]>
Commit | Line | Data |
---|---|---|
1 | // © 2016 and later: Unicode, Inc. and others. | |
2 | // License & terms of use: http://www.unicode.org/copyright.html | |
3 | /* | |
4 | ******************************************************************************* | |
5 | * | |
6 | * Copyright (C) 2008-2011, International Business Machines | |
7 | * Corporation, Google and others. All Rights Reserved. | |
8 | * | |
9 | ******************************************************************************* | |
10 | */ | |
11 | // Author : eldawy@google.com (Mohamed Eldawy) | |
12 | // ucnvsel.cpp | |
13 | // | |
14 | // Purpose: To generate a list of encodings capable of handling | |
15 | // a given Unicode text | |
16 | // | |
17 | // Started 09-April-2008 | |
18 | ||
19 | /** | |
20 | * \file | |
21 | * | |
22 | * This is an implementation of an encoding selector. | |
23 | * The goal is, given a unicode string, find the encodings | |
24 | * this string can be mapped to. To make processing faster | |
25 | * a trie is built when you call ucnvsel_open() that | |
26 | * stores all encodings a codepoint can map to | |
27 | */ | |
28 | ||
29 | #include "unicode/ucnvsel.h" | |
30 | ||
31 | #if !UCONFIG_NO_CONVERSION | |
32 | ||
33 | #include <string.h> | |
34 | ||
35 | #include "unicode/uchar.h" | |
36 | #include "unicode/uniset.h" | |
37 | #include "unicode/ucnv.h" | |
38 | #include "unicode/ustring.h" | |
39 | #include "unicode/uchriter.h" | |
40 | #include "utrie2.h" | |
41 | #include "propsvec.h" | |
42 | #include "uassert.h" | |
43 | #include "ucmndata.h" | |
44 | #include "udataswp.h" | |
45 | #include "uenumimp.h" | |
46 | #include "cmemory.h" | |
47 | #include "cstring.h" | |
48 | ||
49 | U_NAMESPACE_USE | |
50 | ||
51 | struct UConverterSelector { | |
52 | UTrie2 *trie; // 16 bit trie containing offsets into pv | |
53 | uint32_t* pv; // table of bits! | |
54 | int32_t pvCount; | |
55 | char** encodings; // which encodings did user ask to use? | |
56 | int32_t encodingsCount; | |
57 | int32_t encodingStrLength; | |
58 | uint8_t* swapped; | |
59 | UBool ownPv, ownEncodingStrings; | |
60 | }; | |
61 | ||
62 | static void generateSelectorData(UConverterSelector* result, | |
63 | UPropsVectors *upvec, | |
64 | const USet* excludedCodePoints, | |
65 | const UConverterUnicodeSet whichSet, | |
66 | UErrorCode* status) { | |
67 | if (U_FAILURE(*status)) { | |
68 | return; | |
69 | } | |
70 | ||
71 | int32_t columns = (result->encodingsCount+31)/32; | |
72 | ||
73 | // set errorValue to all-ones | |
74 | for (int32_t col = 0; col < columns; col++) { | |
75 | upvec_setValue(upvec, UPVEC_ERROR_VALUE_CP, UPVEC_ERROR_VALUE_CP, | |
76 | col, static_cast<uint32_t>(~0), static_cast<uint32_t>(~0), status); | |
77 | } | |
78 | ||
79 | for (int32_t i = 0; i < result->encodingsCount; ++i) { | |
80 | uint32_t mask; | |
81 | uint32_t column; | |
82 | int32_t item_count; | |
83 | int32_t j; | |
84 | UConverter* test_converter = ucnv_open(result->encodings[i], status); | |
85 | if (U_FAILURE(*status)) { | |
86 | return; | |
87 | } | |
88 | USet* unicode_point_set; | |
89 | unicode_point_set = uset_open(1, 0); // empty set | |
90 | ||
91 | ucnv_getUnicodeSet(test_converter, unicode_point_set, | |
92 | whichSet, status); | |
93 | if (U_FAILURE(*status)) { | |
94 | ucnv_close(test_converter); | |
95 | return; | |
96 | } | |
97 | ||
98 | column = i / 32; | |
99 | mask = 1 << (i%32); | |
100 | // now iterate over intervals on set i! | |
101 | item_count = uset_getItemCount(unicode_point_set); | |
102 | ||
103 | for (j = 0; j < item_count; ++j) { | |
104 | UChar32 start_char; | |
105 | UChar32 end_char; | |
106 | UErrorCode smallStatus = U_ZERO_ERROR; | |
107 | uset_getItem(unicode_point_set, j, &start_char, &end_char, NULL, 0, | |
108 | &smallStatus); | |
