASK = 0x7FFF
+ UCOL_PSK_BOCSU_BYTES_SHIFT = 7,
+ UCOL_PSK_BOCSU_BYTES_MASK = 3,
+ UCOL_PSK_CONSUMED_CES_SHIFT = 9,
+ UCOL_PSK_CONSUMED_CES_MASK = 0x7FFFF
};
+// macro calculating the number of expansion CEs available
+#define uprv_numAvailableExpCEs(s) (s).CEpos - (s).toReturn
+
/** main sortkey part procedure. On the first call,
* you should pass in a collator, an iterator, empty state
* 4 - was shifted. Whether the previous iteration finished in the
* shifted state.
* 5, 6 - French continuation bytes written. See the comment in the enum
- * 7..16 - Used elements. Number of CEs that were already used from the
- * expansion buffer or number of bytes from a bocu sequence on
+ * 7,8 - Bocsu bytes used. Number of bytes from a bocu sequence on
* the identical level.
- * 17..31 - iterator skip. Number of move operations iterator needs to
- * skip from the current state in order to continue. This is used
- * only if normalization is turned on, since the normalizing iterator
- * can return undefined state, which means that it's in the middle
- * of normalizing sequence.
+ * 9..31 - CEs consumed. Number of getCE or next32 operations performed
+ * since thes last successful update of the iterator state.
*/
U_CAPI int32_t U_EXPORT2
ucol_nextSortKeyPart(const UCollator *coll,
UCharIterator *iter,
uint32_t state[2],
uint8_t *dest, int32_t count,
- UErrorCode *status) {
+ UErrorCode *status)
+{
/* error checking */
if(status==NULL || U_FAILURE(*status)) {
return 0;
count<0 || (count>0 && dest==NULL)
) {
*status=U_ILLEGAL_ARGUMENT_ERROR;
+ UTRACE_EXIT_STATUS(status);
+ return 0;
}
UTRACE_DATA6(UTRACE_VERBOSE, "coll=%p, iter=%p, state=%d %d, dest=%p, count=%d",
UTRACE_EXIT_VALUE(0);
return 0;
}
-
/** Setting up situation according to the state we got from the previous iteration */
// The state of the iterator from the previous invocation
uint32_t iterState = state[0];
int32_t byteCountOrFrenchDone = (state[1] >> UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_SHIFT) & UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_MASK;
// number of bytes in the continuation buffer for French
int32_t usedFrench = (state[1] >> UCOL_PSK_USED_FRENCH_SHIFT) & UCOL_PSK_USED_FRENCH_MASK;
- // Skip the CEs that we got from an extraction
- // and delivered in the previous call
- int32_t usedElements = (state[1] >> UCOL_PSK_USED_ELEMENTS_SHIFT) & UCOL_PSK_USED_ELEMENTS_MASK;
- // Number of times to skip because the iterator returned
- // UITER_NO_STATE when it was stopped in the last iteration, so we had to save the
- // last valid state.
- int32_t iterSkips = (state[1] >> UCOL_PSK_ITER_SKIP_SHIFT) & UCOL_PSK_ITER_SKIP_MASK;
+ // Number of bytes already written from a bocsu sequence. Since
+ // the longes bocsu sequence is 4 long, this can be up to 3.
+ int32_t bocsuBytesUsed = (state[1] >> UCOL_PSK_BOCSU_BYTES_SHIFT) & UCOL_PSK_BOCSU_BYTES_MASK;
+ // Number of elements that need to be consumed in this iteration because
+ // the iterator returned UITER_NO_STATE at the end of the last iteration,
+ // so we had to save the last valid state.
+ int32_t cces = (state[1] >> UCOL_PSK_CONSUMED_CES_SHIFT) & UCOL_PSK_CONSUMED_CES_MASK;
/** values that depend on the collator attributes */
// strength of the collator.
// maximal level of the partial sortkey. Need to take whether case level is done
int32_t maxLevel = 0;
if(strength < UCOL_TERTIARY) {
- if(ucol_getAttribute(coll, UCOL_CASE_LEVEL, status) == UCOL_ON) {
- maxLevel = UCOL_PSK_CASE;
- } else {
- maxLevel = strength;
- }
+ if(ucol_getAttribute(coll, UCOL_CASE_LEVEL, status) == UCOL_ON) {
+ maxLevel = UCOL_PSK_CASE;
+ } else {
+ maxLevel = strength;
+ }
} else {
if(strength == UCOL_TERTIARY) {
- maxLevel = UCOL_PSK_TERTIARY;
+ maxLevel = UCOL_PSK_TERTIARY;
} else if(strength == UCOL_QUATERNARY) {
- maxLevel = UCOL_PSK_QUATERNARY;
+ maxLevel = UCOL_PSK_QUATERNARY;
} else { // identical
- maxLevel = UCOL_IDENTICAL;
+ maxLevel = UCOL_IDENTICAL;
}
}
// value for the quaternary level if Hiragana is encountered. Used for JIS X 4061 collation
// If the normalization is turned on for the collator and we are below identical level
// we will use a FCD normalizing iterator
if(ucol_getAttribute(coll, UCOL_NORMALIZATION_MODE, status) == UCOL_ON && level < UCOL_PSK_IDENTICAL) {
- normIter = unorm_openIter(stackNormIter, sizeof(stackNormIter), status);
- s.iterator = unorm_setIter(normIter, iter, UNORM_FCD, status);
- s.flags &= ~UCOL_ITER_NORM;
- if(U_FAILURE(*status)) {
- UTRACE_EXIT_STATUS(*status);
- return 0;
- }
+ normIter = unorm_openIter(stackNormIter, sizeof(stackNormIter), status);
+ s.iterator = unorm_setIter(normIter, iter, UNORM_FCD, status);
+ s.flags &= ~UCOL_ITER_NORM;
+ if(U_FAILURE(*status)) {
+ UTRACE_EXIT_STATUS(*status);
+ return 0;
+ }
} else if(level == UCOL_PSK_IDENTICAL) {
- // for identical level, we need a NFD iterator. We need to instantiate it here, since we
- // will be updating the state - and this cannot be done on an ordinary iterator.
- normIter = unorm_openIter(stackNormIter, sizeof(stackNormIter), status);
- s.iterator = unorm_setIter(normIter, iter, UNORM_NFD, status);
- s.flags &= ~UCOL_ITER_NORM;
- if(U_FAILURE(*status)) {
- UTRACE_EXIT_STATUS(*status);
- return 0;
- }
- doingIdenticalFromStart = TRUE;
+ // for identical level, we need a NFD iterator. We need to instantiate it here, since we
+ // will be updating the state - and this cannot be done on an ordinary iterator.
+ normIter = unorm_openIter(stackNormIter, sizeof(stackNormIter), status);
+ s.iterator = unorm_setIter(normIter, iter, UNORM_NFD, status);
+ s.flags &= ~UCOL_ITER_NORM;
+ if(U_FAILURE(*status)) {
+ UTRACE_EXIT_STATUS(*status);
+ return 0;
+ }
+ doingIdenticalFromStart = TRUE;
}
// This is the tentative new state of the iterator. The problem
// First, we set the iterator to the last valid position
// from the last iteration. This was saved in state[0].
if(iterState == 0) {
- /* initial state */
- if(level == UCOL_PSK_SECONDARY && doingFrench && !byteCountOrFrenchDone) {
- s.iterator->move(s.iterator, 0, UITER_LIMIT);
- } else {
- s.iterator->move(s.iterator, 0, UITER_START);
- }
+ /* initial state */
+ if(level == UCOL_PSK_SECONDARY && doingFrench && !byteCountOrFrenchDone) {
+ s.iterator->move(s.iterator, 0, UITER_LIMIT);
+ } else {
+ s.iterator->move(s.iterator, 0, UITER_START);
+ }
} else {
/* reset to previous state */
- s.iterator->setState(s.iterator, iterState, status);
- if(U_FAILURE(*status)) {
- UTRACE_EXIT_STATUS(*status);
- return 0;
- }
+ s.iterator->setState(s.iterator, iterState, status);
+ if(U_FAILURE(*status)) {
+ UTRACE_EXIT_STATUS(*status);
+ return 0;
+ }
}
- // Then, we may have to move more, if the normalizing iterator
- // was going through a normalizing sequence.
- if(iterSkips) {
- // if we are on secondary level AND we do French, we need to go backward instead of forward
- if(level == UCOL_PSK_SECONDARY && doingFrench) {
- s.iterator->move(s.iterator, -iterSkips, UITER_CURRENT);
- } else {
- s.iterator->move(s.iterator, iterSkips, UITER_CURRENT);
- }
- }
- // Number of expansion CEs that were already consumed in the
- // previous iteration for the last code point processed. We
- // want to clean out the expansion buffer, so that we can
- // get correct CEs. This value is persistent over iterations,
- // since we can have several iterations on the one expansion
- // buffer.
- int32_t consumedExpansionCEs = usedElements;
- // Number of bytes already writted from a bocsu sequence. Since
- // the longes bocsu sequence is 4 long, this can be up to 3. It
- // shares the state field with consumedExpansionCEs value, since
- // they cannot simultanously appear on the same level
- int32_t bocsuBytesUsed = 0;
- // Clean out the expansion buffer unless we are on
- // identical level. In that case we use this field
- // to store the number of bytes already written
- // from the previous bocsu sequence.
- if(level < UCOL_PSK_IDENTICAL && usedElements != 0) {
- while(usedElements-->0) {
- // If we're doing French and we are on the secondary level,
- // we go backwards.
- if(level == UCOL_PSK_SECONDARY && doingFrench) {
- CE = ucol_IGetPrevCE(coll, &s, status);
- } else {
- CE = ucol_IGetNextCE(coll, &s, status);
- }
- if(CE==UCOL_NO_MORE_CES) {
- /* should not happen */
- *status=U_INTERNAL_PROGRAM_ERROR;
- UTRACE_EXIT_STATUS(*status);
- return 0;
+ // This variable tells us whether we can attempt to update the state
+ // of iterator. Situations where we don't want to update iterator state
+ // are the existence of expansion CEs that are not yet processed, and
+ // finishing the case level without enough space in the buffer to insert
+ // a level terminator.
+ UBool canUpdateState = TRUE;
+
+ // Consume all the CEs that were consumed at the end of the previous
+ // iteration without updating the iterator state. On identical level,
+ // consume the code points.
+ int32_t counter = cces;
+ if(level < UCOL_PSK_IDENTICAL) {
+ while(counter-->0) {
+ // If we're doing French and we are on the secondary level,
+ // we go backwards.
+ if(level == UCOL_PSK_SECONDARY && doingFrench) {
+ CE = ucol_IGetPrevCE(coll, &s, status);
+ } else {
+ CE = ucol_IGetNextCE(coll, &s, status);
+ }
+ if(CE==UCOL_NO_MORE_CES) {
+ /* should not happen */
+ *status=U_INTERNAL_PROGRAM_ERROR;
+ UTRACE_EXIT_STATUS(*status);
+ return 0;
+ }
+ if(uprv_numAvailableExpCEs(s)) {
+ canUpdateState = FALSE;
+ }
}
- }
} else {
- bocsuBytesUsed = usedElements;
+ while(counter-->0) {
+ uiter_next32(s.iterator);
+ }
}
- // This variable prevents the adjusting of iterator
- // skip variable when we are the first time on a
- // level. I hope there is a better way to do it, but
- // I could not think of it.
- UBool firstTimeOnLevel = TRUE;
// French secondary needs to know whether the iterator state of zero came from previous level OR
// from a new invocation...
UBool wasDoingPrimary = FALSE;
- // Case level is kind of goofy. This variable tells us that
- // we are still not done with the case level.
- UBool dontAdvanceIteratorBecauseWeNeedALevelTerminator = FALSE;
// destination buffer byte counter. When this guy
// gets to count, we're done with the iteration
int32_t i = 0;
// out our buffer.
switch(level) {
case UCOL_PSK_PRIMARY:
- wasDoingPrimary = TRUE;
- for(;;) {
- if(i==count) {
- goto saveState;
- }
- // We should save the state only if we
- // are sure that we are done with the
- // previous iterator state
- if(consumedExpansionCEs == 0 && byteCountOrFrenchDone == 0) {
- newState = s.iterator->getState(s.iterator);
- if(newState != UITER_NO_STATE) {
- iterState = newState;
- iterSkips = 0;
- } else {
- if(!firstTimeOnLevel && !byteCountOrFrenchDone) {
- iterSkips++;
- }
- }
- }
- firstTimeOnLevel = FALSE;
- CE = ucol_IGetNextCE(coll, &s, status);
- if(CE==UCOL_NO_MORE_CES) {
- // Add the level separator
- terminatePSKLevel(level, maxLevel, i, dest);
- byteCountOrFrenchDone=0;
- // Restart the iteration an move to the
- // second level
- s.iterator->move(s.iterator, 0, UITER_START);
- level = UCOL_PSK_SECONDARY;
- break;
- }
- if(!isShiftedCE(CE, LVT, &wasShifted)) {
- CE >>= UCOL_PRIMARYORDERSHIFT; /* get primary */
- if(CE != 0) {
- if(byteCountOrFrenchDone == 0) {
- // get the second byte of primary
- dest[i++]=(uint8_t)(CE >> 8);
- } else {
- byteCountOrFrenchDone = 0;
- }
- if((CE &=0xff)!=0) {
- if(i==count) {
- /* overflow */
- byteCountOrFrenchDone=1;
- goto saveState;
- }
- dest[i++]=(uint8_t)CE;
- }
- }
- }
- if(s.CEpos - s.toReturn || (s.pos && *s.pos != 0)) {
- // s.pos != NULL means there is a normalization buffer in effect
- // in iterative case, this means that we are doing Thai (maybe discontiguos)
- consumedExpansionCEs++;
- } else {
- consumedExpansionCEs = 0;
- }
- if(s.pos && *s.pos == 0) {
- // maybe it is the end of Thai - we have to have
- // an extra skip
- iterSkips++;
- }
- }
- /* fall through to next level */
- case UCOL_PSK_SECONDARY:
- if(strength >= UCOL_SECONDARY) {
- if(!doingFrench) {
- for(;;) {
- if(i == count) {
- goto saveState;
+ wasDoingPrimary = TRUE;
+ for(;;) {
+ if(i==count) {
+ goto saveState;
}
// We should save the state only if we
// are sure that we are done with the
// previous iterator state
- if(consumedExpansionCEs == 0) {
- newState = s.iterator->getState(s.iterator);
- if(newState != UITER_NO_STATE) {
- iterState = newState;
- iterSkips = 0;
- } else {
- if(!firstTimeOnLevel) {
- iterSkips++;
+ if(canUpdateState && byteCountOrFrenchDone == 0) {
+ newState = s.iterator->getState(s.iterator);
+ if(newState != UITER_NO_STATE) {
+ iterState = newState;
+ cces = 0;
}
- }
}
- firstTimeOnLevel = FALSE;
CE = ucol_IGetNextCE(coll, &s, status);
+ cces++;
if(CE==UCOL_NO_MORE_CES) {
// Add the level separator
terminatePSKLevel(level, maxLevel, i, dest);
// Restart the iteration an move to the
// second level
s.iterator->move(s.iterator, 0, UITER_START);
- level = UCOL_PSK_CASE;
+ cces = 0;
+ level = UCOL_PSK_SECONDARY;
break;
}
if(!isShiftedCE(CE, LVT, &wasShifted)) {
- CE >>= 8; /* get secondary */
- if(CE != 0) {
- dest[i++]=(uint8_t)CE;
- }
+ CE >>= UCOL_PRIMARYORDERSHIFT; /* get primary */
+ if(CE != 0) {
+ if(byteCountOrFrenchDone == 0) {
+ // get the second byte of primary
+ dest[i++]=(uint8_t)(CE >> 8);
+ } else {
+ byteCountOrFrenchDone = 0;
+ }
+ if((CE &=0xff)!=0) {
+ if(i==count) {
+ /* overflow */
+ byteCountOrFrenchDone = 1;
+ cces--;
+ goto saveState;
+ }
+ dest[i++]=(uint8_t)CE;
+ }
+ }
}
- if(s.CEpos - s.toReturn || (s.pos && *s.pos != 0)) {
- consumedExpansionCEs++;
+ if(uprv_numAvailableExpCEs(s)) {
+ canUpdateState = FALSE;
} else {
- consumedExpansionCEs = 0;
- }
- if(s.pos && *s.pos == 0) {
- iterSkips++;
+ canUpdateState = TRUE;
}
- }
- } else { // French secondary processing
- uint8_t frenchBuff[UCOL_MAX_BUFFER];
- int32_t frenchIndex = 0;
- // Here we are going backwards.
- // If the iterator is at the beggining, it should be
- // moved to end.
- if(wasDoingPrimary) {
- s.iterator->move(s.iterator, 0, UITER_LIMIT);
- }
- for(;;) {
- if(i == count) {
- goto saveState;
- }
- if(consumedExpansionCEs == 0) {
- newState = s.iterator->getState(s.iterator);
- if(newState != UITER_NO_STATE) {
- iterState = newState;
- iterSkips = 0;
- } else {
- if(!firstTimeOnLevel) {
- iterSkips++;
+ }
+ /* fall through to next level */
+ case UCOL_PSK_SECONDARY:
+ if(strength >= UCOL_SECONDARY) {
+ if(!doingFrench) {
+ for(;;) {
+ if(i == count) {
+ goto saveState;
+ }
+ // We should save the state only if we
+ // are sure that we are done with the
+ // previous iterator state
+ if(canUpdateState) {
+ newState = s.iterator->getState(s.iterator);
+ if(newState != UITER_NO_STATE) {
+ iterState = newState;
+ cces = 0;
+ }
+ }
+ CE = ucol_IGetNextCE(coll, &s, status);
+ cces++;
+ if(CE==UCOL_NO_MORE_CES) {
+ // Add the level separator
+ terminatePSKLevel(level, maxLevel, i, dest);
+ byteCountOrFrenchDone = 0;
+ // Restart the iteration an move to the
+ // second level
+ s.iterator->move(s.iterator, 0, UITER_START);
+ cces = 0;
+ level = UCOL_PSK_CASE;
+ break;
+ }
+ if(!isShiftedCE(CE, LVT, &wasShifted)) {
+ CE >>= 8; /* get secondary */
+ if(CE != 0) {
+ dest[i++]=(uint8_t)CE;
+ }
+ }
+ if(uprv_numAvailableExpCEs(s)) {
+ canUpdateState = FALSE;
+ } else {
+ canUpdateState = TRUE;
+ }
}
- }
- }
- firstTimeOnLevel = FALSE;
- CE = ucol_IGetPrevCE(coll, &s, status);
- if(CE==UCOL_NO_MORE_CES) {
- // Add the level separator
- terminatePSKLevel(level, maxLevel, i, dest);
- byteCountOrFrenchDone=0;
- // Restart the iteration an move to the next level
- s.iterator->move(s.iterator, 0, UITER_START);
- level = UCOL_PSK_CASE;
- break;
- }
- if(isContinuation(CE)) { // if it's a continuation, we want to save it and
- // reverse when we get a first non-continuation CE.
- CE >>= 8;
- frenchBuff[frenchIndex++] = (uint8_t)CE;
- } else if(!isShiftedCE(CE, LVT, &wasShifted)) {
- CE >>= 8; /* get secondary */
- if(!frenchIndex) {
- if(CE != 0) {
- dest[i++]=(uint8_t)CE;
+ } else { // French secondary processing
+ uint8_t frenchBuff[UCOL_MAX_BUFFER];
+ int32_t frenchIndex = 0;
+ // Here we are going backwards.
+ // If the iterator is at the beggining, it should be
+ // moved to end.
+ if(wasDoingPrimary) {
+ s.iterator->move(s.iterator, 0, UITER_LIMIT);
+ cces = 0;
}
- } else {
- frenchBuff[frenchIndex++] = (uint8_t)CE;
- frenchIndex -= usedFrench;
- usedFrench = 0;
- while(i < count && frenchIndex) {
- dest[i++] = frenchBuff[--frenchIndex];
- usedFrench++;
+ for(;;) {
+ if(i == count) {
+ goto saveState;
+ }
+ if(canUpdateState) {
+ newState = s.iterator->getState(s.iterator);
+ if(newState != UITER_NO_STATE) {
+ iterState = newState;
+ cces = 0;
+ }
+ }
+ CE = ucol_IGetPrevCE(coll, &s, status);
+ cces++;
+ if(CE==UCOL_NO_MORE_CES) {
+ // Add the level separator
+ terminatePSKLevel(level, maxLevel, i, dest);
+ byteCountOrFrenchDone = 0;
+ // Restart the iteration an move to the next level
+ s.iterator->move(s.iterator, 0, UITER_START);
+ level = UCOL_PSK_CASE;
+ break;
+ }
+ if(isContinuation(CE)) { // if it's a continuation, we want to save it and
+ // reverse when we get a first non-continuation CE.
+ CE >>= 8;
+ frenchBuff[frenchIndex++] = (uint8_t)CE;
+ } else if(!isShiftedCE(CE, LVT, &wasShifted)) {
+ CE >>= 8; /* get secondary */
+ if(!frenchIndex) {
+ if(CE != 0) {
+ dest[i++]=(uint8_t)CE;
+ }
+ } else {
+ frenchBuff[frenchIndex++] = (uint8_t)CE;
+ frenchIndex -= usedFrench;
+ usedFrench = 0;
+ while(i < count && frenchIndex) {
+ dest[i++] = frenchBuff[--frenchIndex];
+ usedFrench++;
+ }
+ }
+ }
+ if(uprv_numAvailableExpCEs(s)) {
+ canUpdateState = FALSE;
+ } else {
+ canUpdateState = TRUE;
+ }
}
- }
- }
- if(s.CEpos - s.toReturn || (s.pos && *s.pos != 0)) {
- consumedExpansionCEs++;
- } else {
- consumedExpansionCEs = 0;
}
- if(s.pos && *s.pos == 0) {
- iterSkips++;
- }
- }
+ } else {
+ level = UCOL_PSK_CASE;
}
- } else {
- level = UCOL_PSK_CASE;
- }
/* fall through to next level */
case UCOL_PSK_CASE:
- if(ucol_getAttribute(coll, UCOL_CASE_LEVEL, status) == UCOL_ON) {
- uint32_t caseShift = UCOL_CASE_SHIFT_START;
- uint8_t caseByte = UCOL_CASE_BYTE_START;
- uint8_t caseBits = 0;
+ if(ucol_getAttribute(coll, UCOL_CASE_LEVEL, status) == UCOL_ON) {
+ uint32_t caseShift = UCOL_CASE_SHIFT_START;
+ uint8_t caseByte = UCOL_CASE_BYTE_START;
+ uint8_t caseBits = 0;
+
+ for(;;) {
+ if(i == count) {
+ goto saveState;
+ }
+ // We should save the state only if we
+ // are sure that we are done with the
+ // previous iterator state
+ if(canUpdateState) {
+ newState = s.iterator->getState(s.iterator);
+ if(newState != UITER_NO_STATE) {
+ iterState = newState;
+ cces = 0;
+ }
+ }
+ CE = ucol_IGetNextCE(coll, &s, status);
+ cces++;
+ if(CE==UCOL_NO_MORE_CES) {
+ // On the case level we might have an unfinished
+ // case byte. Add one if it's started.
+ if(caseShift != UCOL_CASE_SHIFT_START) {
+ dest[i++] = caseByte;
+ }
+ cces = 0;
+ // We have finished processing CEs on this level.
+ // However, we don't know if we have enough space
+ // to add a case level terminator.
