]>
Commit | Line | Data |
---|---|---|
1 | // © 2016 and later: Unicode, Inc. and others. | |
2 | // License & terms of use: http://www.unicode.org/copyright.html | |
3 | /* | |
4 | ******************************************************************************* | |
5 | * Copyright (C) 1996-2016, International Business Machines Corporation and | |
6 | * others. All Rights Reserved. | |
7 | ******************************************************************************* | |
8 | */ | |
9 | ||
10 | #include "unicode/utypes.h" | |
11 | ||
12 | #if !UCONFIG_NO_FORMATTING | |
13 | ||
14 | #include "itrbnf.h" | |
15 | ||
16 | #include "unicode/umachine.h" | |
17 | ||
18 | #include "unicode/tblcoll.h" | |
19 | #include "unicode/coleitr.h" | |
20 | #include "unicode/ures.h" | |
21 | #include "unicode/ustring.h" | |
22 | #include "unicode/decimfmt.h" | |
23 | #include "unicode/udata.h" | |
24 | #include "cmemory.h" | |
25 | #include "putilimp.h" | |
26 | #include "testutil.h" | |
27 | ||
28 | #include <string.h> | |
29 | ||
30 | // import com.ibm.text.RuleBasedNumberFormat; | |
31 | // import com.ibm.test.TestFmwk; | |
32 | ||
33 | // import java.util.Locale; | |
34 | // import java.text.NumberFormat; | |
35 | ||
36 | // current macro not in icu1.8.1 | |
37 | #define TESTCASE(id,test) \ | |
38 | case id: \ | |
39 | name = #test; \ | |
40 | if (exec) { \ | |
41 | logln(#test "---"); \ | |
42 | logln(); \ | |
43 | test(); \ | |
44 | } \ | |
45 | break | |
46 | ||
47 | void IntlTestRBNF::runIndexedTest(int32_t index, UBool exec, const char* &name, char* /*par*/) | |
48 | { | |
49 | if (exec) logln("TestSuite RuleBasedNumberFormat"); | |
50 | switch (index) { | |
51 | #if U_HAVE_RBNF | |
52 | TESTCASE(0, TestEnglishSpellout); | |
53 | TESTCASE(1, TestOrdinalAbbreviations); | |
54 | TESTCASE(2, TestDurations); | |
55 | TESTCASE(3, TestSpanishSpellout); | |
56 | TESTCASE(4, TestFrenchSpellout); | |
57 | TESTCASE(5, TestSwissFrenchSpellout); | |
58 | TESTCASE(6, TestItalianSpellout); | |
59 | TESTCASE(7, TestGermanSpellout); | |
60 | TESTCASE(8, TestThaiSpellout); | |
61 | TESTCASE(9, TestAPI); | |
62 | TESTCASE(10, TestFractionalRuleSet); | |
63 | TESTCASE(11, TestSwedishSpellout); | |
64 | TESTCASE(12, TestBelgianFrenchSpellout); | |
65 | TESTCASE(13, TestSmallValues); | |
66 | TESTCASE(14, TestLocalizations); | |
67 | TESTCASE(15, TestAllLocales); | |
68 | TESTCASE(16, TestHebrewFraction); | |
69 | TESTCASE(17, TestPortugueseSpellout); | |
70 | TESTCASE(18, TestMultiplierSubstitution); | |
71 | TESTCASE(19, TestSetDecimalFormatSymbols); | |
72 | TESTCASE(20, TestPluralRules); | |
73 | TESTCASE(21, TestMultiplePluralRules); | |
74 | TESTCASE(22, TestInfinityNaN); | |
75 | TESTCASE(23, TestVariableDecimalPoint); | |
76 | TESTCASE(24, TestLargeNumbers); | |
77 | TESTCASE(25, TestCompactDecimalFormatStyle); | |
78 | TESTCASE(26, TestParseFailure); | |
79 | TESTCASE(27, TestMinMaxIntegerDigitsIgnored); | |
80 | #else | |
81 | TESTCASE(0, TestRBNFDisabled); | |
82 | #endif | |
83 | default: | |
84 | name = ""; | |
85 | break; | |
86 | } | |
87 | } | |
88 | ||
89 | #if U_HAVE_RBNF | |
90 | ||
91 | void IntlTestRBNF::TestHebrewFraction() { | |
92 | ||
93 | // this is the expected output for 123.45, with no '<' in it. | |
94 | UChar text1[] = { | |
95 | 0x05de, 0x05d0, 0x05d4, 0x0020, | |
96 | 0x05e2, 0x05e9, 0x05e8, 0x05d9, 0x05dd, 0x0020, | |
97 | 0x05d5, 0x05e9, 0x05dc, 0x05d5, 0x05e9, 0x0020, | |
98 | 0x05e0, 0x05e7, 0x05d5, 0x05d3, 0x05d4, 0x0020, | |
99 | 0x05d0, 0x05e8, 0x05d1, 0x05e2, 0x0020, | |
100 | 0x05d7, 0x05de, 0x05e9, 0x0000, | |
101 | }; | |
102 | UChar text2[] = { | |
103 | 0x05DE, 0x05D0, 0x05D4, 0x0020, | |
104 | 0x05E2, 0x05E9, 0x05E8, 0x05D9, 0x05DD, 0x0020, | |
105 | 0x05D5, 0x05E9, 0x05DC, 0x05D5, 0x05E9, 0x0020, | |
106 | 0x05E0, 0x05E7, 0x05D5, 0x05D3, 0x05D4, 0x0020, | |
107 | 0x05D0, 0x05E4, 0x05E1, 0x0020, | |
108 | 0x05D0, 0x05E4, 0x05E1, 0x0020, | |
109 | 0x05D0, 0x05E8, 0x05D1, 0x05E2, 0x0020, | |
110 | 0x05D7, 0x05DE, 0x05E9, 0x0000, | |
111 | }; | |
112 | UErrorCode status = U_ZERO_ERROR; | |
113 | RuleBasedNumberFormat* formatter = new RuleBasedNumberFormat(URBNF_SPELLOUT, "he_IL", status); | |
114 | if (status == U_MISSING_RESOURCE_ERROR || status == U_FILE_ACCESS_ERROR) { | |
115 | errcheckln(status, "Failed in constructing RuleBasedNumberFormat - %s", u_errorName(status)); | |
116 | delete formatter; | |
117 | return; | |
118 | } | |
119 | UnicodeString result; | |
120 | Formattable parseResult; | |
121 | ParsePosition pp(0); | |
122 | { | |
123 | UnicodeString expected(text1); | |
124 | formatter->format(123.45, result); | |
125 | if (result != expected) { | |
126 | errln((UnicodeString)"expected '" + TestUtility::hex(expected) + "'\nbut got: '" + TestUtility::hex(result) + "'"); | |
127 | } else { | |
128 | // formatter->parse(result, parseResult, pp); | |
129 | // if (parseResult.getDouble() != 123.45) { | |
130 | // errln("expected 123.45 but got: %g", parseResult.getDouble()); | |
131 | // } | |
132 | } | |
133 | } | |
134 | { | |
135 | UnicodeString expected(text2); | |
136 | result.remove(); | |
137 | formatter->format(123.0045, result); | |
138 | if (result != expected) { | |
139 | errln((UnicodeString)"expected '" + TestUtility::hex(expected) + "'\nbut got: '" + TestUtility::hex(result) + "'"); | |
140 | } else { | |
141 | pp.setIndex(0); | |
142 | // formatter->parse(result, parseResult, pp); | |
143 | // if (parseResult.getDouble() != 123.0045) { | |
144 | // errln("expected 123.0045 but got: %g", parseResult.getDouble()); | |
145 | // } | |
146 | } | |
147 | } | |
148 | delete formatter; | |
149 | } | |
150 | ||
151 | void | |
152 | IntlTestRBNF::TestAPI() { | |
153 | // This test goes through the APIs that were not tested before. | |
154 | // These tests are too small to have separate test classes/functions | |
155 | ||
156 | UErrorCode status = U_ZERO_ERROR; | |
157 | RuleBasedNumberFormat* formatter | |
158 | = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getUS(), status); | |
159 | if (status == U_MISSING_RESOURCE_ERROR || status == U_FILE_ACCESS_ERROR) { | |
160 | dataerrln("Unable to create formatter. - %s", u_errorName(status)); | |
161 | delete formatter; | |
162 | return; | |
163 | } | |
164 | ||
165 | logln("RBNF API test starting"); | |
166 | // test clone | |
167 | { | |
168 | logln("Testing Clone"); | |
169 | RuleBasedNumberFormat* rbnfClone = formatter->clone(); | |
170 | if(rbnfClone != NULL) { | |
171 | if(!(*rbnfClone == *formatter)) { | |
172 | errln("Clone should be semantically equivalent to the original!"); | |
173 | } | |
174 | delete rbnfClone; | |
175 | } else { | |
176 | errln("Cloning failed!"); | |
177 | } | |
178 | } | |
179 | ||
180 | // test assignment | |
181 | { | |
182 | logln("Testing assignment operator"); | |
183 | RuleBasedNumberFormat assignResult(URBNF_SPELLOUT, Locale("es", "ES", ""), status); | |
184 | assignResult = *formatter; | |
185 | if(!(assignResult == *formatter)) { | |
186 | errln("Assignment result should be semantically equivalent to the original!"); | |
187 | } | |
188 | } | |
189 | ||
190 | // test rule constructor | |
191 | { | |
192 | logln("Testing rule constructor"); | |
193 | LocalUResourceBundlePointer en(ures_open(U_ICUDATA_NAME U_TREE_SEPARATOR_STRING "rbnf", "en", &status)); | |
194 | if(U_FAILURE(status)) { | |
195 | errln("Unable to access resource bundle with data!"); | |
196 | } else { | |
197 | int32_t ruleLen = 0; | |
198 | int32_t len = 0; | |
199 | LocalUResourceBundlePointer rbnfRules(ures_getByKey(en.getAlias(), "RBNFRules", NULL, &status)); | |
200 | LocalUResourceBundlePointer ruleSets(ures_getByKey(rbnfRules.getAlias(), "SpelloutRules", NULL, &status)); | |
201 | UnicodeString desc; | |
202 | while (ures_hasNext(ruleSets.getAlias())) { | |
203 | const UChar* currentString = ures_getNextString(ruleSets.getAlias(), &len, NULL, &status); | |
204 | ruleLen += len; | |
205 | desc.append(currentString); | |
206 | } | |
207 | ||
208 | const UChar *spelloutRules = desc.getTerminatedBuffer(); | |
209 | ||
210 | if(U_FAILURE(status) || ruleLen == 0 || spelloutRules == NULL) { | |
211 | errln("Unable to access the rules string!"); | |
212 | } else { | |
213 | UParseError perror; | |
214 | RuleBasedNumberFormat ruleCtorResult(spelloutRules, Locale::getUS(), perror, status); | |
215 | if(!(ruleCtorResult == *formatter)) { | |
216 | errln("Formatter constructed from the original rules should be semantically equivalent to the original!"); | |
217 | } | |
218 | ||
219 | // Jitterbug 4452, for coverage | |
220 | RuleBasedNumberFormat nf(spelloutRules, (UnicodeString)"", Locale::getUS(), perror, status); | |
221 | if(!(nf == *formatter)) { | |
222 | errln("Formatter constructed from the original rules should be semantically equivalent to the original!"); | |
223 | } | |
224 | } | |
225 | } | |
226 | } | |
227 | ||
228 | // test getRules | |
229 | { | |
230 | logln("Testing getRules function"); | |
231 | UnicodeString rules = formatter->getRules(); | |
232 | UParseError perror; | |
233 | RuleBasedNumberFormat fromRulesResult(rules, Locale::getUS(), perror, status); | |
234 | ||
235 | if(!(fromRulesResult == *formatter)) { | |
236 | errln("Formatter constructed from rules obtained by getRules should be semantically equivalent to the original!"); | |
237 | } | |
238 | } | |
239 | ||
240 | ||
241 | { | |
242 | logln("Testing copy constructor"); | |
243 | RuleBasedNumberFormat copyCtorResult(*formatter); | |
244 | if(!(copyCtorResult == *formatter)) { | |
245 | errln("Copy constructor result result should be semantically equivalent to the original!"); | |
246 | } | |
247 | } | |
248 | ||
249 | #if !UCONFIG_NO_COLLATION | |
250 | ||
251 | #define NUMERIC_STRINGS_NOT_PARSEABLE 1 // ticket/8224 | |
252 | ||
253 | // test ruleset names | |
254 | { | |
255 | logln("Testing getNumberOfRuleSetNames, getRuleSetName and format using rule set names"); | |
256 | int32_t noOfRuleSetNames = formatter->getNumberOfRuleSetNames(); | |
257 | if(noOfRuleSetNames == 0) { | |
258 | errln("Number of rule set names should be more than zero"); | |
259 | } | |
260 | UnicodeString ruleSetName; | |
261 | int32_t i = 0; | |
262 | int32_t intFormatNum = 34567; | |
263 | double doubleFormatNum = 893411.234; | |
264 | logln("number of rule set names is %i", noOfRuleSetNames); | |
265 | for(i = 0; i < noOfRuleSetNames; i++) { | |
266 | FieldPosition pos1, pos2; | |
267 | UnicodeString intFormatResult, doubleFormatResult; | |
268 | Formattable intParseResult, doubleParseResult; | |
269 | #if NUMERIC_STRINGS_NOT_PARSEABLE | |
270 | UBool parseDoubleNonLenientOK = TRUE; | |
271 | UBool parseDoubleLenientOK = TRUE; | |
272 | #endif | |
273 | ||
274 | ruleSetName = formatter->getRuleSetName(i); | |
275 | log("Rule set name %i is ", i); | |
276 | log(ruleSetName); | |
277 | logln(". Format results are: "); | |
278 | intFormatResult = formatter->format(intFormatNum, ruleSetName, intFormatResult, pos1, status); | |
279 | doubleFormatResult = formatter->format(doubleFormatNum, ruleSetName, doubleFormatResult, pos2, status); | |
280 | if(U_FAILURE(status)) { | |
281 | errln("Format using a rule set failed"); | |
282 | break; | |
283 | } | |
284 | logln(intFormatResult); | |
285 | logln(doubleFormatResult); | |
286 | ||
287 | #if NUMERIC_STRINGS_NOT_PARSEABLE | |
288 | // "spellout-numbering-year" ruleSet produces (above) a numeric string using: | |
289 | // "x.x: =#,###0.#=;" | |
290 | // which will not parse (below) - we believe this is CORRECT behavior, as found in ICU 4.0 (see ticket/8224). | |
291 | // Note this numeric string "89,3411.2" will not even parse with Lenient = TRUE because | |
292 | // the NumberFormat (used as last-resort) in NFSubstitution::doParse fails. | |
293 | UnicodeString numberingYear = UNICODE_STRING_SIMPLE("spellout-numbering-year"); | |
294 | ||
295 | // "spellout-ordinal" and "spellout-ordinal-verbose" ruleSets produce (above) a numeric string using: | |
296 | // "x.x: =#,##0.#=;" -> "893,411.2" | |
297 | // which will not parse (below) with Lenient = FALSE, but does parse with Lenient = TRUE because | |
298 | // NFSubstitution::doParse will succeed when using NumberFormat as last-resort. | |
299 | UnicodeString ordinal = UNICODE_STRING_SIMPLE("spellout-ordinal"); | |
300 | ||
301 | // RuleSets other than spellout-numbering-year and spellout-ordinalXXX produce fully spelled out text above | |
302 | // which is fully parseable. | |
303 | parseDoubleLenientOK = ( ruleSetName.indexOf(numberingYear) == -1 ); | |
304 | parseDoubleNonLenientOK = ( ruleSetName.indexOf(numberingYear) == -1 && ruleSetName.indexOf(ordinal) == -1 ); | |
305 | #endif | |
306 | ||
307 | formatter->setLenient(TRUE); | |
308 | formatter->parse(intFormatResult, intParseResult, status); | |
309 | formatter->parse(doubleFormatResult, doubleParseResult, status); | |
310 | ||
311 | logln("Parse results for lenient = TRUE, %i, %f", intParseResult.getLong(), doubleParseResult.getDouble()); | |
312 | ||
313 | #if NUMERIC_STRINGS_NOT_PARSEABLE | |
314 | if((!parseDoubleLenientOK) && (status == U_INVALID_FORMAT_ERROR)) { | |
315 | status = U_USING_FALLBACK_WARNING; | |
316 | logln("Clearing expected U_INVALID_FORMAT_ERROR during parsing"); | |
317 | } | |
318 | #endif | |
319 | ||
320 | formatter->setLenient(FALSE); | |
321 | formatter->parse(intFormatResult, intParseResult, status); | |
322 | formatter->parse(doubleFormatResult, doubleParseResult, status); | |
