]> git.saurik.com Git - apple/icu.git/blob - icuSources/tools/makeconv/gencnvex.c
726a1e5a86d4c0aa62507af75b806e668197d356
[apple/icu.git] / icuSources / tools / makeconv / gencnvex.c
1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 *******************************************************************************
5 *
6 * Copyright (C) 2003-2014, International Business Machines
7 * Corporation and others. All Rights Reserved.
8 *
9 *******************************************************************************
10 * file name: gencnvex.c
11 * encoding: UTF-8
12 * tab size: 8 (not used)
13 * indentation:4
14 *
15 * created on: 2003oct12
16 * created by: Markus W. Scherer
17 */
18
19 #include <stdio.h>
20 #include "unicode/utypes.h"
21 #include "unicode/ustring.h"
22 #include "cstring.h"
23 #include "cmemory.h"
24 #include "ucnv_cnv.h"
25 #include "ucnvmbcs.h"
26 #include "toolutil.h"
27 #include "unewdata.h"
28 #include "ucm.h"
29 #include "makeconv.h"
30 #include "genmbcs.h"
31
32 static void
33 CnvExtClose(NewConverter *cnvData);
34
35 static UBool
36 CnvExtIsValid(NewConverter *cnvData,
37 const uint8_t *bytes, int32_t length);
38
39 static UBool
40 CnvExtAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData);
41
42 static uint32_t
43 CnvExtWrite(NewConverter *cnvData, const UConverterStaticData *staticData,
44 UNewDataMemory *pData, int32_t tableType);
45
46 typedef struct CnvExtData {
47 NewConverter newConverter;
48
49 UCMFile *ucm;
50
51 /* toUnicode (state table in ucm->states) */
52 UToolMemory *toUTable, *toUUChars;
53
54 /* fromUnicode */
55 UToolMemory *fromUTableUChars, *fromUTableValues, *fromUBytes;
56
57 uint16_t stage1[MBCS_STAGE_1_SIZE];
58 uint16_t stage2[MBCS_STAGE_2_SIZE];
59 uint16_t stage3[0x10000<<UCNV_EXT_STAGE_2_LEFT_SHIFT]; /* 0x10000 because of 16-bit stage 2/3 indexes */
60 uint32_t stage3b[0x10000];
61
62 int32_t stage1Top, stage2Top, stage3Top, stage3bTop;
63
64 /* for stage3 compaction of <subchar1> |2 mappings */
65 uint16_t stage3Sub1Block;
66
67 /* statistics */
68 int32_t
69 maxInBytes, maxOutBytes, maxBytesPerUChar,
70 maxInUChars, maxOutUChars, maxUCharsPerByte;
71 } CnvExtData;
72
73 NewConverter *
74 CnvExtOpen(UCMFile *ucm) {
75 CnvExtData *extData;
76
77 extData=(CnvExtData *)uprv_malloc(sizeof(CnvExtData));
78 if(extData==NULL) {
79 printf("out of memory\n");
80 exit(U_MEMORY_ALLOCATION_ERROR);
81 }
82 uprv_memset(extData, 0, sizeof(CnvExtData));
83
84 extData->ucm=ucm; /* aliased, not owned */
85
86 extData->newConverter.close=CnvExtClose;
87 extData->newConverter.isValid=CnvExtIsValid;
88 extData->newConverter.addTable=CnvExtAddTable;
89 extData->newConverter.write=CnvExtWrite;
90 return &extData->newConverter;
91 }
92
93 static void
94 CnvExtClose(NewConverter *cnvData) {
95 CnvExtData *extData=(CnvExtData *)cnvData;
96 if(extData!=NULL) {
97 utm_close(extData->toUTable);
98 utm_close(extData->toUUChars);
99 utm_close(extData->fromUTableUChars);
100 utm_close(extData->fromUTableValues);
101 utm_close(extData->fromUBytes);
102 uprv_free(extData);
103 }
104 }
105
106 /* we do not expect this to be called */
107 static UBool
108 CnvExtIsValid(NewConverter *cnvData,
109 const uint8_t *bytes, int32_t length) {
110 // suppress compiler warnings about unused variables
111 (void)cnvData;
112 (void)bytes;
113 (void)length;
114 return FALSE;
115 }
116
117 static uint32_t
118 CnvExtWrite(NewConverter *cnvData, const UConverterStaticData *staticData,
119 UNewDataMemory *pData, int32_t tableType) {
120 (void) staticData; // suppress compiler warnings about unused variable
121 CnvExtData *extData=(CnvExtData *)cnvData;
122 int32_t length, top, headerSize;
123
124 int32_t indexes[UCNV_EXT_INDEXES_MIN_LENGTH]={ 0 };
125
126 if(tableType&TABLE_BASE) {
127 headerSize=0;
128 } else {
129 _MBCSHeader header={ { 0, 0, 0, 0 }, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
130
131 /* write the header and base table name for an extension-only table */
132 length=(int32_t)uprv_strlen(extData->ucm->baseName)+1;
133 while(length&3) {
134 /* add padding */
135 extData->ucm->baseName[length++]=0;
136 }
137
138 headerSize=MBCS_HEADER_V4_LENGTH*4+length;
139
140 /* fill the header */
141 header.version[0]=4;
142 header.version[1]=2;
143 header.flags=(uint32_t)((headerSize<<8)|MBCS_OUTPUT_EXT_ONLY);
144
145 /* write the header and the base table name */
146 udata_writeBlock(pData, &header, MBCS_HEADER_V4_LENGTH*4);
147 udata_writeBlock(pData, extData->ucm->baseName, length);