+ if(i < count) {
+ // Add the level separator
+ terminatePSKLevel(level, maxLevel, i, dest);
+ // Restart the iteration and move to the
+ // next level
+ s.iterator->move(s.iterator, 0, UITER_START);
+ level = UCOL_PSK_TERTIARY;
+ } else {
+ canUpdateState = FALSE;
+ }
+ break;
+ }
- for(;;) {
- if(i == count) {
- goto saveState;
- }
- // We should save the state only if we
- // are sure that we are done with the
- // previous iterator state
- if(consumedExpansionCEs == 0) {
- newState = s.iterator->getState(s.iterator);
- if(newState != UITER_NO_STATE) {
- iterState = newState;
- iterSkips = 0;
- } else {
- if(!firstTimeOnLevel) {
- iterSkips++;
- }
- }
- }
- firstTimeOnLevel = FALSE;
- CE = ucol_IGetNextCE(coll, &s, status);
- if(CE==UCOL_NO_MORE_CES) {
- // On the case level we might have an unfinished
- // case byte. Add one if it's started.
- if(caseShift != UCOL_CASE_SHIFT_START) {
- dest[i++] = caseByte;
- }
- // This is kind of tricky - situation where
- // we need to keep the iterator in the old
- // state, but don't need to bring anything
- // to the next invocation
- if(i < count) {
- // Add the level separator
- terminatePSKLevel(level, maxLevel, i, dest);
- // Restart the iteration and move to the
- // next level
- s.iterator->move(s.iterator, 0, UITER_START);
- level = UCOL_PSK_TERTIARY;
- } else {
- dontAdvanceIteratorBecauseWeNeedALevelTerminator = TRUE;
- }
- break;
- }
+ if(!isShiftedCE(CE, LVT, &wasShifted)) {
+ if(!isContinuation(CE) && ((CE & UCOL_PRIMARYMASK) != 0 || strength > UCOL_PRIMARY)) {
+ // do the case level if we need to do it. We don't want to calculate
+ // case level for primary ignorables if we have only primary strength and case level
+ // otherwise we would break well formedness of CEs
+ CE = (uint8_t)(CE & UCOL_BYTE_SIZE_MASK);
+ caseBits = (uint8_t)(CE & 0xC0);
+ // this copies the case level logic from the
+ // sort key generation code
+ if(CE != 0) {
+ if(coll->caseFirst == UCOL_UPPER_FIRST) {
+ if((caseBits & 0xC0) == 0) {
+ caseByte |= 1 << (--caseShift);
+ } else {
+ caseByte |= 0 << (--caseShift);
+ /* second bit */
+ if(caseShift == 0) {
+ dest[i++] = caseByte;
+ caseShift = UCOL_CASE_SHIFT_START;
+ caseByte = UCOL_CASE_BYTE_START;
+ }
+ caseByte |= ((caseBits>>6)&1) << (--caseShift);
+ }
+ } else {
+ if((caseBits & 0xC0) == 0) {
+ caseByte |= 0 << (--caseShift);
+ } else {
+ caseByte |= 1 << (--caseShift);
+ /* second bit */
+ if(caseShift == 0) {
+ dest[i++] = caseByte;
+ caseShift = UCOL_CASE_SHIFT_START;
+ caseByte = UCOL_CASE_BYTE_START;
+ }
+ caseByte |= ((caseBits>>7)&1) << (--caseShift);
+ }
+ }
+ }
- if(!isShiftedCE(CE, LVT, &wasShifted)) {
- if(!isContinuation(CE)) {
- CE = (uint8_t)(CE & UCOL_BYTE_SIZE_MASK);
- caseBits = (uint8_t)(CE & 0xC0);
- // this copies the case level logic from the
- // sort key generation code
- if(CE != 0) {
- if(coll->caseFirst == UCOL_UPPER_FIRST) {
- if((caseBits & 0xC0) == 0) {
- caseByte |= 1 << (--caseShift);
- } else {
- caseByte |= 0 << (--caseShift);
- /* second bit */
- if(caseShift == 0) {
- dest[i++] = caseByte;
- caseShift = UCOL_CASE_SHIFT_START;
- caseByte = UCOL_CASE_BYTE_START;
- }
- caseByte |= ((caseBits>>6)&1) << (--caseShift);
- }
+ }
+ }
+ // Not sure this is correct for the case level - revisit
+ if(uprv_numAvailableExpCEs(s)) {
+ canUpdateState = FALSE;
} else {
- if((caseBits & 0xC0) == 0) {
- caseByte |= 0 << (--caseShift);
- } else {
- caseByte |= 1 << (--caseShift);
- /* second bit */
- if(caseShift == 0) {
- dest[i++] = caseByte;
- caseShift = UCOL_CASE_SHIFT_START;
- caseByte = UCOL_CASE_BYTE_START;
- }
- caseByte |= ((caseBits>>7)&1) << (--caseShift);
- }
+ canUpdateState = TRUE;
}
- }
-
}
- }
- // Not sure this is correct for the case level - revisit
- if(s.CEpos - s.toReturn || (s.pos && *s.pos != 0)) {
- consumedExpansionCEs++;
- } else {
- consumedExpansionCEs = 0;
- }
- if(s.pos && *s.pos == 0) {
- iterSkips++;
- }
+ } else {
+ level = UCOL_PSK_TERTIARY;
}
- } else {
- level = UCOL_PSK_TERTIARY;
- }
/* fall through to next level */
case UCOL_PSK_TERTIARY:
- if(strength >= UCOL_TERTIARY) {
- for(;;) {
- if(i == count) {
- goto saveState;
- }
- // We should save the state only if we
- // are sure that we are done with the
- // previous iterator state
- if(consumedExpansionCEs == 0) {
- newState = s.iterator->getState(s.iterator);
- if(newState != UITER_NO_STATE) {
- iterState = newState;
- iterSkips = 0;
- } else {
- if(!firstTimeOnLevel) {
- iterSkips++;
- }
- }
- }
- firstTimeOnLevel = FALSE;
- CE = ucol_IGetNextCE(coll, &s, status);
- if(CE==UCOL_NO_MORE_CES) {
- // Add the level separator
- terminatePSKLevel(level, maxLevel, i, dest);
- byteCountOrFrenchDone=0;
- // Restart the iteration an move to the
- // second level
- s.iterator->move(s.iterator, 0, UITER_START);
- level = UCOL_PSK_QUATERNARY;
- break;
- }
- if(!isShiftedCE(CE, LVT, &wasShifted)) {
- notIsContinuation = !isContinuation(CE);
+ if(strength >= UCOL_TERTIARY) {
+ for(;;) {
+ if(i == count) {
+ goto saveState;
+ }
+ // We should save the state only if we
+ // are sure that we are done with the
+ // previous iterator state
+ if(canUpdateState) {
+ newState = s.iterator->getState(s.iterator);
+ if(newState != UITER_NO_STATE) {
+ iterState = newState;
+ cces = 0;
+ }
+ }
+ CE = ucol_IGetNextCE(coll, &s, status);
+ cces++;
+ if(CE==UCOL_NO_MORE_CES) {
+ // Add the level separator
+ terminatePSKLevel(level, maxLevel, i, dest);
+ byteCountOrFrenchDone = 0;
+ // Restart the iteration an move to the
+ // second level
+ s.iterator->move(s.iterator, 0, UITER_START);
+ cces = 0;
+ level = UCOL_PSK_QUATERNARY;
+ break;
+ }
+ if(!isShiftedCE(CE, LVT, &wasShifted)) {
+ notIsContinuation = !isContinuation(CE);
- if(notIsContinuation) {
- CE = (uint8_t)(CE & UCOL_BYTE_SIZE_MASK);
- CE ^= coll->caseSwitch;
- CE &= coll->tertiaryMask;
- } else {
- CE = (uint8_t)((CE & UCOL_REMOVE_CONTINUATION));
- }
+ if(notIsContinuation) {
+ CE = (uint8_t)(CE & UCOL_BYTE_SIZE_MASK);
+ CE ^= coll->caseSwitch;
+ CE &= coll->tertiaryMask;
+ } else {
+ CE = (uint8_t)((CE & UCOL_REMOVE_CONTINUATION));
+ }
- if(CE != 0) {
- dest[i++]=(uint8_t)CE;
+ if(CE != 0) {
+ dest[i++]=(uint8_t)CE;
+ }
+ }
+ if(uprv_numAvailableExpCEs(s)) {
+ canUpdateState = FALSE;
+ } else {
+ canUpdateState = TRUE;
+ }
}
- }
- if(s.CEpos - s.toReturn || (s.pos && *s.pos != 0)) {
- consumedExpansionCEs++;
- } else {
- consumedExpansionCEs = 0;
- }
- if(s.pos && *s.pos == 0) {
- iterSkips++;
- }
+ } else {
+ // if we're not doing tertiary
+ // skip to the end
+ level = UCOL_PSK_NULL;
}
- } else {
- // if we're not doing tertiary
- // skip to the end
- level = UCOL_PSK_NULL;
- }
/* fall through to next level */
case UCOL_PSK_QUATERNARY:
- if(strength >= UCOL_QUATERNARY) {
- for(;;) {
- if(i == count) {
- goto saveState;
- }
- // We should save the state only if we
- // are sure that we are done with the
- // previous iterator state
- if(consumedExpansionCEs == 0) {
- newState = s.iterator->getState(s.iterator);
- if(newState != UITER_NO_STATE) {
- iterState = newState;
- iterSkips = 0;
- } else {
- if(!firstTimeOnLevel) {
- iterSkips++;
- }
- }
- }
- firstTimeOnLevel = FALSE;
- CE = ucol_IGetNextCE(coll, &s, status);
- if(CE==UCOL_NO_MORE_CES) {
- // Add the level separator
- terminatePSKLevel(level, maxLevel, i, dest);
- //dest[i++] = UCOL_LEVELTERMINATOR;
- byteCountOrFrenchDone=0;
- // Restart the iteration an move to the
- // second level
- s.iterator->move(s.iterator, 0, UITER_START);
- level = UCOL_PSK_QUIN;
- break;
- }
- if(isShiftedCE(CE, LVT, &wasShifted)) {
- CE >>= 16; /* get primary */
- if(CE != 0) {
- if(byteCountOrFrenchDone == 0) {
- dest[i++]=(uint8_t)(CE >> 8);
- } else {
- byteCountOrFrenchDone = 0;
- }
- if((CE &=0xff)!=0) {
- if(i==count) {
- /* overflow */
- byteCountOrFrenchDone=1;
- goto saveState;
- }
- dest[i++]=(uint8_t)CE;
- }
- }
- } else {
- notIsContinuation = !isContinuation(CE);
- if(notIsContinuation) {
- if(s.flags & UCOL_WAS_HIRAGANA) { // This was Hiragana and we need to note it
- dest[i++] = UCOL_HIRAGANA_QUAD;
- } else {
- dest[i++] = 0xFF;
- }
+ if(strength >= UCOL_QUATERNARY) {
+ for(;;) {
+ if(i == count) {
+ goto saveState;
+ }
+ // We should save the state only if we
+ // are sure that we are done with the
+ // previous iterator state
+ if(canUpdateState) {
+ newState = s.iterator->getState(s.iterator);
+ if(newState != UITER_NO_STATE) {
+ iterState = newState;
+ cces = 0;
+ }
+ }
+ CE = ucol_IGetNextCE(coll, &s, status);
+ cces++;
+ if(CE==UCOL_NO_MORE_CES) {
+ // Add the level separator
+ terminatePSKLevel(level, maxLevel, i, dest);
+ //dest[i++] = UCOL_LEVELTERMINATOR;
+ byteCountOrFrenchDone = 0;
+ // Restart the iteration an move to the
+ // second level
+ s.iterator->move(s.iterator, 0, UITER_START);
+ cces = 0;
+ level = UCOL_PSK_QUIN;
+ break;
+ }
+ if(CE==0)
+ continue;
+ if(isShiftedCE(CE, LVT, &wasShifted)) {
+ CE >>= 16; /* get primary */
+ if(CE != 0) {
+ if(byteCountOrFrenchDone == 0) {
+ dest[i++]=(uint8_t)(CE >> 8);
+ } else {
+ byteCountOrFrenchDone = 0;
+ }
+ if((CE &=0xff)!=0) {
+ if(i==count) {
+ /* overflow */
+ byteCountOrFrenchDone = 1;
+ goto saveState;
+ }
+ dest[i++]=(uint8_t)CE;
+ }
+ }
+ } else {
+ notIsContinuation = !isContinuation(CE);
+ if(notIsContinuation) {
+ if(s.flags & UCOL_WAS_HIRAGANA) { // This was Hiragana and we need to note it
+ dest[i++] = UCOL_HIRAGANA_QUAD;
+ } else {
+ dest[i++] = 0xFF;
+ }
+ }
+ }
+ if(uprv_numAvailableExpCEs(s)) {
+ canUpdateState = FALSE;
+ } else {
+ canUpdateState = TRUE;
+ }
}
- }
- if(s.CEpos - s.toReturn || (s.pos && *s.pos != 0)) {
- consumedExpansionCEs++;
- } else {
- consumedExpansionCEs = 0;
- }
- if(s.pos && *s.pos == 0) {
- iterSkips++;
- }
+ } else {
+ // if we're not doing quaternary
+ // skip to the end
+ level = UCOL_PSK_NULL;
}
- } else {
- // if we're not doing quaternary
- // skip to the end
- level = UCOL_PSK_NULL;
- }
/* fall through to next level */
case UCOL_PSK_QUIN:
- level = UCOL_PSK_IDENTICAL;
+ level = UCOL_PSK_IDENTICAL;
/* fall through to next level */
case UCOL_PSK_IDENTICAL:
- if(strength >= UCOL_IDENTICAL) {
- UChar32 first, second;
- int32_t bocsuBytesWritten = 0;
- // We always need to do identical on
- // the NFD form of the string.
- if(normIter == NULL) {
- // we arrived from the level below and
- // normalization was not turned on.
- // therefore, we need to make a fresh NFD iterator
- normIter = unorm_openIter(stackNormIter, sizeof(stackNormIter), status);
- s.iterator = unorm_setIter(normIter, iter, UNORM_NFD, status);
- } else if(!doingIdenticalFromStart) {
- // there is an iterator, but we did some other levels.
- // therefore, we have a FCD iterator - need to make
- // a NFD one.
- // normIter being at the beginning does not guarantee
- // that the underlying iterator is at the beginning
- iter->move(iter, 0, UITER_START);
- s.iterator = unorm_setIter(normIter, iter, UNORM_NFD, status);
- }
- // At this point we have a NFD iterator that is positioned
- // in the right place
- if(U_FAILURE(*status)) {
- UTRACE_EXIT_STATUS(*status);
- return 0;
- }
- first = uiter_previous32(s.iterator);
- // maybe we're at the start of the string
- if(first == U_SENTINEL) {
- first = 0;
- } else {
- uiter_next32(s.iterator);
- }
-
- j = 0;
- for(;;) {
- if(i == count) {
- if(j+1 < bocsuBytesWritten) {
- bocsuBytesUsed = j+1;
+ if(strength >= UCOL_IDENTICAL) {
+ UChar32 first, second;
+ int32_t bocsuBytesWritten = 0;
+ // We always need to do identical on
+ // the NFD form of the string.
+ if(normIter == NULL) {
+ // we arrived from the level below and
+ // normalization was not turned on.
+ // therefore, we need to make a fresh NFD iterator
+ normIter = unorm_openIter(stackNormIter, sizeof(stackNormIter), status);
+ s.iterator = unorm_setIter(normIter, iter, UNORM_NFD, status);
+ } else if(!doingIdenticalFromStart) {
+ // there is an iterator, but we did some other levels.
+ // therefore, we have a FCD iterator - need to make
+ // a NFD one.
+ // normIter being at the beginning does not guarantee
+ // that the underlying iterator is at the beginning
+ iter->move(iter, 0, UITER_START);
+ s.iterator = unorm_setIter(normIter, iter, UNORM_NFD, status);
+ }
+ // At this point we have a NFD iterator that is positioned
+ // in the right place
+ if(U_FAILURE(*status)) {
+ UTRACE_EXIT_STATUS(*status);
+ return 0;
+ }
+ first = uiter_previous32(s.iterator);
+ // maybe we're at the start of the string
+ if(first == U_SENTINEL) {
+ first = 0;
+ } else {
+ uiter_next32(s.iterator);
}
- goto saveState;
- }
- // On identical level, we will always save
- // the state if we reach this point, since
- // we don't depend on getNextCE for content
- // all the content is in our buffer and we
- // already either stored the full buffer OR
- // otherwise we won't arrive here.
- newState = s.iterator->getState(s.iterator);
- if(newState != UITER_NO_STATE) {
- iterState = newState;
- iterSkips = 0;
- } else {
- iterSkips++;
- }
+ j = 0;
+ for(;;) {
+ if(i == count) {
+ if(j+1 < bocsuBytesWritten) {
+ bocsuBytesUsed = j+1;
+ }
+ goto saveState;
+ }
- uint8_t buff[4];
- second = uiter_next32(s.iterator);
+ // On identical level, we will always save
+ // the state if we reach this point, since
+ // we don't depend on getNextCE for content
+ // all the content is in our buffer and we
+ // already either stored the full buffer OR
+ // otherwise we won't arrive here.
+ newState = s.iterator->getState(s.iterator);
+ if(newState != UITER_NO_STATE) {
+ iterState = newState;
+ cces = 0;
+ }
- // end condition for identical level
- if(second == U_SENTINEL) {
- terminatePSKLevel(level, maxLevel, i, dest);
- level = UCOL_PSK_NULL;
- break;
- }
- bocsuBytesWritten = u_writeIdenticalLevelRunTwoChars(first, second, buff);
- first = second;
+ uint8_t buff[4];
+ second = uiter_next32(s.iterator);
+ cces++;
+
+ // end condition for identical level
+ if(second == U_SENTINEL) {
+ terminatePSKLevel(level, maxLevel, i, dest);
+ level = UCOL_PSK_NULL;
+ break;
+ }
+ bocsuBytesWritten = u_writeIdenticalLevelRunTwoChars(first, second, buff);
+ first = second;
- j = 0;
- if(bocsuBytesUsed != 0) {
- while(bocsuBytesUsed-->0) {
- j++;
+ j = 0;
+ if(bocsuBytesUsed != 0) {
+ while(bocsuBytesUsed-->0) {
+ j++;
+ }
+ }
+
+ while(i < count && j < bocsuBytesWritten) {
+ dest[i++] = buff[j++];
+ }
}
- }
- while(i < count && j < bocsuBytesWritten) {
- dest[i++] = buff[j++];
- }
+ } else {
+ level = UCOL_PSK_NULL;
}
-
- } else {
- level = UCOL_PSK_NULL;
- }
/* fall through to next level */
case UCOL_PSK_NULL:
- j = i;
- while(j<count) {
- dest[j++]=0;
- }
- break;
+ j = i;
+ while(j<count) {
+ dest[j++]=0;
+ }
+ break;
default:
- *status = U_INTERNAL_PROGRAM_ERROR;
- UTRACE_EXIT_STATUS(*status);
- return 0;
+ *status = U_INTERNAL_PROGRAM_ERROR;
+ UTRACE_EXIT_STATUS(*status);
+ return 0;
}
saveState:
// Now we need to return stuff. First we want to see whether we have
// done everything for the current state of iterator.
- if(consumedExpansionCEs || byteCountOrFrenchDone
- || dontAdvanceIteratorBecauseWeNeedALevelTerminator) {
- // Any of above mean that the previous transaction
- // wasn't finished and that we should store the
- // previous iterator state.
- state[0] = iterState;
+ if(byteCountOrFrenchDone
+ || canUpdateState == FALSE
+ || (newState = s.iterator->getState(s.iterator)) == UITER_NO_STATE)
+ {
+ // Any of above mean that the previous transaction
+ // wasn't finished and that we should store the
+ // previous iterator state.
+ state[0] = iterState;
} else {
- // The transaction is complete. We will continue in
- // next iteration.
- if((newState = s.iterator->getState(s.iterator))!= UITER_NO_STATE) {
+ // The transaction is complete. We will continue in the next iteration.
state[0] = s.iterator->getState(s.iterator);
- iterSkips = 0;
- } else {
- state[0] = iterState;
- iterSkips++;
- }
+ cces = 0;
}
- // Store the number of elements processed. On CE levels, this is
- // the number of expansion CEs processed. On identical level, this
- // is the number of bocsu bytes written.
- if(level < UCOL_PSK_IDENTICAL) {
- if((consumedExpansionCEs & UCOL_PSK_USED_ELEMENTS_MASK) != consumedExpansionCEs) {
- *status = U_INDEX_OUTOFBOUNDS_ERROR;
- }
- state[1] = (consumedExpansionCEs & UCOL_PSK_USED_ELEMENTS_MASK) << UCOL_PSK_USED_ELEMENTS_SHIFT;
- } else {
- if((bocsuBytesUsed & UCOL_PSK_USED_ELEMENTS_MASK) != bocsuBytesUsed) {
+ // Store the number of bocsu bytes written.
+ if((bocsuBytesUsed & UCOL_PSK_BOCSU_BYTES_MASK) != bocsuBytesUsed) {
*status = U_INDEX_OUTOFBOUNDS_ERROR;
- }
- state[1] = (bocsuBytesUsed & UCOL_PSK_USED_ELEMENTS_MASK) << UCOL_PSK_USED_ELEMENTS_SHIFT;
}
+ state[1] = (bocsuBytesUsed & UCOL_PSK_BOCSU_BYTES_MASK) << UCOL_PSK_BOCSU_BYTES_SHIFT;
// Next we put in the level of comparison
state[1] |= ((level & UCOL_PSK_LEVEL_MASK) << UCOL_PSK_LEVEL_SHIFT);
// If we are doing French, we need to store whether we have just finished the French level
if(level == UCOL_PSK_SECONDARY && doingFrench) {
- state[1] |= (((state[0] == 0) & UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_MASK) << UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_SHIFT);
+ state[1] |= (((state[0] == 0) & UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_MASK) << UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_SHIFT);
} else {
- state[1] |= ((byteCountOrFrenchDone & UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_MASK) << UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_SHIFT);
+ state[1] |= ((byteCountOrFrenchDone & UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_MASK) << UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_SHIFT);
}
// Was the latest CE shifted
if(wasShifted) {
- state[1] |= 1 << UCOL_PSK_WAS_SHIFTED_SHIFT;
+ state[1] |= 1 << UCOL_PSK_WAS_SHIFTED_SHIFT;
}
- // Check for iterSkips overflow
- if((iterSkips & UCOL_PSK_ITER_SKIP_MASK) != iterSkips) {
- *status = U_INDEX_OUTOFBOUNDS_ERROR;
+ // Check for cces overflow
+ if((cces & UCOL_PSK_CONSUMED_CES_MASK) != cces) {
+ *status = U_INDEX_OUTOFBOUNDS_ERROR;
}
- // Store iterSkips
- state[1] |= ((iterSkips & UCOL_PSK_ITER_SKIP_MASK) << UCOL_PSK_ITER_SKIP_SHIFT);
+ // Store cces
+ state[1] |= ((cces & UCOL_PSK_CONSUMED_CES_MASK) << UCOL_PSK_CONSUMED_CES_SHIFT);
// Check for French overflow
if((usedFrench & UCOL_PSK_USED_FRENCH_MASK) != usedFrench) {
- *status = U_INDEX_OUTOFBOUNDS_ERROR;
+ *status = U_INDEX_OUTOFBOUNDS_ERROR;
}
// Store number of bytes written in the French secondary continuation sequence
state[1] |= ((usedFrench & UCOL_PSK_USED_FRENCH_MASK) << UCOL_PSK_USED_FRENCH_SHIFT);
// If we have used normalizing iterator, get rid of it
if(normIter != NULL) {
- unorm_closeIter(normIter);
+ unorm_closeIter(normIter);
}
+ /* To avoid memory leak, free the offset buffer if necessary. */
+ freeOffsetBuffer(&s);
+
// Return number of meaningful sortkey bytes.