109 | if (U_FAILURE(smallStatus)) { | |
110 | // this will be reached for the converters that fill the set with | |
111 | // strings. Those should be ignored by our system | |
112 | } else { | |
113 | upvec_setValue(upvec, start_char, end_char, column, static_cast<uint32_t>(~0), mask, | |
114 | status); | |
115 | } | |
116 | } | |
117 | ucnv_close(test_converter); | |
118 | uset_close(unicode_point_set); | |
119 | if (U_FAILURE(*status)) { | |
120 | return; | |
121 | } | |
122 | } | |
123 | ||
124 | // handle excluded encodings! Simply set their values to all 1's in the upvec | |
125 | if (excludedCodePoints) { | |
126 | int32_t item_count = uset_getItemCount(excludedCodePoints); | |
127 | for (int32_t j = 0; j < item_count; ++j) { | |
128 | UChar32 start_char; | |
129 | UChar32 end_char; | |
130 | ||
131 | uset_getItem(excludedCodePoints, j, &start_char, &end_char, NULL, 0, | |
132 | status); | |
133 | for (int32_t col = 0; col < columns; col++) { | |
134 | upvec_setValue(upvec, start_char, end_char, col, static_cast<uint32_t>(~0), static_cast<uint32_t>(~0), | |
135 | status); | |
136 | } | |
137 | } | |
138 | } | |
139 | ||
140 | // alright. Now, let's put things in the same exact form you'd get when you | |
141 | // unserialize things. | |
142 | result->trie = upvec_compactToUTrie2WithRowIndexes(upvec, status); | |
143 | result->pv = upvec_cloneArray(upvec, &result->pvCount, NULL, status); | |
144 | result->pvCount *= columns; // number of uint32_t = rows * columns | |
145 | result->ownPv = TRUE; | |
146 | } | |
147 | ||
148 | /* open a selector. If converterListSize is 0, build for all converters. | |
149 | If excludedCodePoints is NULL, don't exclude any codepoints */ | |
150 | U_CAPI UConverterSelector* U_EXPORT2 | |
151 | ucnvsel_open(const char* const* converterList, int32_t converterListSize, | |
152 | const USet* excludedCodePoints, | |
153 | const UConverterUnicodeSet whichSet, UErrorCode* status) { | |
154 | // check if already failed | |
155 | if (U_FAILURE(*status)) { | |
156 | return NULL; | |
157 | } | |
158 | // ensure args make sense! | |
159 | if (converterListSize < 0 || (converterList == NULL && converterListSize != 0)) { | |
160 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
161 | return NULL; | |
162 | } | |
163 | ||
164 | // allocate a new converter | |
165 | LocalUConverterSelectorPointer newSelector( | |
166 | (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector))); | |
167 | if (newSelector.isNull()) { | |
168 | *status = U_MEMORY_ALLOCATION_ERROR; | |
169 | return NULL; | |
170 | } | |
171 | uprv_memset(newSelector.getAlias(), 0, sizeof(UConverterSelector)); | |
172 | ||
173 | if (converterListSize == 0) { | |
174 | converterList = NULL; | |
175 | converterListSize = ucnv_countAvailable(); | |
176 | } | |
177 | newSelector->encodings = | |
178 | (char**)uprv_malloc(converterListSize * sizeof(char*)); | |
179 | if (!newSelector->encodings) { | |
180 | *status = U_MEMORY_ALLOCATION_ERROR; | |
181 | return NULL; | |
182 | } | |
183 | newSelector->encodings[0] = NULL; // now we can call ucnvsel_close() | |
184 | ||
185 | // make a backup copy of the list of converters | |
186 | int32_t totalSize = 0; | |
187 | int32_t i; | |
188 | for (i = 0; i < converterListSize; i++) { | |
189 | totalSize += | |
190 | (int32_t)uprv_strlen(converterList != NULL ? converterList[i] : ucnv_getAvailableName(i)) + 1; | |
191 | } | |
192 | // 4-align the totalSize to 4-align the size of the serialized form | |
193 | int32_t encodingStrPadding = totalSize & 3; | |
194 | if (encodingStrPadding != 0) { | |
195 | encodingStrPadding = 4 - encodingStrPadding; | |
196 | } | |
197 | newSelector->encodingStrLength = totalSize += encodingStrPadding; | |
198 | char* allStrings = (char*) uprv_malloc(totalSize); | |
