]>
Commit | Line | Data |
---|---|---|
1 | // © 2016 and later: Unicode, Inc. and others. | |
2 | // License & terms of use: http://www.unicode.org/copyright.html | |
3 | /* | |
4 | ******************************************************************************* | |
5 | * | |
6 | * Copyright (C) 2003-2014, International Business Machines | |
7 | * Corporation and others. All Rights Reserved. | |
8 | * | |
9 | ******************************************************************************* | |
10 | * file name: gencnvex.c | |
11 | * encoding: UTF-8 | |
12 | * tab size: 8 (not used) | |
13 | * indentation:4 | |
14 | * | |
15 | * created on: 2003oct12 | |
16 | * created by: Markus W. Scherer | |
17 | */ | |
18 | ||
19 | #include <stdio.h> | |
20 | #include "unicode/utypes.h" | |
21 | #include "unicode/ustring.h" | |
22 | #include "cstring.h" | |
23 | #include "cmemory.h" | |
24 | #include "ucnv_cnv.h" | |
25 | #include "ucnvmbcs.h" | |
26 | #include "toolutil.h" | |
27 | #include "unewdata.h" | |
28 | #include "ucm.h" | |
29 | #include "makeconv.h" | |
30 | #include "genmbcs.h" | |
31 | ||
32 | static void | |
33 | CnvExtClose(NewConverter *cnvData); | |
34 | ||
35 | static UBool | |
36 | CnvExtIsValid(NewConverter *cnvData, | |
37 | const uint8_t *bytes, int32_t length); | |
38 | ||
39 | static UBool | |
40 | CnvExtAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData); | |
41 | ||
42 | static uint32_t | |
43 | CnvExtWrite(NewConverter *cnvData, const UConverterStaticData *staticData, | |
44 | UNewDataMemory *pData, int32_t tableType); | |
45 | ||
46 | typedef struct CnvExtData { | |
47 | NewConverter newConverter; | |
48 | ||
49 | UCMFile *ucm; | |
50 | ||
51 | /* toUnicode (state table in ucm->states) */ | |
52 | UToolMemory *toUTable, *toUUChars; | |
53 | ||
54 | /* fromUnicode */ | |
55 | UToolMemory *fromUTableUChars, *fromUTableValues, *fromUBytes; | |
56 | ||
57 | uint16_t stage1[MBCS_STAGE_1_SIZE]; | |
58 | uint16_t stage2[MBCS_STAGE_2_SIZE]; | |
59 | uint16_t stage3[0x10000<<UCNV_EXT_STAGE_2_LEFT_SHIFT]; /* 0x10000 because of 16-bit stage 2/3 indexes */ | |
60 | uint32_t stage3b[0x10000]; | |
61 | ||
62 | int32_t stage1Top, stage2Top, stage3Top, stage3bTop; | |
63 | ||
64 | /* for stage3 compaction of <subchar1> |2 mappings */ | |
65 | uint16_t stage3Sub1Block; | |
66 | ||
67 | /* statistics */ | |
68 | int32_t | |
69 | maxInBytes, maxOutBytes, maxBytesPerUChar, | |
70 | maxInUChars, maxOutUChars, maxUCharsPerByte; | |
71 | } CnvExtData; | |
72 | ||
73 | NewConverter * | |
74 | CnvExtOpen(UCMFile *ucm) { | |
75 | CnvExtData *extData; | |
76 | ||
77 | extData=(CnvExtData *)uprv_malloc(sizeof(CnvExtData)); | |
78 | if(extData==NULL) { | |
79 | printf("out of memory\n"); | |
80 | exit(U_MEMORY_ALLOCATION_ERROR); | |
81 | } | |
82 | uprv_memset(extData, 0, sizeof(CnvExtData)); | |
83 | ||
84 | extData->ucm=ucm; /* aliased, not owned */ | |
85 | ||
86 | extData->newConverter.close=CnvExtClose; | |
87 | extData->newConverter.isValid=CnvExtIsValid; | |
88 | extData->newConverter.addTable=CnvExtAddTable; | |
89 | extData->newConverter.write=CnvExtWrite; | |
90 | return &extData->newConverter; | |
91 | } | |
92 | ||
93 | static void | |
94 | CnvExtClose(NewConverter *cnvData) { | |
95 | CnvExtData *extData=(CnvExtData *)cnvData; | |
96 | if(extData!=NULL) { | |
97 | utm_close(extData->toUTable); | |
98 | utm_close(extData->toUUChars); | |
99 | utm_close(extData->fromUTableUChars); | |
100 | utm_close(extData->fromUTableValues); | |
101 | utm_close(extData->fromUBytes); | |
102 | uprv_free(extData); | |
103 | } | |
104 | } | |
105 | ||
106 | /* we do not expect this to be called */ | |
107 | static UBool | |
108 | CnvExtIsValid(NewConverter *cnvData, | |
109 | const uint8_t *bytes, int32_t length) { | |
110 | // suppress compiler warnings about unused variables | |
111 | (void)cnvData; | |
112 | (void)bytes; | |
113 | (void)length; | |
114 | return FALSE; | |
115 | } | |
116 | ||
117 | static uint32_t | |
118 | CnvExtWrite(NewConverter *cnvData, const UConverterStaticData *staticData, | |
119 | UNewDataMemory *pData, int32_t tableType) { | |
120 | (void) staticData; // suppress compiler warnings about unused variable | |
121 | CnvExtData *extData=(CnvExtData *)cnvData; | |
122 | int32_t length, top, headerSize; | |
123 | ||
124 | int32_t indexes[UCNV_EXT_INDEXES_MIN_LENGTH]={ 0 }; | |
125 | ||
126 | if(tableType&TABLE_BASE) { | |
127 | headerSize=0; | |
128 | } else { | |
129 | _MBCSHeader header={ { 0, 0, 0, 0 }, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; | |
130 | ||
131 | /* write the header and base table name for an extension-only table */ | |
132 | length=(int32_t)uprv_strlen(extData->ucm->baseName)+1; | |
133 | while(length&3) { | |
134 | /* add padding */ | |
135 | extData->ucm->baseName[length++]=0; | |
136 | } | |
137 | ||
138 | headerSize=MBCS_HEADER_V4_LENGTH*4+length; | |
139 | ||
140 | /* fill the header */ | |
141 | header.version[0]=4; | |
142 | header.version[1]=2; | |