UTRACE_DATA4(UTRACE_VERBOSE, "dest = %vb, state=%d %d",
dest,i, state[0], state[1]);
uint32_t noOfLevels,
uint8_t *result,
int32_t resultLength,
- UErrorCode *status) {
- // consistency checks
- if(status == NULL || U_FAILURE(*status)) {
- return 0;
- }
- if(source == NULL) {
- *status = U_ILLEGAL_ARGUMENT_ERROR;
- return 0;
- }
-
- int32_t sourceIndex = 0;
- // Scan the string until we skip enough of the key OR reach the end of the key
- do {
- sourceIndex++;
- if(source[sourceIndex] == UCOL_LEVELTERMINATOR) {
- noOfLevels--;
+ UErrorCode *status)
+{
+ // consistency checks
+ if(status == NULL || U_FAILURE(*status)) {
+ return 0;
}
- } while (noOfLevels > 0
- && (source[sourceIndex] != 0 || sourceIndex < sourceLength));
-
- if((source[sourceIndex] == 0 || sourceIndex == sourceLength)
- && noOfLevels > 0) {
- *status = U_SORT_KEY_TOO_SHORT_WARNING;
- }
-
-
- // READ ME: this code assumes that the values for boundType
- // enum will not changes. They are set so that the enum value
- // corresponds to the number of extra bytes each bound type
- // needs.
- if(result != NULL && resultLength >= sourceIndex+boundType) {
- uprv_memcpy(result, source, sourceIndex);
- switch(boundType) {
- // Lower bound just gets terminated. No extra bytes
- case UCOL_BOUND_LOWER: // = 0
- break;
- // Upper bound needs one extra byte
- case UCOL_BOUND_UPPER: // = 1
- result[sourceIndex++] = 2;
- break;
- // Upper long bound needs two extra bytes
- case UCOL_BOUND_UPPER_LONG: // = 2
- result[sourceIndex++] = 0xFF;
- result[sourceIndex++] = 0xFF;
- break;
- default:
- *status = U_ILLEGAL_ARGUMENT_ERROR;
- return 0;
+ if(source == NULL) {
+ *status = U_ILLEGAL_ARGUMENT_ERROR;
+ return 0;
}
- result[sourceIndex++] = 0;
-
- return sourceIndex;
- } else {
- return sourceIndex+boundType+1;
- }
-}
-static
-inline void uprv_appendByteToHexString(char *dst, uint8_t val) {
- uint32_t len = (uint32_t)uprv_strlen(dst);
- *(dst+len) = T_CString_itosOffset((val >> 4));
- *(dst+len+1) = T_CString_itosOffset((val & 0xF));
- *(dst+len+2) = 0;
-}
-
-/* this function makes a string with representation of a sortkey */
-U_CAPI char* U_EXPORT2 ucol_sortKeyToString(const UCollator *coll, const uint8_t *sortkey, char *buffer, uint32_t *len) {
- int32_t strength = UCOL_PRIMARY;
- uint32_t res_size = 0;
- UBool doneCase = FALSE;
-
- char *current = buffer;
- const uint8_t *currentSk = sortkey;
-
- uprv_strcpy(current, "[");
-
- while(strength <= UCOL_QUATERNARY && strength <= coll->strength) {
- if(strength > UCOL_PRIMARY) {
- uprv_strcat(current, " . ");
- }
- while(*currentSk != 0x01 && *currentSk != 0x00) { /* print a level */
- uprv_appendByteToHexString(current, *currentSk++);
- uprv_strcat(current, " ");
- }
- if(coll->caseLevel == UCOL_ON && strength == UCOL_SECONDARY && doneCase == FALSE) {
- doneCase = TRUE;
- } else if(coll->caseLevel == UCOL_OFF || doneCase == TRUE || strength != UCOL_SECONDARY) {
- strength ++;
- }
- uprv_appendByteToHexString(current, *currentSk++); /* This should print '01' */
- if(strength == UCOL_QUATERNARY && coll->alternateHandling == UCOL_NON_IGNORABLE) {
- break;
- }
- }
+ int32_t sourceIndex = 0;
+ // Scan the string until we skip enough of the key OR reach the end of the key
+ do {
+ sourceIndex++;
+ if(source[sourceIndex] == UCOL_LEVELTERMINATOR) {
+ noOfLevels--;
+ }
+ } while (noOfLevels > 0
+ && (source[sourceIndex] != 0 || sourceIndex < sourceLength));
- if(coll->strength == UCOL_IDENTICAL) {
- uprv_strcat(current, " . ");
- while(*currentSk != 0) {
- uprv_appendByteToHexString(current, *currentSk++);
- uprv_strcat(current, " ");
+ if((source[sourceIndex] == 0 || sourceIndex == sourceLength)
+ && noOfLevels > 0) {
+ *status = U_SORT_KEY_TOO_SHORT_WARNING;
}
- uprv_appendByteToHexString(current, *currentSk++);
- }
- uprv_strcat(current, "]");
- if(res_size > *len) {
- return NULL;
- }
+ // READ ME: this code assumes that the values for boundType
+ // enum will not changes. They are set so that the enum value
+ // corresponds to the number of extra bytes each bound type
+ // needs.
+ if(result != NULL && resultLength >= sourceIndex+boundType) {
+ uprv_memcpy(result, source, sourceIndex);
+ switch(boundType) {
+ // Lower bound just gets terminated. No extra bytes
+ case UCOL_BOUND_LOWER: // = 0
+ break;
+ // Upper bound needs one extra byte
+ case UCOL_BOUND_UPPER: // = 1
+ result[sourceIndex++] = 2;
+ break;
+ // Upper long bound needs two extra bytes
+ case UCOL_BOUND_UPPER_LONG: // = 2
+ result[sourceIndex++] = 0xFF;
+ result[sourceIndex++] = 0xFF;
+ break;
+ default:
+ *status = U_ILLEGAL_ARGUMENT_ERROR;
+ return 0;
+ }
+ result[sourceIndex++] = 0;
- return buffer;
+ return sourceIndex;
+ } else {
+ return sourceIndex+boundType+1;
+ }
}
-
/****************************************************************************/
/* Following are the functions that deal with the properties of a collator */
/* there are new APIs and some compatibility APIs */
static inline void
ucol_addLatinOneEntry(UCollator *coll, UChar ch, uint32_t CE,
- int32_t *primShift, int32_t *secShift, int32_t *terShift) {
- uint8_t primary1 = 0, primary2 = 0, secondary = 0, tertiary = 0;
- UBool reverseSecondary = FALSE;
- if(!isContinuation(CE)) {
- tertiary = (uint8_t)((CE & coll->tertiaryMask));
- tertiary ^= coll->caseSwitch;
- reverseSecondary = TRUE;
- } else {
- tertiary = (uint8_t)((CE & UCOL_REMOVE_CONTINUATION));
- tertiary &= UCOL_REMOVE_CASE;
- reverseSecondary = FALSE;
- }
+ int32_t *primShift, int32_t *secShift, int32_t *terShift)
+{
+ uint8_t primary1 = 0, primary2 = 0, secondary = 0, tertiary = 0;
+ UBool reverseSecondary = FALSE;
+ if(!isContinuation(CE)) {
+ tertiary = (uint8_t)((CE & coll->tertiaryMask));
+ tertiary ^= coll->caseSwitch;
+ reverseSecondary = TRUE;
+ } else {
+ tertiary = (uint8_t)((CE & UCOL_REMOVE_CONTINUATION));
+ tertiary &= UCOL_REMOVE_CASE;
+ reverseSecondary = FALSE;
+ }
- secondary = (uint8_t)((CE >>= 8) & UCOL_BYTE_SIZE_MASK);
- primary2 = (uint8_t)((CE >>= 8) & UCOL_BYTE_SIZE_MASK);
- primary1 = (uint8_t)(CE >> 8);
+ secondary = (uint8_t)((CE >>= 8) & UCOL_BYTE_SIZE_MASK);
+ primary2 = (uint8_t)((CE >>= 8) & UCOL_BYTE_SIZE_MASK);
+ primary1 = (uint8_t)(CE >> 8);
- if(primary1 != 0) {
- coll->latinOneCEs[ch] |= (primary1 << *primShift);
- *primShift -= 8;
- }
- if(primary2 != 0) {
- if(*primShift < 0) {
- coll->latinOneCEs[ch] = UCOL_BAIL_OUT_CE;
- coll->latinOneCEs[coll->latinOneTableLen+ch] = UCOL_BAIL_OUT_CE;
- coll->latinOneCEs[2*coll->latinOneTableLen+ch] = UCOL_BAIL_OUT_CE;
- return;
+ if(primary1 != 0) {
+ coll->latinOneCEs[ch] |= (primary1 << *primShift);
+ *primShift -= 8;
+ }
+ if(primary2 != 0) {
+ if(*primShift < 0) {
+ coll->latinOneCEs[ch] = UCOL_BAIL_OUT_CE;
+ coll->latinOneCEs[coll->latinOneTableLen+ch] = UCOL_BAIL_OUT_CE;
+ coll->latinOneCEs[2*coll->latinOneTableLen+ch] = UCOL_BAIL_OUT_CE;
+ return;
+ }
+ coll->latinOneCEs[ch] |= (primary2 << *primShift);
+ *primShift -= 8;
+ }
+ if(secondary != 0) {
+ if(reverseSecondary && coll->frenchCollation == UCOL_ON) { // reverse secondary
+ coll->latinOneCEs[coll->latinOneTableLen+ch] >>= 8; // make space for secondary
+ coll->latinOneCEs[coll->latinOneTableLen+ch] |= (secondary << 24);
+ } else { // normal case
+ coll->latinOneCEs[coll->latinOneTableLen+ch] |= (secondary << *secShift);
+ }
+ *secShift -= 8;
+ }
+ if(tertiary != 0) {
+ coll->latinOneCEs[2*coll->latinOneTableLen+ch] |= (tertiary << *terShift);
+ *terShift -= 8;
}
- coll->latinOneCEs[ch] |= (primary2 << *primShift);
- *primShift -= 8;
- }
- if(secondary != 0) {
- if(reverseSecondary && coll->frenchCollation == UCOL_ON) { // reverse secondary
- coll->latinOneCEs[coll->latinOneTableLen+ch] >>= 8; // make space for secondary
- coll->latinOneCEs[coll->latinOneTableLen+ch] |= (secondary << 24);
- } else { // normal case
- coll->latinOneCEs[coll->latinOneTableLen+ch] |= (secondary << *secShift);
- }
- *secShift -= 8;
- }
- if(tertiary != 0) {
- coll->latinOneCEs[2*coll->latinOneTableLen+ch] |= (tertiary << *terShift);
- *terShift -= 8;
- }
}
static inline UBool
static UBool
ucol_setUpLatinOne(UCollator *coll, UErrorCode *status) {
- UBool result = TRUE;
- if(coll->latinOneCEs == NULL) {
- coll->latinOneCEs = (uint32_t *)uprv_malloc(sizeof(uint32_t)*UCOL_LATINONETABLELEN*3);
+ UBool result = TRUE;
if(coll->latinOneCEs == NULL) {
- *status = U_MEMORY_ALLOCATION_ERROR;
- return FALSE;
+ coll->latinOneCEs = (uint32_t *)uprv_malloc(sizeof(uint32_t)*UCOL_LATINONETABLELEN*3);
+ if(coll->latinOneCEs == NULL) {
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ return FALSE;
+ }
+ coll->latinOneTableLen = UCOL_LATINONETABLELEN;
}
- coll->latinOneTableLen = UCOL_LATINONETABLELEN;
- }
- UChar ch = 0;
- UCollationElements *it = ucol_openElements(coll, &ch, 1, status);
- uprv_memset(coll->latinOneCEs, 0, sizeof(uint32_t)*coll->latinOneTableLen*3);
-
- int32_t primShift = 24, secShift = 24, terShift = 24;
- uint32_t CE = 0;
- int32_t contractionOffset = UCOL_ENDOFLATINONERANGE+1;
-
- // TODO: make safe if you get more than you wanted...
- for(ch = 0; ch <= UCOL_ENDOFLATINONERANGE; ch++) {
- primShift = 24; secShift = 24; terShift = 24;
- if(ch < 0x100) {
- CE = coll->latinOneMapping[ch];
- } else {
- CE = UTRIE_GET32_FROM_LEAD(coll->mapping, ch);
- if(CE == UCOL_NOT_FOUND && coll->UCA) {
- CE = UTRIE_GET32_FROM_LEAD(coll->UCA->mapping, ch);
- }
+ UChar ch = 0;
+ UCollationElements *it = ucol_openElements(coll, &ch, 1, status);
+ // Check for null pointer
+ if (U_FAILURE(*status)) {
+ return FALSE;
}
- if(CE < UCOL_NOT_FOUND) {
- ucol_addLatinOneEntry(coll, ch, CE, &primShift, &secShift, &terShift);
- } else {
- switch (getCETag(CE)) {
- case EXPANSION_TAG:
- case DIGIT_TAG:
- ucol_setText(it, &ch, 1, status);
- while((int32_t)(CE = ucol_next(it, status)) != UCOL_NULLORDER) {
- if(primShift < 0 || secShift < 0 || terShift < 0) {
- coll->latinOneCEs[ch] = UCOL_BAIL_OUT_CE;
- coll->latinOneCEs[coll->latinOneTableLen+ch] = UCOL_BAIL_OUT_CE;
- coll->latinOneCEs[2*coll->latinOneTableLen+ch] = UCOL_BAIL_OUT_CE;
- break;
- }
- ucol_addLatinOneEntry(coll, ch, CE, &primShift, &secShift, &terShift);
- }
- break;
- case CONTRACTION_TAG:
- // here is the trick
- // F2 is contraction. We do something very similar to contractions
- // but have two indices, one in the real contraction table and the
- // other to where we stuffed things. This hopes that we don't have
- // many contractions (this should work for latin-1 tables).
- {
- if((CE & 0x00FFF000) != 0) {
- *status = U_UNSUPPORTED_ERROR;
- coll->latinOneFailed = TRUE;
- return FALSE;
- }
-
- const UChar *UCharOffset = (UChar *)coll->image+getContractOffset(CE);
+ uprv_memset(coll->latinOneCEs, 0, sizeof(uint32_t)*coll->latinOneTableLen*3);
- CE |= (contractionOffset & 0xFFF) << 12; // insert the offset in latin-1 table
+ int32_t primShift = 24, secShift = 24, terShift = 24;
+ uint32_t CE = 0;
+ int32_t contractionOffset = UCOL_ENDOFLATINONERANGE+1;
- coll->latinOneCEs[ch] = CE;
- coll->latinOneCEs[coll->latinOneTableLen+ch] = CE;
- coll->latinOneCEs[2*coll->latinOneTableLen+ch] = CE;
-
- // We're going to jump into contraction table, pick the elements
- // and use them
- do {
- CE = *(coll->contractionCEs +
- (UCharOffset - coll->contractionIndex));
- if(CE > UCOL_NOT_FOUND && getCETag(CE) == EXPANSION_TAG) {
- uint32_t size;
- uint32_t i; /* general counter */
- uint32_t *CEOffset = (uint32_t *)coll->image+getExpansionOffset(CE); /* find the offset to expansion table */
- size = getExpansionCount(CE);
- //CE = *CEOffset++;
- if(size != 0) { /* if there are less than 16 elements in expansion, we don't terminate */
- for(i = 0; i<size; i++) {
+ // TODO: make safe if you get more than you wanted...
+ for(ch = 0; ch <= UCOL_ENDOFLATINONERANGE; ch++) {
+ primShift = 24; secShift = 24; terShift = 24;
+ if(ch < 0x100) {
+ CE = coll->latinOneMapping[ch];
+ } else {
+ CE = UTRIE_GET32_FROM_LEAD(&coll->mapping, ch);
+ if(CE == UCOL_NOT_FOUND && coll->UCA) {
+ CE = UTRIE_GET32_FROM_LEAD(&coll->UCA->mapping, ch);
+ }
+ }
+ if(CE < UCOL_NOT_FOUND) {
+ ucol_addLatinOneEntry(coll, ch, CE, &primShift, &secShift, &terShift);
+ } else {
+ switch (getCETag(CE)) {
+ case EXPANSION_TAG:
+ case DIGIT_TAG:
+ ucol_setText(it, &ch, 1, status);
+ while((int32_t)(CE = ucol_next(it, status)) != UCOL_NULLORDER) {
if(primShift < 0 || secShift < 0 || terShift < 0) {
- coll->latinOneCEs[(UChar)contractionOffset] = UCOL_BAIL_OUT_CE;
- coll->latinOneCEs[coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE;
- coll->latinOneCEs[2*coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE;
- break;
+ coll->latinOneCEs[ch] = UCOL_BAIL_OUT_CE;
+ coll->latinOneCEs[coll->latinOneTableLen+ch] = UCOL_BAIL_OUT_CE;
+ coll->latinOneCEs[2*coll->latinOneTableLen+ch] = UCOL_BAIL_OUT_CE;
+ break;
}
- ucol_addLatinOneEntry(coll, (UChar)contractionOffset, *CEOffset++, &primShift, &secShift, &terShift);
- }
- } else { /* else, we do */
- while(*CEOffset != 0) {
- if(primShift < 0 || secShift < 0 || terShift < 0) {
- coll->latinOneCEs[(UChar)contractionOffset] = UCOL_BAIL_OUT_CE;
- coll->latinOneCEs[coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE;
- coll->latinOneCEs[2*coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE;
- break;
+ ucol_addLatinOneEntry(coll, ch, CE, &primShift, &secShift, &terShift);
+ }
+ break;
+ case CONTRACTION_TAG:
+ // here is the trick
+ // F2 is contraction. We do something very similar to contractions
+ // but have two indices, one in the real contraction table and the
+ // other to where we stuffed things. This hopes that we don't have
+ // many contractions (this should work for latin-1 tables).
+ {
+ if((CE & 0x00FFF000) != 0) {
+ *status = U_UNSUPPORTED_ERROR;
+ goto cleanup_after_failure;
}
- ucol_addLatinOneEntry(coll, (UChar)contractionOffset, *CEOffset++, &primShift, &secShift, &terShift);
- }
+
+ const UChar *UCharOffset = (UChar *)coll->image+getContractOffset(CE);
+
+ CE |= (contractionOffset & 0xFFF) << 12; // insert the offset in latin-1 table
+
+ coll->latinOneCEs[ch] = CE;
+ coll->latinOneCEs[coll->latinOneTableLen+ch] = CE;
+ coll->latinOneCEs[2*coll->latinOneTableLen+ch] = CE;
+
+ // We're going to jump into contraction table, pick the elements
+ // and use them
+ do {
+ CE = *(coll->contractionCEs +
+ (UCharOffset - coll->contractionIndex));
+ if(CE > UCOL_NOT_FOUND && getCETag(CE) == EXPANSION_TAG) {
+ uint32_t size;
+ uint32_t i; /* general counter */
+ uint32_t *CEOffset = (uint32_t *)coll->image+getExpansionOffset(CE); /* find the offset to expansion table */
+ size = getExpansionCount(CE);
+ //CE = *CEOffset++;
+ if(size != 0) { /* if there are less than 16 elements in expansion, we don't terminate */
+ for(i = 0; i<size; i++) {
+ if(primShift < 0 || secShift < 0 || terShift < 0) {
+ coll->latinOneCEs[(UChar)contractionOffset] = UCOL_BAIL_OUT_CE;
+ coll->latinOneCEs[coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE;
+ coll->latinOneCEs[2*coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE;
+ break;
+ }
+ ucol_addLatinOneEntry(coll, (UChar)contractionOffset, *CEOffset++, &primShift, &secShift, &terShift);
+ }
+ } else { /* else, we do */
+ while(*CEOffset != 0) {
+ if(primShift < 0 || secShift < 0 || terShift < 0) {
+ coll->latinOneCEs[(UChar)contractionOffset] = UCOL_BAIL_OUT_CE;
+ coll->latinOneCEs[coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE;
+ coll->latinOneCEs[2*coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE;
+ break;
+ }
+ ucol_addLatinOneEntry(coll, (UChar)contractionOffset, *CEOffset++, &primShift, &secShift, &terShift);
+ }
+ }
+ contractionOffset++;
+ } else if(CE < UCOL_NOT_FOUND) {
+ ucol_addLatinOneEntry(coll, (UChar)contractionOffset++, CE, &primShift, &secShift, &terShift);
+ } else {
+ coll->latinOneCEs[(UChar)contractionOffset] = UCOL_BAIL_OUT_CE;
+ coll->latinOneCEs[coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE;
+ coll->latinOneCEs[2*coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE;
+ contractionOffset++;
+ }
+ UCharOffset++;
+ primShift = 24; secShift = 24; terShift = 24;
+ if(contractionOffset == coll->latinOneTableLen) { // we need to reallocate
+ if(!ucol_resizeLatinOneTable(coll, 2*coll->latinOneTableLen, status)) {
+ goto cleanup_after_failure;
+ }
+ }
+ } while(*UCharOffset != 0xFFFF);
}
- contractionOffset++;
- } else if(CE < UCOL_NOT_FOUND) {
- ucol_addLatinOneEntry(coll, (UChar)contractionOffset++, CE, &primShift, &secShift, &terShift);
- } else {
- coll->latinOneCEs[(UChar)contractionOffset] = UCOL_BAIL_OUT_CE;
- coll->latinOneCEs[coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE;
- coll->latinOneCEs[2*coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE;
- contractionOffset++;
- }
- UCharOffset++;
- primShift = 24; secShift = 24; terShift = 24;
- if(contractionOffset == coll->latinOneTableLen) { // we need to reallocate
- if(!ucol_resizeLatinOneTable(coll, 2*coll->latinOneTableLen, status)) {
- coll->latinOneFailed = TRUE;
- return FALSE;
+ break;;
+ case SPEC_PROC_TAG:
+ {
+ // 0xB7 is a precontext character defined in UCA5.1, a special
+ // handle is implemeted in order to save LatinOne table for
+ // most locales.
+ if (ch==0xb7) {
+ ucol_addLatinOneEntry(coll, ch, CE, &primShift, &secShift, &terShift);
+ }
+ else {
+ goto cleanup_after_failure;
+ }
}
- }
- } while(*UCharOffset != 0xFFFF);
+ break;
+ default:
+ goto cleanup_after_failure;
+ }
}
- break;
- default:
- coll->latinOneFailed = TRUE;
- result = FALSE;
- break;
- }
}
- }
- ucol_closeElements(it);
- // compact table
- if(contractionOffset < coll->latinOneTableLen) {
- if(!ucol_resizeLatinOneTable(coll, contractionOffset, status)) {
- coll->latinOneFailed = TRUE;
- return FALSE;
+ // compact table
+ if(contractionOffset < coll->latinOneTableLen) {
+ if(!ucol_resizeLatinOneTable(coll, contractionOffset, status)) {
+ goto cleanup_after_failure;
+ }
}
- }
- return result;
+ ucol_closeElements(it);
+ return result;
+
+cleanup_after_failure:
+ // status should already be set before arriving here.
