]> git.saurik.com Git - apple/icu.git/blame_incremental - icuSources/i18n/fmtable.cpp
ICU-66108.tar.gz
[apple/icu.git] / icuSources / i18n / fmtable.cpp
... / ...
CommitLineData
1// © 2016 and later: Unicode, Inc. and others.
2// License & terms of use: http://www.unicode.org/copyright.html
3/*
4*******************************************************************************
5* Copyright (C) 1997-2016, International Business Machines Corporation and
6* others. All Rights Reserved.
7*******************************************************************************
8*
9* File FMTABLE.CPP
10*
11* Modification History:
12*
13* Date Name Description
14* 03/25/97 clhuang Initial Implementation.
15********************************************************************************
16*/
17
18#include "unicode/utypes.h"
19
20#if !UCONFIG_NO_FORMATTING
21
22#include <cstdlib>
23#include <math.h>
24#include "unicode/fmtable.h"
25#include "unicode/ustring.h"
26#include "unicode/measure.h"
27#include "unicode/curramt.h"
28#include "unicode/uformattable.h"
29#include "charstr.h"
30#include "cmemory.h"
31#include "cstring.h"
32#include "fmtableimp.h"
33#include "number_decimalquantity.h"
34
35// *****************************************************************************
36// class Formattable
37// *****************************************************************************
38
39U_NAMESPACE_BEGIN
40
41UOBJECT_DEFINE_RTTI_IMPLEMENTATION(Formattable)
42
43using number::impl::DecimalQuantity;
44
45
46//-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.
47
48// NOTE: As of 3.0, there are limitations to the UObject API. It does
49// not (yet) support cloning, operator=, nor operator==. To
50// work around this, I implement some simple inlines here. Later
51// these can be modified or removed. [alan]
52
53// NOTE: These inlines assume that all fObjects are in fact instances
54// of the Measure class, which is true as of 3.0. [alan]
55
56// Return TRUE if *a == *b.
57static inline UBool objectEquals(const UObject* a, const UObject* b) {
58 // LATER: return *a == *b;
59 return *((const Measure*) a) == *((const Measure*) b);
60}
61
62// Return a clone of *a.
63static inline UObject* objectClone(const UObject* a) {
64 // LATER: return a->clone();
65 return ((const Measure*) a)->clone();
66}
67
68// Return TRUE if *a is an instance of Measure.
69static inline UBool instanceOfMeasure(const UObject* a) {
70 return dynamic_cast<const Measure*>(a) != NULL;
71}
72
73/**
74 * Creates a new Formattable array and copies the values from the specified
75 * original.
76 * @param array the original array
77 * @param count the original array count
78 * @return the new Formattable array.
79 */
80static Formattable* createArrayCopy(const Formattable* array, int32_t count) {
81 Formattable *result = new Formattable[count];
82 if (result != NULL) {
83 for (int32_t i=0; i<count; ++i)
84 result[i] = array[i]; // Don't memcpy!
85 }
86 return result;
87}
88
89//-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.
90
91/**
92 * Set 'ec' to 'err' only if 'ec' is not already set to a failing UErrorCode.
93 */
94static void setError(UErrorCode& ec, UErrorCode err) {
95 if (U_SUCCESS(ec)) {
96 ec = err;
97 }
98}
99
100//
101// Common initialization code, shared by constructors.
102// Put everything into a known state.
103//
104void Formattable::init() {
105 fValue.fInt64 = 0;
106 fType = kLong;
107 fDecimalStr = NULL;
108 fDecimalQuantity = NULL;
109 fBogus.setToBogus();
110}
111
112// -------------------------------------
113// default constructor.
114// Creates a formattable object with a long value 0.
115
116Formattable::Formattable() {
117 init();
118}
119
120// -------------------------------------
121// Creates a formattable object with a Date instance.
122
123Formattable::Formattable(UDate date, ISDATE /*isDate*/)
124{
125 init();
126 fType = kDate;
127 fValue.fDate = date;
128}
129
130// -------------------------------------
131// Creates a formattable object with a double value.