323 | ||
324 | logln("Parse results for lenient = FALSE, %i, %f", intParseResult.getLong(), doubleParseResult.getDouble()); | |
325 | ||
326 | #if NUMERIC_STRINGS_NOT_PARSEABLE | |
327 | if((!parseDoubleNonLenientOK) && (status == U_INVALID_FORMAT_ERROR)) { | |
328 | status = U_USING_FALLBACK_WARNING; | |
329 | logln("Clearing expected U_INVALID_FORMAT_ERROR during parsing"); | |
330 | } | |
331 | #endif | |
332 | ||
333 | if(U_FAILURE(status)) { | |
334 | errln("Error during parsing"); | |
335 | } | |
336 | ||
337 | intFormatResult = formatter->format(intFormatNum, "BLABLA", intFormatResult, pos1, status); | |
338 | if(U_SUCCESS(status)) { | |
339 | errln("Using invalid rule set name should have failed"); | |
340 | break; | |
341 | } | |
342 | status = U_ZERO_ERROR; | |
343 | doubleFormatResult = formatter->format(doubleFormatNum, "TRUC", doubleFormatResult, pos2, status); | |
344 | if(U_SUCCESS(status)) { | |
345 | errln("Using invalid rule set name should have failed"); | |
346 | break; | |
347 | } | |
348 | status = U_ZERO_ERROR; | |
349 | } | |
350 | status = U_ZERO_ERROR; | |
351 | } | |
352 | #endif | |
353 | ||
354 | // test API | |
355 | UnicodeString expected("four point five",""); | |
356 | logln("Testing format(double)"); | |
357 | UnicodeString result; | |
358 | formatter->format(4.5,result); | |
359 | if(result != expected) { | |
360 | errln("Formatted 4.5, expected " + expected + " got " + result); | |
361 | } else { | |
362 | logln("Formatted 4.5, expected " + expected + " got " + result); | |
363 | } | |
364 | result.remove(); | |
365 | expected = "four"; | |
366 | formatter->format((int32_t)4,result); | |
367 | if(result != expected) { | |
368 | errln("Formatted 4, expected " + expected + " got " + result); | |
369 | } else { | |
370 | logln("Formatted 4, expected " + expected + " got " + result); | |
371 | } | |
372 | ||
373 | result.remove(); | |
374 | FieldPosition pos; | |
375 | formatter->format((int64_t)4, result, pos, status = U_ZERO_ERROR); | |
376 | if(result != expected) { | |
377 | errln("Formatted 4 int64_t, expected " + expected + " got " + result); | |
378 | } else { | |
379 | logln("Formatted 4 int64_t, expected " + expected + " got " + result); | |
380 | } | |
381 | ||
382 | //Jitterbug 4452, for coverage | |
383 | result.remove(); | |
384 | FieldPosition pos2; | |
385 | formatter->format((int64_t)4, formatter->getRuleSetName(0), result, pos2, status = U_ZERO_ERROR); | |
386 | if(result != expected) { | |
387 | errln("Formatted 4 int64_t, expected " + expected + " got " + result); | |
388 | } else { | |
389 | logln("Formatted 4 int64_t, expected " + expected + " got " + result); | |
390 | } | |
391 | ||
392 | // clean up | |
393 | logln("Cleaning up"); | |
394 | delete formatter; | |
395 | } | |
396 | ||
397 | /** | |
398 | * Perform a simple spot check on the parsing going into an infinite loop for alternate rules. | |
399 | */ | |
400 | void IntlTestRBNF::TestMultiplePluralRules() { | |
401 | // This is trying to model the feminine form, but don't worry about the details too much. | |
402 | // We're trying to test the plural rules where there are different prefixes. | |
403 | UnicodeString rules("%spellout-cardinal-feminine-genitive:" | |
404 | "0: zero;" | |
405 | "1: ono;" | |
406 | "2: two;" | |
407 | "1000: << $(cardinal,one{thousand}few{thousanF}other{thousanO})$[ >>];" | |
408 | "%spellout-cardinal-feminine:" | |
409 | "x.x: [<< $(cardinal,one{singleton}other{plurality})$ ]>%%fractions>;" | |
410 | "0: zero;" | |
411 | "1: one;" | |
412 | "2: two;" | |
413 | "1000: << $(cardinal,one{thousand}few{thousanF}other{thousanO})$[ >>];" | |
414 | "%%fractions:" | |
415 | "10: <%spellout-cardinal-feminine< $(cardinal,one{oneth}other{tenth})$;" | |
416 | "100: <%spellout-cardinal-feminine< $(cardinal,one{1hundredth}other{hundredth})$;"); | |
417 | UErrorCode status = U_ZERO_ERROR; | |
418 | UParseError pError; | |
419 | RuleBasedNumberFormat formatter(rules, Locale("ru"), pError, status); | |
420 | Formattable result; | |
421 | UnicodeString resultStr; | |
422 | FieldPosition pos; | |
423 | ||
424 | if (U_FAILURE(status)) { | |
425 | dataerrln("Unable to create formatter - %s", u_errorName(status)); | |
426 | return; | |
427 | } | |
428 | ||
429 | formatter.parse(formatter.format(1000.0, resultStr, pos, status), result, status); | |
430 | if (1000 != result.getLong() || resultStr != UNICODE_STRING_SIMPLE("one thousand")) { | |
431 | errln("RuleBasedNumberFormat did not return the correct value. Got: %d", result.getLong()); | |
432 | errln(resultStr); | |
433 | } | |
434 | resultStr.remove(); | |
435 | formatter.parse(formatter.format(1000.0, UnicodeString("%spellout-cardinal-feminine-genitive"), resultStr, pos, status), result, status); | |
436 | if (1000 != result.getLong() || resultStr != UNICODE_STRING_SIMPLE("ono thousand")) { | |
437 | errln("RuleBasedNumberFormat(cardinal-feminine-genitive) did not return the correct value. Got: %d", result.getLong()); | |
438 | errln(resultStr); | |
439 | } | |
440 | resultStr.remove(); | |
441 | formatter.parse(formatter.format(1000.0, UnicodeString("%spellout-cardinal-feminine"), resultStr, pos, status), result, status); | |
442 | if (1000 != result.getLong() || resultStr != UNICODE_STRING_SIMPLE("one thousand")) { | |
443 | errln("RuleBasedNumberFormat(spellout-cardinal-feminine) did not return the correct value. Got: %d", result.getLong()); | |
444 | errln(resultStr); | |
445 | } | |
446 | static const char* const testData[][2] = { | |
447 | { "0", "zero" }, | |
448 | { "1", "one" }, | |
449 | { "2", "two" }, | |
450 | { "0.1", "one oneth" }, | |
451 | { "0.2", "two tenth" }, | |
452 | { "1.1", "one singleton one oneth" }, | |
453 | { "1.2", "one singleton two tenth" }, | |
454 | { "2.1", "two plurality one oneth" }, | |
455 | { "2.2", "two plurality two tenth" }, | |
456 | { "0.01", "one 1hundredth" }, | |
457 | { "0.02", "two hundredth" }, | |
458 | { NULL, NULL } | |
459 | }; | |
460 | doTest(&formatter, testData, TRUE); | |
461 | } | |
462 | ||
463 | void IntlTestRBNF::TestFractionalRuleSet() | |
464 | { | |
465 | UnicodeString fracRules( | |
466 | "%main:\n" | |
467 | // this rule formats the number if it's 1 or more. It formats | |
468 | // the integral part using a DecimalFormat ("#,##0" puts | |
469 | // thousands separators in the right places) and the fractional | |
470 | // part using %%frac. If there is no fractional part, it | |
471 | // just shows the integral part. | |
472 | " x.0: <#,##0<[ >%%frac>];\n" | |
473 | // this rule formats the number if it's between 0 and 1. It | |
474 | // shows only the fractional part (0.5 shows up as "1/2," not | |
475 | // "0 1/2") | |
476 | " 0.x: >%%frac>;\n" | |
477 | // the fraction rule set. This works the same way as the one in the | |
478 | // preceding example: We multiply the fractional part of the number | |
479 | // being formatted by each rule's base value and use the rule that | |
480 | // produces the result closest to 0 (or the first rule that produces 0). | |
481 | // Since we only provide rules for the numbers from 2 to 10, we know | |
482 | // we'll get a fraction with a denominator between 2 and 10. | |
483 | // "<0<" causes the numerator of the fraction to be formatted | |
484 | // using numerals | |
485 | "%%frac:\n" | |
486 | " 2: 1/2;\n" | |
487 | " 3: <0</3;\n" | |
488 | " 4: <0</4;\n" | |
489 | " 5: <0</5;\n" | |
490 | " 6: <0</6;\n" | |
491 | " 7: <0</7;\n" | |
492 | " 8: <0</8;\n" | |
493 | " 9: <0</9;\n" | |
494 | " 10: <0</10;\n"); | |
495 | ||
496 | // mondo hack | |
497 | int len = fracRules.length(); | |
498 | int change = 2; | |
499 | for (int i = 0; i < len; ++i) { | |
500 | UChar ch = fracRules.charAt(i); | |
501 | if (ch == '\n') { | |
502 | change = 2; // change ok | |
503 | } else if (ch == ':') { | |
504 | change = 1; // change, but once we hit a non-space char, don't change | |
505 | } else if (ch == ' ') { | |
506 | if (change != 0) { | |
507 | fracRules.setCharAt(i, (UChar)0x200e); | |
508 | } | |
509 | } else { | |
510 | if (change == 1) { | |
511 | change = 0; | |
512 | } | |
513 | } | |
514 | } | |
515 | ||
516 | UErrorCode status = U_ZERO_ERROR; | |
517 | UParseError perror; | |
518 | RuleBasedNumberFormat formatter(fracRules, Locale::getEnglish(), perror, status); | |
519 | if (U_FAILURE(status)) { | |
520 | errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); | |
521 | } else { | |
522 | static const char* const testData[][2] = { | |
523 | { "0", "0" }, | |
524 | { ".1", "1/10" }, | |
525 | { ".11", "1/9" }, | |
526 | { ".125", "1/8" }, | |
527 | { ".1428", "1/7" }, | |
528 | { ".1667", "1/6" }, | |
529 | { ".2", "1/5" }, | |
530 | { ".25", "1/4" }, | |
531 | { ".333", "1/3" }, | |
532 | { ".5", "1/2" }, | |
533 | { "1.1", "1 1/10" }, | |
534 | { "2.11", "2 1/9" }, | |
535 | { "3.125", "3 1/8" }, | |
536 | { "4.1428", "4 1/7" }, | |
537 | { "5.1667", "5 1/6" }, | |
538 | { "6.2", "6 1/5" }, | |
539 | { "7.25", "7 1/4" }, | |
540 | { "8.333", "8 1/3" }, | |
541 | { "9.5", "9 1/2" }, | |
542 | { ".2222", "2/9" }, | |
543 | { ".4444", "4/9" }, | |
544 | { ".5555", "5/9" }, | |
545 | { "1.2856", "1 2/7" }, | |
546 | { NULL, NULL } | |
547 | }; | |
548 | doTest(&formatter, testData, FALSE); // exact values aren't parsable from fractions | |
549 | } | |
550 | } | |
551 | ||
552 | #if 0 | |
553 | #define LLAssert(a) \ | |
554 | if (!(a)) errln("FAIL: " #a) | |
555 | ||
556 | void IntlTestRBNF::TestLLongConstructors() | |
557 | { | |
558 | logln("Testing constructors"); | |
559 | ||
560 | // constant (shouldn't really be public) | |
561 | LLAssert(llong(llong::kD32).asDouble() == llong::kD32); | |
562 | ||
563 | // internal constructor (shouldn't really be public) | |
564 | LLAssert(llong(0, 1).asDouble() == 1); | |
565 | LLAssert(llong(1, 0).asDouble() == llong::kD32); | |
566 | LLAssert(llong((uint32_t)-1, (uint32_t)-1).asDouble() == -1); | |
567 | ||
568 | // public empty constructor | |
569 | LLAssert(llong().asDouble() == 0); | |
570 | ||
571 | // public int32_t constructor | |
572 | LLAssert(llong((int32_t)0).asInt() == (int32_t)0); | |
573 | LLAssert(llong((int32_t)1).asInt() == (int32_t)1); | |
574 | LLAssert(llong((int32_t)-1).asInt() == (int32_t)-1); | |
575 | LLAssert(llong((int32_t)0x7fffffff).asInt() == (int32_t)0x7fffffff); | |
576 | LLAssert(llong((int32_t)0xffffffff).asInt() == (int32_t)-1); | |
577 | LLAssert(llong((int32_t)0x80000000).asInt() == (int32_t)0x80000000); | |
578 | ||
579 | // public int16_t constructor | |
580 | LLAssert(llong((int16_t)0).asInt() == (int16_t)0); | |
581 | LLAssert(llong((int16_t)1).asInt() == (int16_t)1); | |
582 | LLAssert(llong((int16_t)-1).asInt() == (int16_t)-1); | |
583 | LLAssert(llong((int16_t)0x7fff).asInt() == (int16_t)0x7fff); | |
584 | LLAssert(llong((int16_t)0xffff).asInt() == (int16_t)0xffff); | |
585 | LLAssert(llong((int16_t)0x8000).asInt() == (int16_t)0x8000); | |
586 | ||
587 | // public int8_t constructor | |
588 | LLAssert(llong((int8_t)0).asInt() == (int8_t)0); | |
589 | LLAssert(llong((int8_t)1).asInt() == (int8_t)1); | |
590 | LLAssert(llong((int8_t)-1).asInt() == (int8_t)-1); | |
591 | LLAssert(llong((int8_t)0x7f).asInt() == (int8_t)0x7f); | |
592 | LLAssert(llong((int8_t)0xff).asInt() == (int8_t)0xff); | |
593 | LLAssert(llong((int8_t)0x80).asInt() == (int8_t)0x80); | |
594 | ||
595 | // public uint16_t constructor | |
596 | LLAssert(llong((uint16_t)0).asUInt() == (uint16_t)0); | |
597 | LLAssert(llong((uint16_t)1).asUInt() == (uint16_t)1); | |
598 | LLAssert(llong((uint16_t)-1).asUInt() == (uint16_t)-1); | |
599 | LLAssert(llong((uint16_t)0x7fff).asUInt() == (uint16_t)0x7fff); | |
600 | LLAssert(llong((uint16_t)0xffff).asUInt() == (uint16_t)0xffff); | |
601 | LLAssert(llong((uint16_t)0x8000).asUInt() == (uint16_t)0x8000); | |
602 | ||
603 | // public uint32_t constructor | |
604 | LLAssert(llong((uint32_t)0).asUInt() == (uint32_t)0); | |
605 | LLAssert(llong((uint32_t)1).asUInt() == (uint32_t)1); | |
606 | LLAssert(llong((uint32_t)-1).asUInt() == (uint32_t)-1); | |
607 | LLAssert(llong((uint32_t)0x7fffffff).asUInt() == (uint32_t)0x7fffffff); | |
608 | LLAssert(llong((uint32_t)0xffffffff).asUInt() == (uint32_t)-1); | |
609 | LLAssert(llong((uint32_t)0x80000000).asUInt() == (uint32_t)0x80000000); | |
610 | ||
611 | // public double constructor | |
612 | LLAssert(llong((double)0).asDouble() == (double)0); | |
613 | LLAssert(llong((double)1).asDouble() == (double)1); | |
614 | LLAssert(llong((double)0x7fffffff).asDouble() == (double)0x7fffffff); | |
615 | LLAssert(llong((double)0x80000000).asDouble() == (double)0x80000000); | |
616 | LLAssert(llong((double)0x80000001).asDouble() == (double)0x80000001); | |
617 | ||
618 | // can't access uprv_maxmantissa, so fake it | |
619 | double maxmantissa = (llong((int32_t)1) << 40).asDouble(); | |
620 | LLAssert(llong(maxmantissa).asDouble() == maxmantissa); | |
621 | LLAssert(llong(-maxmantissa).asDouble() == -maxmantissa); | |
622 | ||
623 | // copy constructor | |
624 | LLAssert(llong(llong(0, 1)).asDouble() == 1); | |
625 | LLAssert(llong(llong(1, 0)).asDouble() == llong::kD32); | |
626 | LLAssert(llong(llong(-1, (uint32_t)-1)).asDouble() == -1); | |
627 | ||
628 | // asInt - test unsigned to signed narrowing conversion | |
629 | LLAssert(llong((uint32_t)-1).asInt() == (int32_t)0x7fffffff); | |
630 | LLAssert(llong(-1, 0).asInt() == (int32_t)0x80000000); | |