+ coll->latinOneFailed = TRUE;
+ ucol_closeElements(it);
+ return FALSE;
}
void ucol_updateInternalState(UCollator *coll, UErrorCode *status) {
- if(U_SUCCESS(*status)) {
+ if(U_SUCCESS(*status)) {
if(coll->caseFirst == UCOL_UPPER_FIRST) {
- coll->caseSwitch = UCOL_CASE_SWITCH;
+ coll->caseSwitch = UCOL_CASE_SWITCH;
} else {
- coll->caseSwitch = UCOL_NO_CASE_SWITCH;
+ coll->caseSwitch = UCOL_NO_CASE_SWITCH;
}
if(coll->caseLevel == UCOL_ON || coll->caseFirst == UCOL_OFF) {
- coll->tertiaryMask = UCOL_REMOVE_CASE;
- coll->tertiaryCommon = UCOL_COMMON3_NORMAL;
- coll->tertiaryAddition = UCOL_FLAG_BIT_MASK_CASE_SW_OFF;
- coll->tertiaryTop = UCOL_COMMON_TOP3_CASE_SW_OFF;
- coll->tertiaryBottom = UCOL_COMMON_BOT3;
- } else {
- coll->tertiaryMask = UCOL_KEEP_CASE;
- coll->tertiaryAddition = UCOL_FLAG_BIT_MASK_CASE_SW_ON;
- if(coll->caseFirst == UCOL_UPPER_FIRST) {
- coll->tertiaryCommon = UCOL_COMMON3_UPPERFIRST;
- coll->tertiaryTop = UCOL_COMMON_TOP3_CASE_SW_UPPER;
- coll->tertiaryBottom = UCOL_COMMON_BOTTOM3_CASE_SW_UPPER;
- } else {
+ coll->tertiaryMask = UCOL_REMOVE_CASE;
coll->tertiaryCommon = UCOL_COMMON3_NORMAL;
- coll->tertiaryTop = UCOL_COMMON_TOP3_CASE_SW_LOWER;
- coll->tertiaryBottom = UCOL_COMMON_BOTTOM3_CASE_SW_LOWER;
- }
+ coll->tertiaryAddition = (int8_t)UCOL_FLAG_BIT_MASK_CASE_SW_OFF; /* Should be 0x80 */
+ coll->tertiaryTop = UCOL_COMMON_TOP3_CASE_SW_OFF;
+ coll->tertiaryBottom = UCOL_COMMON_BOT3;
+ } else {
+ coll->tertiaryMask = UCOL_KEEP_CASE;
+ coll->tertiaryAddition = UCOL_FLAG_BIT_MASK_CASE_SW_ON;
+ if(coll->caseFirst == UCOL_UPPER_FIRST) {
+ coll->tertiaryCommon = UCOL_COMMON3_UPPERFIRST;
+ coll->tertiaryTop = UCOL_COMMON_TOP3_CASE_SW_UPPER;
+ coll->tertiaryBottom = UCOL_COMMON_BOTTOM3_CASE_SW_UPPER;
+ } else {
+ coll->tertiaryCommon = UCOL_COMMON3_NORMAL;
+ coll->tertiaryTop = UCOL_COMMON_TOP3_CASE_SW_LOWER;
+ coll->tertiaryBottom = UCOL_COMMON_BOTTOM3_CASE_SW_LOWER;
+ }
}
/* Set the compression values */
coll->tertiaryBottomCount = (uint8_t)(tertiaryTotal - coll->tertiaryTopCount);
if(coll->caseLevel == UCOL_OFF && coll->strength == UCOL_TERTIARY
- && coll->frenchCollation == UCOL_OFF && coll->alternateHandling == UCOL_NON_IGNORABLE) {
- coll->sortKeyGen = ucol_calcSortKeySimpleTertiary;
+ && coll->frenchCollation == UCOL_OFF && coll->alternateHandling == UCOL_NON_IGNORABLE)
+ {
+ coll->sortKeyGen = ucol_calcSortKeySimpleTertiary;
} else {
- coll->sortKeyGen = ucol_calcSortKey;
+ coll->sortKeyGen = ucol_calcSortKey;
}
if(coll->caseLevel == UCOL_OFF && coll->strength <= UCOL_TERTIARY && coll->numericCollation == UCOL_OFF
- && coll->alternateHandling == UCOL_NON_IGNORABLE && !coll->latinOneFailed) {
- if(coll->latinOneCEs == NULL || coll->latinOneRegenTable) {
- if(ucol_setUpLatinOne(coll, status)) { // if we succeed in building latin1 table, we'll use it
- //fprintf(stderr, "F");
- coll->latinOneUse = TRUE;
- } else {
- coll->latinOneUse = FALSE;
- }
- if(*status == U_UNSUPPORTED_ERROR) {
- *status = U_ZERO_ERROR;
+ && coll->alternateHandling == UCOL_NON_IGNORABLE && !coll->latinOneFailed)
+ {
+ if(coll->latinOneCEs == NULL || coll->latinOneRegenTable) {
+ if(ucol_setUpLatinOne(coll, status)) { // if we succeed in building latin1 table, we'll use it
+ //fprintf(stderr, "F");
+ coll->latinOneUse = TRUE;
+ } else {
+ coll->latinOneUse = FALSE;
+ }
+ if(*status == U_UNSUPPORTED_ERROR) {
+ *status = U_ZERO_ERROR;
+ }
+ } else { // latin1Table exists and it doesn't need to be regenerated, just use it
+ coll->latinOneUse = TRUE;
}
- } else { // latin1Table exists and it doesn't need to be regenerated, just use it
- coll->latinOneUse = TRUE;
- }
} else {
- coll->latinOneUse = FALSE;
+ coll->latinOneUse = FALSE;
}
- }
-
+ }
}
U_CAPI uint32_t U_EXPORT2
ucol_setVariableTop(UCollator *coll, const UChar *varTop, int32_t len, UErrorCode *status) {
- if(U_FAILURE(*status) || coll == NULL) {
- return 0;
- }
- if(len == -1) {
- len = u_strlen(varTop);
- }
- if(len == 0) {
- *status = U_ILLEGAL_ARGUMENT_ERROR;
- return 0;
- }
+ if(U_FAILURE(*status) || coll == NULL) {
+ return 0;
+ }
+ if(len == -1) {
+ len = u_strlen(varTop);
+ }
+ if(len == 0) {
+ *status = U_ILLEGAL_ARGUMENT_ERROR;
+ return 0;
+ }
- collIterate s;
- IInit_collIterate(coll, varTop, len, &s);
+ collIterate s;
+ IInit_collIterate(coll, varTop, len, &s);
- uint32_t CE = ucol_IGetNextCE(coll, &s, status);
+ uint32_t CE = ucol_IGetNextCE(coll, &s, status);
- /* here we check if we have consumed all characters */
- /* you can put in either one character or a contraction */
- /* you shouldn't put more... */
- if(s.pos != s.endp || CE == UCOL_NO_MORE_CES) {
- *status = U_CE_NOT_FOUND_ERROR;
- return 0;
- }
+ /* here we check if we have consumed all characters */
+ /* you can put in either one character or a contraction */
+ /* you shouldn't put more... */
+ if(s.pos != s.endp || CE == UCOL_NO_MORE_CES) {
+ *status = U_CE_NOT_FOUND_ERROR;
+ return 0;
+ }
- uint32_t nextCE = ucol_IGetNextCE(coll, &s, status);
+ uint32_t nextCE = ucol_IGetNextCE(coll, &s, status);
- if(isContinuation(nextCE) && (nextCE & UCOL_PRIMARYMASK) != 0) {
- *status = U_PRIMARY_TOO_LONG_ERROR;
- return 0;
- }
- if(coll->variableTopValue != (CE & UCOL_PRIMARYMASK)>>16) {
- coll->variableTopValueisDefault = FALSE;
- coll->variableTopValue = (CE & UCOL_PRIMARYMASK)>>16;
- }
+ if(isContinuation(nextCE) && (nextCE & UCOL_PRIMARYMASK) != 0) {
+ *status = U_PRIMARY_TOO_LONG_ERROR;
+ return 0;
+ }
+ if(coll->variableTopValue != (CE & UCOL_PRIMARYMASK)>>16) {
+ coll->variableTopValueisDefault = FALSE;
+ coll->variableTopValue = (CE & UCOL_PRIMARYMASK)>>16;
+ }
+
+ /* To avoid memory leak, free the offset buffer if necessary. */
+ freeOffsetBuffer(&s);
- return CE & UCOL_PRIMARYMASK;
+ return CE & UCOL_PRIMARYMASK;
}
U_CAPI uint32_t U_EXPORT2 ucol_getVariableTop(const UCollator *coll, UErrorCode *status) {
- if(U_FAILURE(*status) || coll == NULL) {
- return 0;
- }
- return coll->variableTopValue<<16;
+ if(U_FAILURE(*status) || coll == NULL) {
+ return 0;
+ }
+ return coll->variableTopValue<<16;
}
U_CAPI void U_EXPORT2
ucol_restoreVariableTop(UCollator *coll, const uint32_t varTop, UErrorCode *status) {
- if(U_FAILURE(*status) || coll == NULL) {
- return;
- }
+ if(U_FAILURE(*status) || coll == NULL) {
+ return;
+ }
- if(coll->variableTopValue != (varTop & UCOL_PRIMARYMASK)>>16) {
- coll->variableTopValueisDefault = FALSE;
- coll->variableTopValue = (varTop & UCOL_PRIMARYMASK)>>16;
- }
+ if(coll->variableTopValue != (varTop & UCOL_PRIMARYMASK)>>16) {
+ coll->variableTopValueisDefault = FALSE;
+ coll->variableTopValue = (varTop & UCOL_PRIMARYMASK)>>16;
+ }
}
/* Attribute setter API */
U_CAPI void U_EXPORT2
UColAttributeValue oldCaseFirst = coll->caseFirst;
switch(attr) {
case UCOL_NUMERIC_COLLATION: /* sort substrings of digits as numbers */
- if(value == UCOL_ON) {
- coll->numericCollation = UCOL_ON;
- coll->numericCollationisDefault = FALSE;
- } else if (value == UCOL_OFF) {
- coll->numericCollation = UCOL_OFF;
- coll->numericCollationisDefault = FALSE;
- } else if (value == UCOL_DEFAULT) {
- coll->numericCollationisDefault = TRUE;
- coll->numericCollation = (UColAttributeValue)coll->options->numericCollation;
- } else {
- *status = U_ILLEGAL_ARGUMENT_ERROR;
- }
- break;
+ if(value == UCOL_ON) {
+ coll->numericCollation = UCOL_ON;
+ coll->numericCollationisDefault = FALSE;
+ } else if (value == UCOL_OFF) {
+ coll->numericCollation = UCOL_OFF;
+ coll->numericCollationisDefault = FALSE;
+ } else if (value == UCOL_DEFAULT) {
+ coll->numericCollationisDefault = TRUE;
+ coll->numericCollation = (UColAttributeValue)coll->options->numericCollation;
+ } else {
+ *status = U_ILLEGAL_ARGUMENT_ERROR;
+ }
+ break;
case UCOL_HIRAGANA_QUATERNARY_MODE: /* special quaternary values for Hiragana */
- if(value == UCOL_ON) {
- coll->hiraganaQ = UCOL_ON;
- coll->hiraganaQisDefault = FALSE;
- } else if (value == UCOL_OFF) {
- coll->hiraganaQ = UCOL_OFF;
- coll->hiraganaQisDefault = FALSE;
- } else if (value == UCOL_DEFAULT) {
- coll->hiraganaQisDefault = TRUE;
- coll->hiraganaQ = (UColAttributeValue)coll->options->hiraganaQ;
- } else {
- *status = U_ILLEGAL_ARGUMENT_ERROR;
- }
- break;
+ if(value == UCOL_ON) {
+ coll->hiraganaQ = UCOL_ON;
+ coll->hiraganaQisDefault = FALSE;
+ } else if (value == UCOL_OFF) {
+ coll->hiraganaQ = UCOL_OFF;
+ coll->hiraganaQisDefault = FALSE;
+ } else if (value == UCOL_DEFAULT) {
+ coll->hiraganaQisDefault = TRUE;
+ coll->hiraganaQ = (UColAttributeValue)coll->options->hiraganaQ;
+ } else {
+ *status = U_ILLEGAL_ARGUMENT_ERROR;
+ }
+ break;
case UCOL_FRENCH_COLLATION: /* attribute for direction of secondary weights*/
if(value == UCOL_ON) {
coll->frenchCollation = UCOL_ON;
coll->caseFirst = UCOL_UPPER_FIRST;
coll->caseFirstisDefault = FALSE;
} else if (value == UCOL_OFF) {
- coll->caseFirst = UCOL_OFF;
- coll->caseFirstisDefault = FALSE;
+ coll->caseFirst = UCOL_OFF;
+ coll->caseFirstisDefault = FALSE;
} else if (value == UCOL_DEFAULT) {
coll->caseFirst = (UColAttributeValue)coll->options->caseFirst;
coll->caseFirstisDefault = TRUE;
coll->strength = value;
} else {
*status = U_ILLEGAL_ARGUMENT_ERROR ;
- }
- break;
- case UCOL_ATTRIBUTE_COUNT:
- default:
- *status = U_ILLEGAL_ARGUMENT_ERROR;
- break;
- }
- if(oldFrench != coll->frenchCollation || oldCaseFirst != coll->caseFirst) {
- coll->latinOneRegenTable = TRUE;
- } else {
- coll->latinOneRegenTable = FALSE;
- }
- ucol_updateInternalState(coll, status);
-}
-
-U_CAPI UColAttributeValue U_EXPORT2
-ucol_getAttribute(const UCollator *coll, UColAttribute attr, UErrorCode *status) {
- if(U_FAILURE(*status) || coll == NULL) {
- return UCOL_DEFAULT;
- }
- switch(attr) {
- case UCOL_NUMERIC_COLLATION:
- return coll->numericCollation;
- case UCOL_HIRAGANA_QUATERNARY_MODE:
- return coll->hiraganaQ;
- case UCOL_FRENCH_COLLATION: /* attribute for direction of secondary weights*/
- return coll->frenchCollation;
- case UCOL_ALTERNATE_HANDLING: /* attribute for handling variable elements*/
- return coll->alternateHandling;
- case UCOL_CASE_FIRST: /* who goes first, lower case or uppercase */
- return coll->caseFirst;
- case UCOL_CASE_LEVEL: /* do we have an extra case level */
- return coll->caseLevel;
- case UCOL_NORMALIZATION_MODE: /* attribute for normalization */
- return coll->normalizationMode;
- case UCOL_STRENGTH: /* attribute for strength */
- return coll->strength;
- case UCOL_ATTRIBUTE_COUNT:
- default:
- *status = U_ILLEGAL_ARGUMENT_ERROR;
- break;
- }
- return UCOL_DEFAULT;
-}
-
-U_CAPI void U_EXPORT2
-ucol_setStrength( UCollator *coll,
- UCollationStrength strength)
-{
- UErrorCode status = U_ZERO_ERROR;
- ucol_setAttribute(coll, UCOL_STRENGTH, strength, &status);
-}
-
-U_CAPI UCollationStrength U_EXPORT2
-ucol_getStrength(const UCollator *coll)
-{
- UErrorCode status = U_ZERO_ERROR;
- return ucol_getAttribute(coll, UCOL_STRENGTH, &status);
-}
-
-/****************************************************************************/
-/* Following are misc functions */
-/* there are new APIs and some compatibility APIs */
-/****************************************************************************/
-
-U_CAPI UCollator* U_EXPORT2
-ucol_safeClone(const UCollator *coll, void *stackBuffer, int32_t * pBufferSize, UErrorCode *status)
-{
- UCollator * localCollator;
- int32_t bufferSizeNeeded = (int32_t)sizeof(UCollator);
- char *stackBufferChars = (char *)stackBuffer;
-
- if (status == NULL || U_FAILURE(*status)){
- return 0;
- }
- if ((stackBuffer && !pBufferSize) || !coll){
- *status = U_ILLEGAL_ARGUMENT_ERROR;
- return 0;
- }
- /* Pointers on 64-bit platforms need to be aligned
- * on a 64-bit boundry in memory.
- */
- if (U_ALIGNMENT_OFFSET(stackBuffer) != 0) {
- int32_t offsetUp = (int32_t)U_ALIGNMENT_OFFSET_UP(stackBufferChars);
- *pBufferSize -= offsetUp;
- stackBufferChars += offsetUp;
- }
- stackBuffer = (void *)stackBufferChars;
-
- if (stackBuffer && *pBufferSize <= 0){ /* 'preflighting' request - set needed size into *pBufferSize */
- *pBufferSize = bufferSizeNeeded;
- return 0;
- }
- if (!stackBuffer || *pBufferSize < bufferSizeNeeded) {
- /* allocate one here...*/
- int32_t length;
- const UChar * rules = ucol_getRules(coll, &length);
-
- localCollator = ucol_openRules(rules,
- length,
- ucol_getAttribute(coll, UCOL_NORMALIZATION_MODE, status),
- ucol_getStrength(coll),
- NULL,
- status);
- if (U_SUCCESS(*status))
- {
- *status = U_SAFECLONE_ALLOCATED_WARNING;
- }
- } else {
- localCollator = (UCollator *)stackBuffer;
- uprv_memcpy(localCollator, coll, sizeof(UCollator));
- localCollator->freeOnClose = FALSE;
- localCollator->requestedLocale = NULL; // zero copies of pointers
- localCollator->validLocale = NULL;
- }
- return localCollator;
-}
-
-U_CAPI int32_t U_EXPORT2
-ucol_getRulesEx(const UCollator *coll, UColRuleOption delta, UChar *buffer, int32_t bufferLen) {
- UErrorCode status = U_ZERO_ERROR;
- int32_t len = 0;
- int32_t UCAlen = 0;
- const UChar* ucaRules = 0;
- const UChar *rules = ucol_getRules(coll, &len);
- if(delta == UCOL_FULL_RULES) {
- /* take the UCA rules and append real rules at the end */
- /* UCA rules will be probably coming from the root RB */
- ucaRules = ures_getStringByKey(coll->rb,"%%UCARULES",&UCAlen,&status);
- /*
- UResourceBundle* cresb = ures_getByKeyWithFallback(coll->rb, "collations", NULL, &status);
- UResourceBundle* uca = ures_getByKeyWithFallback(cresb, "UCA", NULL, &status);
- ucaRules = ures_getStringByKey(uca,"Sequence",&UCAlen,&status);
- ures_close(uca);
- ures_close(cresb);
- */
- }
- if(U_FAILURE(status)) {
- return 0;
- }
- if(buffer!=0 && bufferLen>0){
- *buffer=0;
- if(UCAlen > 0) {
- u_memcpy(buffer, ucaRules, uprv_min(UCAlen, bufferLen));
- }
- if(len > 0 && bufferLen > UCAlen) {
- u_memcpy(buffer+UCAlen, rules, uprv_min(len, bufferLen-UCAlen));
- }
- }
- return u_terminateUChars(buffer, bufferLen, len+UCAlen, &status);
-}
-
-static const UChar _NUL = 0;
-
-U_CAPI const UChar* U_EXPORT2
-ucol_getRules( const UCollator *coll,
- int32_t *length)
-{
- if(coll->rules != NULL) {
- *length = coll->rulesLength;
- return coll->rules;
- } else {
- UErrorCode status = U_ZERO_ERROR;
- if(coll->elements != NULL) {
- if(U_SUCCESS(status)) {
- /*Semantic const */
- ((UCollator *)coll)->rules = ures_getStringByKey(coll->elements, "Sequence", length, &status);
- ((UCollator *)coll)->rulesLength = *length;
- ((UCollator *)coll)->freeRulesOnClose = FALSE;
- return coll->rules;
- }
+ }
+ break;
+ case UCOL_ATTRIBUTE_COUNT:
+ default:
+ *status = U_ILLEGAL_ARGUMENT_ERROR;
+ break;
}
- *length = 0;
- return &_NUL;
- }
-}
-
-U_CAPI int32_t U_EXPORT2
-ucol_getDisplayName( const char *objLoc,
- const char *dispLoc,
- UChar *result,
- int32_t resultLength,
- UErrorCode *status)
-{
-
- if(U_FAILURE(*status)) return -1;
- UnicodeString dst;
- if(!(result==NULL && resultLength==0)) {
- // NULL destination for pure preflighting: empty dummy string
- // otherwise, alias the destination buffer
- dst.setTo(result, 0, resultLength);
- }
- Collator::getDisplayName(Locale(objLoc), Locale(dispLoc), dst);
- return dst.extract(result, resultLength, *status);
-}
-
-U_CAPI const char* U_EXPORT2
-ucol_getAvailable(int32_t index)
-{
- return uloc_getAvailable(index);
-}
-
-U_CAPI int32_t U_EXPORT2
-ucol_countAvailable()
-{
- return uloc_countAvailable();
+ if(oldFrench != coll->frenchCollation || oldCaseFirst != coll->caseFirst) {
+ coll->latinOneRegenTable = TRUE;
+ } else {
+ coll->latinOneRegenTable = FALSE;
+ }
+ ucol_updateInternalState(coll, status);
}
-#if !UCONFIG_NO_SERVICE
-U_CAPI UEnumeration* U_EXPORT2
-ucol_openAvailableLocales(UErrorCode *status) {
- // This is a wrapper over Collator::getAvailableLocales()
- if (U_FAILURE(*status)) {
- return NULL;
+U_CAPI UColAttributeValue U_EXPORT2
+ucol_getAttribute(const UCollator *coll, UColAttribute attr, UErrorCode *status) {
+ if(U_FAILURE(*status) || coll == NULL) {
+ return UCOL_DEFAULT;
}
- StringEnumeration *s = Collator::getAvailableLocales();
- if (s == NULL) {
- *status = U_MEMORY_ALLOCATION_ERROR;
- return NULL;
+ switch(attr) {
+ case UCOL_NUMERIC_COLLATION:
+ return coll->numericCollation;
+ case UCOL_HIRAGANA_QUATERNARY_MODE:
+ return coll->hiraganaQ;
+ case UCOL_FRENCH_COLLATION: /* attribute for direction of secondary weights*/
+ return coll->frenchCollation;
+ case UCOL_ALTERNATE_HANDLING: /* attribute for handling variable elements*/
+ return coll->alternateHandling;
+ case UCOL_CASE_FIRST: /* who goes first, lower case or uppercase */
+ return coll->caseFirst;
+ case UCOL_CASE_LEVEL: /* do we have an extra case level */
+ return coll->caseLevel;
+ case UCOL_NORMALIZATION_MODE: /* attribute for normalization */
+ return coll->normalizationMode;
+ case UCOL_STRENGTH: /* attribute for strength */
+ return coll->strength;
+ case UCOL_ATTRIBUTE_COUNT:
+ default:
+ *status = U_ILLEGAL_ARGUMENT_ERROR;
+ break;
}
- return uenum_openStringEnumeration(s, status);
+ return UCOL_DEFAULT;
}
-#endif
-