143 | header.flags=(uint32_t)((headerSize<<8)|MBCS_OUTPUT_EXT_ONLY); | |
144 | ||
145 | /* write the header and the base table name */ | |
146 | udata_writeBlock(pData, &header, MBCS_HEADER_V4_LENGTH*4); | |
147 | udata_writeBlock(pData, extData->ucm->baseName, length); | |
148 | } | |
149 | ||
150 | /* fill indexes[] - offsets/indexes are in units of the target array */ | |
151 | top=0; | |
152 | ||
153 | indexes[UCNV_EXT_INDEXES_LENGTH]=length=UCNV_EXT_INDEXES_MIN_LENGTH; | |
154 | top+=length*4; | |
155 | ||
156 | indexes[UCNV_EXT_TO_U_INDEX]=top; | |
157 | indexes[UCNV_EXT_TO_U_LENGTH]=length=utm_countItems(extData->toUTable); | |
158 | top+=length*4; | |
159 | ||
160 | indexes[UCNV_EXT_TO_U_UCHARS_INDEX]=top; | |
161 | indexes[UCNV_EXT_TO_U_UCHARS_LENGTH]=length=utm_countItems(extData->toUUChars); | |
162 | top+=length*2; | |
163 | ||
164 | indexes[UCNV_EXT_FROM_U_UCHARS_INDEX]=top; | |
165 | length=utm_countItems(extData->fromUTableUChars); | |
166 | top+=length*2; | |
167 | ||
168 | if(top&3) { | |
169 | /* add padding */ | |
170 | *((UChar *)utm_alloc(extData->fromUTableUChars))=0; | |
171 | *((uint32_t *)utm_alloc(extData->fromUTableValues))=0; | |
172 | ++length; | |
173 | top+=2; | |
174 | } | |
175 | indexes[UCNV_EXT_FROM_U_LENGTH]=length; | |
176 | ||
177 | indexes[UCNV_EXT_FROM_U_VALUES_INDEX]=top; | |
178 | top+=length*4; | |
179 | ||
180 | indexes[UCNV_EXT_FROM_U_BYTES_INDEX]=top; | |
181 | length=utm_countItems(extData->fromUBytes); | |
182 | top+=length; | |
183 | ||
184 | if(top&1) { | |
185 | /* add padding */ | |
186 | *((uint8_t *)utm_alloc(extData->fromUBytes))=0; | |
187 | ++length; | |
188 | ++top; | |
189 | } | |
190 | indexes[UCNV_EXT_FROM_U_BYTES_LENGTH]=length; | |
191 | ||
192 | indexes[UCNV_EXT_FROM_U_STAGE_12_INDEX]=top; | |
193 | indexes[UCNV_EXT_FROM_U_STAGE_1_LENGTH]=length=extData->stage1Top; | |
194 | indexes[UCNV_EXT_FROM_U_STAGE_12_LENGTH]=length+=extData->stage2Top; | |
195 | top+=length*2; | |
196 | ||
197 | indexes[UCNV_EXT_FROM_U_STAGE_3_INDEX]=top; | |
198 | length=extData->stage3Top; | |
199 | top+=length*2; | |
200 | ||
201 | if(top&3) { | |
202 | /* add padding */ | |
203 | extData->stage3[extData->stage3Top++]=0; | |
204 | ++length; | |
205 | top+=2; | |
206 | } | |
207 | indexes[UCNV_EXT_FROM_U_STAGE_3_LENGTH]=length; | |
208 | ||
209 | indexes[UCNV_EXT_FROM_U_STAGE_3B_INDEX]=top; | |
210 | indexes[UCNV_EXT_FROM_U_STAGE_3B_LENGTH]=length=extData->stage3bTop; | |
211 | top+=length*4; | |
212 | ||
213 | indexes[UCNV_EXT_SIZE]=top; | |
214 | ||
215 | /* statistics */ | |
216 | indexes[UCNV_EXT_COUNT_BYTES]= | |
217 | (extData->maxInBytes<<16)| | |
218 | (extData->maxOutBytes<<8)| | |
219 | extData->maxBytesPerUChar; | |
220 | indexes[UCNV_EXT_COUNT_UCHARS]= | |
221 | (extData->maxInUChars<<16)| | |
222 | (extData->maxOutUChars<<8)| | |
223 | extData->maxUCharsPerByte; | |
224 | ||
225 | indexes[UCNV_EXT_FLAGS]=extData->ucm->ext->unicodeMask; | |
226 | ||
227 | /* write the extension data */ | |
228 | udata_writeBlock(pData, indexes, sizeof(indexes)); | |
229 | udata_writeBlock(pData, utm_getStart(extData->toUTable), indexes[UCNV_EXT_TO_U_LENGTH]*4); | |
230 | udata_writeBlock(pData, utm_getStart(extData->toUUChars), indexes[UCNV_EXT_TO_U_UCHARS_LENGTH]*2); | |
231 | ||
232 | udata_writeBlock(pData, utm_getStart(extData->fromUTableUChars), indexes[UCNV_EXT_FROM_U_LENGTH]*2); | |
233 | udata_writeBlock(pData, utm_getStart(extData->fromUTableValues), indexes[UCNV_EXT_FROM_U_LENGTH]*4); | |
234 | udata_writeBlock(pData, utm_getStart(extData->fromUBytes), indexes[UCNV_EXT_FROM_U_BYTES_LENGTH]); | |
235 | ||
236 | udata_writeBlock(pData, extData->stage1, extData->stage1Top*2); | |
237 | udata_writeBlock(pData, extData->stage2, extData->stage2Top*2); | |
238 | udata_writeBlock(pData, extData->stage3, extData->stage3Top*2); | |
239 | udata_writeBlock(pData, extData->stage3b, extData->stage3bTop*4); | |
240 | ||
241 | #if 0 | |
242 | { | |
243 | int32_t i, j; | |
244 | ||
245 | length=extData->stage1Top; | |
246 | printf("\nstage1[%x]:\n", length); | |
247 | ||
248 | for(i=0; i<length; ++i) { | |
249 | if(extData->stage1[i]!=length) { | |
250 | printf("stage1[%04x]=%04x\n", i, extData->stage1[i]); | |
251 | } | |
252 | } | |
253 | ||
254 | j=length; | |
255 | length=extData->stage2Top; | |
256 | printf("\nstage2[%x]:\n", length); | |
257 | ||
258 | for(i=0; i<length; ++j, ++i) { | |
259 | if(extData->stage2[i]!=0) { | |
260 | printf("stage12[%04x]=%04x\n", j, extData->stage2[i]); | |
261 | } | |
262 | } | |
263 | ||
264 | length=extData->stage3Top; | |
265 | printf("\nstage3[%x]:\n", length); | |
266 | ||
267 | for(i=0; i<length; ++i) { | |
268 | if(extData->stage3[i]!=0) { | |
269 | printf("stage3[%04x]=%04x\n", i, extData->stage3[i]); | |
270 | } | |
271 | } | |
272 | ||
273 | length=extData->stage3bTop; | |
274 | printf("\nstage3b[%x]:\n", length); | |
275 | ||
276 | for(i=0; i<length; ++i) { | |
277 | if(extData->stage3b[i]!=0) { | |