631 | ||
632 | // asUInt - test signed to unsigned narrowing conversion | |
633 | LLAssert(llong((int32_t)-1).asUInt() == (uint32_t)-1); | |
634 | LLAssert(llong((int32_t)0x80000000).asUInt() == (uint32_t)0x80000000); | |
635 | ||
636 | // asDouble already tested | |
637 | ||
638 | } | |
639 | ||
640 | void IntlTestRBNF::TestLLongSimpleOperators() | |
641 | { | |
642 | logln("Testing simple operators"); | |
643 | ||
644 | // operator== | |
645 | LLAssert(llong() == llong(0, 0)); | |
646 | LLAssert(llong(1,0) == llong(1, 0)); | |
647 | LLAssert(llong(0,1) == llong(0, 1)); | |
648 | ||
649 | // operator!= | |
650 | LLAssert(llong(1,0) != llong(1,1)); | |
651 | LLAssert(llong(0,1) != llong(1,1)); | |
652 | LLAssert(llong(0xffffffff,0xffffffff) != llong(0x7fffffff, 0xffffffff)); | |
653 | ||
654 | // unsigned > | |
655 | LLAssert(llong((int32_t)-1).ugt(llong(0x7fffffff, 0xffffffff))); | |
656 | ||
657 | // unsigned < | |
658 | LLAssert(llong(0x7fffffff, 0xffffffff).ult(llong((int32_t)-1))); | |
659 | ||
660 | // unsigned >= | |
661 | LLAssert(llong((int32_t)-1).uge(llong(0x7fffffff, 0xffffffff))); | |
662 | LLAssert(llong((int32_t)-1).uge(llong((int32_t)-1))); | |
663 | ||
664 | // unsigned <= | |
665 | LLAssert(llong(0x7fffffff, 0xffffffff).ule(llong((int32_t)-1))); | |
666 | LLAssert(llong((int32_t)-1).ule(llong((int32_t)-1))); | |
667 | ||
668 | // operator> | |
669 | LLAssert(llong(1, 1) > llong(1, 0)); | |
670 | LLAssert(llong(0, 0x80000000) > llong(0, 0x7fffffff)); | |
671 | LLAssert(llong(0x80000000, 1) > llong(0x80000000, 0)); | |
672 | LLAssert(llong(1, 0) > llong(0, 0x7fffffff)); | |
673 | LLAssert(llong(1, 0) > llong(0, 0xffffffff)); | |
674 | LLAssert(llong(0, 0) > llong(0x80000000, 1)); | |
675 | ||
676 | // operator< | |
677 | LLAssert(llong(1, 0) < llong(1, 1)); | |
678 | LLAssert(llong(0, 0x7fffffff) < llong(0, 0x80000000)); | |
679 | LLAssert(llong(0x80000000, 0) < llong(0x80000000, 1)); | |
680 | LLAssert(llong(0, 0x7fffffff) < llong(1, 0)); | |
681 | LLAssert(llong(0, 0xffffffff) < llong(1, 0)); | |
682 | LLAssert(llong(0x80000000, 1) < llong(0, 0)); | |
683 | ||
684 | // operator>= | |
685 | LLAssert(llong(1, 1) >= llong(1, 0)); | |
686 | LLAssert(llong(0, 0x80000000) >= llong(0, 0x7fffffff)); | |
687 | LLAssert(llong(0x80000000, 1) >= llong(0x80000000, 0)); | |
688 | LLAssert(llong(1, 0) >= llong(0, 0x7fffffff)); | |
689 | LLAssert(llong(1, 0) >= llong(0, 0xffffffff)); | |
690 | LLAssert(llong(0, 0) >= llong(0x80000000, 1)); | |
691 | LLAssert(llong() >= llong(0, 0)); | |
692 | LLAssert(llong(1,0) >= llong(1, 0)); | |
693 | LLAssert(llong(0,1) >= llong(0, 1)); | |
694 | ||
695 | // operator<= | |
696 | LLAssert(llong(1, 0) <= llong(1, 1)); | |
697 | LLAssert(llong(0, 0x7fffffff) <= llong(0, 0x80000000)); | |
698 | LLAssert(llong(0x80000000, 0) <= llong(0x80000000, 1)); | |
699 | LLAssert(llong(0, 0x7fffffff) <= llong(1, 0)); | |
700 | LLAssert(llong(0, 0xffffffff) <= llong(1, 0)); | |
701 | LLAssert(llong(0x80000000, 1) <= llong(0, 0)); | |
702 | LLAssert(llong() <= llong(0, 0)); | |
703 | LLAssert(llong(1,0) <= llong(1, 0)); | |
704 | LLAssert(llong(0,1) <= llong(0, 1)); | |
705 | ||
706 | // operator==(int32) | |
707 | LLAssert(llong() == (int32_t)0); | |
708 | LLAssert(llong(0,1) == (int32_t)1); | |
709 | ||
710 | // operator!=(int32) | |
711 | LLAssert(llong(1,0) != (int32_t)0); | |
712 | LLAssert(llong(0,1) != (int32_t)2); | |
713 | LLAssert(llong(0,0xffffffff) != (int32_t)-1); | |
714 | ||
715 | llong negOne(0xffffffff, 0xffffffff); | |
716 | ||
717 | // operator>(int32) | |
718 | LLAssert(llong(0, 0x80000000) > (int32_t)0x7fffffff); | |
719 | LLAssert(negOne > (int32_t)-2); | |
720 | LLAssert(llong(1, 0) > (int32_t)0x7fffffff); | |
721 | LLAssert(llong(0, 0) > (int32_t)-1); | |
722 | ||
723 | // operator<(int32) | |
724 | LLAssert(llong(0, 0x7ffffffe) < (int32_t)0x7fffffff); | |
725 | LLAssert(llong(0xffffffff, 0xfffffffe) < (int32_t)-1); | |
726 | ||
727 | // operator>=(int32) | |
728 | LLAssert(llong(0, 0x80000000) >= (int32_t)0x7fffffff); | |
729 | LLAssert(negOne >= (int32_t)-2); | |
730 | LLAssert(llong(1, 0) >= (int32_t)0x7fffffff); | |
731 | LLAssert(llong(0, 0) >= (int32_t)-1); | |
732 | LLAssert(llong() >= (int32_t)0); | |
733 | LLAssert(llong(0,1) >= (int32_t)1); | |
734 | ||
735 | // operator<=(int32) | |
736 | LLAssert(llong(0, 0x7ffffffe) <= (int32_t)0x7fffffff); | |
737 | LLAssert(llong(0xffffffff, 0xfffffffe) <= (int32_t)-1); | |
738 | LLAssert(llong() <= (int32_t)0); | |
739 | LLAssert(llong(0,1) <= (int32_t)1); | |
740 | ||
741 | // operator= | |
742 | LLAssert((llong(2,3) = llong((uint32_t)-1)).asUInt() == (uint32_t)-1); | |
743 | ||
744 | // operator <<= | |
745 | LLAssert((llong(1, 1) <<= 0) == llong(1, 1)); | |
746 | LLAssert((llong(1, 1) <<= 31) == llong(0x80000000, 0x80000000)); | |
747 | LLAssert((llong(1, 1) <<= 32) == llong(1, 0)); | |
748 | LLAssert((llong(1, 1) <<= 63) == llong(0x80000000, 0)); | |
749 | LLAssert((llong(1, 1) <<= 64) == llong(1, 1)); // only lower 6 bits are used | |
750 | LLAssert((llong(1, 1) <<= -1) == llong(0x80000000, 0)); // only lower 6 bits are used | |
751 | ||
752 | // operator << | |
753 | LLAssert((llong((int32_t)1) << 5).asUInt() == 32); | |
754 | ||
755 | // operator >>= (sign extended) | |
756 | LLAssert((llong(0x7fffa0a0, 0xbcbcdfdf) >>= 16) == llong(0x7fff,0xa0a0bcbc)); | |
757 | LLAssert((llong(0x8000789a, 0xbcde0000) >>= 16) == llong(0xffff8000,0x789abcde)); | |
758 | LLAssert((llong(0x80000000, 0) >>= 63) == llong(0xffffffff, 0xffffffff)); | |
759 | LLAssert((llong(0x80000000, 0) >>= 47) == llong(0xffffffff, 0xffff0000)); | |
760 | LLAssert((llong(0x80000000, 0x80000000) >> 64) == llong(0x80000000, 0x80000000)); // only lower 6 bits are used | |
761 | LLAssert((llong(0x80000000, 0) >>= -1) == llong(0xffffffff, 0xffffffff)); // only lower 6 bits are used | |
762 | ||
763 | // operator >> sign extended) | |
764 | LLAssert((llong(0x8000789a, 0xbcde0000) >> 16) == llong(0xffff8000,0x789abcde)); | |
765 | ||
766 | // ushr (right shift without sign extension) | |
767 | LLAssert(llong(0x7fffa0a0, 0xbcbcdfdf).ushr(16) == llong(0x7fff,0xa0a0bcbc)); | |
768 | LLAssert(llong(0x8000789a, 0xbcde0000).ushr(16) == llong(0x00008000,0x789abcde)); | |
769 | LLAssert(llong(0x80000000, 0).ushr(63) == llong(0, 1)); | |
770 | LLAssert(llong(0x80000000, 0).ushr(47) == llong(0, 0x10000)); | |
771 | LLAssert(llong(0x80000000, 0x80000000).ushr(64) == llong(0x80000000, 0x80000000)); // only lower 6 bits are used | |
772 | LLAssert(llong(0x80000000, 0).ushr(-1) == llong(0, 1)); // only lower 6 bits are used | |
773 | ||
774 | // operator&(llong) | |
775 | LLAssert((llong(0x55555555, 0x55555555) & llong(0xaaaaffff, 0xffffaaaa)) == llong(0x00005555, 0x55550000)); | |
776 | ||
777 | // operator|(llong) | |
778 | LLAssert((llong(0x55555555, 0x55555555) | llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffffff, 0xffffffff)); | |
779 | ||
780 | // operator^(llong) | |
781 | LLAssert((llong(0x55555555, 0x55555555) ^ llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffaaaa, 0xaaaaffff)); | |
782 | ||
783 | // operator&(uint32) | |
784 | LLAssert((llong(0x55555555, 0x55555555) & (uint32_t)0xffffaaaa) == llong(0, 0x55550000)); | |
785 | ||
786 | // operator|(uint32) | |
787 | LLAssert((llong(0x55555555, 0x55555555) | (uint32_t)0xffffaaaa) == llong(0x55555555, 0xffffffff)); | |
788 | ||
789 | // operator^(uint32) | |
790 | LLAssert((llong(0x55555555, 0x55555555) ^ (uint32_t)0xffffaaaa) == llong(0x55555555, 0xaaaaffff)); | |
791 | ||
792 | // operator~ | |
793 | LLAssert(~llong(0x55555555, 0x55555555) == llong(0xaaaaaaaa, 0xaaaaaaaa)); | |
794 | ||
795 | // operator&=(llong) | |
796 | LLAssert((llong(0x55555555, 0x55555555) &= llong(0xaaaaffff, 0xffffaaaa)) == llong(0x00005555, 0x55550000)); | |
797 | ||
798 | // operator|=(llong) | |
799 | LLAssert((llong(0x55555555, 0x55555555) |= llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffffff, 0xffffffff)); | |
800 | ||
801 | // operator^=(llong) | |
802 | LLAssert((llong(0x55555555, 0x55555555) ^= llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffaaaa, 0xaaaaffff)); | |
803 | ||
804 | // operator&=(uint32) | |
805 | LLAssert((llong(0x55555555, 0x55555555) &= (uint32_t)0xffffaaaa) == llong(0, 0x55550000)); | |
806 | ||
807 | // operator|=(uint32) | |
808 | LLAssert((llong(0x55555555, 0x55555555) |= (uint32_t)0xffffaaaa) == llong(0x55555555, 0xffffffff)); | |
809 | ||
810 | // operator^=(uint32) | |
811 | LLAssert((llong(0x55555555, 0x55555555) ^= (uint32_t)0xffffaaaa) == llong(0x55555555, 0xaaaaffff)); | |
812 | ||
813 | // prefix inc | |
814 | LLAssert(llong(1, 0) == ++llong(0,0xffffffff)); | |
815 | ||
816 | // prefix dec | |
817 | LLAssert(llong(0,0xffffffff) == --llong(1, 0)); | |
818 | ||
819 | // postfix inc | |
820 | { | |
821 | llong n(0, 0xffffffff); | |
822 | LLAssert(llong(0, 0xffffffff) == n++); | |
823 | LLAssert(llong(1, 0) == n); | |
824 | } | |
825 | ||
826 | // postfix dec | |
827 | { | |
828 | llong n(1, 0); | |
829 | LLAssert(llong(1, 0) == n--); | |
830 | LLAssert(llong(0, 0xffffffff) == n); | |
831 | } | |
832 | ||
833 | // unary minus | |
834 | LLAssert(llong(0, 0) == -llong(0, 0)); | |
835 | LLAssert(llong(0xffffffff, 0xffffffff) == -llong(0, 1)); | |
836 | LLAssert(llong(0, 1) == -llong(0xffffffff, 0xffffffff)); | |
837 | LLAssert(llong(0x7fffffff, 0xffffffff) == -llong(0x80000000, 1)); | |
838 | LLAssert(llong(0x80000000, 0) == -llong(0x80000000, 0)); // !!! we don't handle overflow | |
839 | ||
840 | // operator-= | |
841 | { | |
842 | llong n; | |
843 | LLAssert((n -= llong(0, 1)) == llong(0xffffffff, 0xffffffff)); | |
844 | LLAssert(n == llong(0xffffffff, 0xffffffff)); | |
845 | ||
846 | n = llong(1, 0); | |
847 | LLAssert((n -= llong(0, 1)) == llong(0, 0xffffffff)); | |
848 | LLAssert(n == llong(0, 0xffffffff)); | |
849 | } | |
850 | ||
851 | // operator- | |
852 | { | |
853 | llong n; | |
854 | LLAssert((n - llong(0, 1)) == llong(0xffffffff, 0xffffffff)); | |
855 | LLAssert(n == llong(0, 0)); | |
856 | ||
857 | n = llong(1, 0); | |
858 | LLAssert((n - llong(0, 1)) == llong(0, 0xffffffff)); | |
859 | LLAssert(n == llong(1, 0)); | |
860 | } | |
861 | ||
862 | // operator+= | |
863 | { | |
864 | llong n(0xffffffff, 0xffffffff); | |
865 | LLAssert((n += llong(0, 1)) == llong(0, 0)); | |
866 | LLAssert(n == llong(0, 0)); | |
867 | ||
868 | n = llong(0, 0xffffffff); | |
869 | LLAssert((n += llong(0, 1)) == llong(1, 0)); | |
870 | LLAssert(n == llong(1, 0)); | |
871 | } | |
872 | ||
873 | // operator+ | |
874 | { | |
875 | llong n(0xffffffff, 0xffffffff); | |
876 | LLAssert((n + llong(0, 1)) == llong(0, 0)); | |
877 | LLAssert(n == llong(0xffffffff, 0xffffffff)); | |
878 | ||
879 | n = llong(0, 0xffffffff); | |
880 | LLAssert((n + llong(0, 1)) == llong(1, 0)); | |
881 | LLAssert(n == llong(0, 0xffffffff)); | |
882 | } | |
883 | ||
884 | } | |
885 | ||
886 | void IntlTestRBNF::TestLLong() | |
887 | { | |
888 | logln("Starting TestLLong"); | |
889 | ||
890 | TestLLongConstructors(); | |
891 | ||
892 | TestLLongSimpleOperators(); | |
893 | ||
894 | logln("Testing operator*=, operator*"); | |
895 | ||
896 | // operator*=, operator* | |
897 | // small and large values, positive, &NEGative, zero | |
898 | // also test commutivity | |
899 | { | |
900 | const llong ZERO; | |
901 | const llong ONE(0, 1); | |
902 | const llong NEG_ONE((int32_t)-1); | |
903 | const llong THREE(0, 3); | |
904 | const llong NEG_THREE((int32_t)-3); | |
905 | const llong TWO_TO_16(0, 0x10000); | |
906 | const llong NEG_TWO_TO_16 = -TWO_TO_16; | |
907 | const llong TWO_TO_32(1, 0); | |
908 | const llong NEG_TWO_TO_32 = -TWO_TO_32; | |
909 | ||
910 | const llong NINE(0, 9); | |
911 | const llong NEG_NINE = -NINE; | |
912 | ||
913 | const llong TWO_TO_16X3(0, 0x00030000); | |
914 | const llong NEG_TWO_TO_16X3 = -TWO_TO_16X3; | |
915 | ||
916 | const llong TWO_TO_32X3(3, 0); | |
917 | const llong NEG_TWO_TO_32X3 = -TWO_TO_32X3; | |
918 | ||
919 | const llong TWO_TO_48(0x10000, 0); | |
920 | const llong NEG_TWO_TO_48 = -TWO_TO_48; | |
921 | ||
922 | const int32_t VALUE_WIDTH = 9; | |
923 | const llong* values[VALUE_WIDTH] = { | |
924 | &ZERO, &ONE, &NEG_ONE, &THREE, &NEG_THREE, &TWO_TO_16, &NEG_TWO_TO_16, &TWO_TO_32, &NEG_TWO_TO_32 | |
925 | }; | |
926 | ||
927 | const llong* answers[VALUE_WIDTH*VALUE_WIDTH] = { | |
928 | &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, | |
929 | &ZERO, &ONE, &NEG_ONE, &THREE, &NEG_THREE, &TWO_TO_16, &NEG_TWO_TO_16, &TWO_TO_32, &NEG_TWO_TO_32, | |
930 | &ZERO, &NEG_ONE, &ONE, &NEG_THREE, &THREE, &NEG_TWO_TO_16, &TWO_TO_16, &NEG_TWO_TO_32, &TWO_TO_32, | |
931 | &ZERO, &THREE, &NEG_THREE, &NINE, &NEG_NINE, &TWO_TO_16X3, &NEG_TWO_TO_16X3, &TWO_TO_32X3, &NEG_TWO_TO_32X3, | |
932 | &ZERO, &NEG_THREE, &THREE, &NEG_NINE, &NINE, &NEG_TWO_TO_16X3, &TWO_TO_16X3, &NEG_TWO_TO_32X3, &TWO_TO_32X3, | |
933 | &ZERO, &TWO_TO_16, &NEG_TWO_TO_16, &TWO_TO_16X3, &NEG_TWO_TO_16X3, &TWO_TO_32, &NEG_TWO_TO_32, &TWO_TO_48, &NEG_TWO_TO_48, | |
934 | &ZERO, &NEG_TWO_TO_16, &TWO_TO_16, &NEG_TWO_TO_16X3, &TWO_TO_16X3, &NEG_TWO_TO_32, &TWO_TO_32, &NEG_TWO_TO_48, &TWO_TO_48, | |
935 | &ZERO, &TWO_TO_32, &NEG_TWO_TO_32, &TWO_TO_32X3, &NEG_TWO_TO_32X3, &TWO_TO_48, &NEG_TWO_TO_48, &ZERO, &ZERO, | |
936 | &ZERO, &NEG_TWO_TO_32, &TWO_TO_32, &NEG_TWO_TO_32X3, &TWO_TO_32X3, &NEG_TWO_TO_48, &TWO_TO_48, &ZERO, &ZERO | |
937 | }; | |
938 | ||