148 }
149
150 /* fill indexes[] - offsets/indexes are in units of the target array */
151 top=0;
152
153 indexes[UCNV_EXT_INDEXES_LENGTH]=length=UCNV_EXT_INDEXES_MIN_LENGTH;
154 top+=length*4;
155
156 indexes[UCNV_EXT_TO_U_INDEX]=top;
157 indexes[UCNV_EXT_TO_U_LENGTH]=length=utm_countItems(extData->toUTable);
158 top+=length*4;
159
160 indexes[UCNV_EXT_TO_U_UCHARS_INDEX]=top;
161 indexes[UCNV_EXT_TO_U_UCHARS_LENGTH]=length=utm_countItems(extData->toUUChars);
162 top+=length*2;
163
164 indexes[UCNV_EXT_FROM_U_UCHARS_INDEX]=top;
165 length=utm_countItems(extData->fromUTableUChars);
166 top+=length*2;
167
168 if(top&3) {
169 /* add padding */
170 *((UChar *)utm_alloc(extData->fromUTableUChars))=0;
171 *((uint32_t *)utm_alloc(extData->fromUTableValues))=0;
172 ++length;
173 top+=2;
174 }
175 indexes[UCNV_EXT_FROM_U_LENGTH]=length;
176
177 indexes[UCNV_EXT_FROM_U_VALUES_INDEX]=top;
178 top+=length*4;
179
180 indexes[UCNV_EXT_FROM_U_BYTES_INDEX]=top;
181 length=utm_countItems(extData->fromUBytes);
182 top+=length;
183
184 if(top&1) {
185 /* add padding */
186 *((uint8_t *)utm_alloc(extData->fromUBytes))=0;
187 ++length;
188 ++top;
189 }
190 indexes[UCNV_EXT_FROM_U_BYTES_LENGTH]=length;
191
192 indexes[UCNV_EXT_FROM_U_STAGE_12_INDEX]=top;
193 indexes[UCNV_EXT_FROM_U_STAGE_1_LENGTH]=length=extData->stage1Top;
194 indexes[UCNV_EXT_FROM_U_STAGE_12_LENGTH]=length+=extData->stage2Top;
195 top+=length*2;
196
197 indexes[UCNV_EXT_FROM_U_STAGE_3_INDEX]=top;
198 length=extData->stage3Top;
199 top+=length*2;
200
201 if(top&3) {
202 /* add padding */
203 extData->stage3[extData->stage3Top++]=0;
204 ++length;
205 top+=2;
206 }
207 indexes[UCNV_EXT_FROM_U_STAGE_3_LENGTH]=length;
208
209 indexes[UCNV_EXT_FROM_U_STAGE_3B_INDEX]=top;
210 indexes[UCNV_EXT_FROM_U_STAGE_3B_LENGTH]=length=extData->stage3bTop;
211 top+=length*4;
212
213 indexes[UCNV_EXT_SIZE]=top;
214
215 /* statistics */
216 indexes[UCNV_EXT_COUNT_BYTES]=
217 (extData->maxInBytes<<16)|
218 (extData->maxOutBytes<<8)|
219 extData->maxBytesPerUChar;
220 indexes[UCNV_EXT_COUNT_UCHARS]=
221 (extData->maxInUChars<<16)|
222 (extData->maxOutUChars<<8)|
223 extData->maxUCharsPerByte;
224
225 indexes[UCNV_EXT_FLAGS]=extData->ucm->ext->unicodeMask;
226
227 /* write the extension data */
228 udata_writeBlock(pData, indexes, sizeof(indexes));
229 udata_writeBlock(pData, utm_getStart(extData->toUTable), indexes[UCNV_EXT_TO_U_LENGTH]*4);
230 udata_writeBlock(pData, utm_getStart(extData->toUUChars), indexes[UCNV_EXT_TO_U_UCHARS_LENGTH]*2);
231
232 udata_writeBlock(pData, utm_getStart(extData->fromUTableUChars), indexes[UCNV_EXT_FROM_U_LENGTH]*2);
233 udata_writeBlock(pData, utm_getStart(extData->fromUTableValues), indexes[UCNV_EXT_FROM_U_LENGTH]*4);
234 udata_writeBlock(pData, utm_getStart(extData->fromUBytes), indexes[UCNV_EXT_FROM_U_BYTES_LENGTH]);
235
236 udata_writeBlock(pData, extData->stage1, extData->stage1Top*2);
237 udata_writeBlock(pData, extData->stage2, extData->stage2Top*2);
238 udata_writeBlock(pData, extData->stage3, extData->stage3Top*2);
239 udata_writeBlock(pData, extData->stage3b, extData->stage3bTop*4);
240
241 #if 0
242 {
243 int32_t i, j;
244
245 length=extData->stage1Top;
246 printf("\nstage1[%x]:\n", length);
247
248 for(i=0; i<length; ++i) {
249 if(extData->stage1[i]!=length) {
250 printf("stage1[%04x]=%04x\n", i, extData->stage1[i]);
251 }
252 }
253
254 j=length;
255 length=extData->stage2Top;
256 printf("\nstage2[%x]:\n", length);
257
258 for(i=0; i<length; ++j, ++i) {
259 if(extData->stage2[i]!=0) {
260 printf("stage12[%04x]=%04x\n", j, extData->stage2[i]);
261 }
262 }
263
264 length=extData->stage3Top;
265 printf("\nstage3[%x]:\n", length);
266
267 for(i=0; i<length; ++i) {
268 if(extData->stage3[i]!=0) {
269 printf("stage3[%04x]=%04x\n", i, extData->stage3[i]);
270 }
271 }
272
273 length=extData->stage3bTop;
274 printf("\nstage3b[%x]:\n", length);
275
276 for(i=0; i<length; ++i) {
277 if(extData->stage3b[i]!=0) {
278 printf("stage3b[%04x]=%08x\n", i, extData->stage3b[i]);
279 }
280 }
281 }
282 #endif
283
284 if(VERBOSE) {
285 printf("size of extension data: %ld\n", (long)top);
286 }
287
288 /* return the number of bytes that should have been written */
289 return (uint32_t)(headerSize+top);
290 }
291
292 /* to Unicode --------------------------------------------------------------- */
293
294 /*
295 * Remove fromUnicode fallbacks and SUB mappings which are irrelevant for
296 * the toUnicode table.