278 | printf("stage3b[%04x]=%08x\n", i, extData->stage3b[i]); | |
279 | } | |
280 | } | |
281 | } | |
282 | #endif | |
283 | ||
284 | if(VERBOSE) { | |
285 | printf("size of extension data: %ld\n", (long)top); | |
286 | } | |
287 | ||
288 | /* return the number of bytes that should have been written */ | |
289 | return (uint32_t)(headerSize+top); | |
290 | } | |
291 | ||
292 | /* to Unicode --------------------------------------------------------------- */ | |
293 | ||
294 | /* | |
295 | * Remove fromUnicode fallbacks and SUB mappings which are irrelevant for | |
296 | * the toUnicode table. | |
297 | * This includes mappings with MBCS_FROM_U_EXT_FLAG which were suitable | |
298 | * for the base toUnicode table but not for the base fromUnicode table. | |
299 | * The table must be sorted. | |
300 | * Modifies previous data in the reverseMap. | |
301 | */ | |
302 | static int32_t | |
303 | reduceToUMappings(UCMTable *table) { | |
304 | UCMapping *mappings; | |
305 | int32_t *map; | |
306 | int32_t i, j, count; | |
307 | int8_t flag; | |
308 | ||
309 | mappings=table->mappings; | |
310 | map=table->reverseMap; | |
311 | count=table->mappingsLength; | |
312 | ||
313 | /* leave the map alone for the initial mappings with desired flags */ | |
314 | for(i=j=0; i<count; ++i) { | |
315 | flag=mappings[map[i]].f; | |
316 | if(flag!=0 && flag!=3) { | |
317 | break; | |
318 | } | |
319 | } | |
320 | ||
321 | /* reduce from here to the rest */ | |
322 | for(j=i; i<count; ++i) { | |
323 | flag=mappings[map[i]].f; | |
324 | if(flag==0 || flag==3) { | |
325 | map[j++]=map[i]; | |
326 | } | |
327 | } | |
328 | ||
329 | return j; | |
330 | } | |
331 | ||
332 | static uint32_t | |
333 | getToUnicodeValue(CnvExtData *extData, UCMTable *table, UCMapping *m) { | |
334 | UChar32 *u32; | |
335 | UChar *u; | |
336 | uint32_t value; | |
337 | int32_t u16Length, ratio; | |
338 | UErrorCode errorCode; | |
339 | ||
340 | /* write the Unicode result code point or string index */ | |
341 | if(m->uLen==1) { | |
342 | u16Length=U16_LENGTH(m->u); | |
343 | value=(uint32_t)(UCNV_EXT_TO_U_MIN_CODE_POINT+m->u); | |
344 | } else { | |
345 | /* the parser enforces m->uLen<=UCNV_EXT_MAX_UCHARS */ | |
346 | ||
347 | /* get the result code point string and its 16-bit string length */ | |
348 | u32=UCM_GET_CODE_POINTS(table, m); | |
349 | errorCode=U_ZERO_ERROR; | |
350 | u_strFromUTF32(NULL, 0, &u16Length, u32, m->uLen, &errorCode); | |
351 | if(U_FAILURE(errorCode) && errorCode!=U_BUFFER_OVERFLOW_ERROR) { | |
352 | exit(errorCode); | |
353 | } | |
354 | ||
355 | /* allocate it and put its length and index into the value */ | |
356 | value= | |
357 | (((uint32_t)u16Length+UCNV_EXT_TO_U_LENGTH_OFFSET)<<UCNV_EXT_TO_U_LENGTH_SHIFT)| | |
358 | ((uint32_t)utm_countItems(extData->toUUChars)); | |
359 | u=utm_allocN(extData->toUUChars, u16Length); | |
360 | ||
361 | /* write the result 16-bit string */ | |
362 | errorCode=U_ZERO_ERROR; | |
363 | u_strFromUTF32(u, u16Length, NULL, u32, m->uLen, &errorCode); | |
364 | if(U_FAILURE(errorCode) && errorCode!=U_BUFFER_OVERFLOW_ERROR) { | |
365 | exit(errorCode); | |
366 | } | |
367 | } | |
368 | if(m->f==0) { | |
369 | value|=UCNV_EXT_TO_U_ROUNDTRIP_FLAG; | |
370 | } | |
371 | ||
372 | /* update statistics */ | |
373 | if(m->bLen>extData->maxInBytes) { | |
374 | extData->maxInBytes=m->bLen; | |
375 | } | |
376 | if(u16Length>extData->maxOutUChars) { | |
377 | extData->maxOutUChars=u16Length; | |
378 | } | |
379 | ||
380 | ratio=(u16Length+(m->bLen-1))/m->bLen; | |
381 | if(ratio>extData->maxUCharsPerByte) { | |
382 | extData->maxUCharsPerByte=ratio; | |
383 | } | |
384 | ||
385 | return value; | |
386 | } | |
387 | ||
388 | /* | |
389 | * Recursive toUTable generator core function. | |
390 | * Preconditions: | |
391 | * - start<limit (There is at least one mapping.) | |
392 | * - The mappings are sorted lexically. (Access is through the reverseMap.) | |
393 | * - All mappings between start and limit have input sequences that share | |
394 | * the same prefix of unitIndex length, and therefore all of these sequences | |
395 | * are at least unitIndex+1 long. | |
396 | * - There are only relevant mappings available through the reverseMap, | |
397 | * see reduceToUMappings(). | |
398 | * | |
399 | * One function invocation generates one section table. | |
400 | * | |
401 | * Steps: | |
402 | * 1. Count the number of unique unit values and get the low/high unit values | |
403 | * that occur at unitIndex. | |
404 | * 2. Allocate the section table with possible optimization for linear access. | |
405 | * 3. Write temporary version of the section table with start indexes of | |
406 | * subsections, each corresponding to one unit value at unitIndex. | |
407 | * 4. Iterate through the table once more, and depending on the subsection length: | |
408 | * 0: write 0 as a result value (unused byte in linear-access section table) | |
409 | * >0: if there is one mapping with an input unit sequence of unitIndex+1 | |