199 | if (!allStrings) { | |
200 | *status = U_MEMORY_ALLOCATION_ERROR; | |
201 | return NULL; | |
202 | } | |
203 | ||
204 | for (i = 0; i < converterListSize; i++) { | |
205 | newSelector->encodings[i] = allStrings; | |
206 | uprv_strcpy(newSelector->encodings[i], | |
207 | converterList != NULL ? converterList[i] : ucnv_getAvailableName(i)); | |
208 | allStrings += uprv_strlen(newSelector->encodings[i]) + 1; | |
209 | } | |
210 | while (encodingStrPadding > 0) { | |
211 | *allStrings++ = 0; | |
212 | --encodingStrPadding; | |
213 | } | |
214 | ||
215 | newSelector->ownEncodingStrings = TRUE; | |
216 | newSelector->encodingsCount = converterListSize; | |
217 | UPropsVectors *upvec = upvec_open((converterListSize+31)/32, status); | |
218 | generateSelectorData(newSelector.getAlias(), upvec, excludedCodePoints, whichSet, status); | |
219 | upvec_close(upvec); | |
220 | ||
221 | if (U_FAILURE(*status)) { | |
222 | return NULL; | |
223 | } | |
224 | ||
225 | return newSelector.orphan(); | |
226 | } | |
227 | ||
228 | /* close opened selector */ | |
229 | U_CAPI void U_EXPORT2 | |
230 | ucnvsel_close(UConverterSelector *sel) { | |
231 | if (!sel) { | |
232 | return; | |
233 | } | |
234 | if (sel->ownEncodingStrings) { | |
235 | uprv_free(sel->encodings[0]); | |
236 | } | |
237 | uprv_free(sel->encodings); | |
238 | if (sel->ownPv) { | |
239 | uprv_free(sel->pv); | |
240 | } | |
241 | utrie2_close(sel->trie); | |
242 | uprv_free(sel->swapped); | |
243 | uprv_free(sel); | |
244 | } | |
245 | ||
246 | static const UDataInfo dataInfo = { | |
247 | sizeof(UDataInfo), | |
248 | 0, | |
249 | ||
250 | U_IS_BIG_ENDIAN, | |
251 | U_CHARSET_FAMILY, | |
252 | U_SIZEOF_UCHAR, | |
253 | 0, | |
254 | ||
255 | { 0x43, 0x53, 0x65, 0x6c }, /* dataFormat="CSel" */ | |
256 | { 1, 0, 0, 0 }, /* formatVersion */ | |
257 | { 0, 0, 0, 0 } /* dataVersion */ | |
258 | }; | |
259 | ||
260 | enum { | |
261 | UCNVSEL_INDEX_TRIE_SIZE, // trie size in bytes | |
262 | UCNVSEL_INDEX_PV_COUNT, // number of uint32_t in the bit vectors | |
263 | UCNVSEL_INDEX_NAMES_COUNT, // number of encoding names | |
264 | UCNVSEL_INDEX_NAMES_LENGTH, // number of encoding name bytes including padding | |
265 | UCNVSEL_INDEX_SIZE = 15, // bytes following the DataHeader | |
266 | UCNVSEL_INDEX_COUNT = 16 | |
267 | }; | |
268 | ||
269 | /* | |
270 | * Serialized form of a UConverterSelector, formatVersion 1: | |
271 | * | |
272 | * The serialized form begins with a standard ICU DataHeader with a UDataInfo | |
273 | * as the template above. | |
274 | * This is followed by: | |
275 | * int32_t indexes[UCNVSEL_INDEX_COUNT]; // see index entry constants above | |
276 | * serialized UTrie2; // indexes[UCNVSEL_INDEX_TRIE_SIZE] bytes | |
277 | * uint32_t pv[indexes[UCNVSEL_INDEX_PV_COUNT]]; // bit vectors | |
278 | * char* encodingNames[indexes[UCNVSEL_INDEX_NAMES_LENGTH]]; // NUL-terminated strings + padding | |
279 | */ | |
280 | ||
281 | /* serialize a selector */ | |
282 | U_CAPI int32_t U_EXPORT2 | |
283 | ucnvsel_serialize(const UConverterSelector* sel, | |
284 | void* buffer, int32_t bufferCapacity, UErrorCode* status) { | |
285 | // check if already failed | |
286 | if (U_FAILURE(*status)) { | |
287 | return 0; | |
288 | } | |
289 | // ensure args make sense! | |
290 | uint8_t *p = (uint8_t *)buffer; | |
291 | if (bufferCapacity < 0 || | |
292 | (bufferCapacity > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0))) | |
293 | ) { | |
294 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
295 | return 0; | |
296 | } | |
297 | // add up the size of the serialized form | |
298 | int32_t serializedTrieSize = utrie2_serialize(sel->trie, NULL, 0, status); | |
299 | if (*status != U_BUFFER_OVERFLOW_ERROR && U_FAILURE(*status)) { | |
300 | return 0; | |
301 | } | |
302 | *status = U_ZERO_ERROR; | |