297 * This includes mappings with MBCS_FROM_U_EXT_FLAG which were suitable
298 * for the base toUnicode table but not for the base fromUnicode table.
299 * The table must be sorted.
300 * Modifies previous data in the reverseMap.
301 */
302 static int32_t
303 reduceToUMappings(UCMTable *table) {
304 UCMapping *mappings;
305 int32_t *map;
306 int32_t i, j, count;
307 int8_t flag;
308
309 mappings=table->mappings;
310 map=table->reverseMap;
311 count=table->mappingsLength;
312
313 /* leave the map alone for the initial mappings with desired flags */
314 for(i=j=0; i<count; ++i) {
315 flag=mappings[map[i]].f;
316 if(flag!=0 && flag!=3) {
317 break;
318 }
319 }
320
321 /* reduce from here to the rest */
322 for(j=i; i<count; ++i) {
323 flag=mappings[map[i]].f;
324 if(flag==0 || flag==3) {
325 map[j++]=map[i];
326 }
327 }
328
329 return j;
330 }
331
332 static uint32_t
333 getToUnicodeValue(CnvExtData *extData, UCMTable *table, UCMapping *m) {
334 UChar32 *u32;
335 UChar *u;
336 uint32_t value;
337 int32_t u16Length, ratio;
338 UErrorCode errorCode;
339
340 /* write the Unicode result code point or string index */
341 if(m->uLen==1) {
342 u16Length=U16_LENGTH(m->u);
343 value=(uint32_t)(UCNV_EXT_TO_U_MIN_CODE_POINT+m->u);
344 } else {
345 /* the parser enforces m->uLen<=UCNV_EXT_MAX_UCHARS */
346
347 /* get the result code point string and its 16-bit string length */
348 u32=UCM_GET_CODE_POINTS(table, m);
349 errorCode=U_ZERO_ERROR;
350 u_strFromUTF32(NULL, 0, &u16Length, u32, m->uLen, &errorCode);
351 if(U_FAILURE(errorCode) && errorCode!=U_BUFFER_OVERFLOW_ERROR) {
352 exit(errorCode);
353 }
354
355 /* allocate it and put its length and index into the value */
356 value=
357 (((uint32_t)u16Length+UCNV_EXT_TO_U_LENGTH_OFFSET)<<UCNV_EXT_TO_U_LENGTH_SHIFT)|
358 ((uint32_t)utm_countItems(extData->toUUChars));
359 u=utm_allocN(extData->toUUChars, u16Length);
360
361 /* write the result 16-bit string */
362 errorCode=U_ZERO_ERROR;
363 u_strFromUTF32(u, u16Length, NULL, u32, m->uLen, &errorCode);
364 if(U_FAILURE(errorCode) && errorCode!=U_BUFFER_OVERFLOW_ERROR) {
365 exit(errorCode);
366 }
367 }
368 if(m->f==0) {
369 value|=UCNV_EXT_TO_U_ROUNDTRIP_FLAG;
370 }
371
372 /* update statistics */
373 if(m->bLen>extData->maxInBytes) {
374 extData->maxInBytes=m->bLen;
375 }
376 if(u16Length>extData->maxOutUChars) {
377 extData->maxOutUChars=u16Length;
378 }
379
380 ratio=(u16Length+(m->bLen-1))/m->bLen;
381 if(ratio>extData->maxUCharsPerByte) {
382 extData->maxUCharsPerByte=ratio;
383 }
384
385 return value;
386 }
387
388 /*
389 * Recursive toUTable generator core function.
390 * Preconditions:
391 * - start<limit (There is at least one mapping.)
392 * - The mappings are sorted lexically. (Access is through the reverseMap.)