410 | * then defaultValue=compute the mapping result for this whole sequence | |
411 | * else defaultValue=0 | |
412 | * | |
413 | * recurse into the subsection | |
414 | */ | |
415 | static UBool | |
416 | generateToUTable(CnvExtData *extData, UCMTable *table, | |
417 | int32_t start, int32_t limit, int32_t unitIndex, | |
418 | uint32_t defaultValue) { | |
419 | UCMapping *mappings, *m; | |
420 | int32_t *map; | |
421 | int32_t i, j, uniqueCount, count, subStart, subLimit; | |
422 | ||
423 | uint8_t *bytes; | |
424 | int32_t low, high, prev; | |
425 | ||
426 | uint32_t *section; | |
427 | ||
428 | mappings=table->mappings; | |
429 | map=table->reverseMap; | |
430 | ||
431 | /* step 1: examine the input units; set low, high, uniqueCount */ | |
432 | m=mappings+map[start]; | |
433 | bytes=UCM_GET_BYTES(table, m); | |
434 | low=bytes[unitIndex]; | |
435 | uniqueCount=1; | |
436 | ||
437 | prev=high=low; | |
438 | for(i=start+1; i<limit; ++i) { | |
439 | m=mappings+map[i]; | |
440 | bytes=UCM_GET_BYTES(table, m); | |
441 | high=bytes[unitIndex]; | |
442 | ||
443 | if(high!=prev) { | |
444 | prev=high; | |
445 | ++uniqueCount; | |
446 | } | |
447 | } | |
448 | ||
449 | /* step 2: allocate the section; set count, section */ | |
450 | count=(high-low)+1; | |
451 | if(count<0x100 && (unitIndex==0 || uniqueCount>=(3*count)/4)) { | |
452 | /* | |
453 | * for the root table and for fairly full tables: | |
454 | * allocate for direct, linear array access | |
455 | * by keeping count, to write an entry for each unit value | |
456 | * from low to high | |
457 | * exception: use a compact table if count==0x100 because | |
458 | * that cannot be encoded in the length byte | |
459 | */ | |
460 | } else { | |
461 | count=uniqueCount; | |
462 | } | |
463 | ||
464 | if(count>=0x100) { | |
465 | fprintf(stderr, "error: toUnicode extension table section overflow: %ld section entries\n", (long)count); | |
466 | return FALSE; | |
467 | } | |
468 | ||
469 | /* allocate the section: 1 entry for the header + count for the items */ | |
470 | section=(uint32_t *)utm_allocN(extData->toUTable, 1+count); | |
471 | ||
472 | /* write the section header */ | |
473 | *section++=((uint32_t)count<<UCNV_EXT_TO_U_BYTE_SHIFT)|defaultValue; | |
474 | ||
475 | /* step 3: write temporary section table with subsection starts */ | |
476 | prev=low-1; /* just before low to prevent empty subsections before low */ | |
477 | j=0; /* section table index */ | |
478 | for(i=start; i<limit; ++i) { | |
479 | m=mappings+map[i]; | |
480 | bytes=UCM_GET_BYTES(table, m); | |
481 | high=bytes[unitIndex]; | |
482 | ||
483 | if(high!=prev) { | |
484 | /* start of a new subsection for unit high */ | |
485 | if(count>uniqueCount) { | |
486 | /* write empty subsections for unused units in a linear table */ | |
487 | while(++prev<high) { | |
488 | section[j++]=((uint32_t)prev<<UCNV_EXT_TO_U_BYTE_SHIFT)|(uint32_t)i; | |
489 | } | |
490 | } else { | |
491 | prev=high; | |
492 | } | |
493 | ||
494 | /* write the entry with the subsection start */ | |
495 | section[j++]=((uint32_t)high<<UCNV_EXT_TO_U_BYTE_SHIFT)|(uint32_t)i; | |
496 | } | |
497 | } | |
498 | /* assert(j==count) */ | |
499 | ||
500 | /* step 4: recurse and write results */ | |
501 | subLimit=UCNV_EXT_TO_U_GET_VALUE(section[0]); | |
502 | for(j=0; j<count; ++j) { | |
503 | subStart=subLimit; | |
504 | subLimit= (j+1)<count ? UCNV_EXT_TO_U_GET_VALUE(section[j+1]) : limit; | |
505 | ||
506 | /* remove the subStart temporary value */ | |
507 | section[j]&=~UCNV_EXT_TO_U_VALUE_MASK; | |
508 | ||
509 | if(subStart==subLimit) { | |
510 | /* leave the value zero: empty subsection for unused unit in a linear table */ | |
511 | continue; | |
512 | } | |
513 | ||
514 | /* see if there is exactly one input unit sequence of length unitIndex+1 */ | |
515 | defaultValue=0; | |
516 | m=mappings+map[subStart]; | |
517 | if(m->bLen==unitIndex+1) { | |
518 | /* do not include this in generateToUTable() */ | |
519 | ++subStart; | |
520 | ||
521 | if(subStart<subLimit && mappings[map[subStart]].bLen==unitIndex+1) { | |
522 | /* print error for multiple same-input-sequence mappings */ | |
523 | fprintf(stderr, "error: multiple mappings from same bytes\n"); | |
524 | ucm_printMapping(table, m, stderr); | |
525 | ucm_printMapping(table, mappings+map[subStart], stderr); | |
526 | return FALSE; | |
527 | } | |
528 | ||
529 | defaultValue=getToUnicodeValue(extData, table, m); | |
530 | } | |
531 | ||
532 | if(subStart==subLimit) { | |
533 | /* write the result for the input sequence ending here */ | |
534 | section[j]|=defaultValue; | |
535 | } else { | |
536 | /* write the index to the subsection table */ | |
537 | section[j]|=(uint32_t)utm_countItems(extData->toUTable); | |
538 | ||
539 | /* recurse */ | |
540 | if(!generateToUTable(extData, table, subStart, subLimit, unitIndex+1, defaultValue)) { | |
541 | return FALSE; | |
542 | } | |
543 | } | |
544 | } | |
545 | return TRUE; | |
546 | } | |
547 | ||
548 | /* | |