-// Note: KEYWORDS[0] != RESOURCE_NAME - alan
-static const char* RESOURCE_NAME = "collations";
-
-static const char* KEYWORDS[] = { "collation" };
-
-#define KEYWORD_COUNT (sizeof(KEYWORDS)/sizeof(KEYWORDS[0]))
-
-U_CAPI UEnumeration* U_EXPORT2
-ucol_getKeywords(UErrorCode *status) {
- UEnumeration *result = NULL;
- if (U_SUCCESS(*status)) {
- return uenum_openCharStringsEnumeration(KEYWORDS, KEYWORD_COUNT, status);
- }
- return result;
+U_CAPI void U_EXPORT2
+ucol_setStrength( UCollator *coll,
+ UCollationStrength strength)
+{
+ UErrorCode status = U_ZERO_ERROR;
+ ucol_setAttribute(coll, UCOL_STRENGTH, strength, &status);
}
-U_CAPI UEnumeration* U_EXPORT2
-ucol_getKeywordValues(const char *keyword, UErrorCode *status) {
- // hard-coded to accept exactly one collation keyword
- // modify if additional collation keyword is added later
- if (U_SUCCESS(*status) &&
- keyword==NULL || uprv_strcmp(keyword, KEYWORDS[0])!=0) {
- *status = U_ILLEGAL_ARGUMENT_ERROR;
- return NULL;
- }
- return ures_getKeywordValues(U_ICUDATA_COLL, RESOURCE_NAME, status);
+U_CAPI UCollationStrength U_EXPORT2
+ucol_getStrength(const UCollator *coll)
+{
+ UErrorCode status = U_ZERO_ERROR;
+ return ucol_getAttribute(coll, UCOL_STRENGTH, &status);
}
-U_CAPI int32_t U_EXPORT2
-ucol_getFunctionalEquivalent(char* result, int32_t resultCapacity,
- const char* keyword, const char* locale,
- UBool* isAvailable, UErrorCode* status) {
- // N.B.: Resource name is "collations" but keyword is "collation"
- return ures_getFunctionalEquivalent(result, resultCapacity, U_ICUDATA_COLL,
- "collations", keyword, locale,
- isAvailable, TRUE, status);
-}
+/****************************************************************************/
+/* Following are misc functions */
+/* there are new APIs and some compatibility APIs */
+/****************************************************************************/
U_CAPI void U_EXPORT2
ucol_getVersion(const UCollator* coll,
/* This internal API checks whether a character is tailored or not */
U_CAPI UBool U_EXPORT2
ucol_isTailored(const UCollator *coll, const UChar u, UErrorCode *status) {
- uint32_t CE = UCOL_NOT_FOUND;
- const UChar *ContractionStart = NULL;
- if(U_SUCCESS(*status) && coll != NULL) {
- if(coll == coll->UCA) {
- return FALSE;
- } else if(u < 0x100) { /* latin-1 */
- CE = coll->latinOneMapping[u];
- if(coll->UCA && CE == coll->UCA->latinOneMapping[u]) {
+ if(U_FAILURE(*status) || coll == NULL || coll == coll->UCA) {
return FALSE;
- }
- } else { /* regular */
- /*CE = ucmpe32_get(coll->mapping, u);*/
- CE = UTRIE_GET32_FROM_LEAD(coll->mapping, u);
+ }
+ uint32_t CE = UCOL_NOT_FOUND;
+ const UChar *ContractionStart = NULL;
+ if(u < 0x100) { /* latin-1 */
+ CE = coll->latinOneMapping[u];
+ if(coll->UCA && CE == coll->UCA->latinOneMapping[u]) {
+ return FALSE;
+ }
+ } else { /* regular */
+ CE = UTRIE_GET32_FROM_LEAD(&coll->mapping, u);
}
if(isContraction(CE)) {
- ContractionStart = (UChar *)coll->image+getContractOffset(CE);
- CE = *(coll->contractionCEs + (ContractionStart- coll->contractionIndex));
+ ContractionStart = (UChar *)coll->image+getContractOffset(CE);
+ CE = *(coll->contractionCEs + (ContractionStart- coll->contractionIndex));
}
- if(CE == UCOL_NOT_FOUND) {
- return FALSE;
- } else {
- return TRUE;
- }
- } else {
- return FALSE;
- }
+ return (UBool)(CE != UCOL_NOT_FOUND);
}
UBool freeSBuf = FALSE, freeTBuf = FALSE;
if (sColl->flags & UCOL_USE_ITERATOR) {
- UNormIterator *sNIt = NULL, *tNIt = NULL;
- sNIt = unorm_openIter(stackNormIter1, sizeof(stackNormIter1), status);
- tNIt = unorm_openIter(stackNormIter2, sizeof(stackNormIter2), status);
- sColl->iterator->move(sColl->iterator, 0, UITER_START);
- tColl->iterator->move(tColl->iterator, 0, UITER_START);
- UCharIterator *sIt = unorm_setIter(sNIt, sColl->iterator, UNORM_NFD, status);
- UCharIterator *tIt = unorm_setIter(tNIt, tColl->iterator, UNORM_NFD, status);
- comparison = u_strCompareIter(sIt, tIt, TRUE);
- unorm_closeIter(sNIt);
- unorm_closeIter(tNIt);
+ UNormIterator *sNIt = NULL, *tNIt = NULL;
+ sNIt = unorm_openIter(stackNormIter1, sizeof(stackNormIter1), status);
+ tNIt = unorm_openIter(stackNormIter2, sizeof(stackNormIter2), status);
+ sColl->iterator->move(sColl->iterator, 0, UITER_START);
+ tColl->iterator->move(tColl->iterator, 0, UITER_START);
+ UCharIterator *sIt = unorm_setIter(sNIt, sColl->iterator, UNORM_NFD, status);
+ UCharIterator *tIt = unorm_setIter(tNIt, tColl->iterator, UNORM_NFD, status);
+ comparison = u_strCompareIter(sIt, tIt, TRUE);
+ unorm_closeIter(sNIt);
+ unorm_closeIter(tNIt);
} else {
- sLen = (sColl->flags & UCOL_ITER_HASLEN) ? sColl->endp - sColl->string : -1;
- sBuf = sColl->string;
- tLen = (tColl->flags & UCOL_ITER_HASLEN) ? tColl->endp - tColl->string : -1;
- tBuf = tColl->string;
-
- if (normalize) {
- *status = U_ZERO_ERROR;
- if (unorm_quickCheck(sBuf, sLen, UNORM_NFD, status) != UNORM_YES) {
- sLen = unorm_decompose(sColl->writableBuffer, (int32_t)sColl->writableBufSize,
- sBuf, sLen,
- FALSE, 0,
- status);
- if(*status == U_BUFFER_OVERFLOW_ERROR) {
- if(!u_growBufferFromStatic(sColl->stackWritableBuffer,
- &sColl->writableBuffer,
- (int32_t *)&sColl->writableBufSize, sLen,
- 0)
- ) {
- *status = U_MEMORY_ALLOCATION_ERROR;
- return UCOL_LESS; /* TODO set *status = U_MEMORY_ALLOCATION_ERROR; */
- }
- *status = U_ZERO_ERROR;
- sLen = unorm_decompose(sColl->writableBuffer, (int32_t)sColl->writableBufSize,
- sBuf, sLen,
- FALSE, 0,
- status);
- }
- if(freeSBuf) {
- uprv_free(sBuf);
- freeSBuf = FALSE;
- }
- sBuf = sColl->writableBuffer;
- if (sBuf != sColl->stackWritableBuffer) {
- sColl->flags |= UCOL_ITER_ALLOCATED;
- }
- }
+ sLen = (sColl->flags & UCOL_ITER_HASLEN) ? sColl->endp - sColl->string : -1;
+ sBuf = sColl->string;
+ tLen = (tColl->flags & UCOL_ITER_HASLEN) ? tColl->endp - tColl->string : -1;
+ tBuf = tColl->string;
- *status = U_ZERO_ERROR;
- if (unorm_quickCheck(tBuf, tLen, UNORM_NFD, status) != UNORM_YES) {
- tLen = unorm_decompose(tColl->writableBuffer, (int32_t)tColl->writableBufSize,
- tBuf, tLen,
- FALSE, 0,
- status);
- if(*status == U_BUFFER_OVERFLOW_ERROR) {
- if(!u_growBufferFromStatic(tColl->stackWritableBuffer,
- &tColl->writableBuffer,
- (int32_t *)&tColl->writableBufSize, tLen,
- 0)
- ) {
- *status = U_MEMORY_ALLOCATION_ERROR;
- return UCOL_LESS; /* TODO set *status = U_MEMORY_ALLOCATION_ERROR; */
- }
- *status = U_ZERO_ERROR;
- tLen = unorm_decompose(tColl->writableBuffer, (int32_t)tColl->writableBufSize,
- tBuf, tLen,
- FALSE, 0,
- status);
- }
- if(freeTBuf) {
- uprv_free(tBuf);
- freeTBuf = FALSE;
- }
- tBuf = tColl->writableBuffer;
- if (tBuf != tColl->stackWritableBuffer) {
- tColl->flags |= UCOL_ITER_ALLOCATED;
- }
- }
- }
+ if (normalize) {
+ *status = U_ZERO_ERROR;
+ if (unorm_quickCheck(sBuf, sLen, UNORM_NFD, status) != UNORM_YES) {
+ sLen = unorm_decompose(sColl->writableBuffer, (int32_t)sColl->writableBufSize,
+ sBuf, sLen,
+ FALSE, 0,
+ status);
+ if(*status == U_BUFFER_OVERFLOW_ERROR) {
+ if(!u_growBufferFromStatic(sColl->stackWritableBuffer,
+ &sColl->writableBuffer,
+ (int32_t *)&sColl->writableBufSize, sLen,
+ 0)
+ )
+ {
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ return UCOL_LESS; /* TODO set *status = U_MEMORY_ALLOCATION_ERROR; */
+ }
+ *status = U_ZERO_ERROR;
+ sLen = unorm_decompose(sColl->writableBuffer, (int32_t)sColl->writableBufSize,
+ sBuf, sLen,
+ FALSE, 0,
+ status);
+ }
+ if(freeSBuf) {
+ uprv_free(sBuf);
+ freeSBuf = FALSE;
+ }
+ sBuf = sColl->writableBuffer;
+ if (sBuf != sColl->stackWritableBuffer) {
+ sColl->flags |= UCOL_ITER_ALLOCATED;
+ }
+ }
- if (sLen == -1 && tLen == -1) {
- comparison = u_strcmpCodePointOrder(sBuf, tBuf);
- } else {
- if (sLen == -1) {
- sLen = u_strlen(sBuf);
- }
- if (tLen == -1) {
- tLen = u_strlen(tBuf);
- }
- comparison = u_memcmpCodePointOrder(sBuf, tBuf, uprv_min(sLen, tLen));
- if (comparison == 0) {
- comparison = sLen - tLen;
- }
- }
+ *status = U_ZERO_ERROR;
+ if (unorm_quickCheck(tBuf, tLen, UNORM_NFD, status) != UNORM_YES) {
+ tLen = unorm_decompose(tColl->writableBuffer, (int32_t)tColl->writableBufSize,
+ tBuf, tLen,
+ FALSE, 0,
+ status);
+ if(*status == U_BUFFER_OVERFLOW_ERROR) {
+ if(!u_growBufferFromStatic(tColl->stackWritableBuffer,
+ &tColl->writableBuffer,
+ (int32_t *)&tColl->writableBufSize, tLen,
+ 0)
+ )
+ {
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ return UCOL_LESS; /* TODO set *status = U_MEMORY_ALLOCATION_ERROR; */
+ }
+ *status = U_ZERO_ERROR;
+ tLen = unorm_decompose(tColl->writableBuffer, (int32_t)tColl->writableBufSize,
+ tBuf, tLen,
+ FALSE, 0,
+ status);
+ }
+ if(freeTBuf) {
+ uprv_free(tBuf);
+ freeTBuf = FALSE;
+ }
+ tBuf = tColl->writableBuffer;
+ if (tBuf != tColl->stackWritableBuffer) {
+ tColl->flags |= UCOL_ITER_ALLOCATED;
+ }
+ }
+ }
+
+ if (sLen == -1 && tLen == -1) {
+ comparison = u_strcmpCodePointOrder(sBuf, tBuf);
+ } else {
+ if (sLen == -1) {
+ sLen = u_strlen(sBuf);
+ }
+ if (tLen == -1) {
+ tLen = u_strlen(tBuf);
+ }
+ comparison = u_memcmpCodePointOrder(sBuf, tBuf, uprv_min(sLen, tLen));
+ if (comparison == 0) {
+ comparison = sLen - tLen;
+ }
+ }
}
if (comparison < 0) {
inline void UCOL_INIT_CEBUF(ucol_CEBuf *b) {
(b)->buf = (b)->pos = (b)->localArray;
(b)->endp = (b)->buf + UCOL_CEBUF_SIZE;
-};
+}
static
-void ucol_CEBuf_Expand(ucol_CEBuf *b, collIterate *ci) {
+void ucol_CEBuf_Expand(ucol_CEBuf *b, collIterate *ci, UErrorCode *status) {
uint32_t oldSize;
uint32_t newSize;
uint32_t *newBuf;
oldSize = b->pos - b->buf;
newSize = oldSize * 2;
newBuf = (uint32_t *)uprv_malloc(newSize * sizeof(uint32_t));
- if(newBuf != NULL) {
- uprv_memcpy(newBuf, b->buf, oldSize * sizeof(uint32_t));
- if (b->buf != b->localArray) {
- uprv_free(b->buf);
- }
- b->buf = newBuf;
- b->endp = b->buf + newSize;
- b->pos = b->buf + oldSize;
+ if(newBuf == NULL) {
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ }
+ else {
+ uprv_memcpy(newBuf, b->buf, oldSize * sizeof(uint32_t));
+ if (b->buf != b->localArray) {
+ uprv_free(b->buf);
+ }
+ b->buf = newBuf;
+ b->endp = b->buf + newSize;
+ b->pos = b->buf + oldSize;
}
}
static
-inline void UCOL_CEBUF_PUT(ucol_CEBuf *b, uint32_t ce, collIterate *ci) {
+inline void UCOL_CEBUF_PUT(ucol_CEBuf *b, uint32_t ce, collIterate *ci, UErrorCode *status) {
if (b->pos == b->endp) {
- ucol_CEBuf_Expand(b, ci);
+ ucol_CEBuf_Expand(b, ci, status);
+ }
+ if (U_SUCCESS(*status)) {
+ *(b)->pos++ = ce;
+ }
}
- *(b)->pos++ = ce;
-};
/* This is a trick string compare function that goes in and uses sortkeys to compare */
/* It is used when compare gets in trouble and needs to bail out */
static UCollationResult ucol_compareUsingSortKeys(collIterate *sColl,
- collIterate *tColl)
+ collIterate *tColl,
+ UErrorCode *status)
{
uint8_t sourceKey[UCOL_MAX_BUFFER], targetKey[UCOL_MAX_BUFFER];
uint8_t *sourceKeyP = sourceKey;
const UCollator *coll = sColl->coll;
UChar *source = NULL;
UChar *target = NULL;
+ int32_t result = UCOL_EQUAL;
UChar sStackBuf[256], tStackBuf[256];
int32_t sourceLength = (sColl->flags&UCOL_ITER_HASLEN)?(sColl->endp-sColl->string):-1;
int32_t targetLength = (tColl->flags&UCOL_ITER_HASLEN)?(tColl->endp-tColl->string):-1;
// TODO: Handle long strings. Do the same in ucol_checkIdent.
if(sColl->flags & UCOL_USE_ITERATOR) {
- sColl->iterator->move(sColl->iterator, 0, UITER_START);
- tColl->iterator->move(tColl->iterator, 0, UITER_START);
- source = sStackBuf;
- UChar *sBufp = source;
- target = tStackBuf;
- UChar *tBufp = target;
- while(sColl->iterator->hasNext(sColl->iterator)) {
- *sBufp++ = (UChar)sColl->iterator->next(sColl->iterator);
- }
- while(tColl->iterator->hasNext(tColl->iterator)) {
- *tBufp++ = (UChar)tColl->iterator->next(tColl->iterator);
- }
- sourceLength = sBufp - source;
- targetLength = tBufp - target;
+ sColl->iterator->move(sColl->iterator, 0, UITER_START);
+ tColl->iterator->move(tColl->iterator, 0, UITER_START);
+ source = sStackBuf;
+ UChar *sBufp = source;
+ target = tStackBuf;
+ UChar *tBufp = target;
+ while(sColl->iterator->hasNext(sColl->iterator)) {
+ *sBufp++ = (UChar)sColl->iterator->next(sColl->iterator);
+ }
+ while(tColl->iterator->hasNext(tColl->iterator)) {
+ *tBufp++ = (UChar)tColl->iterator->next(tColl->iterator);
+ }
+ sourceLength = sBufp - source;
+ targetLength = tBufp - target;
} else { // no iterators
- sourceLength = (sColl->flags&UCOL_ITER_HASLEN)?(sColl->endp-sColl->string):-1;
- targetLength = (tColl->flags&UCOL_ITER_HASLEN)?(tColl->endp-tColl->string):-1;
- source = sColl->string;
- target = tColl->string;
+ sourceLength = (sColl->flags&UCOL_ITER_HASLEN)?(sColl->endp-sColl->string):-1;
+ targetLength = (tColl->flags&UCOL_ITER_HASLEN)?(tColl->endp-tColl->string):-1;
+ source = sColl->string;
+ target = tColl->string;
}
sourceKeyLen = ucol_getSortKey(coll, source, sourceLength, sourceKeyP, sourceKeyLen);
if(sourceKeyLen > UCOL_MAX_BUFFER) {
sourceKeyP = (uint8_t*)uprv_malloc(sourceKeyLen*sizeof(uint8_t));
- if(sourceKeyP != NULL) {
- sourceKeyLen = ucol_getSortKey(coll, source, sourceLength, sourceKeyP, sourceKeyLen);
+ if(sourceKeyP == NULL) {
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ goto cleanup_and_do_compare;
}
+ sourceKeyLen = ucol_getSortKey(coll, source, sourceLength, sourceKeyP, sourceKeyLen);
}
targetKeyLen = ucol_getSortKey(coll, target, targetLength, targetKeyP, targetKeyLen);
if(targetKeyLen > UCOL_MAX_BUFFER) {
targetKeyP = (uint8_t*)uprv_malloc(targetKeyLen*sizeof(uint8_t));
- if(targetKeyP != NULL) {
- targetKeyLen = ucol_getSortKey(coll, target, targetLength, targetKeyP, targetKeyLen);
+ if(targetKeyP == NULL) {
+ *status = U_MEMORY_ALLOCATION_ERROR;
+ goto cleanup_and_do_compare;
}
+ targetKeyLen = ucol_getSortKey(coll, target, targetLength, targetKeyP, targetKeyLen);
}
- int32_t result = uprv_strcmp((const char*)sourceKeyP, (const char*)targetKeyP);
+ result = uprv_strcmp((const char*)sourceKeyP, (const char*)targetKeyP);
- if(sourceKeyP != sourceKey) {
+cleanup_and_do_compare:
+ if(sourceKeyP != NULL && sourceKeyP != sourceKey) {
uprv_free(sourceKeyP);
}
- if(targetKeyP != targetKey) {
+ if(targetKeyP != NULL && targetKeyP != targetKey) {
uprv_free(targetKeyP);
}
UBool doHiragana = (coll->hiraganaQ == UCOL_ON) && checkQuad;
if(doHiragana && shifted) {
- return (ucol_compareUsingSortKeys(sColl, tColl));
+ return (ucol_compareUsingSortKeys(sColl, tColl, status));
}
uint8_t caseSwitch = coll->caseSwitch;
uint8_t tertiaryMask = coll->tertiaryMask;
// Non shifted primary processing is quite simple
if(!shifted) {
- for(;;) {
-
- // We fetch CEs until we hit a non ignorable primary or end.
- do {
- // We get the next CE
- sOrder = ucol_IGetNextCE(coll, sColl, status);
- // Stuff it in the buffer
- UCOL_CEBUF_PUT(&sCEs, sOrder, sColl);
- // And keep just the primary part.
- sOrder &= UCOL_PRIMARYMASK;
- } while(sOrder == 0);
-
- // see the comments on the above block
- do {
- tOrder = ucol_IGetNextCE(coll, tColl, status);
- UCOL_CEBUF_PUT(&tCEs, tOrder, tColl);
- tOrder &= UCOL_PRIMARYMASK;
- } while(tOrder == 0);
-
- // if both primaries are the same
- if(sOrder == tOrder) {
- // and there are no more CEs, we advance to the next level
- if(sOrder == UCOL_NO_MORE_CES_PRIMARY) {
- break;
- }
- if(doHiragana && hirResult == UCOL_EQUAL) {
- if((sColl->flags & UCOL_WAS_HIRAGANA) != (tColl->flags & UCOL_WAS_HIRAGANA)) {
- hirResult = ((sColl->flags & UCOL_WAS_HIRAGANA) > (tColl->flags & UCOL_WAS_HIRAGANA))
- ? UCOL_LESS:UCOL_GREATER;
- }
- }
- } else {
- // if two primaries are different, we are done
- result = (sOrder < tOrder) ? UCOL_LESS: UCOL_GREATER;
- goto commonReturn;
- }
- } // no primary difference... do the rest from the buffers
- } else { // shifted - do a slightly more complicated processing :)
- for(;;) {
- UBool sInShifted = FALSE;
- UBool tInShifted = FALSE;
- // This version of code can be refactored. However, it seems easier to understand this way.
- // Source loop. Sam as the target loop.
for(;;) {
- sOrder = ucol_IGetNextCE(coll, sColl, status);
- if(sOrder == UCOL_NO_MORE_CES) {
- UCOL_CEBUF_PUT(&sCEs, sOrder, sColl);
- break;
- } else if(sOrder == 0
- || (sInShifted && (sOrder & UCOL_PRIMARYMASK) == 0)) {
- /* UCA amendment - ignore ignorables that follow shifted code points */
- continue;
- } else if(isContinuation(sOrder)) {
- if((sOrder & UCOL_PRIMARYMASK) > 0) { /* There is primary value */
- if(sInShifted) {
- sOrder = (sOrder & UCOL_PRIMARYMASK) | 0xC0; /* preserve interesting continuation */
- UCOL_CEBUF_PUT(&sCEs, sOrder, sColl);
- continue;
- } else {
- UCOL_CEBUF_PUT(&sCEs, sOrder, sColl);
- break;
- }
- } else { /* Just lower level values */
- if(sInShifted) {
- continue;
- } else {
- UCOL_CEBUF_PUT(&sCEs, sOrder, sColl);
- continue;
- }
- }
- } else { /* regular */
- if((sOrder & UCOL_PRIMARYMASK) > LVT) {
- UCOL_CEBUF_PUT(&sCEs, sOrder, sColl);
- break;
- } else {
- if((sOrder & UCOL_PRIMARYMASK) > 0) {
- sInShifted = TRUE;
+
+ // We fetch CEs until we hit a non ignorable primary or end.