132
133Formattable::Formattable(double value)
134{
135 init();
136 fType = kDouble;
137 fValue.fDouble = value;
138}
139
140// -------------------------------------
141// Creates a formattable object with an int32_t value.
142
143Formattable::Formattable(int32_t value)
144{
145 init();
146 fValue.fInt64 = value;
147}
148
149// -------------------------------------
150// Creates a formattable object with an int64_t value.
151
152Formattable::Formattable(int64_t value)
153{
154 init();
155 fType = kInt64;
156 fValue.fInt64 = value;
157}
158
159// -------------------------------------
160// Creates a formattable object with a decimal number value from a string.
161
162Formattable::Formattable(StringPiece number, UErrorCode &status) {
163 init();
164 setDecimalNumber(number, status);
165}
166
167
168// -------------------------------------
169// Creates a formattable object with a UnicodeString instance.
170
171Formattable::Formattable(const UnicodeString& stringToCopy)
172{
173 init();
174 fType = kString;
175 fValue.fString = new UnicodeString(stringToCopy);
176}
177
178// -------------------------------------
179// Creates a formattable object with a UnicodeString* value.
180// (adopting symantics)
181
182Formattable::Formattable(UnicodeString* stringToAdopt)
183{
184 init();
185 fType = kString;
186 fValue.fString = stringToAdopt;
187}
188
189Formattable::Formattable(UObject* objectToAdopt)
190{
191 init();
192 fType = kObject;
193 fValue.fObject = objectToAdopt;
194}
195
196// -------------------------------------
197
198Formattable::Formattable(const Formattable* arrayToCopy, int32_t count)
199 : UObject(), fType(kArray)
200{
201 init();
202 fType = kArray;
203 fValue.fArrayAndCount.fArray = createArrayCopy(arrayToCopy, count);
204 fValue.fArrayAndCount.fCount = count;
205}
206
207// -------------------------------------
208// copy constructor
209
210
211Formattable::Formattable(const Formattable &source)
212 : UObject(*this)
213{
214 init();
215 *this = source;
216}
217
218// -------------------------------------
219// assignment operator
220
221Formattable&
222Formattable::operator=(const Formattable& source)
223{
224 if (this != &source)
225 {
226 // Disposes the current formattable value/setting.
227 dispose();
228
229 // Sets the correct data type for this value.
230 fType = source.fType;
231 switch (fType)
232 {
233 case kArray:
234 // Sets each element in the array one by one and records the array count.
235 fValue.fArrayAndCount.fCount = source.fValue.fArrayAndCount.fCount;
236 fValue.fArrayAndCount.fArray = createArrayCopy(source.fValue.fArrayAndCount.fArray,
237 source.fValue.fArrayAndCount.fCount);
238 break;
239 case kString:
240 // Sets the string value.
241 fValue.fString = new UnicodeString(*source.fValue.fString);
242 break;
243 case kDouble:
244 // Sets the double value.
245 fValue.fDouble = source.fValue.fDouble;
246 break;
247 case kLong:
248 case kInt64:
249 // Sets the long value.
250 fValue.fInt64 = source.fValue.fInt64;
251 break;
252 case kDate:
253 // Sets the Date value.
254 fValue.fDate = source.fValue.fDate;
255 break;
256 case kObject:
257 fValue.fObject = objectClone(source.fValue.fObject);
258 break;
259 }
260
261 UErrorCode status = U_ZERO_ERROR;
262 if (source.fDecimalQuantity != NULL) {
263 fDecimalQuantity = new DecimalQuantity(*source.fDecimalQuantity);
264 }
265 if (source.fDecimalStr != NULL) {
266 fDecimalStr = new CharString(*source.fDecimalStr, status);
267 if (U_FAILURE(status)) {
268 delete fDecimalStr;
269 fDecimalStr = NULL;
270 }
271 }
272 }
273 return *this;
274}
275
276// -------------------------------------
277
278UBool
279Formattable::operator==(const Formattable& that) const
280{
281 int32_t i;
282
283 if (this == &that) return TRUE;
284
285 // Returns FALSE if the data types are different.