549 | * Generate the toUTable and toUUChars from the input table. | |
550 | * The input table must be sorted, and all precision flags must be 0..3. | |
551 | * This function will modify the table's reverseMap. | |
552 | */ | |
553 | static UBool | |
554 | makeToUTable(CnvExtData *extData, UCMTable *table) { | |
555 | int32_t toUCount; | |
556 | ||
557 | toUCount=reduceToUMappings(table); | |
558 | ||
559 | extData->toUTable=utm_open("cnv extension toUTable", 0x10000, UCNV_EXT_TO_U_MIN_CODE_POINT, 4); | |
560 | extData->toUUChars=utm_open("cnv extension toUUChars", 0x10000, UCNV_EXT_TO_U_INDEX_MASK+1, 2); | |
561 | ||
562 | return generateToUTable(extData, table, 0, toUCount, 0, 0); | |
563 | } | |
564 | ||
565 | /* from Unicode ------------------------------------------------------------- */ | |
566 | ||
567 | /* | |
568 | * preprocessing: | |
569 | * rebuild reverseMap with mapping indexes for mappings relevant for from Unicode | |
570 | * change each Unicode string to encode all but the first code point in 16-bit form | |
571 | * | |
572 | * generation: | |
573 | * for each unique code point | |
574 | * write an entry in the 3-stage trie | |
575 | * check that there is only one single-code point sequence | |
576 | * start recursion for following 16-bit input units | |
577 | */ | |
578 | ||
579 | /* | |
580 | * Remove toUnicode fallbacks and non-<subchar1> SUB mappings | |
581 | * which are irrelevant for the fromUnicode extension table. | |
582 | * Remove MBCS_FROM_U_EXT_FLAG bits. | |
583 | * Overwrite the reverseMap with an index array to the relevant mappings. | |
584 | * Modify the code point sequences to a generator-friendly format where | |
585 | * the first code points remains unchanged but the following are recoded | |
586 | * into 16-bit Unicode string form. | |
587 | * The table must be sorted. | |
588 | * Destroys previous data in the reverseMap. | |
589 | */ | |
590 | static int32_t | |
591 | prepareFromUMappings(UCMTable *table) { | |
592 | UCMapping *mappings, *m; | |
593 | int32_t *map; | |
594 | int32_t i, j, count; | |
595 | int8_t flag; | |
596 | ||
597 | mappings=table->mappings; | |
598 | map=table->reverseMap; | |
599 | count=table->mappingsLength; | |
600 | ||
601 | /* | |
602 | * we do not go through the map on input because the mappings are | |
603 | * sorted lexically | |
604 | */ | |
605 | m=mappings; | |
606 | ||
607 | for(i=j=0; i<count; ++m, ++i) { | |
608 | flag=m->f; | |
609 | if(flag>=0) { | |
610 | flag&=MBCS_FROM_U_EXT_MASK; | |
611 | m->f=flag; | |
612 | } | |
613 | if(flag==0 || flag==1 || (flag==2 && m->bLen==1) || flag==4) { | |
614 | map[j++]=i; | |
615 | ||
616 | if(m->uLen>1) { | |
617 | /* recode all but the first code point to 16-bit Unicode */ | |
618 | UChar32 *u32; | |
619 | UChar *u; | |
620 | UChar32 c; | |
621 | int32_t q, r; | |
622 | ||
623 | u32=UCM_GET_CODE_POINTS(table, m); | |
624 | u=(UChar *)u32; /* destructive in-place recoding */ | |
625 | for(r=2, q=1; q<m->uLen; ++q) { | |
626 | c=u32[q]; | |
627 | U16_APPEND_UNSAFE(u, r, c); | |
628 | } | |
629 | ||
630 | /* counts the first code point always at 2 - the first 16-bit unit is at 16-bit index 2 */ | |
631 | m->uLen=(int8_t)r; | |
632 | } | |
633 | } | |
634 | } | |
635 | ||
636 | return j; | |
637 | } | |
638 | ||
639 | static uint32_t | |
640 | getFromUBytesValue(CnvExtData *extData, UCMTable *table, UCMapping *m) { | |
641 | uint8_t *bytes, *resultBytes; | |
642 | uint32_t value; | |
643 | int32_t u16Length, ratio; | |
644 | ||
645 | if(m->f==2) { | |
646 | /* | |
647 | * no mapping, <subchar1> preferred | |
648 | * | |
649 | * no need to count in statistics because the subchars are already | |
650 | * counted for maxOutBytes and maxBytesPerUChar in UConverterStaticData, | |
651 | * and this non-mapping does not count for maxInUChars which are always | |
652 | * trivially at least two if counting unmappable supplementary code points | |
653 | */ | |
654 | return UCNV_EXT_FROM_U_SUBCHAR1; | |
655 | } | |
656 | ||
657 | bytes=UCM_GET_BYTES(table, m); | |
658 | value=0; | |
659 | switch(m->bLen) { | |
660 | /* 1..3: store the bytes in the value word */ | |
661 | case 3: | |
662 | value=((uint32_t)*bytes++)<<16; | |
663 | case 2: | |
664 | value|=((uint32_t)*bytes++)<<8; | |
665 | case 1: | |
666 | value|=*bytes; | |
667 | break; | |
668 | default: | |
669 | /* the parser enforces m->bLen<=UCNV_EXT_MAX_BYTES */ | |
670 | /* store the bytes in fromUBytes[] and the index in the value word */ | |
671 | value=(uint32_t)utm_countItems(extData->fromUBytes); | |
672 | resultBytes=utm_allocN(extData->fromUBytes, m->bLen); | |
673 | uprv_memcpy(resultBytes, bytes, m->bLen); | |
674 | break; | |
675 | } | |
676 | value|=(uint32_t)m->bLen<<UCNV_EXT_FROM_U_LENGTH_SHIFT; | |
677 | if(m->f==0) { | |
678 | value|=UCNV_EXT_FROM_U_ROUNDTRIP_FLAG; | |
679 | } else if(m->f==4) { | |
680 | value|=UCNV_EXT_FROM_U_GOOD_ONE_WAY_FLAG; | |
681 | } | |
682 | ||
683 | /* calculate the real UTF-16 length (see recoding in prepareFromUMappings()) */ | |