303 | ||
304 | DataHeader header; | |
305 | uprv_memset(&header, 0, sizeof(header)); | |
306 | header.dataHeader.headerSize = (uint16_t)((sizeof(header) + 15) & ~15); | |
307 | header.dataHeader.magic1 = 0xda; | |
308 | header.dataHeader.magic2 = 0x27; | |
309 | uprv_memcpy(&header.info, &dataInfo, sizeof(dataInfo)); | |
310 | ||
311 | int32_t indexes[UCNVSEL_INDEX_COUNT] = { | |
312 | serializedTrieSize, | |
313 | sel->pvCount, | |
314 | sel->encodingsCount, | |
315 | sel->encodingStrLength | |
316 | }; | |
317 | ||
318 | int32_t totalSize = | |
319 | header.dataHeader.headerSize + | |
320 | (int32_t)sizeof(indexes) + | |
321 | serializedTrieSize + | |
322 | sel->pvCount * 4 + | |
323 | sel->encodingStrLength; | |
324 | indexes[UCNVSEL_INDEX_SIZE] = totalSize - header.dataHeader.headerSize; | |
325 | if (totalSize > bufferCapacity) { | |
326 | *status = U_BUFFER_OVERFLOW_ERROR; | |
327 | return totalSize; | |
328 | } | |
329 | // ok, save! | |
330 | int32_t length = header.dataHeader.headerSize; | |
331 | uprv_memcpy(p, &header, sizeof(header)); | |
332 | uprv_memset(p + sizeof(header), 0, length - sizeof(header)); | |
333 | p += length; | |
334 | ||
335 | length = (int32_t)sizeof(indexes); | |
336 | uprv_memcpy(p, indexes, length); | |
337 | p += length; | |
338 | ||
339 | utrie2_serialize(sel->trie, p, serializedTrieSize, status); | |
340 | p += serializedTrieSize; | |
341 | ||
342 | length = sel->pvCount * 4; | |
343 | uprv_memcpy(p, sel->pv, length); | |
344 | p += length; | |
345 | ||
346 | uprv_memcpy(p, sel->encodings[0], sel->encodingStrLength); | |
347 | p += sel->encodingStrLength; | |
348 | ||
349 | return totalSize; | |
350 | } | |
351 | ||
352 | /** | |
353 | * swap a selector into the desired Endianness and Asciiness of | |
354 | * the system. Just as FYI, selectors are always saved in the format | |
355 | * of the system that created them. They are only converted if used | |
356 | * on another system. In other words, selectors created on different | |
357 | * system can be different even if the params are identical (endianness | |
358 | * and Asciiness differences only) | |
359 | * | |
360 | * @param ds pointer to data swapper containing swapping info | |
361 | * @param inData pointer to incoming data | |
362 | * @param length length of inData in bytes | |
363 | * @param outData pointer to output data. Capacity should | |
364 | * be at least equal to capacity of inData | |
365 | * @param status an in/out ICU UErrorCode | |
366 | * @return 0 on failure, number of bytes swapped on success | |
367 | * number of bytes swapped can be smaller than length | |
368 | */ | |
369 | static int32_t | |
370 | ucnvsel_swap(const UDataSwapper *ds, | |
371 | const void *inData, int32_t length, | |
372 | void *outData, UErrorCode *status) { | |
373 | /* udata_swapDataHeader checks the arguments */ | |
374 | int32_t headerSize = udata_swapDataHeader(ds, inData, length, outData, status); | |
375 | if(U_FAILURE(*status)) { | |
376 | return 0; | |
377 | } | |
378 | ||
379 | /* check data format and format version */ | |
380 | const UDataInfo *pInfo = (const UDataInfo *)((const char *)inData + 4); | |
381 | if(!( | |
382 | pInfo->dataFormat[0] == 0x43 && /* dataFormat="CSel" */ | |
383 | pInfo->dataFormat[1] == 0x53 && | |
384 | pInfo->dataFormat[2] == 0x65 && | |
385 | pInfo->dataFormat[3] == 0x6c | |
386 | )) { | |
387 | udata_printError(ds, "ucnvsel_swap(): data format %02x.%02x.%02x.%02x is not recognized as UConverterSelector data\n", | |
388 | pInfo->dataFormat[0], pInfo->dataFormat[1], | |
389 | pInfo->dataFormat[2], pInfo->dataFormat[3]); | |
390 | *status = U_INVALID_FORMAT_ERROR; | |
391 | return 0; | |
392 | } | |
393 | if(pInfo->formatVersion[0] != 1) { | |
394 | udata_printError(ds, "ucnvsel_swap(): format version %02x is not supported\n", | |