286 if (fType != that.fType) return FALSE;
287
288 // Compares the actual data values.
289 UBool equal = TRUE;
290 switch (fType) {
291 case kDate:
292 equal = (fValue.fDate == that.fValue.fDate);
293 break;
294 case kDouble:
295 equal = (fValue.fDouble == that.fValue.fDouble);
296 break;
297 case kLong:
298 case kInt64:
299 equal = (fValue.fInt64 == that.fValue.fInt64);
300 break;
301 case kString:
302 equal = (*(fValue.fString) == *(that.fValue.fString));
303 break;
304 case kArray:
305 if (fValue.fArrayAndCount.fCount != that.fValue.fArrayAndCount.fCount) {
306 equal = FALSE;
307 break;
308 }
309 // Checks each element for equality.
310 for (i=0; i<fValue.fArrayAndCount.fCount; ++i) {
311 if (fValue.fArrayAndCount.fArray[i] != that.fValue.fArrayAndCount.fArray[i]) {
312 equal = FALSE;
313 break;
314 }
315 }
316 break;
317 case kObject:
318 if (fValue.fObject == NULL || that.fValue.fObject == NULL) {
319 equal = FALSE;
320 } else {
321 equal = objectEquals(fValue.fObject, that.fValue.fObject);
322 }
323 break;
324 }
325
326 // TODO: compare digit lists if numeric.
327 return equal;
328}
329
330// -------------------------------------
331
332Formattable::~Formattable()
333{
334 dispose();
335}
336
337// -------------------------------------
338
339void Formattable::dispose()
340{
341 // Deletes the data value if necessary.
342 switch (fType) {
343 case kString:
344 delete fValue.fString;
345 break;
346 case kArray:
347 delete[] fValue.fArrayAndCount.fArray;
348 break;
349 case kObject:
350 delete fValue.fObject;
351 break;
352 default:
353 break;
354 }
355
356 fType = kLong;
357 fValue.fInt64 = 0;
358
359 delete fDecimalStr;
360 fDecimalStr = NULL;
361
362 delete fDecimalQuantity;
363 fDecimalQuantity = NULL;
364}
365
366Formattable *
367Formattable::clone() const {
368 return new Formattable(*this);
369}
370
371// -------------------------------------
372// Gets the data type of this Formattable object.
373Formattable::Type
374Formattable::getType() const
375{
376 return fType;
377}
378
379UBool
380Formattable::isNumeric() const {
381 switch (fType) {
382 case kDouble:
383 case kLong:
384 case kInt64:
385 return TRUE;
386 default:
387 return FALSE;
388 }
389}
390
391// -------------------------------------
392int32_t
393//Formattable::getLong(UErrorCode* status) const
394Formattable::getLong(UErrorCode& status) const
395{
396 if (U_FAILURE(status)) {
397 return 0;
398 }
399
400 switch (fType) {
401 case Formattable::kLong:
402 return (int32_t)fValue.fInt64;
403 case Formattable::kInt64:
404 if (fValue.fInt64 > INT32_MAX) {
405 status = U_INVALID_FORMAT_ERROR;
406 return INT32_MAX;
407 } else if (fValue.fInt64 < INT32_MIN) {
408 status = U_INVALID_FORMAT_ERROR;
409 return INT32_MIN;
410 } else {
411 return (int32_t)fValue.fInt64;
412 }
413 case Formattable::kDouble:
414 if (fValue.fDouble > INT32_MAX) {
415 status = U_INVALID_FORMAT_ERROR;
416 return INT32_MAX;
417 } else if (fValue.fDouble < INT32_MIN) {
418 status = U_INVALID_FORMAT_ERROR;
419 return INT32_MIN;
420 } else {
421 return (int32_t)fValue.fDouble; // loses fraction
422 }
423 case Formattable::kObject:
424 if (fValue.fObject == NULL) {
425 status = U_MEMORY_ALLOCATION_ERROR;
426 return 0;
427 }
428 // TODO Later replace this with instanceof call
429 if (instanceOfMeasure(fValue.fObject)) {
430 return ((const Measure*) fValue.fObject)->
431 getNumber().getLong(status);
432 }
433 U_FALLTHROUGH;
434 default:
435 status = U_INVALID_FORMAT_ERROR;
436 return 0;
437 }
438}
439
440// -------------------------------------
441// Maximum int that can be represented exactly in a double. (53 bits)
442// Larger ints may be rounded to a near-by value as not all are representable.