393 * - All mappings between start and limit have input sequences that share
394 * the same prefix of unitIndex length, and therefore all of these sequences
395 * are at least unitIndex+1 long.
396 * - There are only relevant mappings available through the reverseMap,
397 * see reduceToUMappings().
398 *
399 * One function invocation generates one section table.
400 *
401 * Steps:
402 * 1. Count the number of unique unit values and get the low/high unit values
403 * that occur at unitIndex.
404 * 2. Allocate the section table with possible optimization for linear access.
405 * 3. Write temporary version of the section table with start indexes of
406 * subsections, each corresponding to one unit value at unitIndex.
407 * 4. Iterate through the table once more, and depending on the subsection length:
408 * 0: write 0 as a result value (unused byte in linear-access section table)
409 * >0: if there is one mapping with an input unit sequence of unitIndex+1
410 * then defaultValue=compute the mapping result for this whole sequence
411 * else defaultValue=0
412 *
413 * recurse into the subsection
414 */
415 static UBool
416 generateToUTable(CnvExtData *extData, UCMTable *table,
417 int32_t start, int32_t limit, int32_t unitIndex,
418 uint32_t defaultValue) {
419 UCMapping *mappings, *m;
420 int32_t *map;
421 int32_t i, j, uniqueCount, count, subStart, subLimit;
422
423 uint8_t *bytes;
424 int32_t low, high, prev;
425
426 uint32_t *section;
427
428 mappings=table->mappings;
429 map=table->reverseMap;
430
431 /* step 1: examine the input units; set low, high, uniqueCount */
432 m=mappings+map[start];
433 bytes=UCM_GET_BYTES(table, m);
434 low=bytes[unitIndex];
435 uniqueCount=1;
436
437 prev=high=low;
438 for(i=start+1; i<limit; ++i) {
439 m=mappings+map[i];
440 bytes=UCM_GET_BYTES(table, m);
441 high=bytes[unitIndex];
442
443 if(high!=prev) {
444 prev=high;
445 ++uniqueCount;
446 }
447 }
448
449 /* step 2: allocate the section; set count, section */
450 count=(high-low)+1;
451 if(count<0x100 && (unitIndex==0 || uniqueCount>=(3*count)/4)) {
452 /*
453 * for the root table and for fairly full tables:
454 * allocate for direct, linear array access
455 * by keeping count, to write an entry for each unit value
456 * from low to high
457 * exception: use a compact table if count==0x100 because
458 * that cannot be encoded in the length byte
459 */
460 } else {
461 count=uniqueCount;
462 }
463
464 if(count>=0x100) {
465 fprintf(stderr, "error: toUnicode extension table section overflow: %ld section entries\n", (long)count);
466 return FALSE;
467 }
468
469 /* allocate the section: 1 entry for the header + count for the items */
470 section=(uint32_t *)utm_allocN(extData->toUTable, 1+count);
471
472 /* write the section header */
473 *section++=((uint32_t)count<<UCNV_EXT_TO_U_BYTE_SHIFT)|defaultValue;
474
475 /* step 3: write temporary section table with subsection starts */
476 prev=low-1; /* just before low to prevent empty subsections before low */
477 j=0; /* section table index */
478 for(i=start; i<limit; ++i) {
479 m=mappings+map[i];
480 bytes=UCM_GET_BYTES(table, m);
481 high=bytes[unitIndex];
482
483 if(high!=prev) {
484 /* start of a new subsection for unit high */
485 if(count>uniqueCount) {
486 /* write empty subsections for unused units in a linear table */
487 while(++prev<high) {
488 section[j++]=((uint32_t)prev<<UCNV_EXT_TO_U_BYTE_SHIFT)|(uint32_t)i;
489 }
490 } else {
491 prev=high;
492 }
493
494 /* write the entry with the subsection start */
495 section[j++]=((uint32_t)high<<UCNV_EXT_TO_U_BYTE_SHIFT)|(uint32_t)i;
496 }
497 }
498 /* assert(j==count) */
499
500 /* step 4: recurse and write results */
501 subLimit=UCNV_EXT_TO_U_GET_VALUE(section[0]);
502 for(j=0; j<count; ++j) {
503 subStart=subLimit;
504 subLimit= (j+1)<count ? UCNV_EXT_TO_U_GET_VALUE(section[j+1]) : limit;
505
506 /* remove the subStart temporary value */
507 section[j]&=~UCNV_EXT_TO_U_VALUE_MASK;
508
509 if(subStart==subLimit) {
510 /* leave the value zero: empty subsection for unused unit in a linear table */
511 continue;
512 }
513
514 /* see if there is exactly one input unit sequence of length unitIndex+1 */
515 defaultValue=0;
516 m=mappings+map[subStart];
517 if(m->bLen==unitIndex+1) {
518 /* do not include this in generateToUTable() */
519 ++subStart;
520
521 if(subStart<subLimit && mappings[map[subStart]].bLen==unitIndex+1) {
522 /* print error for multiple same-input-sequence mappings */
523 fprintf(stderr, "error: multiple mappings from same bytes\n");
524 ucm_printMapping(table, m, stderr);
525 ucm_printMapping(table, mappings+map[subStart], stderr);
526 return FALSE;
527 }
528
529 defaultValue=getToUnicodeValue(extData, table, m);
530 }
531
532 if(subStart==subLimit) {
533 /* write the result for the input sequence ending here */
534 section[j]|=defaultValue;
535 } else {
536 /* write the index to the subsection table */
537 section[j]|=(uint32_t)utm_countItems(extData->toUTable);
538
539 /* recurse */
540 if(!generateToUTable(extData, table, subStart, subLimit, unitIndex+1, defaultValue)) {
541 return FALSE;
542 }
543 }
544 }
545 return TRUE;
546 }
547
548 /*
549 * Generate the toUTable and toUUChars from the input table.