395 | pInfo->formatVersion[0]); | |
396 | *status = U_UNSUPPORTED_ERROR; | |
397 | return 0; | |
398 | } | |
399 | ||
400 | if(length >= 0) { | |
401 | length -= headerSize; | |
402 | if(length < 16*4) { | |
403 | udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for UConverterSelector data\n", | |
404 | length); | |
405 | *status = U_INDEX_OUTOFBOUNDS_ERROR; | |
406 | return 0; | |
407 | } | |
408 | } | |
409 | ||
410 | const uint8_t *inBytes = (const uint8_t *)inData + headerSize; | |
411 | uint8_t *outBytes = (uint8_t *)outData + headerSize; | |
412 | ||
413 | /* read the indexes */ | |
414 | const int32_t *inIndexes = (const int32_t *)inBytes; | |
415 | int32_t indexes[16]; | |
416 | int32_t i; | |
417 | for(i = 0; i < 16; ++i) { | |
418 | indexes[i] = udata_readInt32(ds, inIndexes[i]); | |
419 | } | |
420 | ||
421 | /* get the total length of the data */ | |
422 | int32_t size = indexes[UCNVSEL_INDEX_SIZE]; | |
423 | if(length >= 0) { | |
424 | if(length < size) { | |
425 | udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for all of UConverterSelector data\n", | |
426 | length); | |
427 | *status = U_INDEX_OUTOFBOUNDS_ERROR; | |
428 | return 0; | |
429 | } | |
430 | ||
431 | /* copy the data for inaccessible bytes */ | |
432 | if(inBytes != outBytes) { | |
433 | uprv_memcpy(outBytes, inBytes, size); | |
434 | } | |
435 | ||
436 | int32_t offset = 0, count; | |
437 | ||
438 | /* swap the int32_t indexes[] */ | |
439 | count = UCNVSEL_INDEX_COUNT*4; | |
440 | ds->swapArray32(ds, inBytes, count, outBytes, status); | |
441 | offset += count; | |
442 | ||
443 | /* swap the UTrie2 */ | |
444 | count = indexes[UCNVSEL_INDEX_TRIE_SIZE]; | |
445 | utrie2_swap(ds, inBytes + offset, count, outBytes + offset, status); | |
446 | offset += count; | |
447 | ||
448 | /* swap the uint32_t pv[] */ | |
449 | count = indexes[UCNVSEL_INDEX_PV_COUNT]*4; | |
450 | ds->swapArray32(ds, inBytes + offset, count, outBytes + offset, status); | |
451 | offset += count; | |
452 | ||
453 | /* swap the encoding names */ | |
454 | count = indexes[UCNVSEL_INDEX_NAMES_LENGTH]; | |
455 | ds->swapInvChars(ds, inBytes + offset, count, outBytes + offset, status); | |
456 | offset += count; | |
457 | ||
458 | U_ASSERT(offset == size); | |
459 | } | |
460 | ||
461 | return headerSize + size; | |
462 | } | |
463 | ||
464 | /* unserialize a selector */ | |
465 | U_CAPI UConverterSelector* U_EXPORT2 | |
466 | ucnvsel_openFromSerialized(const void* buffer, int32_t length, UErrorCode* status) { | |
467 | // check if already failed | |
468 | if (U_FAILURE(*status)) { | |
469 | return NULL; | |
470 | } | |
471 | // ensure args make sense! | |
472 | const uint8_t *p = (const uint8_t *)buffer; | |
473 | if (length <= 0 || | |
474 | (length > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0))) | |
475 | ) { | |
476 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
477 | return NULL; | |
478 | } | |
479 | // header | |
480 | if (length < 32) { | |
481 | // not even enough space for a minimal header | |
482 | *status = U_INDEX_OUTOFBOUNDS_ERROR; | |
483 | return NULL; | |
484 | } | |
485 | const DataHeader *pHeader = (const DataHeader *)p; | |
486 | if (!( | |
487 | pHeader->dataHeader.magic1==0xda && | |
488 | pHeader->dataHeader.magic2==0x27 && | |
489 | pHeader->info.dataFormat[0] == 0x43 && | |
490 | pHeader->info.dataFormat[1] == 0x53 && | |
491 | pHeader->info.dataFormat[2] == 0x65 && | |
492 | pHeader->info.dataFormat[3] == 0x6c | |
493 | )) { | |
494 | /* header not valid or dataFormat not recognized */ | |
495 | *status = U_INVALID_FORMAT_ERROR; | |
496 | return NULL; | |
497 | } | |
498 | if (pHeader->info.formatVersion[0] != 1) { | |
499 | *status = U_UNSUPPORTED_ERROR; | |
500 | return NULL; | |
501 | } | |