443// TODO: move this constant elsewhere, possibly configure it for different
444// floating point formats, if any non-standard ones are still in use.
445static const int64_t U_DOUBLE_MAX_EXACT_INT = 9007199254740992LL;
446
447int64_t
448Formattable::getInt64(UErrorCode& status) const
449{
450 if (U_FAILURE(status)) {
451 return 0;
452 }
453
454 switch (fType) {
455 case Formattable::kLong:
456 case Formattable::kInt64:
457 return fValue.fInt64;
458 case Formattable::kDouble:
459 if (fValue.fDouble > (double)U_INT64_MAX) {
460 status = U_INVALID_FORMAT_ERROR;
461 return U_INT64_MAX;
462 } else if (fValue.fDouble < (double)U_INT64_MIN) {
463 status = U_INVALID_FORMAT_ERROR;
464 return U_INT64_MIN;
465 } else if (fabs(fValue.fDouble) > U_DOUBLE_MAX_EXACT_INT && fDecimalQuantity != NULL) {
466 if (fDecimalQuantity->fitsInLong(true)) {
467 return fDecimalQuantity->toLong();
468 } else {
469 // Unexpected
470 status = U_INVALID_FORMAT_ERROR;
471 return fDecimalQuantity->isNegative() ? U_INT64_MIN : U_INT64_MAX;
472 }
473 } else {
474 return (int64_t)fValue.fDouble;
475 }
476 case Formattable::kObject:
477 if (fValue.fObject == NULL) {
478 status = U_MEMORY_ALLOCATION_ERROR;
479 return 0;
480 }
481 if (instanceOfMeasure(fValue.fObject)) {
482 return ((const Measure*) fValue.fObject)->
483 getNumber().getInt64(status);
484 }
485 U_FALLTHROUGH;
486 default:
487 status = U_INVALID_FORMAT_ERROR;
488 return 0;
489 }
490}
491
492// -------------------------------------
493double
494Formattable::getDouble(UErrorCode& status) const
495{
496 if (U_FAILURE(status)) {
497 return 0;
498 }
499
500 switch (fType) {
501 case Formattable::kLong:
502 case Formattable::kInt64: // loses precision
503 return (double)fValue.fInt64;
504 case Formattable::kDouble:
505 return fValue.fDouble;
506 case Formattable::kObject:
507 if (fValue.fObject == NULL) {
508 status = U_MEMORY_ALLOCATION_ERROR;
509 return 0;
510 }
511 // TODO Later replace this with instanceof call
512 if (instanceOfMeasure(fValue.fObject)) {
513 return ((const Measure*) fValue.fObject)->
514 getNumber().getDouble(status);
515 }
516 U_FALLTHROUGH;
517 default:
518 status = U_INVALID_FORMAT_ERROR;
519 return 0;
520 }
521}
522
523const UObject*
524Formattable::getObject() const {
525 return (fType == kObject) ? fValue.fObject : NULL;
526}
527
528// -------------------------------------
529// Sets the value to a double value d.
530
531void
532Formattable::setDouble(double d)
533{
534 dispose();
535 fType = kDouble;
536 fValue.fDouble = d;
537}
538
539// -------------------------------------
540// Sets the value to a long value l.
541
542void
543Formattable::setLong(int32_t l)
544{
545 dispose();
546 fType = kLong;
547 fValue.fInt64 = l;
548}
549
550// -------------------------------------
551// Sets the value to an int64 value ll.