684 | if(m->uLen==1) { | |
685 | u16Length=U16_LENGTH(m->u); | |
686 | } else { | |
687 | u16Length=U16_LENGTH(UCM_GET_CODE_POINTS(table, m)[0])+(m->uLen-2); | |
688 | } | |
689 | ||
690 | /* update statistics */ | |
691 | if(u16Length>extData->maxInUChars) { | |
692 | extData->maxInUChars=u16Length; | |
693 | } | |
694 | if(m->bLen>extData->maxOutBytes) { | |
695 | extData->maxOutBytes=m->bLen; | |
696 | } | |
697 | ||
698 | ratio=(m->bLen+(u16Length-1))/u16Length; | |
699 | if(ratio>extData->maxBytesPerUChar) { | |
700 | extData->maxBytesPerUChar=ratio; | |
701 | } | |
702 | ||
703 | return value; | |
704 | } | |
705 | ||
706 | /* | |
707 | * works like generateToUTable(), except that the | |
708 | * output section consists of two arrays, one for input UChars and one | |
709 | * for result values | |
710 | * | |
711 | * also, fromUTable sections are always stored in a compact form for | |
712 | * access via binary search | |
713 | */ | |
714 | static UBool | |
715 | generateFromUTable(CnvExtData *extData, UCMTable *table, | |
716 | int32_t start, int32_t limit, int32_t unitIndex, | |
717 | uint32_t defaultValue) { | |
718 | UCMapping *mappings, *m; | |
719 | int32_t *map; | |
720 | int32_t i, j, uniqueCount, count, subStart, subLimit; | |
721 | ||
722 | UChar *uchars; | |
723 | UChar32 low, high, prev; | |
724 | ||
725 | UChar *sectionUChars; | |
726 | uint32_t *sectionValues; | |
727 | ||
728 | mappings=table->mappings; | |
729 | map=table->reverseMap; | |
730 | ||
731 | /* step 1: examine the input units; set low, high, uniqueCount */ | |
732 | m=mappings+map[start]; | |
733 | uchars=(UChar *)UCM_GET_CODE_POINTS(table, m); | |
734 | low=uchars[unitIndex]; | |
735 | uniqueCount=1; | |
736 | ||
737 | prev=high=low; | |
738 | for(i=start+1; i<limit; ++i) { | |
739 | m=mappings+map[i]; | |
740 | uchars=(UChar *)UCM_GET_CODE_POINTS(table, m); | |
741 | high=uchars[unitIndex]; | |
742 | ||
743 | if(high!=prev) { | |
744 | prev=high; | |
745 | ++uniqueCount; | |
746 | } | |
747 | } | |
748 | ||
749 | /* step 2: allocate the section; set count, section */ | |
750 | /* the fromUTable always stores for access via binary search */ | |
751 | count=uniqueCount; | |
752 | ||
753 | /* allocate the section: 1 entry for the header + count for the items */ | |
754 | sectionUChars=(UChar *)utm_allocN(extData->fromUTableUChars, 1+count); | |
755 | sectionValues=(uint32_t *)utm_allocN(extData->fromUTableValues, 1+count); | |
756 | ||
757 | /* write the section header */ | |
758 | *sectionUChars++=(UChar)count; | |
759 | *sectionValues++=defaultValue; | |
760 | ||
761 | /* step 3: write temporary section table with subsection starts */ | |
762 | prev=low-1; /* just before low to prevent empty subsections before low */ | |
763 | j=0; /* section table index */ | |
764 | for(i=start; i<limit; ++i) { | |
765 | m=mappings+map[i]; | |
766 | uchars=(UChar *)UCM_GET_CODE_POINTS(table, m); | |
767 | high=uchars[unitIndex]; | |
768 | ||
769 | if(high!=prev) { | |
770 | /* start of a new subsection for unit high */ | |
771 | prev=high; | |
772 | ||
773 | /* write the entry with the subsection start */ | |
774 | sectionUChars[j]=(UChar)high; | |
775 | sectionValues[j]=(uint32_t)i; | |
776 | ++j; | |
777 | } | |
778 | } | |
779 | /* assert(j==count) */ | |
780 | ||
781 | /* step 4: recurse and write results */ | |
782 | subLimit=(int32_t)(sectionValues[0]); | |
783 | for(j=0; j<count; ++j) { | |
784 | subStart=subLimit; | |
785 | subLimit= (j+1)<count ? (int32_t)(sectionValues[j+1]) : limit; | |
786 | ||
787 | /* see if there is exactly one input unit sequence of length unitIndex+1 */ | |
788 | defaultValue=0; | |
789 | m=mappings+map[subStart]; | |
790 | if(m->uLen==unitIndex+1) { | |
791 | /* do not include this in generateToUTable() */ | |
792 | ++subStart; | |
793 | ||
794 | if(subStart<subLimit && mappings[map[subStart]].uLen==unitIndex+1) { | |
795 | /* print error for multiple same-input-sequence mappings */ | |
796 | fprintf(stderr, "error: multiple mappings from same Unicode code points\n"); | |
797 | ucm_printMapping(table, m, stderr); | |
798 | ucm_printMapping(table, mappings+map[subStart], stderr); | |
799 | return FALSE; | |
800 | } | |
801 | ||
802 | defaultValue=getFromUBytesValue(extData, table, m); | |
803 | } | |
804 | ||
805 | if(subStart==subLimit) { | |
806 | /* write the result for the input sequence ending here */ | |
807 | sectionValues[j]=defaultValue; | |
808 | } else { | |
809 | /* write the index to the subsection table */ | |
810 | sectionValues[j]=(uint32_t)utm_countItems(extData->fromUTableValues); | |
811 | ||
812 | /* recurse */ | |
813 | if(!generateFromUTable(extData, table, subStart, subLimit, unitIndex+1, defaultValue)) { | |
814 | return FALSE; | |
815 | } | |
816 | } | |
817 | } | |
818 | return TRUE; | |
819 | } | |
820 | ||
821 | /* | |
822 | * add entries to the fromUnicode trie, | |
823 | * assume to be called with code points in ascending order | |