502 | uint8_t* swapped = NULL; | |
503 | if (pHeader->info.isBigEndian != U_IS_BIG_ENDIAN || | |
504 | pHeader->info.charsetFamily != U_CHARSET_FAMILY | |
505 | ) { | |
506 | // swap the data | |
507 | UDataSwapper *ds = | |
508 | udata_openSwapperForInputData(p, length, U_IS_BIG_ENDIAN, U_CHARSET_FAMILY, status); | |
509 | int32_t totalSize = ucnvsel_swap(ds, p, -1, NULL, status); | |
510 | if (U_FAILURE(*status)) { | |
511 | udata_closeSwapper(ds); | |
512 | return NULL; | |
513 | } | |
514 | if (length < totalSize) { | |
515 | udata_closeSwapper(ds); | |
516 | *status = U_INDEX_OUTOFBOUNDS_ERROR; | |
517 | return NULL; | |
518 | } | |
519 | swapped = (uint8_t*)uprv_malloc(totalSize); | |
520 | if (swapped == NULL) { | |
521 | udata_closeSwapper(ds); | |
522 | *status = U_MEMORY_ALLOCATION_ERROR; | |
523 | return NULL; | |
524 | } | |
525 | ucnvsel_swap(ds, p, length, swapped, status); | |
526 | udata_closeSwapper(ds); | |
527 | if (U_FAILURE(*status)) { | |
528 | uprv_free(swapped); | |
529 | return NULL; | |
530 | } | |
531 | p = swapped; | |
532 | pHeader = (const DataHeader *)p; | |
533 | } | |
534 | if (length < (pHeader->dataHeader.headerSize + 16 * 4)) { | |
535 | // not even enough space for the header and the indexes | |
536 | uprv_free(swapped); | |
537 | *status = U_INDEX_OUTOFBOUNDS_ERROR; | |
538 | return NULL; | |
539 | } | |
540 | p += pHeader->dataHeader.headerSize; | |
541 | length -= pHeader->dataHeader.headerSize; | |
542 | // indexes | |
543 | const int32_t *indexes = (const int32_t *)p; | |
544 | if (length < indexes[UCNVSEL_INDEX_SIZE]) { | |
545 | uprv_free(swapped); | |
546 | *status = U_INDEX_OUTOFBOUNDS_ERROR; | |
547 | return NULL; | |
548 | } | |
549 | p += UCNVSEL_INDEX_COUNT * 4; | |
550 | // create and populate the selector object | |
551 | UConverterSelector* sel = (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector)); | |
552 | char **encodings = | |
553 | (char **)uprv_malloc( | |
554 | indexes[UCNVSEL_INDEX_NAMES_COUNT] * sizeof(char *)); | |
555 | if (sel == NULL || encodings == NULL) { | |
556 | uprv_free(swapped); | |
557 | uprv_free(sel); | |
558 | uprv_free(encodings); | |
559 | *status = U_MEMORY_ALLOCATION_ERROR; | |
560 | return NULL; | |
561 | } | |
562 | uprv_memset(sel, 0, sizeof(UConverterSelector)); | |
563 | sel->pvCount = indexes[UCNVSEL_INDEX_PV_COUNT]; | |
564 | sel->encodings = encodings; | |
565 | sel->encodingsCount = indexes[UCNVSEL_INDEX_NAMES_COUNT]; | |
566 | sel->encodingStrLength = indexes[UCNVSEL_INDEX_NAMES_LENGTH]; | |
567 | sel->swapped = swapped; | |
568 | // trie | |
569 | sel->trie = utrie2_openFromSerialized(UTRIE2_16_VALUE_BITS, | |
570 | p, indexes[UCNVSEL_INDEX_TRIE_SIZE], NULL, | |
571 | status); | |
572 | p += indexes[UCNVSEL_INDEX_TRIE_SIZE]; | |
573 | if (U_FAILURE(*status)) { | |
574 | ucnvsel_close(sel); | |
575 | return NULL; | |
576 | } | |
577 | // bit vectors | |
578 | sel->pv = (uint32_t *)p; | |
579 | p += sel->pvCount * 4; | |
580 | // encoding names | |
581 | char* s = (char*)p; | |
582 | for (int32_t i = 0; i < sel->encodingsCount; ++i) { | |
583 | sel->encodings[i] = s; | |
584 | s += uprv_strlen(s) + 1; | |
585 | } | |
586 | p += sel->encodingStrLength; | |
587 | ||
588 | return sel; | |
589 | } | |
590 | ||
591 | // a bunch of functions for the enumeration thingie! Nothing fancy here. Just | |
592 | // iterate over the selected encodings | |
593 | struct Enumerator { | |
594 | int16_t* index; | |
595 | int16_t length; | |
596 | int16_t cur; | |
597 | const UConverterSelector* sel; | |
598 | }; | |
599 | ||
600 | U_CDECL_BEGIN | |
601 | ||
602 | static void U_CALLCONV | |
603 | ucnvsel_close_selector_iterator(UEnumeration *enumerator) { | |
604 | uprv_free(((Enumerator*)(enumerator->context))->index); | |
605 | uprv_free(enumerator->context); | |