939 | for (int i = 0; i < VALUE_WIDTH; ++i) { | |
940 | for (int j = 0; j < VALUE_WIDTH; ++j) { | |
941 | llong lhs = *values[i]; | |
942 | llong rhs = *values[j]; | |
943 | llong ans = *answers[i*VALUE_WIDTH + j]; | |
944 | ||
945 | llong n = lhs; | |
946 | ||
947 | LLAssert((n *= rhs) == ans); | |
948 | LLAssert(n == ans); | |
949 | ||
950 | n = lhs; | |
951 | LLAssert((n * rhs) == ans); | |
952 | LLAssert(n == lhs); | |
953 | } | |
954 | } | |
955 | } | |
956 | ||
957 | logln("Testing operator/=, operator/"); | |
958 | // operator/=, operator/ | |
959 | // test num = 0, div = 0, pos/neg, > 2^32, div > num | |
960 | { | |
961 | const llong ZERO; | |
962 | const llong ONE(0, 1); | |
963 | const llong NEG_ONE = -ONE; | |
964 | const llong MAX(0x7fffffff, 0xffffffff); | |
965 | const llong MIN(0x80000000, 0); | |
966 | const llong TWO(0, 2); | |
967 | const llong NEG_TWO = -TWO; | |
968 | const llong FIVE(0, 5); | |
969 | const llong NEG_FIVE = -FIVE; | |
970 | const llong TWO_TO_32(1, 0); | |
971 | const llong NEG_TWO_TO_32 = -TWO_TO_32; | |
972 | const llong TWO_TO_32d5 = llong(TWO_TO_32.asDouble()/5.0); | |
973 | const llong NEG_TWO_TO_32d5 = -TWO_TO_32d5; | |
974 | const llong TWO_TO_32X5 = TWO_TO_32 * FIVE; | |
975 | const llong NEG_TWO_TO_32X5 = -TWO_TO_32X5; | |
976 | ||
977 | const llong* tuples[] = { // lhs, rhs, ans | |
978 | &ZERO, &ZERO, &ZERO, | |
979 | &ONE, &ZERO,&MAX, | |
980 | &NEG_ONE, &ZERO, &MIN, | |
981 | &ONE, &ONE, &ONE, | |
982 | &ONE, &NEG_ONE, &NEG_ONE, | |
983 | &NEG_ONE, &ONE, &NEG_ONE, | |
984 | &NEG_ONE, &NEG_ONE, &ONE, | |
985 | &FIVE, &TWO, &TWO, | |
986 | &FIVE, &NEG_TWO, &NEG_TWO, | |
987 | &NEG_FIVE, &TWO, &NEG_TWO, | |
988 | &NEG_FIVE, &NEG_TWO, &TWO, | |
989 | &TWO, &FIVE, &ZERO, | |
990 | &TWO, &NEG_FIVE, &ZERO, | |
991 | &NEG_TWO, &FIVE, &ZERO, | |
992 | &NEG_TWO, &NEG_FIVE, &ZERO, | |
993 | &TWO_TO_32, &TWO_TO_32, &ONE, | |
994 | &TWO_TO_32, &NEG_TWO_TO_32, &NEG_ONE, | |
995 | &NEG_TWO_TO_32, &TWO_TO_32, &NEG_ONE, | |
996 | &NEG_TWO_TO_32, &NEG_TWO_TO_32, &ONE, | |
997 | &TWO_TO_32, &FIVE, &TWO_TO_32d5, | |
998 | &TWO_TO_32, &NEG_FIVE, &NEG_TWO_TO_32d5, | |
999 | &NEG_TWO_TO_32, &FIVE, &NEG_TWO_TO_32d5, | |
1000 | &NEG_TWO_TO_32, &NEG_FIVE, &TWO_TO_32d5, | |
1001 | &TWO_TO_32X5, &FIVE, &TWO_TO_32, | |
1002 | &TWO_TO_32X5, &NEG_FIVE, &NEG_TWO_TO_32, | |
1003 | &NEG_TWO_TO_32X5, &FIVE, &NEG_TWO_TO_32, | |
1004 | &NEG_TWO_TO_32X5, &NEG_FIVE, &TWO_TO_32, | |
1005 | &TWO_TO_32X5, &TWO_TO_32, &FIVE, | |
1006 | &TWO_TO_32X5, &NEG_TWO_TO_32, &NEG_FIVE, | |
1007 | &NEG_TWO_TO_32X5, &NEG_TWO_TO_32, &FIVE, | |
1008 | &NEG_TWO_TO_32X5, &TWO_TO_32, &NEG_FIVE | |
1009 | }; | |
1010 | const int TUPLE_WIDTH = 3; | |
1011 | const int TUPLE_COUNT = UPRV_LENGTHOF(tuples)/TUPLE_WIDTH; | |
1012 | for (int i = 0; i < TUPLE_COUNT; ++i) { | |
1013 | const llong lhs = *tuples[i*TUPLE_WIDTH+0]; | |
1014 | const llong rhs = *tuples[i*TUPLE_WIDTH+1]; | |
1015 | const llong ans = *tuples[i*TUPLE_WIDTH+2]; | |
1016 | ||
1017 | llong n = lhs; | |
1018 | if (!((n /= rhs) == ans)) { | |
1019 | errln("fail: (n /= rhs) == ans"); | |
1020 | } | |
1021 | LLAssert(n == ans); | |
1022 | ||
1023 | n = lhs; | |
1024 | LLAssert((n / rhs) == ans); | |
1025 | LLAssert(n == lhs); | |
1026 | } | |
1027 | } | |
1028 | ||
1029 | logln("Testing operator%%=, operator%%"); | |
1030 | //operator%=, operator% | |
1031 | { | |
1032 | const llong ZERO; | |
1033 | const llong ONE(0, 1); | |
1034 | const llong TWO(0, 2); | |
1035 | const llong THREE(0,3); | |
1036 | const llong FOUR(0, 4); | |
1037 | const llong FIVE(0, 5); | |
1038 | const llong SIX(0, 6); | |
1039 | ||
1040 | const llong NEG_ONE = -ONE; | |
1041 | const llong NEG_TWO = -TWO; | |
1042 | const llong NEG_THREE = -THREE; | |
1043 | const llong NEG_FOUR = -FOUR; | |
1044 | const llong NEG_FIVE = -FIVE; | |
1045 | const llong NEG_SIX = -SIX; | |
1046 | ||
1047 | const llong NINETY_NINE(0, 99); | |
1048 | const llong HUNDRED(0, 100); | |
1049 | const llong HUNDRED_ONE(0, 101); | |
1050 | ||
1051 | const llong BIG(0x12345678, 0x9abcdef0); | |
1052 | const llong BIG_FIVE(BIG * FIVE); | |
1053 | const llong BIG_FIVEm1 = BIG_FIVE - ONE; | |
1054 | const llong BIG_FIVEp1 = BIG_FIVE + ONE; | |
1055 | ||
1056 | const llong* tuples[] = { | |
1057 | &ZERO, &FIVE, &ZERO, | |
1058 | &ONE, &FIVE, &ONE, | |
1059 | &TWO, &FIVE, &TWO, | |
1060 | &THREE, &FIVE, &THREE, | |
1061 | &FOUR, &FIVE, &FOUR, | |
1062 | &FIVE, &FIVE, &ZERO, | |
1063 | &SIX, &FIVE, &ONE, | |
1064 | &ZERO, &NEG_FIVE, &ZERO, | |
1065 | &ONE, &NEG_FIVE, &ONE, | |
1066 | &TWO, &NEG_FIVE, &TWO, | |
1067 | &THREE, &NEG_FIVE, &THREE, | |
1068 | &FOUR, &NEG_FIVE, &FOUR, | |
1069 | &FIVE, &NEG_FIVE, &ZERO, | |
1070 | &SIX, &NEG_FIVE, &ONE, | |
1071 | &NEG_ONE, &FIVE, &NEG_ONE, | |
1072 | &NEG_TWO, &FIVE, &NEG_TWO, | |
1073 | &NEG_THREE, &FIVE, &NEG_THREE, | |
1074 | &NEG_FOUR, &FIVE, &NEG_FOUR, | |
1075 | &NEG_FIVE, &FIVE, &ZERO, | |
1076 | &NEG_SIX, &FIVE, &NEG_ONE, | |
1077 | &NEG_ONE, &NEG_FIVE, &NEG_ONE, | |
1078 | &NEG_TWO, &NEG_FIVE, &NEG_TWO, | |
1079 | &NEG_THREE, &NEG_FIVE, &NEG_THREE, | |
1080 | &NEG_FOUR, &NEG_FIVE, &NEG_FOUR, | |
1081 | &NEG_FIVE, &NEG_FIVE, &ZERO, | |
1082 | &NEG_SIX, &NEG_FIVE, &NEG_ONE, | |
1083 | &NINETY_NINE, &FIVE, &FOUR, | |
1084 | &HUNDRED, &FIVE, &ZERO, | |
1085 | &HUNDRED_ONE, &FIVE, &ONE, | |
1086 | &BIG_FIVEm1, &FIVE, &FOUR, | |
1087 | &BIG_FIVE, &FIVE, &ZERO, | |
1088 | &BIG_FIVEp1, &FIVE, &ONE | |
1089 | }; | |
1090 | const int TUPLE_WIDTH = 3; | |
1091 | const int TUPLE_COUNT = UPRV_LENGTHOF(tuples)/TUPLE_WIDTH; | |
1092 | for (int i = 0; i < TUPLE_COUNT; ++i) { | |
1093 | const llong lhs = *tuples[i*TUPLE_WIDTH+0]; | |
1094 | const llong rhs = *tuples[i*TUPLE_WIDTH+1]; | |
1095 | const llong ans = *tuples[i*TUPLE_WIDTH+2]; | |
1096 | ||
1097 | llong n = lhs; | |
1098 | if (!((n %= rhs) == ans)) { | |
1099 | errln("fail: (n %= rhs) == ans"); | |
1100 | } | |
1101 | LLAssert(n == ans); | |
1102 | ||
1103 | n = lhs; | |
1104 | LLAssert((n % rhs) == ans); | |
1105 | LLAssert(n == lhs); | |
1106 | } | |
1107 | } | |
1108 | ||
1109 | logln("Testing pow"); | |
1110 | // pow | |
1111 | LLAssert(llong(0, 0).pow(0) == llong(0, 0)); | |
1112 | LLAssert(llong(0, 0).pow(2) == llong(0, 0)); | |
1113 | LLAssert(llong(0, 2).pow(0) == llong(0, 1)); | |
1114 | LLAssert(llong(0, 2).pow(2) == llong(0, 4)); | |
1115 | LLAssert(llong(0, 2).pow(32) == llong(1, 0)); | |
1116 | LLAssert(llong(0, 5).pow(10) == llong((double)5.0 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5)); | |
1117 | ||
1118 | // absolute value | |
1119 | { | |
1120 | const llong n(0xffffffff,0xffffffff); | |
1121 | LLAssert(n.abs() == llong(0, 1)); | |
1122 | } | |
1123 | ||
1124 | #ifdef RBNF_DEBUG | |
1125 | logln("Testing atoll"); | |
1126 | // atoll | |
1127 | const char empty[] = ""; | |
1128 | const char zero[] = "0"; | |
1129 | const char neg_one[] = "-1"; | |
1130 | const char neg_12345[] = "-12345"; | |
1131 | const char big1[] = "123456789abcdef0"; | |
1132 | const char big2[] = "fFfFfFfFfFfFfFfF"; | |
1133 | LLAssert(llong::atoll(empty) == llong(0, 0)); | |
1134 | LLAssert(llong::atoll(zero) == llong(0, 0)); | |
1135 | LLAssert(llong::atoll(neg_one) == llong(0xffffffff, 0xffffffff)); | |
1136 | LLAssert(llong::atoll(neg_12345) == -llong(0, 12345)); | |
1137 | LLAssert(llong::atoll(big1, 16) == llong(0x12345678, 0x9abcdef0)); | |
1138 | LLAssert(llong::atoll(big2, 16) == llong(0xffffffff, 0xffffffff)); | |
1139 | #endif | |
1140 | ||
1141 | // u_atoll | |
1142 | const UChar uempty[] = { 0 }; | |
1143 | const UChar uzero[] = { 0x30, 0 }; | |
1144 | const UChar uneg_one[] = { 0x2d, 0x31, 0 }; | |
1145 | const UChar uneg_12345[] = { 0x2d, 0x31, 0x32, 0x33, 0x34, 0x35, 0 }; | |
1146 | const UChar ubig1[] = { 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x30, 0 }; | |
1147 | const UChar ubig2[] = { 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0 }; | |
1148 | LLAssert(llong::utoll(uempty) == llong(0, 0)); | |
1149 | LLAssert(llong::utoll(uzero) == llong(0, 0)); | |
1150 | LLAssert(llong::utoll(uneg_one) == llong(0xffffffff, 0xffffffff)); | |
1151 | LLAssert(llong::utoll(uneg_12345) == -llong(0, 12345)); | |
1152 | LLAssert(llong::utoll(ubig1, 16) == llong(0x12345678, 0x9abcdef0)); | |
1153 | LLAssert(llong::utoll(ubig2, 16) == llong(0xffffffff, 0xffffffff)); | |
1154 | ||
1155 | #ifdef RBNF_DEBUG | |
1156 | logln("Testing lltoa"); | |
1157 | // lltoa | |
1158 | { | |
1159 | char buf[64]; // ascii | |
1160 | LLAssert((llong(0, 0).lltoa(buf, (uint32_t)sizeof(buf)) == 1) && (strcmp(buf, zero) == 0)); | |
1161 | LLAssert((llong(0xffffffff, 0xffffffff).lltoa(buf, (uint32_t)sizeof(buf)) == 2) && (strcmp(buf, neg_one) == 0)); | |
1162 | LLAssert(((-llong(0, 12345)).lltoa(buf, (uint32_t)sizeof(buf)) == 6) && (strcmp(buf, neg_12345) == 0)); | |
1163 | LLAssert((llong(0x12345678, 0x9abcdef0).lltoa(buf, (uint32_t)sizeof(buf), 16) == 16) && (strcmp(buf, big1) == 0)); | |
1164 | } | |
1165 | #endif | |
1166 | ||
1167 | logln("Testing u_lltoa"); | |
1168 | // u_lltoa | |
1169 | { | |
1170 | UChar buf[64]; | |
1171 | LLAssert((llong(0, 0).lltou(buf, (uint32_t)sizeof(buf)) == 1) && (u_strcmp(buf, uzero) == 0)); | |
1172 | LLAssert((llong(0xffffffff, 0xffffffff).lltou(buf, (uint32_t)sizeof(buf)) == 2) && (u_strcmp(buf, uneg_one) == 0)); | |
1173 | LLAssert(((-llong(0, 12345)).lltou(buf, (uint32_t)sizeof(buf)) == 6) && (u_strcmp(buf, uneg_12345) == 0)); | |
1174 | LLAssert((llong(0x12345678, 0x9abcdef0).lltou(buf, (uint32_t)sizeof(buf), 16) == 16) && (u_strcmp(buf, ubig1) == 0)); | |
1175 | } | |
1176 | } | |
1177 | ||
1178 | /* if 0 */ | |
1179 | #endif | |
1180 | ||
1181 | void | |
1182 | IntlTestRBNF::TestEnglishSpellout() | |
1183 | { | |
1184 | UErrorCode status = U_ZERO_ERROR; | |
1185 | RuleBasedNumberFormat* formatter | |
1186 | = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getUS(), status); | |
1187 | if (U_FAILURE(status)) { | |
1188 | errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); | |
1189 | } else { | |
1190 | static const char* const testData[][2] = { | |
1191 | { "1", "one" }, | |
1192 | { "2", "two" }, | |
1193 | { "15", "fifteen" }, | |
1194 | { "20", "twenty" }, | |
1195 | { "23", "twenty-three" }, | |
1196 | { "73", "seventy-three" }, | |
1197 | { "88", "eighty-eight" }, | |
1198 | { "100", "one hundred" }, | |
1199 | { "106", "one hundred six" }, | |
1200 | { "127", "one hundred twenty-seven" }, | |
1201 | { "200", "two hundred" }, | |
1202 | { "579", "five hundred seventy-nine" }, | |
1203 | { "1,000", "one thousand" }, | |
1204 | { "2,000", "two thousand" }, | |
1205 | { "3,004", "three thousand four" }, | |
1206 | { "4,567", "four thousand five hundred sixty-seven" }, | |
1207 | { "15,943", "fifteen thousand nine hundred forty-three" }, | |
1208 | { "2,345,678", "two million three hundred forty-five thousand six hundred seventy-eight" }, | |
1209 | { "-36", "minus thirty-six" }, | |
1210 | { "234.567", "two hundred thirty-four point five six seven" }, | |
1211 | { NULL, NULL} | |
1212 | }; | |
1213 | ||
1214 | doTest(formatter, testData, TRUE); | |
1215 | ||
1216 | #if !UCONFIG_NO_COLLATION | |
1217 | formatter->setLenient(TRUE); | |
1218 | static const char* lpTestData[][2] = { | |
1219 | { "fifty-7", "57" }, | |
1220 | { " fifty-7", "57" }, | |
1221 | { " fifty-7", "57" }, | |
1222 | { "2 thousand six HUNDRED fifty-7", "2,657" }, | |
1223 | { "fifteen hundred and zero", "1,500" }, | |
1224 | { "FOurhundred thiRTY six", "436" }, | |
1225 | { NULL, NULL} | |
1226 | }; | |
1227 | doLenientParseTest(formatter, lpTestData); | |
1228 | #endif | |
1229 | } | |
1230 | delete formatter; | |
1231 | } | |
1232 | ||
1233 | void | |
1234 | IntlTestRBNF::TestOrdinalAbbreviations() | |
1235 | { | |
1236 | UErrorCode status = U_ZERO_ERROR; | |
1237 | RuleBasedNumberFormat* formatter | |
1238 | = new RuleBasedNumberFormat(URBNF_ORDINAL, Locale::getUS(), status); | |
1239 | ||
1240 | if (U_FAILURE(status)) { | |
1241 | errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); | |
1242 | } else { | |
1243 | static const char* const testData[][2] = { | |
1244 | { "1", "1st" }, | |
1245 | { "2", "2nd" }, | |
1246 | { "3", "3rd" }, | |
1247 | { "4", "4th" }, | |
1248 | { "7", "7th" }, | |
1249 | { "10", "10th" }, | |
1250 | { "11", "11th" }, | |
1251 | { "13", "13th" }, | |
1252 | { "20", "20th" }, | |
1253 | { "21", "21st" }, | |
1254 | { "22", "22nd" }, | |
1255 | { "23", "23rd" }, | |
1256 | { "24", "24th" }, | |
1257 | { "33", "33rd" }, | |
1258 | { "102", "102nd" }, | |
1259 | { "312", "312th" }, | |
1260 | { "12,345", "12,345th" }, | |
1261 | { NULL, NULL} | |
1262 | }; | |
1263 | ||
1264 | doTest(formatter, testData, FALSE); | |
1265 | } | |
1266 | delete formatter; | |
1267 | } | |
1268 | ||
1269 | void | |
1270 | IntlTestRBNF::TestDurations() | |
1271 | { | |
1272 | UErrorCode status = U_ZERO_ERROR; | |
1273 | RuleBasedNumberFormat* formatter | |
1274 | = new RuleBasedNumberFormat(URBNF_DURATION, Locale::getUS(), status); | |
1275 | ||
1276 | if (U_FAILURE(status)) { | |
1277 | errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); | |
1278 | } else { | |
1279 | static const char* const testData[][2] = { | |
1280 | { "3,600", "1:00:00" }, //move me and I fail | |
1281 | { "0", "0 sec." }, | |
1282 | { "1", "1 sec." }, | |
1283 | { "24", "24 sec." }, | |
1284 | { "60", "1:00" }, | |
1285 | { "73", "1:13" }, | |
1286 | { "145", "2:25" }, | |