+ do {
+ // We get the next CE
+ sOrder = ucol_IGetNextCE(coll, sColl, status);
+ // Stuff it in the buffer
+ UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status);
+ // And keep just the primary part.
sOrder &= UCOL_PRIMARYMASK;
- UCOL_CEBUF_PUT(&sCEs, sOrder, sColl);
- continue;
- } else {
- UCOL_CEBUF_PUT(&sCEs, sOrder, sColl);
- sInShifted = FALSE;
- continue;
- }
- }
- }
- }
- sOrder &= UCOL_PRIMARYMASK;
- sInShifted = FALSE;
+ } while(sOrder == 0);
+
+ // see the comments on the above block
+ do {
+ tOrder = ucol_IGetNextCE(coll, tColl, status);
+ UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status);
+ tOrder &= UCOL_PRIMARYMASK;
+ } while(tOrder == 0);
+ // if both primaries are the same
+ if(sOrder == tOrder) {
+ // and there are no more CEs, we advance to the next level
+ if(sOrder == UCOL_NO_MORE_CES_PRIMARY) {
+ break;
+ }
+ if(doHiragana && hirResult == UCOL_EQUAL) {
+ if((sColl->flags & UCOL_WAS_HIRAGANA) != (tColl->flags & UCOL_WAS_HIRAGANA)) {
+ hirResult = ((sColl->flags & UCOL_WAS_HIRAGANA) > (tColl->flags & UCOL_WAS_HIRAGANA))
+ ? UCOL_LESS:UCOL_GREATER;
+ }
+ }
+ } else {
+ // if two primaries are different, we are done
+ result = (sOrder < tOrder) ? UCOL_LESS: UCOL_GREATER;
+ goto commonReturn;
+ }
+ } // no primary difference... do the rest from the buffers
+ } else { // shifted - do a slightly more complicated processing :)
for(;;) {
- tOrder = ucol_IGetNextCE(coll, tColl, status);
- if(tOrder == UCOL_NO_MORE_CES) {
- UCOL_CEBUF_PUT(&tCEs, tOrder, tColl);
- break;
- } else if(tOrder == 0
- || (tInShifted && (tOrder & UCOL_PRIMARYMASK) == 0)) {
- /* UCA amendment - ignore ignorables that follow shifted code points */
- continue;
- } else if(isContinuation(tOrder)) {
- if((tOrder & UCOL_PRIMARYMASK) > 0) { /* There is primary value */
- if(tInShifted) {
- tOrder = (tOrder & UCOL_PRIMARYMASK) | 0xC0; /* preserve interesting continuation */
- UCOL_CEBUF_PUT(&tCEs, tOrder, tColl);
- continue;
- } else {
- UCOL_CEBUF_PUT(&tCEs, tOrder, tColl);
- break;
- }
- } else { /* Just lower level values */
- if(tInShifted) {
- continue;
- } else {
- UCOL_CEBUF_PUT(&tCEs, tOrder, tColl);
- continue;
- }
+ UBool sInShifted = FALSE;
+ UBool tInShifted = FALSE;
+ // This version of code can be refactored. However, it seems easier to understand this way.
+ // Source loop. Sam as the target loop.
+ for(;;) {
+ sOrder = ucol_IGetNextCE(coll, sColl, status);
+ if(sOrder == UCOL_NO_MORE_CES) {
+ UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status);
+ break;
+ } else if(sOrder == 0 || (sInShifted && (sOrder & UCOL_PRIMARYMASK) == 0)) {
+ /* UCA amendment - ignore ignorables that follow shifted code points */
+ continue;
+ } else if(isContinuation(sOrder)) {
+ if((sOrder & UCOL_PRIMARYMASK) > 0) { /* There is primary value */
+ if(sInShifted) {
+ sOrder = (sOrder & UCOL_PRIMARYMASK) | 0xC0; /* preserve interesting continuation */
+ UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status);
+ continue;
+ } else {
+ UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status);
+ break;
+ }
+ } else { /* Just lower level values */
+ if(sInShifted) {
+ continue;
+ } else {
+ UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status);
+ continue;
+ }
+ }
+ } else { /* regular */
+ if((sOrder & UCOL_PRIMARYMASK) > LVT) {
+ UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status);
+ break;
+ } else {
+ if((sOrder & UCOL_PRIMARYMASK) > 0) {
+ sInShifted = TRUE;
+ sOrder &= UCOL_PRIMARYMASK;
+ UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status);
+ continue;
+ } else {
+ UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status);
+ sInShifted = FALSE;
+ continue;
+ }
+ }
+ }
}
- } else { /* regular */
- if((tOrder & UCOL_PRIMARYMASK) > LVT) {
- UCOL_CEBUF_PUT(&tCEs, tOrder, tColl);
- break;
- } else {
- if((tOrder & UCOL_PRIMARYMASK) > 0) {
- tInShifted = TRUE;
- tOrder &= UCOL_PRIMARYMASK;
- UCOL_CEBUF_PUT(&tCEs, tOrder, tColl);
- continue;
- } else {
- UCOL_CEBUF_PUT(&tCEs, tOrder, tColl);
- tInShifted = FALSE;
- continue;
- }
+ sOrder &= UCOL_PRIMARYMASK;
+ sInShifted = FALSE;
+
+ for(;;) {
+ tOrder = ucol_IGetNextCE(coll, tColl, status);
+ if(tOrder == UCOL_NO_MORE_CES) {
+ UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status);
+ break;
+ } else if(tOrder == 0 || (tInShifted && (tOrder & UCOL_PRIMARYMASK) == 0)) {
+ /* UCA amendment - ignore ignorables that follow shifted code points */
+ continue;
+ } else if(isContinuation(tOrder)) {
+ if((tOrder & UCOL_PRIMARYMASK) > 0) { /* There is primary value */
+ if(tInShifted) {
+ tOrder = (tOrder & UCOL_PRIMARYMASK) | 0xC0; /* preserve interesting continuation */
+ UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status);
+ continue;
+ } else {
+ UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status);
+ break;
+ }
+ } else { /* Just lower level values */
+ if(tInShifted) {
+ continue;
+ } else {
+ UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status);
+ continue;
+ }
+ }
+ } else { /* regular */
+ if((tOrder & UCOL_PRIMARYMASK) > LVT) {
+ UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status);
+ break;
+ } else {
+ if((tOrder & UCOL_PRIMARYMASK) > 0) {
+ tInShifted = TRUE;
+ tOrder &= UCOL_PRIMARYMASK;
+ UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status);
+ continue;
+ } else {
+ UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status);
+ tInShifted = FALSE;
+ continue;
+ }
+ }
+ }
}
- }
- }
- tOrder &= UCOL_PRIMARYMASK;
- tInShifted = FALSE;
+ tOrder &= UCOL_PRIMARYMASK;
+ tInShifted = FALSE;
- if(sOrder == tOrder) {
- /*
- if(doHiragana && hirResult == UCOL_EQUAL) {
- if((sColl.flags & UCOL_WAS_HIRAGANA) != (tColl.flags & UCOL_WAS_HIRAGANA)) {
+ if(sOrder == tOrder) {
+ /*
+ if(doHiragana && hirResult == UCOL_EQUAL) {
+ if((sColl.flags & UCOL_WAS_HIRAGANA) != (tColl.flags & UCOL_WAS_HIRAGANA)) {
hirResult = ((sColl.flags & UCOL_WAS_HIRAGANA) > (tColl.flags & UCOL_WAS_HIRAGANA))
- ? UCOL_LESS:UCOL_GREATER;
- }
- }
- */
- if(sOrder == UCOL_NO_MORE_CES_PRIMARY) {
- break;
+ ? UCOL_LESS:UCOL_GREATER;
+ }
+ }
+ */
+ if(sOrder == UCOL_NO_MORE_CES_PRIMARY) {
+ break;
+ } else {
+ sOrder = 0;
+ tOrder = 0;
+ continue;
+ }
} else {
- sOrder = 0; tOrder = 0;
- continue;
+ result = (sOrder < tOrder) ? UCOL_LESS : UCOL_GREATER;
+ goto commonReturn;
}
- } else {
- result = (sOrder < tOrder) ? UCOL_LESS : UCOL_GREATER;
- goto commonReturn;
- }
- } /* no primary difference... do the rest from the buffers */
+ } /* no primary difference... do the rest from the buffers */
}
/* now, we're gonna reexamine collected CEs */
/* This is the secondary level of comparison */
if(checkSecTer) {
- if(!isFrenchSec) { /* normal */
- sCE = sCEs.buf;
- tCE = tCEs.buf;
- for(;;) {
- while (secS == 0) {
- secS = *(sCE++) & UCOL_SECONDARYMASK;
- }
+ if(!isFrenchSec) { /* normal */
+ sCE = sCEs.buf;
+ tCE = tCEs.buf;
+ for(;;) {
+ while (secS == 0) {
+ secS = *(sCE++) & UCOL_SECONDARYMASK;
+ }
- while(secT == 0) {
- secT = *(tCE++) & UCOL_SECONDARYMASK;
- }
+ while(secT == 0) {
+ secT = *(tCE++) & UCOL_SECONDARYMASK;
+ }
- if(secS == secT) {
- if(secS == UCOL_NO_MORE_CES_SECONDARY) {
- break;
- } else {
- secS = 0; secT = 0;
- continue;
- }
- } else {
- result = (secS < secT) ? UCOL_LESS : UCOL_GREATER;
- goto commonReturn;
- }
- }
- } else { /* do the French */
- uint32_t *sCESave = NULL;
- uint32_t *tCESave = NULL;
- sCE = sCEs.pos-2; /* this could also be sCEs-- if needs to be optimized */
- tCE = tCEs.pos-2;
- for(;;) {
- while (secS == 0 && sCE >= sCEs.buf) {
- if(sCESave == 0) {
- secS = *(sCE--);
- if(isContinuation(secS)) {
- while(isContinuation(secS = *(sCE--)));
- /* after this, secS has the start of continuation, and sCEs points before that */
- sCESave = sCE; /* we save it, so that we know where to come back AND that we need to go forward */
- sCE+=2; /* need to point to the first continuation CP */
- /* However, now you can just continue doing stuff */
- }
- } else {
- secS = *(sCE++);
- if(!isContinuation(secS)) { /* This means we have finished with this cont */
- sCE = sCESave; /* reset the pointer to before continuation */
- sCESave = 0;
- continue;
- }
+ if(secS == secT) {
+ if(secS == UCOL_NO_MORE_CES_SECONDARY) {
+ break;
+ } else {
+ secS = 0; secT = 0;
+ continue;
+ }
+ } else {
+ result = (secS < secT) ? UCOL_LESS : UCOL_GREATER;
+ goto commonReturn;
+ }
}
- secS &= UCOL_SECONDARYMASK; /* remove the continuation bit */
- }
+ } else { /* do the French */
+ uint32_t *sCESave = NULL;
+ uint32_t *tCESave = NULL;
+ sCE = sCEs.pos-2; /* this could also be sCEs-- if needs to be optimized */
+ tCE = tCEs.pos-2;
+ for(;;) {
+ while (secS == 0 && sCE >= sCEs.buf) {
+ if(sCESave == 0) {
+ secS = *(sCE--);
+ if(isContinuation(secS)) {
+ while(isContinuation(secS = *(sCE--)))
+ ;
+ /* after this, secS has the start of continuation, and sCEs points before that */
+ sCESave = sCE; /* we save it, so that we know where to come back AND that we need to go forward */
+ sCE+=2; /* need to point to the first continuation CP */
+ /* However, now you can just continue doing stuff */
+ }
+ } else {
+ secS = *(sCE++);
+ if(!isContinuation(secS)) { /* This means we have finished with this cont */
+ sCE = sCESave; /* reset the pointer to before continuation */
+ sCESave = 0;
+ continue;
+ }
+ }
+ secS &= UCOL_SECONDARYMASK; /* remove the continuation bit */
+ }
- while(secT == 0 && tCE >= tCEs.buf) {
- if(tCESave == 0) {
- secT = *(tCE--);
- if(isContinuation(secT)) {
- while(isContinuation(secT = *(tCE--)));
- /* after this, secS has the start of continuation, and sCEs points before that */
- tCESave = tCE; /* we save it, so that we know where to come back AND that we need to go forward */
- tCE+=2; /* need to point to the first continuation CP */
- /* However, now you can just continue doing stuff */
- }
- } else {
- secT = *(tCE++);
- if(!isContinuation(secT)) { /* This means we have finished with this cont */
- tCE = tCESave; /* reset the pointer to before continuation */
- tCESave = 0;
- continue;
- }
- }
- secT &= UCOL_SECONDARYMASK; /* remove the continuation bit */
- }
+ while(secT == 0 && tCE >= tCEs.buf) {
+ if(tCESave == 0) {
+ secT = *(tCE--);
+ if(isContinuation(secT)) {
+ while(isContinuation(secT = *(tCE--)))
+ ;
+ /* after this, secS has the start of continuation, and sCEs points before that */
+ tCESave = tCE; /* we save it, so that we know where to come back AND that we need to go forward */
+ tCE+=2; /* need to point to the first continuation CP */
+ /* However, now you can just continue doing stuff */
+ }
+ } else {
+ secT = *(tCE++);
+ if(!isContinuation(secT)) { /* This means we have finished with this cont */
+ tCE = tCESave; /* reset the pointer to before continuation */
+ tCESave = 0;
+ continue;
+ }
+ }
+ secT &= UCOL_SECONDARYMASK; /* remove the continuation bit */
+ }
- if(secS == secT) {
- if(secS == UCOL_NO_MORE_CES_SECONDARY || (sCE < sCEs.buf && tCE < tCEs.buf)) {
- break;
- } else {
- secS = 0; secT = 0;
- continue;
+ if(secS == secT) {
+ if(secS == UCOL_NO_MORE_CES_SECONDARY || (sCE < sCEs.buf && tCE < tCEs.buf)) {
+ break;
+ } else {
+ secS = 0; secT = 0;
+ continue;
+ }
+ } else {
+ result = (secS < secT) ? UCOL_LESS : UCOL_GREATER;
+ goto commonReturn;
+ }
}
- } else {
- result = (secS < secT) ? UCOL_LESS : UCOL_GREATER;
- goto commonReturn;
- }
}
- }
}
/* doing the case bit */
if(checkCase) {
- sCE = sCEs.buf;
- tCE = tCEs.buf;
- for(;;) {
- while((secS & UCOL_REMOVE_CASE) == 0) {
- if(!isContinuation(*sCE++)) {
- secS =*(sCE-1) & UCOL_TERT_CASE_MASK;
- secS ^= caseSwitch;
- } else {
- secS = 0;
- }
- }
+ sCE = sCEs.buf;
+ tCE = tCEs.buf;
+ for(;;) {
+ while((secS & UCOL_REMOVE_CASE) == 0) {
+ if(!isContinuation(*sCE++)) {
+ secS =*(sCE-1);
+ if(((secS & UCOL_PRIMARYMASK) != 0) || strength > UCOL_PRIMARY) {
+ // primary ignorables should not be considered on the case level when the strength is primary
+ // otherwise, the CEs stop being well-formed
+ secS &= UCOL_TERT_CASE_MASK;
+ secS ^= caseSwitch;
+ } else {
+ secS = 0;
+ }
+ } else {
+ secS = 0;
+ }
+ }
- while((secT & UCOL_REMOVE_CASE) == 0) {
- if(!isContinuation(*tCE++)) {
- secT = *(tCE-1) & UCOL_TERT_CASE_MASK;
- secT ^= caseSwitch;
- } else {
- secT = 0;
- }
- }
+ while((secT & UCOL_REMOVE_CASE) == 0) {
+ if(!isContinuation(*tCE++)) {
+ secT = *(tCE-1);
+ if(((secT & UCOL_PRIMARYMASK) != 0) || strength > UCOL_PRIMARY) {
+ // primary ignorables should not be considered on the case level when the strength is primary
+ // otherwise, the CEs stop being well-formed
+ secT &= UCOL_TERT_CASE_MASK;
+ secT ^= caseSwitch;
+ } else {
+ secT = 0;
+ }
+ } else {
+ secT = 0;
+ }
+ }
- if((secS & UCOL_CASE_BIT_MASK) < (secT & UCOL_CASE_BIT_MASK)) {
- result = UCOL_LESS;
- goto commonReturn;
- } else if((secS & UCOL_CASE_BIT_MASK) > (secT & UCOL_CASE_BIT_MASK)) {
- result = UCOL_GREATER;
- goto commonReturn;
- }
+ if((secS & UCOL_CASE_BIT_MASK) < (secT & UCOL_CASE_BIT_MASK)) {
+ result = UCOL_LESS;
+ goto commonReturn;
+ } else if((secS & UCOL_CASE_BIT_MASK) > (secT & UCOL_CASE_BIT_MASK)) {
+ result = UCOL_GREATER;
+ goto commonReturn;
+ }
- if((secS & UCOL_REMOVE_CASE) == UCOL_NO_MORE_CES_TERTIARY || (secT & UCOL_REMOVE_CASE) == UCOL_NO_MORE_CES_TERTIARY ) {
- break;
- } else {
- secS = 0;
- secT = 0;
+ if((secS & UCOL_REMOVE_CASE) == UCOL_NO_MORE_CES_TERTIARY || (secT & UCOL_REMOVE_CASE) == UCOL_NO_MORE_CES_TERTIARY ) {
+ break;
+ } else {
+ secS = 0;
+ secT = 0;
+ }
}
- }
}
/* Tertiary level */
if(checkTertiary) {
- secS = 0;
- secT = 0;
- sCE = sCEs.buf;
- tCE = tCEs.buf;
- for(;;) {
- while((secS & UCOL_REMOVE_CASE) == 0) {
- secS = *(sCE++) & tertiaryMask;
- if(!isContinuation(secS)) {
- secS ^= caseSwitch;
- } else {
- secS &= UCOL_REMOVE_CASE;
- }
- }
+ secS = 0;
+ secT = 0;
+ sCE = sCEs.buf;
+ tCE = tCEs.buf;
+ for(;;) {
+ while((secS & UCOL_REMOVE_CASE) == 0) {
+ secS = *(sCE++) & tertiaryMask;
+ if(!isContinuation(secS)) {
+ secS ^= caseSwitch;
+ } else {
+ secS &= UCOL_REMOVE_CASE;
+ }
+ }
- while((secT & UCOL_REMOVE_CASE) == 0) {
- secT = *(tCE++) & tertiaryMask;
- if(!isContinuation(secT)) {
- secT ^= caseSwitch;
- } else {
- secT &= UCOL_REMOVE_CASE;
- }
- }
+ while((secT & UCOL_REMOVE_CASE) == 0) {
+ secT = *(tCE++) & tertiaryMask;
+ if(!isContinuation(secT)) {
+ secT ^= caseSwitch;
+ } else {
+ secT &= UCOL_REMOVE_CASE;
+ }
+ }
- if(secS == secT) {
- if((secS & UCOL_REMOVE_CASE) == 1) {
- break;
- } else {
- secS = 0; secT = 0;
- continue;
- }
- } else {
- result = (secS < secT) ? UCOL_LESS : UCOL_GREATER;
- goto commonReturn;
+ if(secS == secT) {
+ if((secS & UCOL_REMOVE_CASE) == 1) {
+ break;
+ } else {
+ secS = 0; secT = 0;
+ continue;
+ }
+ } else {
+ result = (secS < secT) ? UCOL_LESS : UCOL_GREATER;
+ goto commonReturn;
+ }
}
- }
}
if(qShifted /*checkQuad*/) {
- UBool sInShifted = TRUE;
- UBool tInShifted = TRUE;
- secS = 0;
- secT = 0;
- sCE = sCEs.buf;
- tCE = tCEs.buf;
- for(;;) {
- while(secS == 0 && secS != UCOL_NO_MORE_CES || (isContinuation(secS) && !sInShifted)) {
- secS = *(sCE++);
- if(isContinuation(secS)) {
- if(!sInShifted) {
- continue;
- }
- } else if(secS > LVT || (secS & UCOL_PRIMARYMASK) == 0) { /* non continuation */
- secS = UCOL_PRIMARYMASK;
- sInShifted = FALSE;
- } else {
- sInShifted = TRUE;
- }
- }
- secS &= UCOL_PRIMARYMASK;
+ UBool sInShifted = TRUE;
+ UBool tInShifted = TRUE;
+ secS = 0;
+ secT = 0;
+ sCE = sCEs.buf;
+ tCE = tCEs.buf;
+ for(;;) {
+ while(secS == 0 && secS != UCOL_NO_MORE_CES || (isContinuation(secS) && !sInShifted)) {
+ secS = *(sCE++);
+ if(isContinuation(secS)) {
+ if(!sInShifted) {
+ continue;
+ }
+ } else if(secS > LVT || (secS & UCOL_PRIMARYMASK) == 0) { /* non continuation */
+ secS = UCOL_PRIMARYMASK;
+ sInShifted = FALSE;
+ } else {
+ sInShifted = TRUE;
+ }
+ }
+ secS &= UCOL_PRIMARYMASK;
- while(secT == 0 && secT != UCOL_NO_MORE_CES || (isContinuation(secT) && !tInShifted)) {
- secT = *(tCE++);
- if(isContinuation(secT)) {
- if(!tInShifted) {
- continue;
+ while(secT == 0 && secT != UCOL_NO_MORE_CES || (isContinuation(secT) && !tInShifted)) {
+ secT = *(tCE++);
+ if(isContinuation(secT)) {
+ if(!tInShifted) {
+ continue;
+ }
+ } else if(secT > LVT || (secT & UCOL_PRIMARYMASK) == 0) {
+ secT = UCOL_PRIMARYMASK;
+ tInShifted = FALSE;
+ } else {
+ tInShifted = TRUE;
+ }
}
- } else if(secT > LVT || (secT & UCOL_PRIMARYMASK) == 0) {
- secT = UCOL_PRIMARYMASK;
- tInShifted = FALSE;
- } else {
- tInShifted = TRUE;
- }
- }
- secT &= UCOL_PRIMARYMASK;
+ secT &= UCOL_PRIMARYMASK;
- if(secS == secT) {
- if(secS == UCOL_NO_MORE_CES_PRIMARY) {
- break;
- } else {
- secS = 0; secT = 0;
- continue;
- }
- } else {
- result = (secS < secT) ? UCOL_LESS : UCOL_GREATER;
- goto commonReturn;
+ if(secS == secT) {
+ if(secS == UCOL_NO_MORE_CES_PRIMARY) {
+ break;
+ } else {
+ secS = 0; secT = 0;
+ continue;
+ }
+ } else {
+ result = (secS < secT) ? UCOL_LESS : UCOL_GREATER;
+ goto commonReturn;
+ }
}
- }
} else if(doHiragana && hirResult != UCOL_EQUAL) {
- // If we're fine on quaternaries, we might be different
- // on Hiragana. This, however, might fail us in shifted.
- result = hirResult;
- goto commonReturn;
+ // If we're fine on quaternaries, we might be different
+ // on Hiragana. This, however, might fail us in shifted.