606 | uprv_free(enumerator); | |
607 | } | |
608 | ||
609 | ||
610 | static int32_t U_CALLCONV | |
611 | ucnvsel_count_encodings(UEnumeration *enumerator, UErrorCode *status) { | |
612 | // check if already failed | |
613 | if (U_FAILURE(*status)) { | |
614 | return 0; | |
615 | } | |
616 | return ((Enumerator*)(enumerator->context))->length; | |
617 | } | |
618 | ||
619 | ||
620 | static const char* U_CALLCONV ucnvsel_next_encoding(UEnumeration* enumerator, | |
621 | int32_t* resultLength, | |
622 | UErrorCode* status) { | |
623 | // check if already failed | |
624 | if (U_FAILURE(*status)) { | |
625 | return NULL; | |
626 | } | |
627 | ||
628 | int16_t cur = ((Enumerator*)(enumerator->context))->cur; | |
629 | const UConverterSelector* sel; | |
630 | const char* result; | |
631 | if (cur >= ((Enumerator*)(enumerator->context))->length) { | |
632 | return NULL; | |
633 | } | |
634 | sel = ((Enumerator*)(enumerator->context))->sel; | |
635 | result = sel->encodings[((Enumerator*)(enumerator->context))->index[cur] ]; | |
636 | ((Enumerator*)(enumerator->context))->cur++; | |
637 | if (resultLength) { | |
638 | *resultLength = (int32_t)uprv_strlen(result); | |
639 | } | |
640 | return result; | |
641 | } | |
642 | ||
643 | static void U_CALLCONV ucnvsel_reset_iterator(UEnumeration* enumerator, | |
644 | UErrorCode* status) { | |
645 | // check if already failed | |
646 | if (U_FAILURE(*status)) { | |
647 | return ; | |
648 | } | |
649 | ((Enumerator*)(enumerator->context))->cur = 0; | |
650 | } | |
651 | ||
652 | U_CDECL_END | |
653 | ||
654 | ||
655 | static const UEnumeration defaultEncodings = { | |
656 | NULL, | |
657 | NULL, | |
658 | ucnvsel_close_selector_iterator, | |
659 | ucnvsel_count_encodings, | |
660 | uenum_unextDefault, | |
661 | ucnvsel_next_encoding, | |
662 | ucnvsel_reset_iterator | |
663 | }; | |
664 | ||
665 | ||
666 | // internal fn to intersect two sets of masks | |
667 | // returns whether the mask has reduced to all zeros | |
668 | static UBool intersectMasks(uint32_t* dest, const uint32_t* source1, int32_t len) { | |
669 | int32_t i; | |
670 | uint32_t oredDest = 0; | |
671 | for (i = 0 ; i < len ; ++i) { | |
672 | oredDest |= (dest[i] &= source1[i]); | |
673 | } | |
674 | return oredDest == 0; | |
675 | } | |
676 | ||
677 | // internal fn to count how many 1's are there in a mask | |
678 | // algorithm taken from http://graphics.stanford.edu/~seander/bithacks.html | |
679 | static int16_t countOnes(uint32_t* mask, int32_t len) { | |
680 | int32_t i, totalOnes = 0; | |
681 | for (i = 0 ; i < len ; ++i) { | |
682 | uint32_t ent = mask[i]; | |
683 | for (; ent; totalOnes++) | |
684 | { | |
685 | ent &= ent - 1; // clear the least significant bit set | |
686 | } | |
687 | } | |
688 | return static_cast<int16_t>(totalOnes); | |
689 | } | |
690 | ||
691 | ||
692 | /* internal function! */ | |
693 | static UEnumeration *selectForMask(const UConverterSelector* sel, | |
694 | uint32_t *theMask, UErrorCode *status) { | |
695 | LocalMemory<uint32_t> mask(theMask); | |
696 | // this is the context we will use. Store a table of indices to which | |
697 | // encodings are legit. | |
698 | LocalMemory<Enumerator> result(static_cast<Enumerator *>(uprv_malloc(sizeof(Enumerator)))); | |
699 | if (result.isNull()) { | |
700 | *status = U_MEMORY_ALLOCATION_ERROR; | |
701 | return nullptr; | |
702 | } | |
703 | result->index = nullptr; // this will be allocated later! | |
704 | result->length = result->cur = 0; | |
705 | result->sel = sel; | |
706 | ||
707 | LocalMemory<UEnumeration> en(static_cast<UEnumeration *>(uprv_malloc(sizeof(UEnumeration)))); | |
708 | if (en.isNull()) { | |
709 | // TODO(markus): Combine Enumerator and UEnumeration into one struct. | |
710 | *status = U_MEMORY_ALLOCATION_ERROR; | |