824 | * and use that to build the trie in precompacted form | |
825 | */ | |
826 | static void | |
827 | addFromUTrieEntry(CnvExtData *extData, UChar32 c, uint32_t value) { | |
828 | int32_t i1, i2, i3, i3b, nextOffset, min, newBlock; | |
829 | ||
830 | if(value==0) { | |
831 | return; | |
832 | } | |
833 | ||
834 | /* | |
835 | * compute the index for each stage, | |
836 | * allocate a stage block if necessary, | |
837 | * and write the stage value | |
838 | */ | |
839 | i1=c>>10; | |
840 | if(i1>=extData->stage1Top) { | |
841 | extData->stage1Top=i1+1; | |
842 | } | |
843 | ||
844 | nextOffset=(c>>4)&0x3f; | |
845 | ||
846 | if(extData->stage1[i1]==0) { | |
847 | /* allocate another block in stage 2; overlap with the previous block */ | |
848 | newBlock=extData->stage2Top; | |
849 | min=newBlock-nextOffset; /* minimum block start with overlap */ | |
850 | while(min<newBlock && extData->stage2[newBlock-1]==0) { | |
851 | --newBlock; | |
852 | } | |
853 | ||
854 | extData->stage1[i1]=(uint16_t)newBlock; | |
855 | extData->stage2Top=newBlock+MBCS_STAGE_2_BLOCK_SIZE; | |
856 | if(extData->stage2Top>UPRV_LENGTHOF(extData->stage2)) { | |
857 | fprintf(stderr, "error: too many stage 2 entries at U+%04x\n", (int)c); | |
858 | exit(U_MEMORY_ALLOCATION_ERROR); | |
859 | } | |
860 | } | |
861 | ||
862 | i2=extData->stage1[i1]+nextOffset; | |
863 | nextOffset=c&0xf; | |
864 | ||
865 | if(extData->stage2[i2]==0) { | |
866 | /* allocate another block in stage 3; overlap with the previous block */ | |
867 | newBlock=extData->stage3Top; | |
868 | min=newBlock-nextOffset; /* minimum block start with overlap */ | |
869 | while(min<newBlock && extData->stage3[newBlock-1]==0) { | |
870 | --newBlock; | |
871 | } | |
872 | ||
873 | /* round up to a multiple of stage 3 granularity >1 (similar to utrie.c) */ | |
874 | newBlock=(newBlock+(UCNV_EXT_STAGE_3_GRANULARITY-1))&~(UCNV_EXT_STAGE_3_GRANULARITY-1); | |
875 | extData->stage2[i2]=(uint16_t)(newBlock>>UCNV_EXT_STAGE_2_LEFT_SHIFT); | |
876 | ||
877 | extData->stage3Top=newBlock+MBCS_STAGE_3_BLOCK_SIZE; | |
878 | if(extData->stage3Top>UPRV_LENGTHOF(extData->stage3)) { | |
879 | fprintf(stderr, "error: too many stage 3 entries at U+%04x\n", (int)c); | |
880 | exit(U_MEMORY_ALLOCATION_ERROR); | |
881 | } | |
882 | } | |
883 | ||
884 | i3=((int32_t)extData->stage2[i2]<<UCNV_EXT_STAGE_2_LEFT_SHIFT)+nextOffset; | |
885 | /* | |
886 | * assume extData->stage3[i3]==0 because we get | |
887 | * code points in strictly ascending order | |
888 | */ | |
889 | ||
890 | if(value==UCNV_EXT_FROM_U_SUBCHAR1) { | |
891 | /* <subchar1> SUB mapping, see getFromUBytesValue() and prepareFromUMappings() */ | |
892 | extData->stage3[i3]=1; | |
893 | ||
894 | /* | |
895 | * precompaction is not optimal for <subchar1> |2 mappings because | |
896 | * stage3 values for them are all the same, unlike for other mappings | |
897 | * which all have unique values; | |
898 | * use a simple compaction of reusing a whole block filled with these | |
899 | * mappings | |
900 | */ | |
901 | ||
902 | /* is the entire block filled with <subchar1> |2 mappings? */ | |
903 | if(nextOffset==MBCS_STAGE_3_BLOCK_SIZE-1) { | |
904 | for(min=i3-nextOffset; | |
905 | min<i3 && extData->stage3[min]==1; | |
906 | ++min) {} | |
907 | ||
908 | if(min==i3) { | |
909 | /* the entire block is filled with these mappings */ | |
910 | if(extData->stage3Sub1Block!=0) { | |
911 | /* point to the previous such block and remove this block from stage3 */ | |
912 | extData->stage2[i2]=extData->stage3Sub1Block; | |
913 | extData->stage3Top-=MBCS_STAGE_3_BLOCK_SIZE; | |
914 | uprv_memset(extData->stage3+extData->stage3Top, 0, MBCS_STAGE_3_BLOCK_SIZE*2); | |
915 | } else { | |
916 | /* remember this block's stage2 entry */ | |
917 | extData->stage3Sub1Block=extData->stage2[i2]; | |
918 | } | |
919 | } | |
920 | } | |
921 | } else { | |
922 | if((i3b=extData->stage3bTop++)>=UPRV_LENGTHOF(extData->stage3b)) { | |
923 | fprintf(stderr, "error: too many stage 3b entries at U+%04x\n", (int)c); | |
924 | exit(U_MEMORY_ALLOCATION_ERROR); | |
925 | } | |
926 | ||
927 | /* roundtrip or fallback mapping */ | |
928 | extData->stage3[i3]=(uint16_t)i3b; | |
929 | extData->stage3b[i3b]=value; | |
930 | } | |
931 | } | |
932 | ||
933 | static UBool | |
934 | generateFromUTrie(CnvExtData *extData, UCMTable *table, int32_t mapLength) { | |
935 | UCMapping *mappings, *m; | |
936 | int32_t *map; | |
937 | uint32_t value; | |
938 | int32_t subStart, subLimit; | |
939 | ||
940 | UChar32 *codePoints; | |
941 | UChar32 c, next; | |
942 | ||
943 | if(mapLength==0) { | |
944 | return TRUE; | |
945 | } | |
946 | ||
947 | mappings=table->mappings; | |
948 | map=table->reverseMap; | |
949 | ||
950 | /* | |
951 | * iterate over same-initial-code point mappings, | |
952 | * enter the initial code point into the trie, | |
953 | * and start a recursion on the corresponding mappings section | |
954 | * with generateFromUTable() | |
955 | */ | |
956 | m=mappings+map[0]; | |