+ result = hirResult;
+ goto commonReturn;
}
/* For IDENTICAL comparisons, we use a bitwise character comparison */
static inline uint32_t
ucol_getLatinOneContraction(const UCollator *coll, int32_t strength,
- uint32_t CE, const UChar *s, int32_t *index, int32_t len) {
- const UChar *UCharOffset = (UChar *)coll->image+getContractOffset(CE&0xFFF);
- int32_t latinOneOffset = (CE & 0x00FFF000) >> 12;
- int32_t offset = 1;
- UChar schar = 0, tchar = 0;
+ uint32_t CE, const UChar *s, int32_t *index, int32_t len)
+{
+ const UChar *UCharOffset = (UChar *)coll->image+getContractOffset(CE&0xFFF);
+ int32_t latinOneOffset = (CE & 0x00FFF000) >> 12;
+ int32_t offset = 1;
+ UChar schar = 0, tchar = 0;
- for(;;) {
- if(len == -1) {
- if(s[*index] == 0) { // end of string
- return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset]);
- } else {
- schar = s[*index];
- }
- } else {
- if(*index == len) {
- return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset]);
- } else {
- schar = s[*index];
- }
- }
+ for(;;) {
+ if(len == -1) {
+ if(s[*index] == 0) { // end of string
+ return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset]);
+ } else {
+ schar = s[*index];
+ }
+ } else {
+ if(*index == len) {
+ return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset]);
+ } else {
+ schar = s[*index];
+ }
+ }
- while(schar > (tchar = *(UCharOffset+offset))) { /* since the contraction codepoints should be ordered, we skip all that are smaller */
- offset++;
- }
+ while(schar > (tchar = *(UCharOffset+offset))) { /* since the contraction codepoints should be ordered, we skip all that are smaller */
+ offset++;
+ }
- if (schar == tchar) {
- (*index)++;
- return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset+offset]);
- }
- else
- {
- if(schar & 0xFF00 /*> UCOL_ENDOFLATIN1RANGE*/) {
- return UCOL_BAIL_OUT_CE;
- }
- // skip completely ignorables
- uint32_t isZeroCE = UTRIE_GET32_FROM_LEAD(coll->mapping, schar);
- if(isZeroCE == 0) { // we have to ignore completely ignorables
- (*index)++;
- continue;
- }
+ if (schar == tchar) {
+ (*index)++;
+ return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset+offset]);
+ }
+ else
+ {
+ if(schar & 0xFF00 /*> UCOL_ENDOFLATIN1RANGE*/) {
+ return UCOL_BAIL_OUT_CE;
+ }
+ // skip completely ignorables
+ uint32_t isZeroCE = UTRIE_GET32_FROM_LEAD(&coll->mapping, schar);
+ if(isZeroCE == 0) { // we have to ignore completely ignorables
+ (*index)++;
+ continue;
+ }
- return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset]);
+ return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset]);
+ }
}
- }
}
UChar sChar = 0, tChar = 0;
uint32_t sOrder=0, tOrder=0;
- UBool endOfSource = FALSE, endOfTarget = FALSE;
+ UBool endOfSource = FALSE;
uint32_t *elements = coll->latinOneCEs;
// Do the primary level
for(;;) {
- while(sOrder==0) { // this loop skips primary ignorables
- // sOrder=getNextlatinOneCE(source);
- if(sLen==-1) { // handling zero terminated strings
- sChar=source[sIndex++];
- if(sChar==0) {
- endOfSource = TRUE;
- break;
- }
- } else { // handling strings with known length
- if(sIndex==sLen) {
- endOfSource = TRUE;
- break;
- }
- sChar=source[sIndex++];
- }
- if(sChar&0xFF00) { // if we encounter non-latin-1, we bail out (sChar > 0xFF, but this is faster on win32)
- //fprintf(stderr, "R");
- goto returnRegular;
- //return ucol_strcollRegular(coll, source, sLen, target, tLen, status);
- }
- sOrder = elements[sChar];
- if(sOrder >= UCOL_NOT_FOUND) { // if we got a special
- // specials can basically be either contractions or bail-out signs. If we get anything
- // else, we'll bail out anywasy
- if(getCETag(sOrder) == CONTRACTION_TAG) {
- sOrder = ucol_getLatinOneContraction(coll, UCOL_PRIMARY, sOrder, source, &sIndex, sLen);
- haveContractions = TRUE; // if there are contractions, we cannot do French secondary
- // However, if there are contractions in the table, but we always use just one char,
- // we might be able to do French. This should be checked out.
- }
- if(sOrder >= UCOL_NOT_FOUND /*== UCOL_BAIL_OUT_CE*/) {
- //fprintf(stderr, "S");
- goto returnRegular;
- //return ucol_strcollRegular(coll, source, sLen, target, tLen, status);
- }
+ while(sOrder==0) { // this loop skips primary ignorables
+ // sOrder=getNextlatinOneCE(source);
+ if(sLen==-1) { // handling zero terminated strings
+ sChar=source[sIndex++];
+ if(sChar==0) {
+ endOfSource = TRUE;
+ break;
+ }
+ } else { // handling strings with known length
+ if(sIndex==sLen) {
+ endOfSource = TRUE;
+ break;
+ }
+ sChar=source[sIndex++];
+ }
+ if(sChar&0xFF00) { // if we encounter non-latin-1, we bail out (sChar > 0xFF, but this is faster on win32)
+ //fprintf(stderr, "R");
+ goto returnRegular;
+ //return ucol_strcollRegular(coll, source, sLen, target, tLen, status);
+ }
+ sOrder = elements[sChar];
+ if(sOrder >= UCOL_NOT_FOUND) { // if we got a special
+ // specials can basically be either contractions or bail-out signs. If we get anything
+ // else, we'll bail out anywasy
+ if(getCETag(sOrder) == CONTRACTION_TAG) {
+ sOrder = ucol_getLatinOneContraction(coll, UCOL_PRIMARY, sOrder, source, &sIndex, sLen);
+ haveContractions = TRUE; // if there are contractions, we cannot do French secondary
+ // However, if there are contractions in the table, but we always use just one char,
+ // we might be able to do French. This should be checked out.
+ }
+ if(sOrder >= UCOL_NOT_FOUND /*== UCOL_BAIL_OUT_CE*/) {
+ //fprintf(stderr, "S");
+ goto returnRegular;
+ //return ucol_strcollRegular(coll, source, sLen, target, tLen, status);
+ }
+ }
}
- }
- while(tOrder==0) { // this loop skips primary ignorables
- // tOrder=getNextlatinOneCE(target);
- if(tLen==-1) { // handling zero terminated strings
- tChar=target[tIndex++];
- if(tChar==0) {
- if(endOfSource) { // this is different than source loop,
- // as we already know that source loop is done here,
- // so we can either finish the primary loop if both
- // strings are done or anounce the result if only
- // target is done. Same below.
- goto endOfPrimLoop;
- } else {
- return UCOL_GREATER;
+ while(tOrder==0) { // this loop skips primary ignorables
+ // tOrder=getNextlatinOneCE(target);
+ if(tLen==-1) { // handling zero terminated strings
+ tChar=target[tIndex++];
+ if(tChar==0) {
+ if(endOfSource) { // this is different than source loop,
+ // as we already know that source loop is done here,
+ // so we can either finish the primary loop if both
+ // strings are done or anounce the result if only
+ // target is done. Same below.
+ goto endOfPrimLoop;
+ } else {
+ return UCOL_GREATER;
+ }
+ }
+ } else { // handling strings with known length
+ if(tIndex==tLen) {
+ if(endOfSource) {
+ goto endOfPrimLoop;
+ } else {
+ return UCOL_GREATER;
+ }
+ }
+ tChar=target[tIndex++];
}
- }
- } else { // handling strings with known length
- if(tIndex==tLen) {
- if(endOfSource) {
- goto endOfPrimLoop;
- } else {
- return UCOL_GREATER;
+ if(tChar&0xFF00) { // if we encounter non-latin-1, we bail out (sChar > 0xFF, but this is faster on win32)
+ //fprintf(stderr, "R");
+ goto returnRegular;
+ //return ucol_strcollRegular(coll, source, sLen, target, tLen, status);
+ }
+ tOrder = elements[tChar];
+ if(tOrder >= UCOL_NOT_FOUND) {
+ // Handling specials, see the comments for source
+ if(getCETag(tOrder) == CONTRACTION_TAG) {
+ tOrder = ucol_getLatinOneContraction(coll, UCOL_PRIMARY, tOrder, target, &tIndex, tLen);
+ haveContractions = TRUE;
+ }
+ if(tOrder >= UCOL_NOT_FOUND /*== UCOL_BAIL_OUT_CE*/) {
+ //fprintf(stderr, "S");
+ goto returnRegular;
+ //return ucol_strcollRegular(coll, source, sLen, target, tLen, status);
+ }
}
- }
- tChar=target[tIndex++];
- }
- if(tChar&0xFF00) { // if we encounter non-latin-1, we bail out (sChar > 0xFF, but this is faster on win32)
- //fprintf(stderr, "R");
- goto returnRegular;
- //return ucol_strcollRegular(coll, source, sLen, target, tLen, status);
- }
- tOrder = elements[tChar];
- if(tOrder >= UCOL_NOT_FOUND) {
- // Handling specials, see the comments for source
- if(getCETag(tOrder) == CONTRACTION_TAG) {
- tOrder = ucol_getLatinOneContraction(coll, UCOL_PRIMARY, tOrder, target, &tIndex, tLen);
- haveContractions = TRUE;
- }
- if(tOrder >= UCOL_NOT_FOUND /*== UCOL_BAIL_OUT_CE*/) {
- //fprintf(stderr, "S");
- goto returnRegular;
- //return ucol_strcollRegular(coll, source, sLen, target, tLen, status);
- }
}
- }
- if(endOfSource) { // source is finished, but target is not, say the result.
- return UCOL_LESS;
- }
-
- if(sOrder == tOrder) { // if we have same CEs, we continue the loop
- sOrder = 0; tOrder = 0;
- continue;
- } else {
- // compare current top bytes
- if(((sOrder^tOrder)&0xFF000000)!=0) {
- // top bytes differ, return difference
- if(sOrder < tOrder) {
+ if(endOfSource) { // source is finished, but target is not, say the result.
return UCOL_LESS;
- } else if(sOrder > tOrder) {
- return UCOL_GREATER;
- }
- // instead of return (int32_t)(sOrder>>24)-(int32_t)(tOrder>>24);
- // since we must return enum value
}
- // top bytes match, continue with following bytes
- sOrder<<=8;
- tOrder<<=8;
- }
+ if(sOrder == tOrder) { // if we have same CEs, we continue the loop
+ sOrder = 0; tOrder = 0;
+ continue;
+ } else {
+ // compare current top bytes
+ if(((sOrder^tOrder)&0xFF000000)!=0) {
+ // top bytes differ, return difference
+ if(sOrder < tOrder) {
+ return UCOL_LESS;
+ } else if(sOrder > tOrder) {
+ return UCOL_GREATER;
+ }
+ // instead of return (int32_t)(sOrder>>24)-(int32_t)(tOrder>>24);
+ // since we must return enum value
+ }
+
+ // top bytes match, continue with following bytes
+ sOrder<<=8;
+ tOrder<<=8;
+ }
}
endOfPrimLoop:
// so we set it and use simpler loop for secondaries and tertiaries
sLen = sIndex; tLen = tIndex;
if(strength >= UCOL_SECONDARY) {
- // adjust the table beggining
- elements += coll->latinOneTableLen;
- endOfSource = FALSE; endOfTarget = FALSE;
-
- if(coll->frenchCollation == UCOL_OFF) { // non French
- // This loop is a simplified copy of primary loop
- // at this point we know that whole strings are latin-1, so we don't
- // check for that. We also know that we only have contractions as
- // specials.
- sIndex = 0; tIndex = 0;
- for(;;) {
- while(sOrder==0) {
- if(sIndex==sLen) {
- endOfSource = TRUE;
- break;
- }
- sChar=source[sIndex++];
- sOrder = elements[sChar];
- if(sOrder > UCOL_NOT_FOUND) {
- sOrder = ucol_getLatinOneContraction(coll, UCOL_SECONDARY, sOrder, source, &sIndex, sLen);
- }
- }
+ // adjust the table beggining
+ elements += coll->latinOneTableLen;
+ endOfSource = FALSE;
+
+ if(coll->frenchCollation == UCOL_OFF) { // non French
+ // This loop is a simplified copy of primary loop
+ // at this point we know that whole strings are latin-1, so we don't
+ // check for that. We also know that we only have contractions as
+ // specials.
+ sIndex = 0; tIndex = 0;
+ for(;;) {
+ while(sOrder==0) {
+ if(sIndex==sLen) {
+ endOfSource = TRUE;
+ break;
+ }
+ sChar=source[sIndex++];
+ sOrder = elements[sChar];
+ if(sOrder > UCOL_NOT_FOUND) {
+ sOrder = ucol_getLatinOneContraction(coll, UCOL_SECONDARY, sOrder, source, &sIndex, sLen);
+ }
+ }
- while(tOrder==0) {
- if(tIndex==tLen) {
- if(endOfSource) {
- goto endOfSecLoop;
- } else {
- return UCOL_GREATER;
- }
- }
- tChar=target[tIndex++];
- tOrder = elements[tChar];
- if(tOrder > UCOL_NOT_FOUND) {
- tOrder = ucol_getLatinOneContraction(coll, UCOL_SECONDARY, tOrder, target, &tIndex, tLen);
- }
- }
- if(endOfSource) {
- return UCOL_LESS;
- }
+ while(tOrder==0) {
+ if(tIndex==tLen) {
+ if(endOfSource) {
+ goto endOfSecLoop;
+ } else {
+ return UCOL_GREATER;
+ }
+ }
+ tChar=target[tIndex++];
+ tOrder = elements[tChar];
+ if(tOrder > UCOL_NOT_FOUND) {
+ tOrder = ucol_getLatinOneContraction(coll, UCOL_SECONDARY, tOrder, target, &tIndex, tLen);
+ }
+ }
+ if(endOfSource) {
+ return UCOL_LESS;
+ }
- if(sOrder == tOrder) {
- sOrder = 0; tOrder = 0;
- continue;
- } else {
- // see primary loop for comments on this
- if(((sOrder^tOrder)&0xFF000000)!=0) {
- if(sOrder < tOrder) {
- return UCOL_LESS;
- } else if(sOrder > tOrder) {
- return UCOL_GREATER;
- }
- }
- sOrder<<=8;
- tOrder<<=8;
- }
- }
- } else { // French
- if(haveContractions) { // if we have contractions, we have to bail out
- // since we don't really know how to handle them here
- goto returnRegular;
- //return ucol_strcollRegular(coll, source, sLen, target, tLen, status);
- }
- // For French, we go backwards
- sIndex = sLen; tIndex = tLen;
- for(;;) {
- while(sOrder==0) {
- if(sIndex==0) {
- endOfSource = TRUE;
- break;
+ if(sOrder == tOrder) {
+ sOrder = 0; tOrder = 0;
+ continue;
+ } else {
+ // see primary loop for comments on this
+ if(((sOrder^tOrder)&0xFF000000)!=0) {
+ if(sOrder < tOrder) {
+ return UCOL_LESS;
+ } else if(sOrder > tOrder) {
+ return UCOL_GREATER;
+ }
+ }
+ sOrder<<=8;
+ tOrder<<=8;
+ }
}
- sChar=source[--sIndex];
- sOrder = elements[sChar];
- // don't even look for contractions
- }
+ } else { // French
+ if(haveContractions) { // if we have contractions, we have to bail out
+ // since we don't really know how to handle them here
+ goto returnRegular;
+ //return ucol_strcollRegular(coll, source, sLen, target, tLen, status);
+ }
+ // For French, we go backwards
+ sIndex = sLen; tIndex = tLen;
+ for(;;) {
+ while(sOrder==0) {
+ if(sIndex==0) {
+ endOfSource = TRUE;
+ break;
+ }
+ sChar=source[--sIndex];
+ sOrder = elements[sChar];
+ // don't even look for contractions
+ }
- while(tOrder==0) {
- if(tIndex==0) {
- if(endOfSource) {
- goto endOfSecLoop;
- } else {
- return UCOL_GREATER;
- }
- }
- tChar=target[--tIndex];
- tOrder = elements[tChar];
- // don't even look for contractions
- }
- if(endOfSource) {
- return UCOL_LESS;
- }
+ while(tOrder==0) {
+ if(tIndex==0) {
+ if(endOfSource) {
+ goto endOfSecLoop;
+ } else {
+ return UCOL_GREATER;
+ }
+ }
+ tChar=target[--tIndex];
+ tOrder = elements[tChar];
+ // don't even look for contractions
+ }
+ if(endOfSource) {
+ return UCOL_LESS;
+ }
- if(sOrder == tOrder) {
- sOrder = 0; tOrder = 0;
- continue;
- } else {
- // see the primary loop for comments
- if(((sOrder^tOrder)&0xFF000000)!=0) {
- if(sOrder < tOrder) {
- return UCOL_LESS;
- } else if(sOrder > tOrder) {
- return UCOL_GREATER;
- }
- }
- sOrder<<=8;
- tOrder<<=8;
- }
+ if(sOrder == tOrder) {
+ sOrder = 0; tOrder = 0;
+ continue;
+ } else {
+ // see the primary loop for comments
+ if(((sOrder^tOrder)&0xFF000000)!=0) {
+ if(sOrder < tOrder) {
+ return UCOL_LESS;
+ } else if(sOrder > tOrder) {
+ return UCOL_GREATER;
+ }
+ }
+ sOrder<<=8;
+ tOrder<<=8;
+ }
+ }
}
- }
}
endOfSecLoop:
if(strength >= UCOL_TERTIARY) {
- // tertiary loop is the same as secondary (except no French)
- elements += coll->latinOneTableLen;
- sIndex = 0; tIndex = 0;
- endOfSource = FALSE; endOfTarget = FALSE;
- for(;;) {
- while(sOrder==0) {
- if(sIndex==sLen) {
- endOfSource = TRUE;
- break;
- }
- sChar=source[sIndex++];
- sOrder = elements[sChar];
- if(sOrder > UCOL_NOT_FOUND) {
- sOrder = ucol_getLatinOneContraction(coll, UCOL_TERTIARY, sOrder, source, &sIndex, sLen);
- }
- }
- while(tOrder==0) {
- if(tIndex==tLen) {
+ // tertiary loop is the same as secondary (except no French)
+ elements += coll->latinOneTableLen;
+ sIndex = 0; tIndex = 0;
+ endOfSource = FALSE;
+ for(;;) {
+ while(sOrder==0) {
+ if(sIndex==sLen) {
+ endOfSource = TRUE;
+ break;
+ }
+ sChar=source[sIndex++];
+ sOrder = elements[sChar];
+ if(sOrder > UCOL_NOT_FOUND) {
+ sOrder = ucol_getLatinOneContraction(coll, UCOL_TERTIARY, sOrder, source, &sIndex, sLen);
+ }
+ }
+ while(tOrder==0) {
+ if(tIndex==tLen) {
+ if(endOfSource) {
+ return UCOL_EQUAL; // if both strings are at the end, they are equal
+ } else {
+ return UCOL_GREATER;
+ }
+ }
+ tChar=target[tIndex++];
+ tOrder = elements[tChar];
+ if(tOrder > UCOL_NOT_FOUND) {
+ tOrder = ucol_getLatinOneContraction(coll, UCOL_TERTIARY, tOrder, target, &tIndex, tLen);
+ }
+ }
if(endOfSource) {
- return UCOL_EQUAL; // if both strings are at the end, they are equal
- } else {
- return UCOL_GREATER;
+ return UCOL_LESS;
}
- }
- tChar=target[tIndex++];
- tOrder = elements[tChar];
- if(tOrder > UCOL_NOT_FOUND) {
- tOrder = ucol_getLatinOneContraction(coll, UCOL_TERTIARY, tOrder, target, &tIndex, tLen);
- }
- }
- if(endOfSource) {
- return UCOL_LESS;
- }
- if(sOrder == tOrder) {
- sOrder = 0; tOrder = 0;
- continue;
- } else {
- if(((sOrder^tOrder)&0xff000000)!=0) {
- if(sOrder < tOrder) {
- return UCOL_LESS;
- } else if(sOrder > tOrder) {
- return UCOL_GREATER;
+ if(sOrder == tOrder) {
+ sOrder = 0; tOrder = 0;
+ continue;
+ } else {
+ if(((sOrder^tOrder)&0xff000000)!=0) {
+ if(sOrder < tOrder) {
+ return UCOL_LESS;
+ } else if(sOrder > tOrder) {
+ return UCOL_GREATER;
+ }
+ }
+ sOrder<<=8;
+ tOrder<<=8;
}
- }
- sOrder<<=8;
- tOrder<<=8;
}
- }
}
return UCOL_EQUAL;
ucol_strcollIter( const UCollator *coll,
UCharIterator *sIter,
UCharIterator *tIter,
- UErrorCode *status) {
- if(!status || U_FAILURE(*status)) {
- return UCOL_EQUAL;
- }
+ UErrorCode *status)
+{
+ if(!status || U_FAILURE(*status)) {
+ return UCOL_EQUAL;
+ }
- UTRACE_ENTRY(UTRACE_UCOL_STRCOLLITER);
- UTRACE_DATA3(UTRACE_VERBOSE, "coll=%p, sIter=%p, tIter=%p", coll, sIter, tIter);
+ UTRACE_ENTRY(UTRACE_UCOL_STRCOLLITER);
+ UTRACE_DATA3(UTRACE_VERBOSE, "coll=%p, sIter=%p, tIter=%p", coll, sIter, tIter);
- if (sIter == tIter) {
- UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status)
- return UCOL_EQUAL;
- }
- if(sIter == NULL || tIter == NULL || coll == NULL) {
- *status = U_ILLEGAL_ARGUMENT_ERROR;
- UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status)
- return UCOL_EQUAL;
- }
+ if (sIter == tIter) {
+ UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status)
+ return UCOL_EQUAL;
+ }
+ if(sIter == NULL || tIter == NULL || coll == NULL) {
+ *status = U_ILLEGAL_ARGUMENT_ERROR;
+ UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status)
+ return UCOL_EQUAL;
+ }
- UCollationResult result = UCOL_EQUAL;
-
- // Preparing the context objects for iterating over strings
- collIterate sColl, tColl;
- // The division for the array length may truncate the array size to
- // a little less than UNORM_ITER_SIZE, but that size is dimensioned too high
- // for all platforms anyway.
- UAlignedMemory stackNormIter1[UNORM_ITER_SIZE/sizeof(UAlignedMemory)];
- UAlignedMemory stackNormIter2[UNORM_ITER_SIZE/sizeof(UAlignedMemory)];
- UNormIterator *sNormIter = NULL, *tNormIter = NULL;
-
- IInit_collIterate(coll, NULL, -1, &sColl);
- sColl.iterator = sIter;
- sColl.flags |= UCOL_USE_ITERATOR;
- IInit_collIterate(coll, NULL, -1, &tColl);
- tColl.flags |= UCOL_USE_ITERATOR;
- tColl.iterator = tIter;
-
- if(ucol_getAttribute(coll, UCOL_NORMALIZATION_MODE, status) == UCOL_ON) {
- sNormIter = unorm_openIter(stackNormIter1, sizeof(stackNormIter1), status);
- sColl.iterator = unorm_setIter(sNormIter, sIter, UNORM_FCD, status);
- sColl.flags &= ~UCOL_ITER_NORM;
-
- tNormIter = unorm_openIter(stackNormIter2, sizeof(stackNormIter2), status);
- tColl.iterator = unorm_setIter(tNormIter, tIter, UNORM_FCD, status);
- tColl.flags &= ~UCOL_ITER_NORM;
- }
+ UCollationResult result = UCOL_EQUAL;
+
+ // Preparing the context objects for iterating over strings
+ collIterate sColl, tColl;
+ // The division for the array length may truncate the array size to
+ // a little less than UNORM_ITER_SIZE, but that size is dimensioned too high
+ // for all platforms anyway.