711 | return nullptr; | |
712 | } | |
713 | memcpy(en.getAlias(), &defaultEncodings, sizeof(UEnumeration)); | |
714 | ||
715 | int32_t columns = (sel->encodingsCount+31)/32; | |
716 | int16_t numOnes = countOnes(mask.getAlias(), columns); | |
717 | // now, we know the exact space we need for index | |
718 | if (numOnes > 0) { | |
719 | result->index = static_cast<int16_t*>(uprv_malloc(numOnes * sizeof(int16_t))); | |
720 | if (result->index == nullptr) { | |
721 | *status = U_MEMORY_ALLOCATION_ERROR; | |
722 | return nullptr; | |
723 | } | |
724 | int32_t i, j; | |
725 | int16_t k = 0; | |
726 | for (j = 0 ; j < columns; j++) { | |
727 | uint32_t v = mask[j]; | |
728 | for (i = 0 ; i < 32 && k < sel->encodingsCount; i++, k++) { | |
729 | if ((v & 1) != 0) { | |
730 | result->index[result->length++] = k; | |
731 | } | |
732 | v >>= 1; | |
733 | } | |
734 | } | |
735 | } //otherwise, index will remain NULL (and will never be touched by | |
736 | //the enumerator code anyway) | |
737 | en->context = result.orphan(); | |
738 | return en.orphan(); | |
739 | } | |
740 | ||
741 | /* check a string against the selector - UTF16 version */ | |
742 | U_CAPI UEnumeration * U_EXPORT2 | |
743 | ucnvsel_selectForString(const UConverterSelector* sel, | |
744 | const UChar *s, int32_t length, UErrorCode *status) { | |
745 | // check if already failed | |
746 | if (U_FAILURE(*status)) { | |
747 | return NULL; | |
748 | } | |
749 | // ensure args make sense! | |
750 | if (sel == NULL || (s == NULL && length != 0)) { | |
751 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
752 | return NULL; | |
753 | } | |
754 | ||
755 | int32_t columns = (sel->encodingsCount+31)/32; | |
756 | uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4); | |
757 | if (mask == NULL) { | |
758 | *status = U_MEMORY_ALLOCATION_ERROR; | |
759 | return NULL; | |
760 | } | |
761 | uprv_memset(mask, ~0, columns *4); | |
762 | ||
763 | if(s!=NULL) { | |
764 | const UChar *limit; | |
765 | if (length >= 0) { | |
766 | limit = s + length; | |
767 | } else { | |
768 | limit = NULL; | |
769 | } | |
770 | ||
771 | while (limit == NULL ? *s != 0 : s != limit) { | |
772 | UChar32 c; | |
773 | uint16_t pvIndex; | |
774 | UTRIE2_U16_NEXT16(sel->trie, s, limit, c, pvIndex); | |
775 | if (intersectMasks(mask, sel->pv+pvIndex, columns)) { | |
776 | break; | |
777 | } | |
778 | } | |
779 | } | |
780 | return selectForMask(sel, mask, status); | |
781 | } | |
782 | ||
783 | /* check a string against the selector - UTF8 version */ | |
784 | U_CAPI UEnumeration * U_EXPORT2 | |
785 | ucnvsel_selectForUTF8(const UConverterSelector* sel, | |
786 | const char *s, int32_t length, UErrorCode *status) { | |
787 | // check if already failed | |
788 | if (U_FAILURE(*status)) { | |
789 | return NULL; | |
790 | } | |
791 | // ensure args make sense! | |
792 | if (sel == NULL || (s == NULL && length != 0)) { | |
793 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
794 | return NULL; | |
795 | } | |
796 | ||
797 | int32_t columns = (sel->encodingsCount+31)/32; | |
798 | uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4); | |
799 | if (mask == NULL) { | |
800 | *status = U_MEMORY_ALLOCATION_ERROR; | |
801 | return NULL; | |
802 | } | |
803 | uprv_memset(mask, ~0, columns *4); | |
804 | ||
805 | if (length < 0) { | |
806 | length = (int32_t)uprv_strlen(s); | |
807 | } | |
808 | ||
809 | if(s!=NULL) { | |
810 | const char *limit = s + length; | |
811 | ||
812 | while (s != limit) { | |
813 | uint16_t pvIndex; | |
814 | UTRIE2_U8_NEXT16(sel->trie, s, limit, pvIndex); | |
815 | if (intersectMasks(mask, sel->pv+pvIndex, columns)) { | |
816 | break; | |
817 | } | |
818 | } | |
819 | } | |
820 | return selectForMask(sel, mask, status); | |
821 | } | |
822 | ||
823 | #endif // !UCONFIG_NO_CONVERSION |