552
553void
554Formattable::setInt64(int64_t ll)
555{
556 dispose();
557 fType = kInt64;
558 fValue.fInt64 = ll;
559}
560
561// -------------------------------------
562// Sets the value to a Date instance d.
563
564void
565Formattable::setDate(UDate d)
566{
567 dispose();
568 fType = kDate;
569 fValue.fDate = d;
570}
571
572// -------------------------------------
573// Sets the value to a string value stringToCopy.
574
575void
576Formattable::setString(const UnicodeString& stringToCopy)
577{
578 dispose();
579 fType = kString;
580 fValue.fString = new UnicodeString(stringToCopy);
581}
582
583// -------------------------------------
584// Sets the value to an array of Formattable objects.
585
586void
587Formattable::setArray(const Formattable* array, int32_t count)
588{
589 dispose();
590 fType = kArray;
591 fValue.fArrayAndCount.fArray = createArrayCopy(array, count);
592 fValue.fArrayAndCount.fCount = count;
593}
594
595// -------------------------------------
596// Adopts the stringToAdopt value.
597
598void
599Formattable::adoptString(UnicodeString* stringToAdopt)
600{
601 dispose();
602 fType = kString;
603 fValue.fString = stringToAdopt;
604}
605
606// -------------------------------------
607// Adopts the array value and its count.
608
609void
610Formattable::adoptArray(Formattable* array, int32_t count)
611{
612 dispose();
613 fType = kArray;
614 fValue.fArrayAndCount.fArray = array;
615 fValue.fArrayAndCount.fCount = count;
616}
617
618void
619Formattable::adoptObject(UObject* objectToAdopt) {
620 dispose();
621 fType = kObject;
622 fValue.fObject = objectToAdopt;
623}
624
625// -------------------------------------
626UnicodeString&
627Formattable::getString(UnicodeString& result, UErrorCode& status) const
628{
629 if (fType != kString) {
630 setError(status, U_INVALID_FORMAT_ERROR);
631 result.setToBogus();
632 } else {
633 if (fValue.fString == NULL) {
634 setError(status, U_MEMORY_ALLOCATION_ERROR);
635 } else {
636 result = *fValue.fString;
637 }
638 }
639 return result;
640}
641
642// -------------------------------------
643const UnicodeString&
644Formattable::getString(UErrorCode& status) const
645{
646 if (fType != kString) {
647 setError(status, U_INVALID_FORMAT_ERROR);
648 return *getBogus();
649 }
650 if (fValue.fString == NULL) {
651 setError(status, U_MEMORY_ALLOCATION_ERROR);
652 return *getBogus();
653 }
654 return *fValue.fString;
655}
656
657// -------------------------------------
658UnicodeString&
659Formattable::getString(UErrorCode& status)
660{
661 if (fType != kString) {
662 setError(status, U_INVALID_FORMAT_ERROR);
663 return *getBogus();
664 }
665 if (fValue.fString == NULL) {
666 setError(status, U_MEMORY_ALLOCATION_ERROR);
667 return *getBogus();
668 }
669 return *fValue.fString;
670}
671
672// -------------------------------------
673const Formattable*
674Formattable::getArray(int32_t& count, UErrorCode& status) const
675{
676 if (fType != kArray) {
677 setError(status, U_INVALID_FORMAT_ERROR);
678 count = 0;
679 return NULL;
680 }
681 count = fValue.fArrayAndCount.fCount;
682 return fValue.fArrayAndCount.fArray;
683}
684
685// -------------------------------------
686// Gets the bogus string, ensures mondo bogosity.