+ UAlignedMemory stackNormIter1[UNORM_ITER_SIZE/sizeof(UAlignedMemory)];
+ UAlignedMemory stackNormIter2[UNORM_ITER_SIZE/sizeof(UAlignedMemory)];
+ UNormIterator *sNormIter = NULL, *tNormIter = NULL;
+
+ IInit_collIterate(coll, NULL, -1, &sColl);
+ sColl.iterator = sIter;
+ sColl.flags |= UCOL_USE_ITERATOR;
+ IInit_collIterate(coll, NULL, -1, &tColl);
+ tColl.flags |= UCOL_USE_ITERATOR;
+ tColl.iterator = tIter;
- UChar32 sChar = U_SENTINEL, tChar = U_SENTINEL;
+ if(ucol_getAttribute(coll, UCOL_NORMALIZATION_MODE, status) == UCOL_ON) {
+ sNormIter = unorm_openIter(stackNormIter1, sizeof(stackNormIter1), status);
+ sColl.iterator = unorm_setIter(sNormIter, sIter, UNORM_FCD, status);
+ sColl.flags &= ~UCOL_ITER_NORM;
- while((sChar = sColl.iterator->next(sColl.iterator)) ==
- (tChar = tColl.iterator->next(tColl.iterator))) {
- if(UCOL_ISTHAIPREVOWEL(sChar)) {
- break;
+ tNormIter = unorm_openIter(stackNormIter2, sizeof(stackNormIter2), status);
+ tColl.iterator = unorm_setIter(tNormIter, tIter, UNORM_FCD, status);
+ tColl.flags &= ~UCOL_ITER_NORM;
}
+
+ UChar32 sChar = U_SENTINEL, tChar = U_SENTINEL;
+
+ while((sChar = sColl.iterator->next(sColl.iterator)) ==
+ (tChar = tColl.iterator->next(tColl.iterator))) {
+ if(sChar == U_SENTINEL) {
+ result = UCOL_EQUAL;
+ goto end_compare;
+ }
+ }
+
if(sChar == U_SENTINEL) {
- result = UCOL_EQUAL;
- goto end_compare;
+ tChar = tColl.iterator->previous(tColl.iterator);
}
- }
- if(sChar == U_SENTINEL) {
- tChar = tColl.iterator->previous(tColl.iterator);
- }
+ if(tChar == U_SENTINEL) {
+ sChar = sColl.iterator->previous(sColl.iterator);
+ }
- if(tChar == U_SENTINEL) {
sChar = sColl.iterator->previous(sColl.iterator);
- }
-
- sChar = sColl.iterator->previous(sColl.iterator);
- tChar = tColl.iterator->previous(tColl.iterator);
+ tChar = tColl.iterator->previous(tColl.iterator);
- if (ucol_unsafeCP((UChar)sChar, coll) || ucol_unsafeCP((UChar)tChar, coll))
- {
- // We are stopped in the middle of a contraction.
- // Scan backwards through the == part of the string looking for the start of the contraction.
- // It doesn't matter which string we scan, since they are the same in this region.
- do
- {
- sChar = sColl.iterator->previous(sColl.iterator);
- tChar = tColl.iterator->previous(tColl.iterator);
- }
- while (sChar != U_SENTINEL && ucol_unsafeCP((UChar)sChar, coll));
- }
+ if (ucol_unsafeCP((UChar)sChar, coll) || ucol_unsafeCP((UChar)tChar, coll))
+ {
+ // We are stopped in the middle of a contraction.
+ // Scan backwards through the == part of the string looking for the start of the contraction.
+ // It doesn't matter which string we scan, since they are the same in this region.
+ do
+ {
+ sChar = sColl.iterator->previous(sColl.iterator);
+ tChar = tColl.iterator->previous(tColl.iterator);
+ }
+ while (sChar != U_SENTINEL && ucol_unsafeCP((UChar)sChar, coll));
+ }
- if(U_SUCCESS(*status)) {
- result = ucol_strcollRegular(&sColl, &tColl, status);
- }
+ if(U_SUCCESS(*status)) {
+ result = ucol_strcollRegular(&sColl, &tColl, status);
+ }
end_compare:
- if(sNormIter || tNormIter) {
- unorm_closeIter(sNormIter);
- unorm_closeIter(tNormIter);
- }
+ if(sNormIter || tNormIter) {
+ unorm_closeIter(sNormIter);
+ unorm_closeIter(tNormIter);
+ }
- UTRACE_EXIT_VALUE_STATUS(result, *status)
- return result;
+ UTRACE_EXIT_VALUE_STATUS(result, *status)
+ return result;
}
-
/* */
/* ucol_strcoll Main public API string comparison function */
/* */
const UChar *source,
int32_t sourceLength,
const UChar *target,
- int32_t targetLength) {
+ int32_t targetLength)
+{
U_ALIGN_CODE(16);
UTRACE_ENTRY(UTRACE_UCOL_STRCOLL);
if (UTRACE_LEVEL(UTRACE_VERBOSE)) {
- UTRACE_DATA3(UTRACE_VERBOSE, "coll=%p, source=%p, target=%p", coll, source, target);
- UTRACE_DATA2(UTRACE_VERBOSE, "source string = %vh ", source, sourceLength);
- UTRACE_DATA2(UTRACE_VERBOSE, "target string = %vh ", target, targetLength);
+ UTRACE_DATA3(UTRACE_VERBOSE, "coll=%p, source=%p, target=%p", coll, source, target);
+ UTRACE_DATA2(UTRACE_VERBOSE, "source string = %vh ", source, sourceLength);
+ UTRACE_DATA2(UTRACE_VERBOSE, "target string = %vh ", target, targetLength);
}
- UErrorCode status = U_ZERO_ERROR;
if(source == NULL || target == NULL) {
- // do not crash, but return. Should have
- // status argument to return error.
- UTRACE_EXIT_VALUE(UTRACE_UCOL_STRCOLL);
- return UCOL_EQUAL;
+ // do not crash, but return. Should have
+ // status argument to return error.
+ UTRACE_EXIT_VALUE(UCOL_EQUAL);
+ return UCOL_EQUAL;
+ }
+
+ /* Quick check if source and target are same strings. */
+ /* They should either both be NULL terminated or the explicit length should be set on both. */
+ if (source==target && sourceLength==targetLength) {
+ UTRACE_EXIT_VALUE(UCOL_EQUAL);
+ return UCOL_EQUAL;
}
- collIterate sColl, tColl;
/* Scan the strings. Find: */
/* The length of any leading portion that is equal */
if (sourceLength == -1 && targetLength == -1) {
// Both strings are null terminated.
- // Check for them being the same string, and scan through
- // any leading equal portion.
- if (source==target) {
- UTRACE_EXIT_VALUE(UCOL_EQUAL);
- return UCOL_EQUAL;
- }
-
- for (;;) {
- if ( *pSrc != *pTarg || *pSrc == 0) {
- break;
- }
- if(UCOL_ISTHAIPREVOWEL(*pSrc)) {
- break;
- }
+ // Scan through any leading equal portion.
+ while (*pSrc == *pTarg && *pSrc != 0) {
pSrc++;
pTarg++;
}
else
{
// One or both strings has an explicit length.
- /* check if source and target are same strings */
-
- if (source==target && sourceLength==targetLength) {
- UTRACE_EXIT_VALUE(UCOL_EQUAL);
- return UCOL_EQUAL;
- }
const UChar *pSrcEnd = source + sourceLength;
const UChar *pTargEnd = target + targetLength;
-
// Scan while the strings are bitwise ==, or until one is exhausted.
- for (;;) {
- if (pSrc == pSrcEnd || pTarg == pTargEnd) {
- break;
- }
- if ((*pSrc == 0 && sourceLength == -1) || (*pTarg == 0 && targetLength == -1)) {
- break;
- }
- if (*pSrc != *pTarg) {
- break;
- }
- if(UCOL_ISTHAIPREVOWEL(*pSrc)) { // they are the same here, so any will do
- break;
- }
- pSrc++;
- pTarg++;
+ for (;;) {
+ if (pSrc == pSrcEnd || pTarg == pTargEnd) {
+ break;
}
- equalLength = pSrc - source;
-
- // If we made it all the way through both strings, we are done. They are ==
- if ((pSrc ==pSrcEnd || (pSrcEnd <pSrc && *pSrc==0)) && /* At end of src string, however it was specified. */
- (pTarg==pTargEnd || (pTargEnd<pTarg && *pTarg==0))) { /* and also at end of dest string */
- UTRACE_EXIT_VALUE(UCOL_EQUAL);
- return UCOL_EQUAL;
+ if ((*pSrc == 0 && sourceLength == -1) || (*pTarg == 0 && targetLength == -1)) {
+ break;
}
+ if (*pSrc != *pTarg) {
+ break;
+ }
+ pSrc++;
+ pTarg++;
+ }
+ equalLength = pSrc - source;
+
+ // If we made it all the way through both strings, we are done. They are ==
+ if ((pSrc ==pSrcEnd || (pSrcEnd <pSrc && *pSrc==0)) && /* At end of src string, however it was specified. */
+ (pTarg==pTargEnd || (pTargEnd<pTarg && *pTarg==0))) /* and also at end of dest string */
+ {
+ UTRACE_EXIT_VALUE(UCOL_EQUAL);
+ return UCOL_EQUAL;
+ }
}
if (equalLength > 0) {
/* There is an identical portion at the beginning of the two strings. */
/* If the identical portion ends within a contraction or a comibining */
/* character sequence, back up to the start of that sequence. */
- pSrc = source + equalLength; /* point to the first differing chars */
- pTarg = target + equalLength;
+
+ // These values should already be set by the code above.
+ //pSrc = source + equalLength; /* point to the first differing chars */
+ //pTarg = target + equalLength;
if (pSrc != source+sourceLength && ucol_unsafeCP(*pSrc, coll) ||
pTarg != target+targetLength && ucol_unsafeCP(*pTarg, coll))
{
}
}
- UCollationResult returnVal;
+ UErrorCode status = U_ZERO_ERROR;
+ UCollationResult returnVal;
if(!coll->latinOneUse || (sourceLength > 0 && *source&0xff00) || (targetLength > 0 && *target&0xff00)) {
- // Preparing the context objects for iterating over strings
- IInit_collIterate(coll, source, sourceLength, &sColl);
- IInit_collIterate(coll, target, targetLength, &tColl);
- returnVal = ucol_strcollRegular(&sColl, &tColl, &status);
+ collIterate sColl, tColl;
+ // Preparing the context objects for iterating over strings
+ IInit_collIterate(coll, source, sourceLength, &sColl);
+ IInit_collIterate(coll, target, targetLength, &tColl);
+ returnVal = ucol_strcollRegular(&sColl, &tColl, &status);
} else {
- returnVal = ucol_strcollUseLatin1(coll, source, sourceLength, target, targetLength, &status);
+ returnVal = ucol_strcollUseLatin1(coll, source, sourceLength, target, targetLength, &status);
}
UTRACE_EXIT_VALUE(returnVal);
return returnVal;
const UChar *target,
int32_t targetLength)
{
- return (ucol_strcoll(coll, source, sourceLength, target, targetLength)
- == UCOL_GREATER);
+ return (ucol_strcoll(coll, source, sourceLength, target, targetLength)
+ == UCOL_GREATER);
}
/* convenience function for comparing strings */
const UChar *target,
int32_t targetLength)
{
- return (ucol_strcoll(coll, source, sourceLength, target, targetLength)
- != UCOL_LESS);
+ return (ucol_strcoll(coll, source, sourceLength, target, targetLength)
+ != UCOL_LESS);
}
/* convenience function for comparing strings */
const UChar *target,
int32_t targetLength)
{
- return (ucol_strcoll(coll, source, sourceLength, target, targetLength)
- == UCOL_EQUAL);
-}
-
-/* returns the locale name the collation data comes from */
-U_CAPI const char * U_EXPORT2
-ucol_getLocale(const UCollator *coll, ULocDataLocaleType type, UErrorCode *status) {
- return ucol_getLocaleByType(coll, type, status);
-}
-
-U_CAPI const char * U_EXPORT2
-ucol_getLocaleByType(const UCollator *coll, ULocDataLocaleType type, UErrorCode *status) {
- const char *result = NULL;
- if(status == NULL || U_FAILURE(*status)) {
- return NULL;
- }
- UTRACE_ENTRY(UTRACE_UCOL_GETLOCALE);
- UTRACE_DATA1(UTRACE_INFO, "coll=%p", coll);
-
- switch(type) {
- case ULOC_ACTUAL_LOCALE:
- // validLocale is set only if service registration has explicitly set the
- // requested and valid locales. if this is the case, the actual locale
- // is considered to be the valid locale.
- if (coll->validLocale != NULL) {
- result = coll->validLocale;
- } else if(coll->elements != NULL) {
- result = ures_getLocale(coll->elements, status);
- }
- break;
- case ULOC_VALID_LOCALE:
- if (coll->validLocale != NULL) {
- result = coll->validLocale;
- } else if(coll->rb != NULL) {
- result = ures_getLocale(coll->rb, status);
- }
- break;
- case ULOC_REQUESTED_LOCALE:
- result = coll->requestedLocale;
- break;
- default:
- *status = U_ILLEGAL_ARGUMENT_ERROR;
- }
- UTRACE_DATA1(UTRACE_INFO, "result = %s", result);
- UTRACE_EXIT_STATUS(*status);
- return result;
-}
-
-U_CAPI USet * U_EXPORT2
-ucol_getTailoredSet(const UCollator *coll, UErrorCode *status)
-{
- if(status == NULL || U_FAILURE(*status)) {
- return NULL;
- }
- if(coll == NULL || coll->UCA == NULL) {
- *status = U_ILLEGAL_ARGUMENT_ERROR;
- }
- UParseError parseError;
- UColTokenParser src;
- int32_t rulesLen = 0;
- const UChar *rules = ucol_getRules(coll, &rulesLen);
- const UChar *current = NULL;
- UBool startOfRules = TRUE;
- // we internally use the C++ class, for the following reasons:
- // 1. we need to utilize canonical iterator, which is a C++ only class
- // 2. canonical iterator returns UnicodeStrings - USet cannot take them
- // 3. USet is internally really UnicodeSet, C is just a wrapper
- UnicodeSet *tailored = new UnicodeSet();
- UnicodeString pattern;
- UnicodeString empty;
- CanonicalIterator it(empty, *status);
-
-
- // The idea is to tokenize the rule set. For each non-reset token,
- // we add all the canonicaly equivalent FCD sequences
- ucol_tok_initTokenList(&src, rules, rulesLen, coll->UCA, status);
- while ((current = ucol_tok_parseNextToken(&src, startOfRules, &parseError, status)) != NULL) {
- startOfRules = FALSE;
- if(src.parsedToken.strength != UCOL_TOK_RESET) {
- const UChar *stuff = src.source+(src.parsedToken.charsOffset);
- it.setSource(UnicodeString(stuff, src.parsedToken.charsLen), *status);
- pattern = it.next();
- while(!pattern.isBogus()) {
- if(Normalizer::quickCheck(pattern, UNORM_FCD, *status) != UNORM_NO) {
- tailored->add(pattern);
- }
- pattern = it.next();
- }
- }
- }
- ucol_tok_closeTokenList(&src);
- return (USet *)tailored;
-}
-
-U_CAPI UBool U_EXPORT2
-ucol_equals(const UCollator *source, const UCollator *target) {
- UErrorCode status = U_ZERO_ERROR;
- // if pointers are equal, collators are equal
- if(source == target) {
- return TRUE;
- }
- int32_t i = 0, j = 0;
- // if any of attributes are different, collators are not equal
- for(i = 0; i < UCOL_ATTRIBUTE_COUNT; i++) {
- if(ucol_getAttribute(source, (UColAttribute)i, &status) != ucol_getAttribute(target, (UColAttribute)i, &status) || U_FAILURE(status)) {
- return FALSE;
- }
- }
-
- int32_t sourceRulesLen = 0, targetRulesLen = 0;
- const UChar *sourceRules = ucol_getRules(source, &sourceRulesLen);
- const UChar *targetRules = ucol_getRules(target, &targetRulesLen);
-
- if(sourceRulesLen == targetRulesLen && u_strncmp(sourceRules, targetRules, sourceRulesLen) == 0) {
- // all the attributes are equal and the rules are equal - collators are equal
- return(TRUE);
- }
- // hard part, need to construct tree from rules and see if they yield the same tailoring
- UBool result = TRUE;
- UParseError parseError;
- UColTokenParser sourceParser, targetParser;
- int32_t sourceListLen = 0, targetListLen = 0;
- ucol_tok_initTokenList(&sourceParser, sourceRules, sourceRulesLen, source->UCA, &status);
- ucol_tok_initTokenList(&targetParser, targetRules, targetRulesLen, target->UCA, &status);
- sourceListLen = ucol_tok_assembleTokenList(&sourceParser, &parseError, &status);
- targetListLen = ucol_tok_assembleTokenList(&targetParser, &parseError, &status);
-
- if(sourceListLen != targetListLen) {
- // different number of resets
- result = FALSE;
- } else {
- UColToken *sourceReset = NULL, *targetReset = NULL;
- UChar *sourceResetString = NULL, *targetResetString = NULL;
- int32_t sourceStringLen = 0, targetStringLen = 0;
- for(i = 0; i < sourceListLen; i++) {
- sourceReset = sourceParser.lh[i].reset;
- sourceResetString = sourceParser.source+(sourceReset->source & 0xFFFFFF);
- sourceStringLen = sourceReset->source >> 24;
- for(j = 0; j < sourceListLen; j++) {
- targetReset = targetParser.lh[j].reset;
- targetResetString = targetParser.source+(targetReset->source & 0xFFFFFF);
- targetStringLen = targetReset->source >> 24;
- if(sourceStringLen == targetStringLen && (u_strncmp(sourceResetString, targetResetString, sourceStringLen) == 0)) {
- sourceReset = sourceParser.lh[i].first;
- targetReset = targetParser.lh[j].first;
- while(sourceReset != NULL && targetReset != NULL) {
- sourceResetString = sourceParser.source+(sourceReset->source & 0xFFFFFF);
- sourceStringLen = sourceReset->source >> 24;
- targetResetString = targetParser.source+(targetReset->source & 0xFFFFFF);
- targetStringLen = targetReset->source >> 24;
- if(sourceStringLen != targetStringLen || (u_strncmp(sourceResetString, targetResetString, sourceStringLen) != 0)) {
- result = FALSE;
- goto returnResult;
- }
- // probably also need to check the expansions
- if(sourceReset->expansion) {
- if(!targetReset->expansion) {
- result = FALSE;
- goto returnResult;
- } else {
- // compare expansions
- sourceResetString = sourceParser.source+(sourceReset->expansion& 0xFFFFFF);
- sourceStringLen = sourceReset->expansion >> 24;
- targetResetString = targetParser.source+(targetReset->expansion & 0xFFFFFF);
- targetStringLen = targetReset->expansion >> 24;
- if(sourceStringLen != targetStringLen || (u_strncmp(sourceResetString, targetResetString, sourceStringLen) != 0)) {
- result = FALSE;
- goto returnResult;
- }
- }
- } else {
- if(targetReset->expansion) {
- result = FALSE;
- goto returnResult;
- }
- }
- sourceReset = sourceReset->next;
- targetReset = targetReset->next;
- }
- if(sourceReset != targetReset) { // at least one is not NULL
- // there are more tailored elements in one list
- result = FALSE;
- goto returnResult;
- }
-
-
- break;
- }
- }
- // couldn't find the reset anchor, so the collators are not equal
- if(j == sourceListLen) {
- result = FALSE;
- goto returnResult;
- }
- }
- }
-
-returnResult:
- ucol_tok_closeTokenList(&sourceParser);
- ucol_tok_closeTokenList(&targetParser);
- return result;
-
+ return (ucol_strcoll(coll, source, sourceLength, target, targetLength)
+ == UCOL_EQUAL);
}
U_CAPI void U_EXPORT2
ucol_getUCAVersion(const UCollator* coll, UVersionInfo info) {
- if(coll && coll->UCA) {
- uprv_memcpy(info, coll->UCA->image->UCAVersion, sizeof(UVersionInfo));
- }
-}
-
-U_CAPI int32_t U_EXPORT2
-ucol_cloneBinary(const UCollator *coll,
- uint8_t *buffer, int32_t capacity,
- UErrorCode *status)
-{
- int32_t length = 0;
- if(U_FAILURE(*status)) {
- return length;
- }
- if(coll->hasRealData == TRUE) {
- length = coll->image->size;
- if(length <= capacity) {
- uprv_memcpy(buffer, coll->image, length);
- }
- } else {
- length = (int32_t)(paddedsize(sizeof(UCATableHeader))+paddedsize(sizeof(UColOptionSet)));
- if(length <= capacity) {
- /* build the UCATableHeader with minimal entries */
- /* do not copy the header from the UCA file because its values are wrong! */
- /* uprv_memcpy(result, UCA->image, sizeof(UCATableHeader)); */
-
- /* reset everything */
- uprv_memset(buffer, 0, length);
-
- /* set the tailoring-specific values */
- UCATableHeader *myData = (UCATableHeader *)buffer;
- myData->size = length;
-
- /* offset for the options, the only part of the data that is present after the header */
- myData->options = sizeof(UCATableHeader);
-
- /* need to always set the expansion value for an upper bound of the options */
- myData->expansion = myData->options + sizeof(UColOptionSet);
-
- myData->magic = UCOL_HEADER_MAGIC;
- myData->isBigEndian = U_IS_BIG_ENDIAN;
- myData->charSetFamily = U_CHARSET_FAMILY;
-
- /* copy UCA's version; genrb will override all but the builder version with tailoring data */
- uprv_memcpy(myData->version, coll->image->version, sizeof(UVersionInfo));
-
- uprv_memcpy(myData->UCAVersion, coll->image->UCAVersion, sizeof(UVersionInfo));
- uprv_memcpy(myData->UCDVersion, coll->image->UCDVersion, sizeof(UVersionInfo));
- uprv_memcpy(myData->formatVersion, coll->image->formatVersion, sizeof(UVersionInfo));
- myData->jamoSpecial = coll->image->jamoSpecial;
-
- /* copy the collator options */
- uprv_memcpy(buffer+paddedsize(sizeof(UCATableHeader)), coll->options, sizeof(UColOptionSet));
- }
- }
- return length;
-}
-
-U_CAPI UCollator* U_EXPORT2
-ucol_openBinary(const uint8_t *bin, int32_t length,
- const UCollator *base,
- UErrorCode *status)
-{
- UCollator *result = NULL;
- if(U_FAILURE(*status)){
- return NULL;
- }
- if(base == NULL) {
- // we don't support null base yet
- *status = U_ILLEGAL_ARGUMENT_ERROR;
- return NULL;
+ if(coll && coll->UCA) {
+ uprv_memcpy(info, coll->UCA->image->UCAVersion, sizeof(UVersionInfo));
}
- UCATableHeader *colData = (UCATableHeader *)bin;
- // do we want version check here? We're trying to figure out whether collators are compatible
- if(uprv_memcmp(colData->UCAVersion, base->image->UCAVersion, sizeof(UVersionInfo)) != 0 ||
- uprv_memcmp(colData->UCDVersion, base->image->UCDVersion, sizeof(UVersionInfo)) != 0 ||
- colData->version[0] != UCOL_BUILDER_VERSION) {
- *status = U_COLLATOR_VERSION_MISMATCH;
- return NULL;
- } else {
- if((uint32_t)length > (paddedsize(sizeof(UCATableHeader)) + paddedsize(sizeof(UColOptionSet)))) {
- result = ucol_initCollator((const UCATableHeader *)bin, result, base, status);
- if(U_FAILURE(*status)){
- return NULL;
- }
- result->hasRealData = TRUE;
- } else {
- if(base) {
- result = ucol_initCollator(base->image, result, base, status);
- ucol_setOptionsFromHeader(result, (UColOptionSet *)(bin+((const UCATableHeader *)bin)->options), status);
- if(U_FAILURE(*status)){
- return NULL;
- }
- result->hasRealData = FALSE;
- } else {
- *status = U_USELESS_COLLATOR_ERROR;
- return NULL;
- }
- }
- result->freeImageOnClose = FALSE;
- }
- result->validLocale = NULL;
- result->requestedLocale = NULL;
- result->rules = NULL;
- result->rulesLength = 0;
- result->freeRulesOnClose = FALSE;
- result->rb = NULL;
- result->elements = NULL;
- return result;
}
#endif /* #if !UCONFIG_NO_COLLATION */
-