1287 | { "666", "11:06" }, | |
1288 | // { "3,600", "1:00:00" }, | |
1289 | { "3,740", "1:02:20" }, | |
1290 | { "10,293", "2:51:33" }, | |
1291 | { NULL, NULL} | |
1292 | }; | |
1293 | ||
1294 | doTest(formatter, testData, TRUE); | |
1295 | ||
1296 | #if !UCONFIG_NO_COLLATION | |
1297 | formatter->setLenient(TRUE); | |
1298 | static const char* lpTestData[][2] = { | |
1299 | { "2-51-33", "10,293" }, | |
1300 | { NULL, NULL} | |
1301 | }; | |
1302 | doLenientParseTest(formatter, lpTestData); | |
1303 | #endif | |
1304 | } | |
1305 | delete formatter; | |
1306 | } | |
1307 | ||
1308 | void | |
1309 | IntlTestRBNF::TestSpanishSpellout() | |
1310 | { | |
1311 | UErrorCode status = U_ZERO_ERROR; | |
1312 | RuleBasedNumberFormat* formatter | |
1313 | = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("es", "ES", ""), status); | |
1314 | ||
1315 | if (U_FAILURE(status)) { | |
1316 | errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); | |
1317 | } else { | |
1318 | static const char* const testData[][2] = { | |
1319 | { "1", "uno" }, | |
1320 | { "6", "seis" }, | |
1321 | { "16", "diecis\\u00e9is" }, | |
1322 | { "20", "veinte" }, | |
1323 | { "24", "veinticuatro" }, | |
1324 | { "26", "veintis\\u00e9is" }, | |
1325 | { "73", "setenta y tres" }, | |
1326 | { "88", "ochenta y ocho" }, | |
1327 | { "100", "cien" }, | |
1328 | { "106", "ciento seis" }, | |
1329 | { "127", "ciento veintisiete" }, | |
1330 | { "200", "doscientos" }, | |
1331 | { "579", "quinientos setenta y nueve" }, | |
1332 | { "1,000", "mil" }, | |
1333 | { "2,000", "dos mil" }, | |
1334 | { "3,004", "tres mil cuatro" }, | |
1335 | { "4,567", "cuatro mil quinientos sesenta y siete" }, | |
1336 | { "15,943", "quince mil novecientos cuarenta y tres" }, | |
1337 | { "2,345,678", "dos millones trescientos cuarenta y cinco mil seiscientos setenta y ocho"}, | |
1338 | { "-36", "menos treinta y seis" }, | |
1339 | { "234.567", "doscientos treinta y cuatro coma cinco seis siete" }, | |
1340 | { NULL, NULL} | |
1341 | }; | |
1342 | ||
1343 | doTest(formatter, testData, TRUE); | |
1344 | } | |
1345 | delete formatter; | |
1346 | } | |
1347 | ||
1348 | void | |
1349 | IntlTestRBNF::TestFrenchSpellout() | |
1350 | { | |
1351 | UErrorCode status = U_ZERO_ERROR; | |
1352 | RuleBasedNumberFormat* formatter | |
1353 | = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getFrance(), status); | |
1354 | ||
1355 | if (U_FAILURE(status)) { | |
1356 | errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); | |
1357 | } else { | |
1358 | static const char* const testData[][2] = { | |
1359 | { "1", "un" }, | |
1360 | { "15", "quinze" }, | |
1361 | { "20", "vingt" }, | |
1362 | { "21", "vingt-et-un" }, | |
1363 | { "23", "vingt-trois" }, | |
1364 | { "62", "soixante-deux" }, | |
1365 | { "70", "soixante-dix" }, | |
1366 | { "71", "soixante-et-onze" }, | |
1367 | { "73", "soixante-treize" }, | |
1368 | { "80", "quatre-vingts" }, | |
1369 | { "88", "quatre-vingt-huit" }, | |
1370 | { "100", "cent" }, | |
1371 | { "106", "cent six" }, | |
1372 | { "127", "cent vingt-sept" }, | |
1373 | { "200", "deux cents" }, | |
1374 | { "579", "cinq cent soixante-dix-neuf" }, | |
1375 | { "1,000", "mille" }, | |
1376 | { "1,123", "mille cent vingt-trois" }, | |
1377 | { "1,594", "mille cinq cent quatre-vingt-quatorze" }, | |
1378 | { "2,000", "deux mille" }, | |
1379 | { "3,004", "trois mille quatre" }, | |
1380 | { "4,567", "quatre mille cinq cent soixante-sept" }, | |
1381 | { "15,943", "quinze mille neuf cent quarante-trois" }, | |
1382 | { "2,345,678", "deux millions trois cent quarante-cinq mille six cent soixante-dix-huit" }, | |
1383 | { "-36", "moins trente-six" }, | |
1384 | { "234.567", "deux cent trente-quatre virgule cinq six sept" }, | |
1385 | { NULL, NULL} | |
1386 | }; | |
1387 | ||
1388 | doTest(formatter, testData, TRUE); | |
1389 | ||
1390 | #if !UCONFIG_NO_COLLATION | |
1391 | formatter->setLenient(TRUE); | |
1392 | static const char* lpTestData[][2] = { | |
1393 | { "trente-et-un", "31" }, | |
1394 | { "un cent quatre vingt dix huit", "198" }, | |
1395 | { NULL, NULL} | |
1396 | }; | |
1397 | doLenientParseTest(formatter, lpTestData); | |
1398 | #endif | |
1399 | } | |
1400 | delete formatter; | |
1401 | } | |
1402 | ||
1403 | static const char* const swissFrenchTestData[][2] = { | |
1404 | { "1", "un" }, | |
1405 | { "15", "quinze" }, | |
1406 | { "20", "vingt" }, | |
1407 | { "21", "vingt-et-un" }, | |
1408 | { "23", "vingt-trois" }, | |
1409 | { "62", "soixante-deux" }, | |
1410 | { "70", "septante" }, | |
1411 | { "71", "septante-et-un" }, | |
1412 | { "73", "septante-trois" }, | |
1413 | { "80", "huitante" }, | |
1414 | { "88", "huitante-huit" }, | |
1415 | { "100", "cent" }, | |
1416 | { "106", "cent six" }, | |
1417 | { "127", "cent vingt-sept" }, | |
1418 | { "200", "deux cents" }, | |
1419 | { "579", "cinq cent septante-neuf" }, | |
1420 | { "1,000", "mille" }, | |
1421 | { "1,123", "mille cent vingt-trois" }, | |
1422 | { "1,594", "mille cinq cent nonante-quatre" }, | |
1423 | { "2,000", "deux mille" }, | |
1424 | { "3,004", "trois mille quatre" }, | |
1425 | { "4,567", "quatre mille cinq cent soixante-sept" }, | |
1426 | { "15,943", "quinze mille neuf cent quarante-trois" }, | |
1427 | { "2,345,678", "deux millions trois cent quarante-cinq mille six cent septante-huit" }, | |
1428 | { "-36", "moins trente-six" }, | |
1429 | { "234.567", "deux cent trente-quatre virgule cinq six sept" }, | |
1430 | { NULL, NULL} | |
1431 | }; | |
1432 | ||
1433 | void | |
1434 | IntlTestRBNF::TestSwissFrenchSpellout() | |
1435 | { | |
1436 | UErrorCode status = U_ZERO_ERROR; | |
1437 | RuleBasedNumberFormat* formatter | |
1438 | = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("fr", "CH", ""), status); | |
1439 | ||
1440 | if (U_FAILURE(status)) { | |
1441 | errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); | |
1442 | } else { | |
1443 | doTest(formatter, swissFrenchTestData, TRUE); | |
1444 | } | |
1445 | delete formatter; | |
1446 | } | |
1447 | ||
1448 | static const char* const belgianFrenchTestData[][2] = { | |
1449 | { "1", "un" }, | |
1450 | { "15", "quinze" }, | |
1451 | { "20", "vingt" }, | |
1452 | { "21", "vingt-et-un" }, | |
1453 | { "23", "vingt-trois" }, | |
1454 | { "62", "soixante-deux" }, | |
1455 | { "70", "septante" }, | |
1456 | { "71", "septante-et-un" }, | |
1457 | { "73", "septante-trois" }, | |
1458 | { "80", "quatre-vingts" }, | |
1459 | { "88", "quatre-vingt huit" }, | |
1460 | { "90", "nonante" }, | |
1461 | { "91", "nonante-et-un" }, | |
1462 | { "95", "nonante-cinq" }, | |
1463 | { "100", "cent" }, | |
1464 | { "106", "cent six" }, | |
1465 | { "127", "cent vingt-sept" }, | |
1466 | { "200", "deux cents" }, | |
1467 | { "579", "cinq cent septante-neuf" }, | |
1468 | { "1,000", "mille" }, | |
1469 | { "1,123", "mille cent vingt-trois" }, | |
1470 | { "1,594", "mille cinq cent nonante-quatre" }, | |
1471 | { "2,000", "deux mille" }, | |
1472 | { "3,004", "trois mille quatre" }, | |
1473 | { "4,567", "quatre mille cinq cent soixante-sept" }, | |
1474 | { "15,943", "quinze mille neuf cent quarante-trois" }, | |
1475 | { "2,345,678", "deux millions trois cent quarante-cinq mille six cent septante-huit" }, | |
1476 | { "-36", "moins trente-six" }, | |
1477 | { "234.567", "deux cent trente-quatre virgule cinq six sept" }, | |
1478 | { NULL, NULL} | |
1479 | }; | |
1480 | ||
1481 | ||
1482 | void | |
1483 | IntlTestRBNF::TestBelgianFrenchSpellout() | |
1484 | { | |
1485 | UErrorCode status = U_ZERO_ERROR; | |
1486 | RuleBasedNumberFormat* formatter | |
1487 | = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("fr", "BE", ""), status); | |
1488 | ||
1489 | if (U_FAILURE(status)) { | |
1490 | errcheckln(status, "rbnf status: 0x%x (%s)\n", status, u_errorName(status)); | |
1491 | errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); | |
1492 | } else { | |
1493 | // Belgian french should match Swiss french. | |
1494 | doTest(formatter, belgianFrenchTestData, TRUE); | |
1495 | } | |
1496 | delete formatter; | |
1497 | } | |
1498 | ||
1499 | void | |
1500 | IntlTestRBNF::TestItalianSpellout() | |
1501 | { | |
1502 | UErrorCode status = U_ZERO_ERROR; | |
1503 | RuleBasedNumberFormat* formatter | |
1504 | = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getItalian(), status); | |
1505 | ||
1506 | if (U_FAILURE(status)) { | |
1507 | errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); | |
1508 | } else { | |
1509 | static const char* const testData[][2] = { | |
1510 | { "1", "uno" }, | |
1511 | { "15", "quindici" }, | |
1512 | { "20", "venti" }, | |
1513 | { "23", "venti\\u00ADtr\\u00E9" }, | |
1514 | { "73", "settanta\\u00ADtr\\u00E9" }, | |
1515 | { "88", "ottant\\u00ADotto" }, | |
1516 | { "100", "cento" }, | |
1517 | { "101", "cento\\u00ADuno" }, | |
1518 | { "103", "cento\\u00ADtr\\u00E9" }, | |
1519 | { "106", "cento\\u00ADsei" }, | |
1520 | { "108", "cent\\u00ADotto" }, | |
1521 | { "127", "cento\\u00ADventi\\u00ADsette" }, | |
1522 | { "181", "cent\\u00ADottant\\u00ADuno" }, | |
1523 | { "200", "due\\u00ADcento" }, | |
1524 | { "579", "cinque\\u00ADcento\\u00ADsettanta\\u00ADnove" }, | |
1525 | { "1,000", "mille" }, | |
1526 | { "2,000", "due\\u00ADmila" }, | |
1527 | { "3,004", "tre\\u00ADmila\\u00ADquattro" }, | |
1528 | { "4,567", "quattro\\u00ADmila\\u00ADcinque\\u00ADcento\\u00ADsessanta\\u00ADsette" }, | |
1529 | { "15,943", "quindici\\u00ADmila\\u00ADnove\\u00ADcento\\u00ADquaranta\\u00ADtr\\u00E9" }, | |
1530 | { "-36", "meno trenta\\u00ADsei" }, | |
1531 | { "234.567", "due\\u00ADcento\\u00ADtrenta\\u00ADquattro virgola cinque sei sette" }, | |
1532 | { NULL, NULL} | |
1533 | }; | |
1534 | ||
1535 | doTest(formatter, testData, TRUE); | |
1536 | } | |
1537 | delete formatter; | |
1538 | } | |
1539 | ||
1540 | void | |
1541 | IntlTestRBNF::TestPortugueseSpellout() | |
1542 | { | |
1543 | UErrorCode status = U_ZERO_ERROR; | |
1544 | RuleBasedNumberFormat* formatter | |
1545 | = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("pt","BR",""), status); | |
1546 | ||
1547 | if (U_FAILURE(status)) { | |
1548 | errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); | |
1549 | } else { | |
1550 | static const char* const testData[][2] = { | |
1551 | { "1", "um" }, | |
1552 | { "15", "quinze" }, | |
1553 | { "20", "vinte" }, | |
1554 | { "23", "vinte e tr\\u00EAs" }, | |
1555 | { "73", "setenta e tr\\u00EAs" }, | |
1556 | { "88", "oitenta e oito" }, | |
1557 | { "100", "cem" }, | |
1558 | { "106", "cento e seis" }, | |
1559 | { "108", "cento e oito" }, | |
1560 | { "127", "cento e vinte e sete" }, | |
1561 | { "181", "cento e oitenta e um" }, | |
1562 | { "200", "duzentos" }, | |
1563 | { "579", "quinhentos e setenta e nove" }, | |
1564 | { "1,000", "mil" }, | |
1565 | { "2,000", "dois mil" }, | |
1566 | { "3,004", "tr\\u00EAs mil e quatro" }, | |
1567 | { "4,567", "quatro mil e quinhentos e sessenta e sete" }, | |
1568 | { "15,943", "quinze mil e novecentos e quarenta e tr\\u00EAs" }, | |
1569 | { "-36", "menos trinta e seis" }, | |
1570 | { "234.567", "duzentos e trinta e quatro v\\u00EDrgula cinco seis sete" }, | |
1571 | { NULL, NULL} | |
1572 | }; | |
1573 | ||
1574 | doTest(formatter, testData, TRUE); | |
1575 | } | |
1576 | delete formatter; | |
1577 | } | |
1578 | void | |
1579 | IntlTestRBNF::TestGermanSpellout() | |
1580 | { | |
1581 | UErrorCode status = U_ZERO_ERROR; | |
1582 | RuleBasedNumberFormat* formatter | |
1583 | = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getGermany(), status); | |
1584 | ||
1585 | if (U_FAILURE(status)) { | |
1586 | errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); | |
1587 | } else { | |
1588 | static const char* const testData[][2] = { | |
1589 | { "1", "eins" }, | |
1590 | { "15", "f\\u00fcnfzehn" }, | |
1591 | { "20", "zwanzig" }, | |
1592 | { "23", "drei\\u00ADund\\u00ADzwanzig" }, | |
1593 | { "73", "drei\\u00ADund\\u00ADsiebzig" }, | |
1594 | { "88", "acht\\u00ADund\\u00ADachtzig" }, | |
1595 | { "100", "ein\\u00ADhundert" }, | |
1596 | { "106", "ein\\u00ADhundert\\u00ADsechs" }, | |
1597 | { "127", "ein\\u00ADhundert\\u00ADsieben\\u00ADund\\u00ADzwanzig" }, | |
1598 | { "200", "zwei\\u00ADhundert" }, | |
1599 | { "579", "f\\u00fcnf\\u00ADhundert\\u00ADneun\\u00ADund\\u00ADsiebzig" }, | |
1600 | { "1,000", "ein\\u00ADtausend" }, | |
1601 | { "2,000", "zwei\\u00ADtausend" }, | |
1602 | { "3,004", "drei\\u00ADtausend\\u00ADvier" }, | |
1603 | { "4,567", "vier\\u00ADtausend\\u00ADf\\u00fcnf\\u00ADhundert\\u00ADsieben\\u00ADund\\u00ADsechzig" }, | |
1604 | { "15,943", "f\\u00fcnfzehn\\u00ADtausend\\u00ADneun\\u00ADhundert\\u00ADdrei\\u00ADund\\u00ADvierzig" }, | |
1605 | { "2,345,678", "zwei Millionen drei\\u00ADhundert\\u00ADf\\u00fcnf\\u00ADund\\u00ADvierzig\\u00ADtausend\\u00ADsechs\\u00ADhundert\\u00ADacht\\u00ADund\\u00ADsiebzig" }, | |
1606 | { NULL, NULL} | |
1607 | }; | |
1608 | ||
1609 | doTest(formatter, testData, TRUE); | |
1610 | ||
1611 | #if !UCONFIG_NO_COLLATION | |
1612 | formatter->setLenient(TRUE); | |
1613 | static const char* lpTestData[][2] = { | |
1614 | { "ein Tausend sechs Hundert fuenfunddreissig", "1,635" }, | |
1615 | { NULL, NULL} | |
1616 | }; | |
1617 | doLenientParseTest(formatter, lpTestData); | |
1618 | #endif | |
1619 | } | |
1620 | delete formatter; | |
1621 | } | |
1622 | ||
1623 | void | |
1624 | IntlTestRBNF::TestThaiSpellout() | |
1625 | { | |