550 * The input table must be sorted, and all precision flags must be 0..3.
551 * This function will modify the table's reverseMap.
552 */
553 static UBool
554 makeToUTable(CnvExtData *extData, UCMTable *table) {
555 int32_t toUCount;
556
557 toUCount=reduceToUMappings(table);
558
559 extData->toUTable=utm_open("cnv extension toUTable", 0x10000, UCNV_EXT_TO_U_MIN_CODE_POINT, 4);
560 extData->toUUChars=utm_open("cnv extension toUUChars", 0x10000, UCNV_EXT_TO_U_INDEX_MASK+1, 2);
561
562 return generateToUTable(extData, table, 0, toUCount, 0, 0);
563 }
564
565 /* from Unicode ------------------------------------------------------------- */
566
567 /*
568 * preprocessing:
569 * rebuild reverseMap with mapping indexes for mappings relevant for from Unicode
570 * change each Unicode string to encode all but the first code point in 16-bit form
571 *
572 * generation:
573 * for each unique code point
574 * write an entry in the 3-stage trie
575 * check that there is only one single-code point sequence
576 * start recursion for following 16-bit input units
577 */
578
579 /*
580 * Remove toUnicode fallbacks and non-<subchar1> SUB mappings
581 * which are irrelevant for the fromUnicode extension table.
582 * Remove MBCS_FROM_U_EXT_FLAG bits.
583 * Overwrite the reverseMap with an index array to the relevant mappings.
584 * Modify the code point sequences to a generator-friendly format where
585 * the first code points remains unchanged but the following are recoded
586 * into 16-bit Unicode string form.
587 * The table must be sorted.
588 * Destroys previous data in the reverseMap.
589 */
590 static int32_t
591 prepareFromUMappings(UCMTable *table) {
592 UCMapping *mappings, *m;
593 int32_t *map;
594 int32_t i, j, count;
595 int8_t flag;
596
597 mappings=table->mappings;
598 map=table->reverseMap;
599 count=table->mappingsLength;
600
601 /*
602 * we do not go through the map on input because the mappings are
603 * sorted lexically
604 */
605 m=mappings;
606
607 for(i=j=0; i<count; ++m, ++i) {
608 flag=m->f;
609 if(flag>=0) {
610 flag&=MBCS_FROM_U_EXT_MASK;
611 m->f=flag;
612 }
613 if(flag==0 || flag==1 || (flag==2 && m->bLen==1) || flag==4) {
614 map[j++]=i;
615
616 if(m->uLen>1) {
617 /* recode all but the first code point to 16-bit Unicode */
618 UChar32 *u32;
619 UChar *u;
620 UChar32 c;
621 int32_t q, r;
622
623 u32=UCM_GET_CODE_POINTS(table, m);
624 u=(UChar *)u32; /* destructive in-place recoding */
625 for(r=2, q=1; q<m->uLen; ++q) {
626 c=u32[q];
627 U16_APPEND_UNSAFE(u, r, c);
628 }
629
630 /* counts the first code point always at 2 - the first 16-bit unit is at 16-bit index 2 */
631 m->uLen=(int8_t)r;
632 }
633 }
634 }
635
636 return j;
637 }
638
639 static uint32_t
640 getFromUBytesValue(CnvExtData *extData, UCMTable *table, UCMapping *m) {
641 uint8_t *bytes, *resultBytes;
642 uint32_t value;
643 int32_t u16Length, ratio;
644
645 if(m->f==2) {
646 /*
647 * no mapping, <subchar1> preferred
648 *
649 * no need to count in statistics because the subchars are already
650 * counted for maxOutBytes and maxBytesPerUChar in UConverterStaticData,
651 * and this non-mapping does not count for maxInUChars which are always
652 * trivially at least two if counting unmappable supplementary code points
653 */
654 return UCNV_EXT_FROM_U_SUBCHAR1;
655 }
656
657 bytes=UCM_GET_BYTES(table, m);
658 value=0;
659 switch(m->bLen) {
660 /* 1..3: store the bytes in the value word */
661 case 3:
662 value=((uint32_t)*bytes++)<<16;
663 case 2:
664 value|=((uint32_t)*bytes++)<<8;
665 case 1:
666 value|=*bytes;
667 break;
668 default:
669 /* the parser enforces m->bLen<=UCNV_EXT_MAX_BYTES */
670 /* store the bytes in fromUBytes[] and the index in the value word */
671 value=(uint32_t)utm_countItems(extData->fromUBytes);
672 resultBytes=utm_allocN(extData->fromUBytes, m->bLen);
673 uprv_memcpy(resultBytes, bytes, m->bLen);
674 break;
675 }
676 value|=(uint32_t)m->bLen<<UCNV_EXT_FROM_U_LENGTH_SHIFT;
677 if(m->f==0) {
678 value|=UCNV_EXT_FROM_U_ROUNDTRIP_FLAG;
679 } else if(m->f==4) {
680 value|=UCNV_EXT_FROM_U_GOOD_ONE_WAY_FLAG;
681 }
682
683 /* calculate the real UTF-16 length (see recoding in prepareFromUMappings()) */
684 if(m->uLen==1) {