687
688UnicodeString*
689Formattable::getBogus() const
690{
691 return (UnicodeString*)&fBogus; /* cast away const :-( */
692}
693
694
695// --------------------------------------
696StringPiece Formattable::getDecimalNumber(UErrorCode &status) {
697 if (U_FAILURE(status)) {
698 return "";
699 }
700 if (fDecimalStr != NULL) {
701 return fDecimalStr->toStringPiece();
702 }
703
704 CharString *decimalStr = internalGetCharString(status);
705 if(decimalStr == NULL) {
706 return ""; // getDecimalNumber returns "" for error cases
707 } else {
708 return decimalStr->toStringPiece();
709 }
710}
711
712CharString *Formattable::internalGetCharString(UErrorCode &status) {
713 if(fDecimalStr == NULL) {
714 if (fDecimalQuantity == NULL) {
715 // No decimal number for the formattable yet. Which means the value was
716 // set directly by the user as an int, int64 or double. If the value came
717 // from parsing, or from the user setting a decimal number, fDecimalNum
718 // would already be set.
719 //
720 LocalPointer<DecimalQuantity> dq(new DecimalQuantity(), status);
721 if (U_FAILURE(status)) { return nullptr; }
722 populateDecimalQuantity(*dq, status);
723 if (U_FAILURE(status)) { return nullptr; }
724 fDecimalQuantity = dq.orphan();
725 }
726
727 fDecimalStr = new CharString();
728 if (fDecimalStr == NULL) {
729 status = U_MEMORY_ALLOCATION_ERROR;
730 return NULL;
731 }
732 // Older ICUs called uprv_decNumberToString here, which is not exactly the same as
733 // DecimalQuantity::toScientificString(). The biggest difference is that uprv_decNumberToString does
734 // not print scientific notation for magnitudes greater than -5 and smaller than some amount (+5?).
735 if (fDecimalQuantity->isInfinite()) {
736 fDecimalStr->append("Infinity", status);
737 } else if (fDecimalQuantity->isNaN()) {
738 fDecimalStr->append("NaN", status);
739 } else if (fDecimalQuantity->isZeroish()) {
740 fDecimalStr->append("0", -1, status);
741 } else if (fType==kLong || fType==kInt64 || // use toPlainString for integer types
742 (fDecimalQuantity->getMagnitude() != INT32_MIN && std::abs(fDecimalQuantity->getMagnitude()) < 5)) {
743 fDecimalStr->appendInvariantChars(fDecimalQuantity->toPlainString(), status);
744 } else {
745 fDecimalStr->appendInvariantChars(fDecimalQuantity->toScientificString(), status);
746 }
747 }
748 return fDecimalStr;
749}
750
751void
752Formattable::populateDecimalQuantity(number::impl::DecimalQuantity& output, UErrorCode& status) const {
753 if (fDecimalQuantity != nullptr) {
754 output = *fDecimalQuantity;
755 return;
756 }
757
758 switch (fType) {
759 case kDouble:
760 output.setToDouble(this->getDouble());
761 output.roundToInfinity();
762 break;
763 case kLong:
764 output.setToInt(this->getLong());
765 break;
766 case kInt64:
767 output.setToLong(this->getInt64());
768 break;
769 default:
770 // The formattable's value is not a numeric type.
771 status = U_INVALID_STATE_ERROR;
772 }
773}
774
775// ---------------------------------------
776void
777Formattable::adoptDecimalQuantity(DecimalQuantity *dq) {
778 if (fDecimalQuantity != NULL) {
779 delete fDecimalQuantity;
780 }
781 fDecimalQuantity = dq;
782 if (dq == NULL) { // allow adoptDigitList(NULL) to clear
783 return;
784 }
785
786 // Set the value into the Union of simple type values.
787 // Cannot use the set() functions because they would delete the fDecimalNum value.
788 if (fDecimalQuantity->fitsInLong()) {
789 fValue.fInt64 = fDecimalQuantity->toLong();
790 if (fValue.fInt64 <= INT32_MAX && fValue.fInt64 >= INT32_MIN) {
791 fType = kLong;
792 } else {
793 fType = kInt64;
794 }
795 } else {
796 fType = kDouble;
797 fValue.fDouble = fDecimalQuantity->toDouble();
798 }
799}
800
801
802// ---------------------------------------
803void
804Formattable::setDecimalNumber(StringPiece numberString, UErrorCode &status) {
805 if (U_FAILURE(status)) {
806 return;
807 }
808 dispose();
809
810 auto* dq = new DecimalQuantity();
811 dq->setToDecNumber(numberString, status);
812 adoptDecimalQuantity(dq);
813
814 // Note that we do not hang on to the caller's input string.