1626 | UErrorCode status = U_ZERO_ERROR; | |
1627 | RuleBasedNumberFormat* formatter | |
1628 | = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("th"), status); | |
1629 | ||
1630 | if (U_FAILURE(status)) { | |
1631 | errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); | |
1632 | } else { | |
1633 | static const char* const testData[][2] = { | |
1634 | { "0", "\\u0e28\\u0e39\\u0e19\\u0e22\\u0e4c" }, | |
1635 | { "1", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07" }, | |
1636 | { "10", "\\u0e2a\\u0e34\\u0e1a" }, | |
1637 | { "11", "\\u0e2a\\u0e34\\u0e1a\\u200b\\u0e40\\u0e2d\\u0e47\\u0e14" }, | |
1638 | { "21", "\\u0e22\\u0e35\\u0e48\\u200b\\u0e2a\\u0e34\\u0e1a\\u200b\\u0e40\\u0e2d\\u0e47\\u0e14" }, | |
1639 | { "101", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07\\u200b\\u0e23\\u0e49\\u0e2d\\u0e22\\u200b\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07" }, | |
1640 | { "1.234", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07\\u200b\\u0e08\\u0e38\\u0e14\\u200b\\u0e2a\\u0e2d\\u0e07\\u0e2a\\u0e32\\u0e21\\u0e2a\\u0e35\\u0e48" }, | |
1641 | { NULL, NULL} | |
1642 | }; | |
1643 | ||
1644 | doTest(formatter, testData, TRUE); | |
1645 | } | |
1646 | delete formatter; | |
1647 | } | |
1648 | ||
1649 | void | |
1650 | IntlTestRBNF::TestSwedishSpellout() | |
1651 | { | |
1652 | UErrorCode status = U_ZERO_ERROR; | |
1653 | RuleBasedNumberFormat* formatter | |
1654 | = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("sv"), status); | |
1655 | ||
1656 | if (U_FAILURE(status)) { | |
1657 | errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); | |
1658 | } else { | |
1659 | static const char* testDataDefault[][2] = { | |
1660 | { "101", "ett\\u00adhundra\\u00adett" }, | |
1661 | { "123", "ett\\u00adhundra\\u00adtjugo\\u00adtre" }, | |
1662 | { "1,001", "et\\u00adtusen ett" }, | |
1663 | { "1,100", "et\\u00adtusen ett\\u00adhundra" }, | |
1664 | { "1,101", "et\\u00adtusen ett\\u00adhundra\\u00adett" }, | |
1665 | { "1,234", "et\\u00adtusen tv\\u00e5\\u00adhundra\\u00adtrettio\\u00adfyra" }, | |
1666 | { "10,001", "tio\\u00adtusen ett" }, | |
1667 | { "11,000", "elva\\u00adtusen" }, | |
1668 | { "12,000", "tolv\\u00adtusen" }, | |
1669 | { "20,000", "tjugo\\u00adtusen" }, | |
1670 | { "21,000", "tjugo\\u00adet\\u00adtusen" }, | |
1671 | { "21,001", "tjugo\\u00adet\\u00adtusen ett" }, | |
1672 | { "200,000", "tv\\u00e5\\u00adhundra\\u00adtusen" }, | |
1673 | { "201,000", "tv\\u00e5\\u00adhundra\\u00adet\\u00adtusen" }, | |
1674 | { "200,200", "tv\\u00e5\\u00adhundra\\u00adtusen tv\\u00e5\\u00adhundra" }, | |
1675 | { "2,002,000", "tv\\u00e5 miljoner tv\\u00e5\\u00adtusen" }, | |
1676 | { "12,345,678", "tolv miljoner tre\\u00adhundra\\u00adfyrtio\\u00adfem\\u00adtusen sex\\u00adhundra\\u00adsjuttio\\u00ad\\u00e5tta" }, | |
1677 | { "123,456.789", "ett\\u00adhundra\\u00adtjugo\\u00adtre\\u00adtusen fyra\\u00adhundra\\u00adfemtio\\u00adsex komma sju \\u00e5tta nio" }, | |
1678 | { "-12,345.678", "minus tolv\\u00adtusen tre\\u00adhundra\\u00adfyrtio\\u00adfem komma sex sju \\u00e5tta" }, | |
1679 | { NULL, NULL } | |
1680 | }; | |
1681 | doTest(formatter, testDataDefault, TRUE); | |
1682 | ||
1683 | static const char* testDataNeutrum[][2] = { | |
1684 | { "101", "ett\\u00adhundra\\u00adett" }, | |
1685 | { "1,001", "et\\u00adtusen ett" }, | |
1686 | { "1,101", "et\\u00adtusen ett\\u00adhundra\\u00adett" }, | |
1687 | { "10,001", "tio\\u00adtusen ett" }, | |
1688 | { "21,001", "tjugo\\u00adet\\u00adtusen ett" }, | |
1689 | { NULL, NULL } | |
1690 | }; | |
1691 | ||
1692 | formatter->setDefaultRuleSet("%spellout-cardinal-neuter", status); | |
1693 | if (U_SUCCESS(status)) { | |
1694 | logln(" testing spellout-cardinal-neuter rules"); | |
1695 | doTest(formatter, testDataNeutrum, TRUE); | |
1696 | } | |
1697 | else { | |
1698 | errln("Can't test spellout-cardinal-neuter rules"); | |
1699 | } | |
1700 | ||
1701 | static const char* testDataYear[][2] = { | |
1702 | { "101", "ett\\u00adhundra\\u00adett" }, | |
1703 | { "900", "nio\\u00adhundra" }, | |
1704 | { "1,001", "et\\u00adtusen ett" }, | |
1705 | { "1,100", "elva\\u00adhundra" }, | |
1706 | { "1,101", "elva\\u00adhundra\\u00adett" }, | |
1707 | { "1,234", "tolv\\u00adhundra\\u00adtrettio\\u00adfyra" }, | |
1708 | { "2,001", "tjugo\\u00adhundra\\u00adett" }, | |
1709 | { "10,001", "tio\\u00adtusen ett" }, | |
1710 | { NULL, NULL } | |
1711 | }; | |
1712 | ||
1713 | status = U_ZERO_ERROR; | |
1714 | formatter->setDefaultRuleSet("%spellout-numbering-year", status); | |
1715 | if (U_SUCCESS(status)) { | |
1716 | logln("testing year rules"); | |
1717 | doTest(formatter, testDataYear, TRUE); | |
1718 | } | |
1719 | else { | |
1720 | errln("Can't test year rules"); | |
1721 | } | |
1722 | ||
1723 | } | |
1724 | delete formatter; | |
1725 | } | |
1726 | ||
1727 | void | |
1728 | IntlTestRBNF::TestSmallValues() | |
1729 | { | |
1730 | UErrorCode status = U_ZERO_ERROR; | |
1731 | RuleBasedNumberFormat* formatter | |
1732 | = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("en_US"), status); | |
1733 | ||
1734 | if (U_FAILURE(status)) { | |
1735 | errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); | |
1736 | } else { | |
1737 | static const char* const testDataDefault[][2] = { | |
1738 | { "0.001", "zero point zero zero one" }, | |
1739 | { "0.0001", "zero point zero zero zero one" }, | |
1740 | { "0.00001", "zero point zero zero zero zero one" }, | |
1741 | { "0.000001", "zero point zero zero zero zero zero one" }, | |
1742 | { "0.0000001", "zero point zero zero zero zero zero zero one" }, | |
1743 | { "0.00000001", "zero point zero zero zero zero zero zero zero one" }, | |
1744 | { "0.000000001", "zero point zero zero zero zero zero zero zero zero one" }, | |
1745 | { "0.0000000001", "zero point zero zero zero zero zero zero zero zero zero one" }, | |
1746 | { "0.00000000001", "zero point zero zero zero zero zero zero zero zero zero zero one" }, | |
1747 | { "0.000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero one" }, | |
1748 | { "0.0000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero zero one" }, | |
1749 | { "0.00000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero zero zero one" }, | |
1750 | { "0.000000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero zero zero zero one" }, | |
1751 | { "10,000,000.001", "ten million point zero zero one" }, | |
1752 | { "10,000,000.0001", "ten million point zero zero zero one" }, | |
1753 | { "10,000,000.00001", "ten million point zero zero zero zero one" }, | |
1754 | { "10,000,000.000001", "ten million point zero zero zero zero zero one" }, | |
1755 | { "10,000,000.0000001", "ten million point zero zero zero zero zero zero one" }, | |
1756 | // { "10,000,000.00000001", "ten million point zero zero zero zero zero zero zero one" }, | |
1757 | // { "10,000,000.000000002", "ten million point zero zero zero zero zero zero zero zero two" }, | |
1758 | { "10,000,000", "ten million" }, | |
1759 | // { "1,234,567,890.0987654", "one billion, two hundred and thirty-four million, five hundred and sixty-seven thousand, eight hundred and ninety point zero nine eight seven six five four" }, | |
1760 | // { "123,456,789.9876543", "one hundred and twenty-three million, four hundred and fifty-six thousand, seven hundred and eighty-nine point nine eight seven six five four three" }, | |
1761 | // { "12,345,678.87654321", "twelve million, three hundred and forty-five thousand, six hundred and seventy-eight point eight seven six five four three two one" }, | |
1762 | { "1,234,567.7654321", "one million two hundred thirty-four thousand five hundred sixty-seven point seven six five four three two one" }, | |
1763 | { "123,456.654321", "one hundred twenty-three thousand four hundred fifty-six point six five four three two one" }, | |
1764 | { "12,345.54321", "twelve thousand three hundred forty-five point five four three two one" }, | |
1765 | { "1,234.4321", "one thousand two hundred thirty-four point four three two one" }, | |
1766 | { "123.321", "one hundred twenty-three point three two one" }, | |
1767 | { "0.0000000011754944", "zero point zero zero zero zero zero zero zero zero one one seven five four nine four four" }, | |
1768 | { "0.000001175494351", "zero point zero zero zero zero zero one one seven five four nine four three five one" }, | |
1769 | { NULL, NULL } | |
1770 | }; | |
1771 | ||
1772 | doTest(formatter, testDataDefault, TRUE); | |
1773 | ||
1774 | delete formatter; | |
1775 | } | |
1776 | } | |
1777 | ||
1778 | void | |
1779 | IntlTestRBNF::TestLocalizations(void) | |
1780 | { | |
1781 | int i; | |
1782 | UnicodeString rules("%main:0:no;1:some;100:a lot;1000:tons;\n" | |
1783 | "%other:0:nada;1:yah, some;100:plenty;1000:more'n you'll ever need"); | |
1784 | ||
1785 | UErrorCode status = U_ZERO_ERROR; | |
1786 | UParseError perror; | |
1787 | RuleBasedNumberFormat formatter(rules, perror, status); | |
1788 | if (U_FAILURE(status)) { | |
1789 | errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); | |
1790 | } else { | |
1791 | { | |
1792 | static const char* const testData[][2] = { | |
1793 | { "0", "nada" }, | |
1794 | { "5", "yah, some" }, | |
1795 | { "423", "plenty" }, | |
1796 | { "12345", "more'n you'll ever need" }, | |
1797 | { NULL, NULL } | |
1798 | }; | |
1799 | doTest(&formatter, testData, FALSE); | |
1800 | } | |
1801 | ||
1802 | { | |
1803 | UnicodeString loc("<<%main, %other>,<en, Main, Other>,<fr, leMain, leOther>,<de, 'das Main', 'etwas anderes'>>"); | |
1804 | static const char* const testData[][2] = { | |
1805 | { "0", "no" }, | |
1806 | { "5", "some" }, | |
1807 | { "423", "a lot" }, | |
1808 | { "12345", "tons" }, | |
1809 | { NULL, NULL } | |
1810 | }; | |
1811 | RuleBasedNumberFormat formatter0(rules, loc, perror, status); | |
1812 | if (U_FAILURE(status)) { | |
1813 | errln("failed to build second formatter"); | |
1814 | } else { | |
1815 | doTest(&formatter0, testData, FALSE); | |
1816 | ||
1817 | { | |
1818 | // exercise localization info | |
1819 | Locale locale0("en__VALLEY@turkey=gobblegobble"); | |
1820 | Locale locale1("de_DE_FOO"); | |
1821 | Locale locale2("ja_JP"); | |
1822 | UnicodeString name = formatter0.getRuleSetName(0); | |
1823 | if ( formatter0.getRuleSetDisplayName(0, locale0) == "Main" | |
1824 | && formatter0.getRuleSetDisplayName(0, locale1) == "das Main" | |
1825 | && formatter0.getRuleSetDisplayName(0, locale2) == "%main" | |
1826 | && formatter0.getRuleSetDisplayName(name, locale0) == "Main" | |
1827 | && formatter0.getRuleSetDisplayName(name, locale1) == "das Main" | |
1828 | && formatter0.getRuleSetDisplayName(name, locale2) == "%main"){ | |
1829 | logln("getRuleSetDisplayName tested"); | |
1830 | }else { | |
1831 | errln("failed to getRuleSetDisplayName"); | |
1832 | } | |
1833 | } | |
1834 | ||
1835 | for (i = 0; i < formatter0.getNumberOfRuleSetDisplayNameLocales(); ++i) { | |
1836 | Locale locale = formatter0.getRuleSetDisplayNameLocale(i, status); | |
1837 | if (U_SUCCESS(status)) { | |
1838 | for (int j = 0; j < formatter0.getNumberOfRuleSetNames(); ++j) { | |
1839 | UnicodeString name = formatter0.getRuleSetName(j); | |
1840 | UnicodeString lname = formatter0.getRuleSetDisplayName(j, locale); | |
1841 | UnicodeString msg = locale.getName(); | |
1842 | msg.append(": "); | |
1843 | msg.append(name); | |
1844 | msg.append(" = "); | |
1845 | msg.append(lname); | |
1846 | logln(msg); | |
1847 | } | |
1848 | } | |
1849 | } | |
1850 | } | |
1851 | } | |
1852 | ||
1853 | { | |
1854 | static const char* goodLocs[] = { | |
1855 | "", // zero-length ok, same as providing no localization data | |
1856 | "<<>>", // no public rule sets ok | |
1857 | "<<%main>>", // no localizations ok | |
1858 | "<<%main,>,<en, Main,>>", // comma before close angle ok | |
1859 | "<<%main>,<en, ',<>\" '>>", // quotes everything until next quote | |
1860 | "<<%main>,<'en', \"it's ok\">>", // double quotes work too | |
1861 | " \n <\n <\n %main\n >\n , \t <\t en\t , \tfoo \t\t > \n\n > \n ", // Pattern_White_Space ok | |
1862 | }; | |
1863 | int32_t goodLocsLen = UPRV_LENGTHOF(goodLocs); | |
1864 | ||
1865 | static const char* badLocs[] = { | |
1866 | " ", // non-zero length | |
1867 | "<>", // empty array | |
1868 | "<", // unclosed outer array | |
1869 | "<<", // unclosed inner array | |
1870 | "<<,>>", // unexpected comma | |
1871 | "<<''>>", // empty string | |
1872 | " x<<%main>>", // first non space char not open angle bracket | |
1873 | "<%main>", // missing inner array | |
1874 | "<<%main %other>>", // elements missing separating commma (spaces must be quoted) | |
1875 | "<<%main><en, Main>>", // arrays missing separating comma | |
1876 | "<<%main>,<en, main, foo>>", // too many elements in locale data | |
1877 | "<<%main>,<en>>", // too few elements in locale data | |
1878 | "<<<%main>>>", // unexpected open angle | |
1879 | "<<%main<>>>", // unexpected open angle | |
1880 | "<<%main, %other>,<en,,>>", // implicit empty strings | |
1881 | "<<%main>,<en,''>>", // empty string | |
1882 | "<<%main>, < en, '>>", // unterminated quote | |
1883 | "<<%main>, < en, \"<>>", // unterminated quote | |
1884 | "<<%main\">>", // quote in string | |
1885 | "<<%main'>>", // quote in string | |
1886 | "<<%main<>>", // open angle in string | |
1887 | "<<%main>> x", // extra non-space text at end | |
1888 | ||
1889 | }; | |
1890 | int32_t badLocsLen = UPRV_LENGTHOF(badLocs); | |