685 u16Length=U16_LENGTH(m->u);
686 } else {
687 u16Length=U16_LENGTH(UCM_GET_CODE_POINTS(table, m)[0])+(m->uLen-2);
688 }
689
690 /* update statistics */
691 if(u16Length>extData->maxInUChars) {
692 extData->maxInUChars=u16Length;
693 }
694 if(m->bLen>extData->maxOutBytes) {
695 extData->maxOutBytes=m->bLen;
696 }
697
698 ratio=(m->bLen+(u16Length-1))/u16Length;
699 if(ratio>extData->maxBytesPerUChar) {
700 extData->maxBytesPerUChar=ratio;
701 }
702
703 return value;
704 }
705
706 /*
707 * works like generateToUTable(), except that the
708 * output section consists of two arrays, one for input UChars and one
709 * for result values
710 *
711 * also, fromUTable sections are always stored in a compact form for
712 * access via binary search
713 */
714 static UBool
715 generateFromUTable(CnvExtData *extData, UCMTable *table,
716 int32_t start, int32_t limit, int32_t unitIndex,
717 uint32_t defaultValue) {
718 UCMapping *mappings, *m;
719 int32_t *map;
720 int32_t i, j, uniqueCount, count, subStart, subLimit;
721
722 UChar *uchars;
723 UChar32 low, high, prev;
724
725 UChar *sectionUChars;
726 uint32_t *sectionValues;
727
728 mappings=table->mappings;
729 map=table->reverseMap;
730
731 /* step 1: examine the input units; set low, high, uniqueCount */
732 m=mappings+map[start];
733 uchars=(UChar *)UCM_GET_CODE_POINTS(table, m);
734 low=uchars[unitIndex];
735 uniqueCount=1;
736
737 prev=high=low;
738 for(i=start+1; i<limit; ++i) {
739 m=mappings+map[i];
740 uchars=(UChar *)UCM_GET_CODE_POINTS(table, m);
741 high=uchars[unitIndex];
742
743 if(high!=prev) {
744 prev=high;
745 ++uniqueCount;
746 }
747 }
748
749 /* step 2: allocate the section; set count, section */
750 /* the fromUTable always stores for access via binary search */
751 count=uniqueCount;
752
753 /* allocate the section: 1 entry for the header + count for the items */
754 sectionUChars=(UChar *)utm_allocN(extData->fromUTableUChars, 1+count);
755 sectionValues=(uint32_t *)utm_allocN(extData->fromUTableValues, 1+count);
756
757 /* write the section header */
758 *sectionUChars++=(UChar)count;
759 *sectionValues++=defaultValue;
760
761 /* step 3: write temporary section table with subsection starts */
762 prev=low-1; /* just before low to prevent empty subsections before low */
763 j=0; /* section table index */
764 for(i=start; i<limit; ++i) {
765 m=mappings+map[i];
766 uchars=(UChar *)UCM_GET_CODE_POINTS(table, m);
767 high=uchars[unitIndex];
768
769 if(high!=prev) {
770 /* start of a new subsection for unit high */
771 prev=high;
772
773 /* write the entry with the subsection start */
774 sectionUChars[j]=(UChar)high;
775 sectionValues[j]=(uint32_t)i;
776 ++j;
777 }
778 }
779 /* assert(j==count) */
780
781 /* step 4: recurse and write results */
782 subLimit=(int32_t)(sectionValues[0]);
783 for(j=0; j<count; ++j) {
784 subStart=subLimit;
785 subLimit= (j+1)<count ? (int32_t)(sectionValues[j+1]) : limit;
786
787 /* see if there is exactly one input unit sequence of length unitIndex+1 */
788 defaultValue=0;
789 m=mappings+map[subStart];
790 if(m->uLen==unitIndex+1) {
791 /* do not include this in generateToUTable() */
792 ++subStart;
793
794 if(subStart<subLimit && mappings[map[subStart]].uLen==unitIndex+1) {
795 /* print error for multiple same-input-sequence mappings */
796 fprintf(stderr, "error: multiple mappings from same Unicode code points\n");
797 ucm_printMapping(table, m, stderr);
798 ucm_printMapping(table, mappings+map[subStart], stderr);
799 return FALSE;
800 }
801
802 defaultValue=getFromUBytesValue(extData, table, m);
803 }
804
805 if(subStart==subLimit) {
806 /* write the result for the input sequence ending here */
807 sectionValues[j]=defaultValue;
808 } else {
809 /* write the index to the subsection table */
810 sectionValues[j]=(uint32_t)utm_countItems(extData->fromUTableValues);
811
812 /* recurse */
813 if(!generateFromUTable(extData, table, subStart, subLimit, unitIndex+1, defaultValue)) {
814 return FALSE;
815 }
816 }
817 }
818 return TRUE;
819 }
820
821 /*
822 * add entries to the fromUnicode trie,
823 * assume to be called with code points in ascending order
824 * and use that to build the trie in precompacted form
825 */