815 // If we are asked for the string, we will regenerate one from fDecimalQuantity.
816}
817
818#if 0
819//----------------------------------------------------
820// console I/O
821//----------------------------------------------------
822#ifdef _DEBUG
823
824#include <iostream>
825using namespace std;
826
827#include "unicode/datefmt.h"
828#include "unistrm.h"
829
830class FormattableStreamer /* not : public UObject because all methods are static */ {
831public:
832 static void streamOut(ostream& stream, const Formattable& obj);
833
834private:
835 FormattableStreamer() {} // private - forbid instantiation
836};
837
838// This is for debugging purposes only. This will send a displayable
839// form of the Formattable object to the output stream.
840
841void
842FormattableStreamer::streamOut(ostream& stream, const Formattable& obj)
843{
844 static DateFormat *defDateFormat = 0;
845
846 UnicodeString buffer;
847 switch(obj.getType()) {
848 case Formattable::kDate :
849 // Creates a DateFormat instance for formatting the
850 // Date instance.
851 if (defDateFormat == 0) {
852 defDateFormat = DateFormat::createInstance();
853 }
854 defDateFormat->format(obj.getDate(), buffer);
855 stream << buffer;
856 break;
857 case Formattable::kDouble :
858 // Output the double as is.
859 stream << obj.getDouble() << 'D';
860 break;
861 case Formattable::kLong :
862 // Output the double as is.
863 stream << obj.getLong() << 'L';
864 break;
865 case Formattable::kString:
866 // Output the double as is. Please see UnicodeString console
867 // I/O routine for more details.
868 stream << '"' << obj.getString(buffer) << '"';
869 break;
870 case Formattable::kArray:
871 int32_t i, count;
872 const Formattable* array;
873 array = obj.getArray(count);
874 stream << '[';
875 // Recursively calling the console I/O routine for each element in the array.
876 for (i=0; i<count; ++i) {
877 FormattableStreamer::streamOut(stream, array[i]);
878 stream << ( (i==(count-1)) ? "" : ", " );
879 }
880 stream << ']';
881 break;
882 default:
883 // Not a recognizable Formattable object.
884 stream << "INVALID_Formattable";
885 }
886 stream.flush();
887}
888#endif
889
890#endif
891
892U_NAMESPACE_END
893
894/* ---- UFormattable implementation ---- */
895
896U_NAMESPACE_USE
897
898U_DRAFT UFormattable* U_EXPORT2
899ufmt_open(UErrorCode *status) {
900 if( U_FAILURE(*status) ) {
901 return NULL;
902 }
903 UFormattable *fmt = (new Formattable())->toUFormattable();
904
905 if( fmt == NULL ) {
906 *status = U_MEMORY_ALLOCATION_ERROR;
907 }
908 return fmt;
909}
910
911U_DRAFT void U_EXPORT2
912ufmt_close(UFormattable *fmt) {
913 Formattable *obj = Formattable::fromUFormattable(fmt);
914
915 delete obj;
916}
917
918U_INTERNAL UFormattableType U_EXPORT2
919ufmt_getType(const UFormattable *fmt, UErrorCode *status) {
920 if(U_FAILURE(*status)) {
921 return (UFormattableType)UFMT_COUNT;
922 }
923 const Formattable *obj = Formattable::fromUFormattable(fmt);
924 return (UFormattableType)obj->getType();
925}
926
927
928U_INTERNAL UBool U_EXPORT2
929ufmt_isNumeric(const UFormattable *fmt) {
930 const Formattable *obj = Formattable::fromUFormattable(fmt);