1891 | ||
1892 | for (i = 0; i < goodLocsLen; ++i) { | |
1893 | logln("[%d] '%s'", i, goodLocs[i]); | |
1894 | UErrorCode status = U_ZERO_ERROR; | |
1895 | UnicodeString loc(goodLocs[i]); | |
1896 | RuleBasedNumberFormat fmt(rules, loc, perror, status); | |
1897 | if (U_FAILURE(status)) { | |
1898 | errln("Failed parse of good localization string: '%s'", goodLocs[i]); | |
1899 | } | |
1900 | } | |
1901 | ||
1902 | for (i = 0; i < badLocsLen; ++i) { | |
1903 | logln("[%d] '%s'", i, badLocs[i]); | |
1904 | UErrorCode status = U_ZERO_ERROR; | |
1905 | UnicodeString loc(badLocs[i]); | |
1906 | RuleBasedNumberFormat fmt(rules, loc, perror, status); | |
1907 | if (U_SUCCESS(status)) { | |
1908 | errln("Successful parse of bad localization string: '%s'", badLocs[i]); | |
1909 | } | |
1910 | } | |
1911 | } | |
1912 | } | |
1913 | } | |
1914 | ||
1915 | void | |
1916 | IntlTestRBNF::TestAllLocales() | |
1917 | { | |
1918 | const char* names[] = { | |
1919 | " (spellout) ", | |
1920 | " (ordinal) " | |
1921 | // " (duration) " // This is English only, and it's not really supported in CLDR anymore. | |
1922 | }; | |
1923 | double numbers[] = {45.678, 1, 2, 10, 11, 100, 110, 200, 1000, 1111, -1111}; | |
1924 | ||
1925 | int32_t count = 0; | |
1926 | const Locale* locales = Locale::getAvailableLocales(count); | |
1927 | for (int i = 0; i < count; ++i) { | |
1928 | const Locale* loc = &locales[i]; | |
1929 | ||
1930 | for (int j = 0; j < 2; ++j) { | |
1931 | UErrorCode status = U_ZERO_ERROR; | |
1932 | RuleBasedNumberFormat* f = new RuleBasedNumberFormat((URBNFRuleSetTag)j, *loc, status); | |
1933 | ||
1934 | if (status == U_USING_DEFAULT_WARNING || status == U_USING_FALLBACK_WARNING) { | |
1935 | // Skip it. | |
1936 | delete f; | |
1937 | break; | |
1938 | } | |
1939 | if (U_FAILURE(status)) { | |
1940 | errln(UnicodeString(loc->getName()) + names[j] | |
1941 | + "ERROR could not instantiate -> " + u_errorName(status)); | |
1942 | continue; | |
1943 | } | |
1944 | #if !UCONFIG_NO_COLLATION | |
1945 | for (unsigned int numidx = 0; numidx < UPRV_LENGTHOF(numbers); numidx++) { | |
1946 | double n = numbers[numidx]; | |
1947 | UnicodeString str; | |
1948 | f->format(n, str); | |
1949 | ||
1950 | if (verbose) { | |
1951 | logln(UnicodeString(loc->getName()) + names[j] | |
1952 | + "success: " + n + " -> " + str); | |
1953 | } | |
1954 | ||
1955 | // We do not validate the result in this test case, | |
1956 | // because there are cases which do not round trip by design. | |
1957 | Formattable num; | |
1958 | ||
1959 | // regular parse | |
1960 | status = U_ZERO_ERROR; | |
1961 | f->setLenient(FALSE); | |
1962 | f->parse(str, num, status); | |
1963 | if (U_FAILURE(status)) { | |
1964 | errln(UnicodeString(loc->getName()) + names[j] | |
1965 | + "ERROR could not parse '" + str + "' -> " + u_errorName(status)); | |
1966 | } | |
1967 | // We only check the spellout. The behavior is undefined for numbers < 1 and fractional numbers. | |
1968 | if (j == 0) { | |
1969 | if (num.getType() == Formattable::kLong && num.getLong() != n) { | |
1970 | errln(UnicodeString(loc->getName()) + names[j] | |
1971 | + UnicodeString("ERROR could not roundtrip ") + n | |
1972 | + UnicodeString(" -> ") + str + UnicodeString(" -> ") + num.getLong()); | |
1973 | } | |
1974 | else if (num.getType() == Formattable::kDouble && (int64_t)(num.getDouble() * 1000) != (int64_t)(n*1000)) { | |
1975 | // The epsilon difference is too high. | |
1976 | errln(UnicodeString(loc->getName()) + names[j] | |
1977 | + UnicodeString("ERROR could not roundtrip ") + n | |
1978 | + UnicodeString(" -> ") + str + UnicodeString(" -> ") + num.getDouble()); | |
1979 | } | |
1980 | } | |
1981 | if (!quick && !logKnownIssue("9503") ) { | |
1982 | // lenient parse | |
1983 | status = U_ZERO_ERROR; | |
1984 | f->setLenient(TRUE); | |
1985 | f->parse(str, num, status); | |
1986 | if (U_FAILURE(status)) { | |
1987 | errln(UnicodeString(loc->getName()) + names[j] | |
1988 | + "ERROR could not parse(lenient) '" + str + "' -> " + u_errorName(status)); | |
1989 | } | |
1990 | // We only check the spellout. The behavior is undefined for numbers < 1 and fractional numbers. | |
1991 | if (j == 0) { | |
1992 | if (num.getType() == Formattable::kLong && num.getLong() != n) { | |
1993 | errln(UnicodeString(loc->getName()) + names[j] | |
1994 | + UnicodeString("ERROR could not roundtrip ") + n | |
1995 | + UnicodeString(" -> ") + str + UnicodeString(" -> ") + num.getLong()); | |
1996 | } | |
1997 | else if (num.getType() == Formattable::kDouble && (int64_t)(num.getDouble() * 1000) != (int64_t)(n*1000)) { | |
1998 | // The epsilon difference is too high. | |
1999 | errln(UnicodeString(loc->getName()) + names[j] | |
2000 | + UnicodeString("ERROR could not roundtrip ") + n | |
2001 | + UnicodeString(" -> ") + str + UnicodeString(" -> ") + num.getDouble()); | |
2002 | } | |
2003 | } | |
2004 | } | |
2005 | } | |
2006 | #endif | |
2007 | delete f; | |
2008 | } | |
2009 | } | |
2010 | } | |
2011 | ||
2012 | void | |
2013 | IntlTestRBNF::TestMultiplierSubstitution(void) { | |
2014 | UnicodeString rules("=#,##0=;1,000,000: <##0.###< million;"); | |
2015 | UErrorCode status = U_ZERO_ERROR; | |
2016 | UParseError parse_error; | |
2017 | RuleBasedNumberFormat *rbnf = | |
2018 | new RuleBasedNumberFormat(rules, Locale::getUS(), parse_error, status); | |
2019 | if (U_SUCCESS(status)) { | |
2020 | UnicodeString res; | |
2021 | FieldPosition pos; | |
2022 | double n = 1234000.0; | |
2023 | rbnf->format(n, res, pos); | |
2024 | delete rbnf; | |
2025 | ||
2026 | UnicodeString expected(UNICODE_STRING_SIMPLE("1.234 million")); | |
2027 | if (expected != res) { | |
2028 | UnicodeString msg = "Expected: "; | |
2029 | msg.append(expected); | |
2030 | msg.append(" but got "); | |
2031 | msg.append(res); | |
2032 | errln(msg); | |
2033 | } | |
2034 | } | |
2035 | } | |
2036 | ||
2037 | void | |
2038 | IntlTestRBNF::TestSetDecimalFormatSymbols() { | |
2039 | UErrorCode status = U_ZERO_ERROR; | |
2040 | ||
2041 | RuleBasedNumberFormat rbnf(URBNF_ORDINAL, Locale::getEnglish(), status); | |
2042 | if (U_FAILURE(status)) { | |
2043 | dataerrln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_errorName(status))); | |
2044 | return; | |
2045 | } | |
2046 | ||
2047 | DecimalFormatSymbols dfs(Locale::getEnglish(), status); | |
2048 | if (U_FAILURE(status)) { | |
2049 | errln("Unable to create DecimalFormatSymbols - " + UnicodeString(u_errorName(status))); | |
2050 | return; | |
2051 | } | |
2052 | ||
2053 | UnicodeString expected[] = { | |
2054 | UnicodeString("1,001st"), | |
2055 | UnicodeString("1&001st") | |
2056 | }; | |
2057 | ||
2058 | double number = 1001; | |
2059 | ||
2060 | UnicodeString result; | |
2061 | ||
2062 | rbnf.format(number, result); | |
2063 | if (result != expected[0]) { | |
2064 | errln("Format Error - Got: " + result + " Expected: " + expected[0]); | |
2065 | } | |
2066 | ||
2067 | result.remove(); | |
2068 | ||
2069 | /* Set new symbol for testing */ | |
2070 | dfs.setSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol, UnicodeString("&"), TRUE); | |
2071 | rbnf.setDecimalFormatSymbols(dfs); | |
2072 | ||
2073 | rbnf.format(number, result); | |
2074 | if (result != expected[1]) { | |
2075 | errln("Format Error - Got: " + result + " Expected: " + expected[1]); | |
2076 | } | |
2077 | } | |
2078 | ||
2079 | void IntlTestRBNF::TestPluralRules() { | |
2080 | UErrorCode status = U_ZERO_ERROR; | |
2081 | UnicodeString enRules("%digits-ordinal:-x: ->>;0: =#,##0=$(ordinal,one{st}two{nd}few{rd}other{th})$;"); | |
2082 | UParseError parseError; | |
2083 | RuleBasedNumberFormat enFormatter(enRules, Locale::getEnglish(), parseError, status); | |
2084 | if (U_FAILURE(status)) { | |
2085 | dataerrln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_errorName(status))); | |
2086 | return; | |
2087 | } | |
2088 | const char* const enTestData[][2] = { | |
2089 | { "1", "1st" }, | |
2090 | { "2", "2nd" }, | |
2091 | { "3", "3rd" }, | |
2092 | { "4", "4th" }, | |
2093 | { "11", "11th" }, | |
2094 | { "12", "12th" }, | |
2095 | { "13", "13th" }, | |
2096 | { "14", "14th" }, | |
2097 | { "21", "21st" }, | |
2098 | { "22", "22nd" }, | |
2099 | { "23", "23rd" }, | |
2100 | { "24", "24th" }, | |
2101 | { NULL, NULL } | |
2102 | }; | |
2103 | ||
2104 | doTest(&enFormatter, enTestData, TRUE); | |
2105 | ||
2106 | // This is trying to model the feminine form, but don't worry about the details too much. | |
2107 | // We're trying to test the plural rules. | |
2108 | UnicodeString ruRules("%spellout-numbering:" | |
2109 | "-x: minus >>;" | |
2110 | "x.x: << point >>;" | |
2111 | "0: zero;" | |
2112 | "1: one;" | |
2113 | "2: two;" | |
2114 | "3: three;" | |
2115 | "4: four;" | |
2116 | "5: five;" | |
2117 | "6: six;" | |
2118 | "7: seven;" | |
2119 | "8: eight;" | |
2120 | "9: nine;" | |
2121 | "10: ten;" | |
2122 | "11: eleven;" | |
2123 | "12: twelve;" | |
2124 | "13: thirteen;" | |
2125 | "14: fourteen;" | |
2126 | "15: fifteen;" | |
2127 | "16: sixteen;" | |
2128 | "17: seventeen;" | |
2129 | "18: eighteen;" | |
2130 | "19: nineteen;" | |
2131 | "20: twenty[->>];" | |
2132 | "30: thirty[->>];" | |
2133 | "40: forty[->>];" | |
2134 | "50: fifty[->>];" | |
2135 | "60: sixty[->>];" | |
2136 | "70: seventy[->>];" | |
2137 | "80: eighty[->>];" | |
2138 | "90: ninety[->>];" | |
2139 | "100: hundred[ >>];" | |
2140 | "200: << hundred[ >>];" | |
2141 | "300: << hundreds[ >>];" | |
2142 | "500: << hundredss[ >>];" | |
2143 | "1000: << $(cardinal,one{thousand}few{thousands}other{thousandss})$[ >>];" | |
2144 | "1000000: << $(cardinal,one{million}few{millions}other{millionss})$[ >>];"); | |
2145 | RuleBasedNumberFormat ruFormatter(ruRules, Locale("ru"), parseError, status); | |
2146 | const char* const ruTestData[][2] = { | |
2147 | { "1", "one" }, | |
2148 | { "100", "hundred" }, | |
2149 | { "125", "hundred twenty-five" }, | |
2150 | { "399", "three hundreds ninety-nine" }, | |
2151 | { "1,000", "one thousand" }, | |
2152 | { "1,001", "one thousand one" }, | |
2153 | { "2,000", "two thousands" }, | |
2154 | { "2,001", "two thousands one" }, | |
2155 | { "2,002", "two thousands two" }, | |
2156 | { "3,333", "three thousands three hundreds thirty-three" }, | |
2157 | { "5,000", "five thousandss" }, | |
2158 | { "11,000", "eleven thousandss" }, | |
2159 | { "21,000", "twenty-one thousand" }, | |
2160 | { "22,000", "twenty-two thousands" }, | |
2161 | { "25,001", "twenty-five thousandss one" }, | |
2162 | { NULL, NULL } | |
2163 | }; | |
2164 | ||
2165 | if (U_FAILURE(status)) { | |
2166 | errln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_errorName(status))); | |
2167 | return; | |
2168 | } | |
2169 | doTest(&ruFormatter, ruTestData, TRUE); | |
2170 | ||
2171 | // Make sure there are no divide by 0 errors. | |
2172 | UnicodeString result; | |
2173 | RuleBasedNumberFormat(ruRules, Locale("ru"), parseError, status).format((int32_t)21000, result); | |
2174 | if (result.compare(UNICODE_STRING_SIMPLE("twenty-one thousand")) != 0) { | |
2175 | errln("Got " + result + " for 21000"); | |
2176 | } | |
2177 | ||
2178 | } | |
2179 | ||
2180 | void IntlTestRBNF::TestInfinityNaN() { | |
2181 | UErrorCode status = U_ZERO_ERROR; | |
2182 | UParseError parseError; | |
2183 | UnicodeString enRules("%default:" | |
2184 | "-x: minus >>;" | |
2185 | "Inf: infinite;" | |
2186 | "NaN: not a number;" | |
2187 | "0: =#,##0=;"); | |
2188 | RuleBasedNumberFormat enFormatter(enRules, Locale::getEnglish(), parseError, status); | |
2189 | const char * const enTestData[][2] = { | |
2190 | {"1", "1"}, | |
2191 | {"\\u221E", "infinite"}, | |
2192 | {"-\\u221E", "minus infinite"}, | |
2193 | {"NaN", "not a number"}, | |
2194 | { NULL, NULL } | |
2195 | }; | |
2196 | if (U_FAILURE(status)) { | |
2197 | dataerrln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_errorName(status))); | |
2198 | return; | |
2199 | } | |
2200 | ||
2201 | doTest(&enFormatter, enTestData, true); | |
2202 | ||
2203 | // Test the default behavior when the rules are undefined. | |
2204 | UnicodeString enRules2("%default:" | |
2205 | "-x: ->>;" | |
2206 | "0: =#,##0=;"); | |
2207 | RuleBasedNumberFormat enFormatter2(enRules2, Locale::getEnglish(), parseError, status); | |
2208 | if (U_FAILURE(status)) { | |
2209 | errln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_errorName(status))); | |
2210 | return; | |
2211 | } | |
2212 | const char * const enDefaultTestData[][2] = { | |
2213 | {"1", "1"}, | |
2214 | {"\\u221E", "\\u221E"}, | |
2215 | {"-\\u221E", "-\\u221E"}, | |
2216 | {"NaN", "NaN"}, | |
2217 | { NULL, NULL } | |
2218 | }; | |
2219 | ||
2220 | doTest(&enFormatter2, enDefaultTestData, true); | |
2221 | } | |
2222 | ||
2223 | void IntlTestRBNF::TestVariableDecimalPoint() { | |
2224 | UErrorCode status = U_ZERO_ERROR; | |
2225 | UParseError parseError; | |
2226 | UnicodeString enRules("%spellout-numbering:" | |
2227 | "-x: minus >>;" | |
2228 | "x.x: << point >>;" | |
2229 | "x,x: << comma >>;" | |
2230 | "0.x: xpoint >>;" | |
2231 | "0,x: xcomma >>;" | |
2232 | "0: zero;" | |
2233 | "1: one;" | |
2234 | "2: two;" | |
2235 | "3: three;" | |
2236 | "4: four;" | |
2237 | "5: five;" | |
2238 | "6: six;" | |
2239 | "7: seven;" | |
2240 | "8: eight;" | |
2241 | "9: nine;"); | |
2242 | RuleBasedNumberFormat enFormatter(enRules, Locale::getEnglish(), parseError, status); | |
2243 | const char * const enTestPointData[][2] = { | |