826 static void
827 addFromUTrieEntry(CnvExtData *extData, UChar32 c, uint32_t value) {
828 int32_t i1, i2, i3, i3b, nextOffset, min, newBlock;
829
830 if(value==0) {
831 return;
832 }
833
834 /*
835 * compute the index for each stage,
836 * allocate a stage block if necessary,
837 * and write the stage value
838 */
839 i1=c>>10;
840 if(i1>=extData->stage1Top) {
841 extData->stage1Top=i1+1;
842 }
843
844 nextOffset=(c>>4)&0x3f;
845
846 if(extData->stage1[i1]==0) {
847 /* allocate another block in stage 2; overlap with the previous block */
848 newBlock=extData->stage2Top;
849 min=newBlock-nextOffset; /* minimum block start with overlap */
850 while(min<newBlock && extData->stage2[newBlock-1]==0) {
851 --newBlock;
852 }
853
854 extData->stage1[i1]=(uint16_t)newBlock;
855 extData->stage2Top=newBlock+MBCS_STAGE_2_BLOCK_SIZE;
856 if(extData->stage2Top>UPRV_LENGTHOF(extData->stage2)) {
857 fprintf(stderr, "error: too many stage 2 entries at U+%04x\n", (int)c);
858 exit(U_MEMORY_ALLOCATION_ERROR);
859 }
860 }
861
862 i2=extData->stage1[i1]+nextOffset;
863 nextOffset=c&0xf;
864
865 if(extData->stage2[i2]==0) {
866 /* allocate another block in stage 3; overlap with the previous block */
867 newBlock=extData->stage3Top;
868 min=newBlock-nextOffset; /* minimum block start with overlap */
869 while(min<newBlock && extData->stage3[newBlock-1]==0) {
870 --newBlock;
871 }
872
873 /* round up to a multiple of stage 3 granularity >1 (similar to utrie.c) */
874 newBlock=(newBlock+(UCNV_EXT_STAGE_3_GRANULARITY-1))&~(UCNV_EXT_STAGE_3_GRANULARITY-1);
875 extData->stage2[i2]=(uint16_t)(newBlock>>UCNV_EXT_STAGE_2_LEFT_SHIFT);
876
877 extData->stage3Top=newBlock+MBCS_STAGE_3_BLOCK_SIZE;
878 if(extData->stage3Top>UPRV_LENGTHOF(extData->stage3)) {
879 fprintf(stderr, "error: too many stage 3 entries at U+%04x\n", (int)c);
880 exit(U_MEMORY_ALLOCATION_ERROR);
881 }
882 }
883
884 i3=((int32_t)extData->stage2[i2]<<UCNV_EXT_STAGE_2_LEFT_SHIFT)+nextOffset;
885 /*
886 * assume extData->stage3[i3]==0 because we get
887 * code points in strictly ascending order
888 */
889
890 if(value==UCNV_EXT_FROM_U_SUBCHAR1) {
891 /* <subchar1> SUB mapping, see getFromUBytesValue() and prepareFromUMappings() */
892 extData->stage3[i3]=1;
893
894 /*
895 * precompaction is not optimal for <subchar1> |2 mappings because
896 * stage3 values for them are all the same, unlike for other mappings
897 * which all have unique values;
898 * use a simple compaction of reusing a whole block filled with these
899 * mappings
900 */
901
902 /* is the entire block filled with <subchar1> |2 mappings? */
903 if(nextOffset==MBCS_STAGE_3_BLOCK_SIZE-1) {
904 for(min=i3-nextOffset;
905 min<i3 && extData->stage3[min]==1;
906 ++min) {}
907
908 if(min==i3) {
909 /* the entire block is filled with these mappings */
910 if(extData->stage3Sub1Block!=0) {
911 /* point to the previous such block and remove this block from stage3 */
912 extData->stage2[i2]=extData->stage3Sub1Block;
913 extData->stage3Top-=MBCS_STAGE_3_BLOCK_SIZE;
914 uprv_memset(extData->stage3+extData->stage3Top, 0, MBCS_STAGE_3_BLOCK_SIZE*2);
915 } else {
916 /* remember this block's stage2 entry */
917 extData->stage3Sub1Block=extData->stage2[i2];
918 }
919 }
920 }
921 } else {
922 if((i3b=extData->stage3bTop++)>=UPRV_LENGTHOF(extData->stage3b)) {
923 fprintf(stderr, "error: too many stage 3b entries at U+%04x\n", (int)c);
924 exit(U_MEMORY_ALLOCATION_ERROR);
925 }
926
927 /* roundtrip or fallback mapping */
928 extData->stage3[i3]=(uint16_t)i3b;
929 extData->stage3b[i3b]=value;
930 }
931 }
932
933 static UBool
934 generateFromUTrie(CnvExtData *extData, UCMTable *table, int32_t mapLength) {
935 UCMapping *mappings, *m;
936 int32_t *map;
937 uint32_t value;
938 int32_t subStart, subLimit;
939
940 UChar32 *codePoints;
941 UChar32 c, next;
942
943 if(mapLength==0) {
944 return TRUE;
945 }
946
947 mappings=table->mappings;
948 map=table->reverseMap;
949
950 /*
951 * iterate over same-initial-code point mappings,
952 * enter the initial code point into the trie,
953 * and start a recursion on the corresponding mappings section
954 * with generateFromUTable()
955 */
956 m=mappings+map[0];
957 codePoints=UCM_GET_CODE_POINTS(table, m);