931 return obj->isNumeric();
932}
933
934U_DRAFT UDate U_EXPORT2
935ufmt_getDate(const UFormattable *fmt, UErrorCode *status) {
936 const Formattable *obj = Formattable::fromUFormattable(fmt);
937
938 return obj->getDate(*status);
939}
940
941U_DRAFT double U_EXPORT2
942ufmt_getDouble(UFormattable *fmt, UErrorCode *status) {
943 Formattable *obj = Formattable::fromUFormattable(fmt);
944
945 return obj->getDouble(*status);
946}
947
948U_DRAFT int32_t U_EXPORT2
949ufmt_getLong(UFormattable *fmt, UErrorCode *status) {
950 Formattable *obj = Formattable::fromUFormattable(fmt);
951
952 return obj->getLong(*status);
953}
954
955
956U_DRAFT const void *U_EXPORT2
957ufmt_getObject(const UFormattable *fmt, UErrorCode *status) {
958 const Formattable *obj = Formattable::fromUFormattable(fmt);
959
960 const void *ret = obj->getObject();
961 if( ret==NULL &&
962 (obj->getType() != Formattable::kObject) &&
963 U_SUCCESS( *status )) {
964 *status = U_INVALID_FORMAT_ERROR;
965 }
966 return ret;
967}
968
969U_DRAFT const UChar* U_EXPORT2
970ufmt_getUChars(UFormattable *fmt, int32_t *len, UErrorCode *status) {
971 Formattable *obj = Formattable::fromUFormattable(fmt);
972
973 // avoid bogosity by checking the type first.
974 if( obj->getType() != Formattable::kString ) {
975 if( U_SUCCESS(*status) ){
976 *status = U_INVALID_FORMAT_ERROR;
977 }
978 return NULL;
979 }
980
981 // This should return a valid string
982 UnicodeString &str = obj->getString(*status);
983 if( U_SUCCESS(*status) && len != NULL ) {
984 *len = str.length();
985 }
986 return str.getTerminatedBuffer();
987}
988
989U_DRAFT int32_t U_EXPORT2
990ufmt_getArrayLength(const UFormattable* fmt, UErrorCode *status) {
991 const Formattable *obj = Formattable::fromUFormattable(fmt);
992
993 int32_t count;
994 (void)obj->getArray(count, *status);
995 return count;
996}
997
998U_DRAFT UFormattable * U_EXPORT2
999ufmt_getArrayItemByIndex(UFormattable* fmt, int32_t n, UErrorCode *status) {
1000 Formattable *obj = Formattable::fromUFormattable(fmt);
1001 int32_t count;
1002 (void)obj->getArray(count, *status);
1003 if(U_FAILURE(*status)) {
1004 return NULL;
1005 } else if(n<0 || n>=count) {
1006 setError(*status, U_INDEX_OUTOFBOUNDS_ERROR);
1007 return NULL;
1008 } else {
1009 return (*obj)[n].toUFormattable(); // returns non-const Formattable
1010 }
1011}
1012
1013U_DRAFT const char * U_EXPORT2
1014ufmt_getDecNumChars(UFormattable *fmt, int32_t *len, UErrorCode *status) {
1015 if(U_FAILURE(*status)) {
1016 return "";
1017 }
1018 Formattable *obj = Formattable::fromUFormattable(fmt);
1019 CharString *charString = obj->internalGetCharString(*status);
1020 if(U_FAILURE(*status)) {
1021 return "";
1022 }
1023 if(charString == NULL) {
1024 *status = U_MEMORY_ALLOCATION_ERROR;
1025 return "";
1026 } else {
1027 if(len!=NULL) {
1028 *len = charString->length();
1029 }
1030 return charString->data();
1031 }
1032}
1033
1034U_DRAFT int64_t U_EXPORT2
1035ufmt_getInt64(UFormattable *fmt, UErrorCode *status) {
1036 Formattable *obj = Formattable::fromUFormattable(fmt);
1037 return obj->getInt64(*status);
1038}
1039
1040#endif /* #if !UCONFIG_NO_FORMATTING */
1041
1042//eof