2244 | {"1.1", "one point one"}, | |
2245 | {"1.23", "one point two three"}, | |
2246 | {"0.4", "xpoint four"}, | |
2247 | { NULL, NULL } | |
2248 | }; | |
2249 | if (U_FAILURE(status)) { | |
2250 | dataerrln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_errorName(status))); | |
2251 | return; | |
2252 | } | |
2253 | doTest(&enFormatter, enTestPointData, true); | |
2254 | ||
2255 | DecimalFormatSymbols decimalFormatSymbols(Locale::getEnglish(), status); | |
2256 | decimalFormatSymbols.setSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol, UNICODE_STRING_SIMPLE(",")); | |
2257 | enFormatter.setDecimalFormatSymbols(decimalFormatSymbols); | |
2258 | const char * const enTestCommaData[][2] = { | |
2259 | {"1.1", "one comma one"}, | |
2260 | {"1.23", "one comma two three"}, | |
2261 | {"0.4", "xcomma four"}, | |
2262 | { NULL, NULL } | |
2263 | }; | |
2264 | doTest(&enFormatter, enTestCommaData, true); | |
2265 | } | |
2266 | ||
2267 | void IntlTestRBNF::TestLargeNumbers() { | |
2268 | UErrorCode status = U_ZERO_ERROR; | |
2269 | RuleBasedNumberFormat rbnf(URBNF_SPELLOUT, Locale::getEnglish(), status); | |
2270 | ||
2271 | const char * const enTestFullData[][2] = { | |
2272 | {"-9007199254740991", "minus nine quadrillion seven trillion one hundred ninety-nine billion two hundred fifty-four million seven hundred forty thousand nine hundred ninety-one"}, // Maximum precision in both a double and a long | |
2273 | {"9007199254740991", "nine quadrillion seven trillion one hundred ninety-nine billion two hundred fifty-four million seven hundred forty thousand nine hundred ninety-one"}, // Maximum precision in both a double and a long | |
2274 | {"-9007199254740992", "minus nine quadrillion seven trillion one hundred ninety-nine billion two hundred fifty-four million seven hundred forty thousand nine hundred ninety-two"}, // Only precisely contained in a long | |
2275 | {"9007199254740992", "nine quadrillion seven trillion one hundred ninety-nine billion two hundred fifty-four million seven hundred forty thousand nine hundred ninety-two"}, // Only precisely contained in a long | |
2276 | {"9999999999999998", "nine quadrillion nine hundred ninety-nine trillion nine hundred ninety-nine billion nine hundred ninety-nine million nine hundred ninety-nine thousand nine hundred ninety-eight"}, | |
2277 | {"9999999999999999", "nine quadrillion nine hundred ninety-nine trillion nine hundred ninety-nine billion nine hundred ninety-nine million nine hundred ninety-nine thousand nine hundred ninety-nine"}, | |
2278 | {"999999999999999999", "nine hundred ninety-nine quadrillion nine hundred ninety-nine trillion nine hundred ninety-nine billion nine hundred ninety-nine million nine hundred ninety-nine thousand nine hundred ninety-nine"}, | |
2279 | {"1000000000000000000", "1,000,000,000,000,000,000"}, // The rules don't go to 1 quintillion yet | |
2280 | {"-9223372036854775809", "-9,223,372,036,854,775,809"}, // We've gone beyond 64-bit precision | |
2281 | {"-9223372036854775808", "-9,223,372,036,854,775,808"}, // We've gone beyond +64-bit precision | |
2282 | {"-9223372036854775807", "minus 9,223,372,036,854,775,807"}, // Minimum 64-bit precision | |
2283 | {"-9223372036854775806", "minus 9,223,372,036,854,775,806"}, // Minimum 64-bit precision + 1 | |
2284 | {"9223372036854774111", "9,223,372,036,854,774,111"}, // Below 64-bit precision | |
2285 | {"9223372036854774999", "9,223,372,036,854,774,999"}, // Below 64-bit precision | |
2286 | {"9223372036854775000", "9,223,372,036,854,775,000"}, // Below 64-bit precision | |
2287 | {"9223372036854775806", "9,223,372,036,854,775,806"}, // Maximum 64-bit precision - 1 | |
2288 | {"9223372036854775807", "9,223,372,036,854,775,807"}, // Maximum 64-bit precision | |
2289 | {"9223372036854775808", "9,223,372,036,854,775,808"}, // We've gone beyond 64-bit precision. This can only be represented with BigDecimal. | |
2290 | { NULL, NULL } | |
2291 | }; | |
2292 | doTest(&rbnf, enTestFullData, false); | |
2293 | } | |
2294 | ||
2295 | void IntlTestRBNF::TestCompactDecimalFormatStyle() { | |
2296 | UErrorCode status = U_ZERO_ERROR; | |
2297 | UParseError parseError; | |
2298 | // This is not a common use case, but we're testing it anyway. | |
2299 | UnicodeString numberPattern("=###0.#####=;" | |
2300 | "1000: <###0.00< K;" | |
2301 | "1000000: <###0.00< M;" | |
2302 | "1000000000: <###0.00< B;" | |
2303 | "1000000000000: <###0.00< T;" | |
2304 | "1000000000000000: <###0.00< Q;"); | |
2305 | RuleBasedNumberFormat rbnf(numberPattern, UnicodeString(), Locale::getEnglish(), parseError, status); | |
2306 | ||
2307 | const char * const enTestFullData[][2] = { | |
2308 | {"1000", "1.00 K"}, | |
2309 | {"1234", "1.23 K"}, | |
2310 | {"999994", "999.99 K"}, | |
2311 | {"999995", "1000.00 K"}, | |
2312 | {"1000000", "1.00 M"}, | |
2313 | {"1200000", "1.20 M"}, | |
2314 | {"1200000000", "1.20 B"}, | |
2315 | {"1200000000000", "1.20 T"}, | |
2316 | {"1200000000000000", "1.20 Q"}, | |
2317 | {"4503599627370495", "4.50 Q"}, | |
2318 | {"4503599627370496", "4.50 Q"}, | |
2319 | {"8990000000000000", "8.99 Q"}, | |
2320 | {"9008000000000000", "9.00 Q"}, // Number doesn't precisely fit into a double | |
2321 | {"9456000000000000", "9.00 Q"}, // Number doesn't precisely fit into a double | |
2322 | {"10000000000000000", "10.00 Q"}, // Number doesn't precisely fit into a double | |
2323 | {"9223372036854775807", "9223.00 Q"}, // Maximum 64-bit precision | |
2324 | {"9223372036854775808", "9,223,372,036,854,775,808"}, // We've gone beyond 64-bit precision. This can only be represented with BigDecimal. | |
2325 | { NULL, NULL } | |
2326 | }; | |
2327 | doTest(&rbnf, enTestFullData, false); | |
2328 | } | |
2329 | ||
2330 | void IntlTestRBNF::TestParseFailure() { | |
2331 | UErrorCode status = U_ZERO_ERROR; | |
2332 | RuleBasedNumberFormat rbnf(URBNF_SPELLOUT, Locale::getJapanese(), status); | |
2333 | static const UChar* testData[] = { | |
2334 | u"・・・・・・・・・・・・・・・・・・・・・・・・" | |
2335 | }; | |
2336 | if (assertSuccess("", status, true, __FILE__, __LINE__)) { | |
2337 | for (int i = 0; i < UPRV_LENGTHOF(testData); ++i) { | |
2338 | UnicodeString spelledNumberString(testData[i]); | |
2339 | Formattable actualNumber; | |
2340 | rbnf.parse(spelledNumberString, actualNumber, status); | |
2341 | if (status != U_INVALID_FORMAT_ERROR) { // I would have expected U_PARSE_ERROR, but NumberFormat::parse gives U_INVALID_FORMAT_ERROR | |
2342 | errln("FAIL: string should be unparseable index=%d %s", i, u_errorName(status)); | |
2343 | } | |
2344 | } | |
2345 | } | |
2346 | } | |
2347 | ||
2348 | void IntlTestRBNF::TestMinMaxIntegerDigitsIgnored() { | |
2349 | IcuTestErrorCode status(*this, "TestMinMaxIntegerDigitsIgnored"); | |
2350 | ||
2351 | // NOTE: SimpleDateFormat has an optimization that depends on the fact that min/max integer digits | |
2352 | // do not affect RBNF (see SimpleDateFormat#zeroPaddingNumber). | |
2353 | RuleBasedNumberFormat rbnf(URBNF_SPELLOUT, "en", status); | |
2354 | if (status.isSuccess()) { | |
2355 | rbnf.setMinimumIntegerDigits(2); | |
2356 | rbnf.setMaximumIntegerDigits(3); | |
2357 | UnicodeString result; | |
2358 | rbnf.format(3, result.remove(), status); | |
2359 | assertEquals("Min integer digits are ignored", u"three", result); | |
2360 | rbnf.format(1012, result.remove(), status); | |
2361 | assertEquals("Max integer digits are ignored", u"one thousand twelve", result); | |
2362 | } | |
2363 | } | |
2364 | ||
2365 | void | |
2366 | IntlTestRBNF::doTest(RuleBasedNumberFormat* formatter, const char* const testData[][2], UBool testParsing) | |
2367 | { | |
2368 | // man, error reporting would be easier with printf-style syntax for unicode string and formattable | |
2369 | ||
2370 | UErrorCode status = U_ZERO_ERROR; | |
2371 | DecimalFormatSymbols dfs("en", status); | |
2372 | // NumberFormat* decFmt = NumberFormat::createInstance(Locale::getUS(), status); | |
2373 | DecimalFormat decFmt("#,###.################", dfs, status); | |
2374 | if (U_FAILURE(status)) { | |
2375 | errcheckln(status, "FAIL: could not create NumberFormat - %s", u_errorName(status)); | |
2376 | } else { | |
2377 | for (int i = 0; testData[i][0]; ++i) { | |
2378 | const char* numString = testData[i][0]; | |
2379 | const char* expectedWords = testData[i][1]; | |
2380 | ||
2381 | log("[%i] %s = ", i, numString); | |
2382 | Formattable expectedNumber; | |
2383 | UnicodeString escapedNumString = UnicodeString(numString, -1, US_INV).unescape(); | |
2384 | decFmt.parse(escapedNumString, expectedNumber, status); | |
2385 | if (U_FAILURE(status)) { | |
2386 | errln("FAIL: decFmt could not parse %s", numString); | |
2387 | break; | |
2388 | } else { | |
2389 | UnicodeString actualString; | |
2390 | FieldPosition pos; | |
2391 | formatter->format(expectedNumber, actualString/* , pos*/, status); | |
2392 | if (U_FAILURE(status)) { | |
2393 | UnicodeString msg = "Fail: formatter could not format "; | |
2394 | decFmt.format(expectedNumber, msg, status); | |
2395 | errln(msg); | |
2396 | break; | |
2397 | } else { | |
2398 | UnicodeString expectedString = UnicodeString(expectedWords, -1, US_INV).unescape(); | |
2399 | if (actualString != expectedString) { | |
2400 | UnicodeString msg = "FAIL: check failed for "; | |
2401 | decFmt.format(expectedNumber, msg, status); | |
2402 | msg.append(", expected "); | |
2403 | msg.append(expectedString); | |
2404 | msg.append(" but got "); | |
2405 | msg.append(actualString); | |
2406 | errln(msg); | |
2407 | break; | |
2408 | } else { | |
2409 | logln(actualString); | |
2410 | if (testParsing) { | |
2411 | Formattable parsedNumber; | |
2412 | formatter->parse(actualString, parsedNumber, status); | |
2413 | if (U_FAILURE(status)) { | |
2414 | UnicodeString msg = "FAIL: formatter could not parse "; | |
2415 | msg.append(actualString); | |
2416 | msg.append(" status code: " ); | |
2417 | msg.append(u_errorName(status)); | |
2418 | errln(msg); | |
2419 | break; | |
2420 | } else { | |
2421 | if (parsedNumber != expectedNumber | |
2422 | && (!uprv_isNaN(parsedNumber.getDouble()) || !uprv_isNaN(expectedNumber.getDouble()))) | |
2423 | { | |
2424 | UnicodeString msg = "FAIL: parse failed for "; | |
2425 | msg.append(actualString); | |
2426 | msg.append(", expected "); | |
2427 | decFmt.format(expectedNumber, msg, status); | |
2428 | msg.append(", but got "); | |
2429 | decFmt.format(parsedNumber, msg, status); | |
2430 | errln(msg); | |
2431 | break; | |
2432 | } | |
2433 | } | |
2434 | } | |
2435 | } | |
2436 | } | |
2437 | } | |
2438 | } | |
2439 | } | |
2440 | } | |
2441 | ||
2442 | void | |
2443 | IntlTestRBNF::doLenientParseTest(RuleBasedNumberFormat* formatter, const char* testData[][2]) | |
2444 | { | |
2445 | UErrorCode status = U_ZERO_ERROR; | |
2446 | NumberFormat* decFmt = NumberFormat::createInstance(Locale::getUS(), status); | |
2447 | if (U_FAILURE(status)) { | |
2448 | errcheckln(status, "FAIL: could not create NumberFormat - %s", u_errorName(status)); | |
2449 | } else { | |
2450 | for (int i = 0; testData[i][0]; ++i) { | |
2451 | const char* spelledNumber = testData[i][0]; // spelled-out number | |
2452 | const char* asciiUSNumber = testData[i][1]; // number as ascii digits formatted for US locale | |
2453 | ||
2454 | UnicodeString spelledNumberString = UnicodeString(spelledNumber).unescape(); | |
2455 | Formattable actualNumber; | |
2456 | formatter->parse(spelledNumberString, actualNumber, status); | |
2457 | if (U_FAILURE(status)) { | |
2458 | UnicodeString msg = "FAIL: formatter could not parse "; | |
2459 | msg.append(spelledNumberString); | |
2460 | errln(msg); | |
2461 | break; | |
2462 | } else { | |
2463 | // I changed the logic of this test somewhat from Java-- instead of comparing the | |
2464 | // strings, I compare the Formattables. Hmmm, but the Formattables don't compare, | |
2465 | // so change it back. | |
2466 | ||
2467 | UnicodeString asciiUSNumberString = asciiUSNumber; | |
2468 | Formattable expectedNumber; | |
2469 | decFmt->parse(asciiUSNumberString, expectedNumber, status); | |
2470 | if (U_FAILURE(status)) { | |
2471 | UnicodeString msg = "FAIL: decFmt could not parse "; | |
2472 | msg.append(asciiUSNumberString); | |
2473 | errln(msg); | |
2474 | break; | |
2475 | } else { | |
2476 | UnicodeString actualNumberString; | |
2477 | UnicodeString expectedNumberString; | |
2478 | decFmt->format(actualNumber, actualNumberString, status); | |
2479 | decFmt->format(expectedNumber, expectedNumberString, status); | |
2480 | if (actualNumberString != expectedNumberString) { | |
2481 | UnicodeString msg = "FAIL: parsing"; | |
2482 | msg.append(asciiUSNumberString); | |
2483 | msg.append("\n"); | |
2484 | msg.append(" lenient parse failed for "); | |
2485 | msg.append(spelledNumberString); | |
2486 | msg.append(", expected "); | |
2487 | msg.append(expectedNumberString); | |
2488 | msg.append(", but got "); | |
2489 | msg.append(actualNumberString); | |
2490 | errln(msg); | |
2491 | break; | |
2492 | } | |
2493 | } | |
2494 | } | |
2495 | } | |
2496 | delete decFmt; | |
2497 | } | |
2498 | } | |
2499 | ||
2500 | /* U_HAVE_RBNF */ | |
2501 | #else | |
2502 | ||
2503 | void | |
2504 | IntlTestRBNF::TestRBNFDisabled() { | |
2505 | errln("*** RBNF currently disabled on this platform ***\n"); | |
2506 | } | |
2507 | ||
2508 | /* U_HAVE_RBNF */ | |
2509 | #endif | |
2510 | ||
2511 | #endif /* #if !UCONFIG_NO_FORMATTING */ |