958 next=codePoints[0];
959 subLimit=0;
960 while(subLimit<mapLength) {
961 /* get a new subsection of mappings starting with the same code point */
962 subStart=subLimit;
963 c=next;
964 while(next==c && ++subLimit<mapLength) {
965 m=mappings+map[subLimit];
966 codePoints=UCM_GET_CODE_POINTS(table, m);
967 next=codePoints[0];
968 }
969
970 /*
971 * compute the value for this code point;
972 * if there is a mapping for this code point alone, it is at subStart
973 * because the table is sorted lexically
974 */
975 value=0;
976 m=mappings+map[subStart];
977 codePoints=UCM_GET_CODE_POINTS(table, m);
978 if(m->uLen==1) {
979 /* do not include this in generateFromUTable() */
980 ++subStart;
981
982 if(subStart<subLimit && mappings[map[subStart]].uLen==1) {
983 /* print error for multiple same-input-sequence mappings */
984 fprintf(stderr, "error: multiple mappings from same Unicode code points\n");
985 ucm_printMapping(table, m, stderr);
986 ucm_printMapping(table, mappings+map[subStart], stderr);
987 return FALSE;
988 }
989
990 value=getFromUBytesValue(extData, table, m);
991 }
992
993 if(subStart==subLimit) {
994 /* write the result for this one code point */
995 addFromUTrieEntry(extData, c, value);
996 } else {
997 /* write the index to the subsection table */
998 addFromUTrieEntry(extData, c, (uint32_t)utm_countItems(extData->fromUTableValues));
999
1000 /* recurse, starting from 16-bit-unit index 2, the first 16-bit unit after c */
1001 if(!generateFromUTable(extData, table, subStart, subLimit, 2, value)) {
1002 return FALSE;
1003 }
1004 }
1005 }
1006 return TRUE;
1007 }
1008
1009 /*
1010 * Generate the fromU data structures from the input table.
1011 * The input table must be sorted, and all precision flags must be 0..3.
1012 * This function will modify the table's reverseMap.
1013 */
1014 static UBool
1015 makeFromUTable(CnvExtData *extData, UCMTable *table) {
1016 uint16_t *stage1;
1017 int32_t i, stage1Top, fromUCount;
1018
1019 fromUCount=prepareFromUMappings(table);
1020
1021 extData->fromUTableUChars=utm_open("cnv extension fromUTableUChars", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 2);
1022 extData->fromUTableValues=utm_open("cnv extension fromUTableValues", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 4);
1023 extData->fromUBytes=utm_open("cnv extension fromUBytes", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 1);
1024
1025 /* allocate all-unassigned stage blocks */
1026 extData->stage2Top=MBCS_STAGE_2_FIRST_ASSIGNED;
1027 extData->stage3Top=MBCS_STAGE_3_FIRST_ASSIGNED;
1028
1029 /*
1030 * stage 3b stores only unique values, and in
1031 * index 0: 0 for "no mapping"
1032 * index 1: "no mapping" with preference for <subchar1> rather than <subchar>
1033 */
1034 extData->stage3b[1]=UCNV_EXT_FROM_U_SUBCHAR1;
1035 extData->stage3bTop=2;
1036
1037 /* allocate the first entry in the fromUTable because index 0 means "no result" */
1038 utm_alloc(extData->fromUTableUChars);
1039 utm_alloc(extData->fromUTableValues);
1040
1041 if(!generateFromUTrie(extData, table, fromUCount)) {
1042 return FALSE;
1043 }
1044
1045 /*
1046 * offset the stage 1 trie entries by stage1Top because they will
1047 * be stored in a single array
1048 */
1049 stage1=extData->stage1;
1050 stage1Top=extData->stage1Top;
1051 for(i=0; i<stage1Top; ++i) {
1052 stage1[i]=(uint16_t)(stage1[i]+stage1Top);
1053 }
1054
1055 return TRUE;
1056 }
1057
1058 /* -------------------------------------------------------------------------- */
1059
1060 static UBool
1061 CnvExtAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData) {
1062 CnvExtData *extData;
1063
1064 if(table->unicodeMask&UCNV_HAS_SURROGATES) {
1065 fprintf(stderr, "error: contains mappings for surrogate code points\n");
1066 return FALSE;
1067 }
1068
1069 staticData->conversionType=UCNV_MBCS;
1070
1071 extData=(CnvExtData *)cnvData;
1072
1073 /*
1074 * assume that the table is sorted
1075 *
1076 * call the functions in this order because
1077 * makeToUTable() modifies the original reverseMap,
1078 * makeFromUTable() writes a whole new mapping into reverseMap
1079 */
1080 return
1081 makeToUTable(extData, table) &&
1082 makeFromUTable(extData, table);
1083 }