957 | codePoints=UCM_GET_CODE_POINTS(table, m); | |
958 | next=codePoints[0]; | |
959 | subLimit=0; | |
960 | while(subLimit<mapLength) { | |
961 | /* get a new subsection of mappings starting with the same code point */ | |
962 | subStart=subLimit; | |
963 | c=next; | |
964 | while(next==c && ++subLimit<mapLength) { | |
965 | m=mappings+map[subLimit]; | |
966 | codePoints=UCM_GET_CODE_POINTS(table, m); | |
967 | next=codePoints[0]; | |
968 | } | |
969 | ||
970 | /* | |
971 | * compute the value for this code point; | |
972 | * if there is a mapping for this code point alone, it is at subStart | |
973 | * because the table is sorted lexically | |
974 | */ | |
975 | value=0; | |
976 | m=mappings+map[subStart]; | |
977 | codePoints=UCM_GET_CODE_POINTS(table, m); | |
978 | if(m->uLen==1) { | |
979 | /* do not include this in generateFromUTable() */ | |
980 | ++subStart; | |
981 | ||
982 | if(subStart<subLimit && mappings[map[subStart]].uLen==1) { | |
983 | /* print error for multiple same-input-sequence mappings */ | |
984 | fprintf(stderr, "error: multiple mappings from same Unicode code points\n"); | |
985 | ucm_printMapping(table, m, stderr); | |
986 | ucm_printMapping(table, mappings+map[subStart], stderr); | |
987 | return FALSE; | |
988 | } | |
989 | ||
990 | value=getFromUBytesValue(extData, table, m); | |
991 | } | |
992 | ||
993 | if(subStart==subLimit) { | |
994 | /* write the result for this one code point */ | |
995 | addFromUTrieEntry(extData, c, value); | |
996 | } else { | |
997 | /* write the index to the subsection table */ | |
998 | addFromUTrieEntry(extData, c, (uint32_t)utm_countItems(extData->fromUTableValues)); | |
999 | ||
1000 | /* recurse, starting from 16-bit-unit index 2, the first 16-bit unit after c */ | |
1001 | if(!generateFromUTable(extData, table, subStart, subLimit, 2, value)) { | |
1002 | return FALSE; | |
1003 | } | |
1004 | } | |
1005 | } | |
1006 | return TRUE; | |
1007 | } | |
1008 | ||
1009 | /* | |
1010 | * Generate the fromU data structures from the input table. | |
1011 | * The input table must be sorted, and all precision flags must be 0..3. | |
1012 | * This function will modify the table's reverseMap. | |
1013 | */ | |
1014 | static UBool | |
1015 | makeFromUTable(CnvExtData *extData, UCMTable *table) { | |
1016 | uint16_t *stage1; | |
1017 | int32_t i, stage1Top, fromUCount; | |
1018 | ||
1019 | fromUCount=prepareFromUMappings(table); | |
1020 | ||
1021 | extData->fromUTableUChars=utm_open("cnv extension fromUTableUChars", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 2); | |
1022 | extData->fromUTableValues=utm_open("cnv extension fromUTableValues", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 4); | |
1023 | extData->fromUBytes=utm_open("cnv extension fromUBytes", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 1); | |
1024 | ||
1025 | /* allocate all-unassigned stage blocks */ | |
1026 | extData->stage2Top=MBCS_STAGE_2_FIRST_ASSIGNED; | |
1027 | extData->stage3Top=MBCS_STAGE_3_FIRST_ASSIGNED; | |
1028 | ||
1029 | /* | |
1030 | * stage 3b stores only unique values, and in | |
1031 | * index 0: 0 for "no mapping" | |
1032 | * index 1: "no mapping" with preference for <subchar1> rather than <subchar> | |
1033 | */ | |
1034 | extData->stage3b[1]=UCNV_EXT_FROM_U_SUBCHAR1; | |
1035 | extData->stage3bTop=2; | |
1036 | ||
1037 | /* allocate the first entry in the fromUTable because index 0 means "no result" */ | |
1038 | utm_alloc(extData->fromUTableUChars); | |
1039 | utm_alloc(extData->fromUTableValues); | |
1040 | ||
1041 | if(!generateFromUTrie(extData, table, fromUCount)) { | |
1042 | return FALSE; | |
1043 | } | |
1044 | ||
1045 | /* | |
1046 | * offset the stage 1 trie entries by stage1Top because they will | |
1047 | * be stored in a single array | |
1048 | */ | |
1049 | stage1=extData->stage1; | |
1050 | stage1Top=extData->stage1Top; | |
1051 | for(i=0; i<stage1Top; ++i) { | |
1052 | stage1[i]=(uint16_t)(stage1[i]+stage1Top); | |
1053 | } | |
1054 | ||
1055 | return TRUE; | |
1056 | } | |
1057 | ||
1058 | /* -------------------------------------------------------------------------- */ | |
1059 | ||
1060 | static UBool | |
1061 | CnvExtAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData) { | |
1062 | CnvExtData *extData; | |
1063 | ||
1064 | if(table->unicodeMask&UCNV_HAS_SURROGATES) { | |
1065 | fprintf(stderr, "error: contains mappings for surrogate code points\n"); | |
1066 | return FALSE; | |
1067 | } | |
1068 | ||
1069 | staticData->conversionType=UCNV_MBCS; | |
1070 | ||
1071 | extData=(CnvExtData *)cnvData; | |
1072 | ||
1073 | /* | |
1074 | * assume that the table is sorted | |
1075 | * | |
1076 | * call the functions in this order because | |
1077 | * makeToUTable() modifies the original reverseMap, | |
1078 | * makeFromUTable() writes a whole new mapping into reverseMap | |
1079 | */ | |
1080 | return | |
1081 | makeToUTable(extData, table) && | |
1082 | makeFromUTable(extData, table); | |
1083 | } |