]>
Commit | Line | Data |
---|---|---|
1 | // © 2016 and later: Unicode, Inc. and others. | |
2 | // License & terms of use: http://www.unicode.org/copyright.html | |
3 | /** | |
4 | ******************************************************************************* | |
5 | * Copyright (C) 2006-2016, International Business Machines Corporation | |
6 | * and others. All Rights Reserved. | |
7 | ******************************************************************************* | |
8 | */ | |
9 | ||
10 | #include <utility> | |
11 | ||
12 | #include "unicode/utypes.h" | |
13 | ||
14 | #if !UCONFIG_NO_BREAK_ITERATION | |
15 | ||
16 | #include "brkeng.h" | |
17 | #include "dictbe.h" | |
18 | #include "unicode/uniset.h" | |
19 | #include "unicode/chariter.h" | |
20 | #include "unicode/ubrk.h" | |
21 | #include "uvectr32.h" | |
22 | #include "uvector.h" | |
23 | #include "uassert.h" | |
24 | #include "unicode/normlzr.h" | |
25 | #include "cmemory.h" | |
26 | #include "dictionarydata.h" | |
27 | ||
28 | U_NAMESPACE_BEGIN | |
29 | ||
30 | /* | |
31 | ****************************************************************** | |
32 | */ | |
33 | ||
34 | DictionaryBreakEngine::DictionaryBreakEngine() { | |
35 | } | |
36 | ||
37 | DictionaryBreakEngine::~DictionaryBreakEngine() { | |
38 | } | |
39 | ||
40 | UBool | |
41 | DictionaryBreakEngine::handles(UChar32 c) const { | |
42 | return fSet.contains(c); | |
43 | } | |
44 | ||
45 | int32_t | |
46 | DictionaryBreakEngine::findBreaks( UText *text, | |
47 | int32_t startPos, | |
48 | int32_t endPos, | |
49 | UVector32 &foundBreaks ) const { | |
50 | (void)startPos; // TODO: remove this param? | |
51 | int32_t result = 0; | |
52 | ||
53 | // Find the span of characters included in the set. | |
54 | // The span to break begins at the current position in the text, and | |
55 | // extends towards the start or end of the text, depending on 'reverse'. | |
56 | ||
57 | int32_t start = (int32_t)utext_getNativeIndex(text); | |
58 | int32_t current; | |
59 | int32_t rangeStart; | |
60 | int32_t rangeEnd; | |
61 | UChar32 c = utext_current32(text); | |
62 | while((current = (int32_t)utext_getNativeIndex(text)) < endPos && fSet.contains(c)) { | |
63 | utext_next32(text); // TODO: recast loop for postincrement | |
64 | c = utext_current32(text); | |
65 | } | |
66 | rangeStart = start; | |
67 | rangeEnd = current; | |
68 | result = divideUpDictionaryRange(text, rangeStart, rangeEnd, foundBreaks); | |
69 | utext_setNativeIndex(text, current); | |
70 | ||
71 | return result; | |
72 | } | |
73 | ||
74 | void | |
75 | DictionaryBreakEngine::setCharacters( const UnicodeSet &set ) { | |
76 | fSet = set; | |
77 | // Compact for caching | |
78 | fSet.compact(); | |
79 | } | |
80 | ||
81 | /* | |
82 | ****************************************************************** | |
83 | * PossibleWord | |
84 | */ | |
85 | ||
86 | // Helper class for improving readability of the Thai/Lao/Khmer word break | |
87 | // algorithm. The implementation is completely inline. | |
88 | ||
89 | // List size, limited by the maximum number of words in the dictionary | |
90 | // that form a nested sequence. | |
91 | static const int32_t POSSIBLE_WORD_LIST_MAX = 20; | |
92 | ||
93 | class PossibleWord { | |
94 | private: | |
95 | // list of word candidate lengths, in increasing length order | |
96 | // TODO: bytes would be sufficient for word lengths. | |
97 | int32_t count; // Count of candidates | |
98 | int32_t prefix; // The longest match with a dictionary word | |
99 | int32_t offset; // Offset in the text of these candidates | |
100 | int32_t mark; // The preferred candidate's offset | |
101 | int32_t current; // The candidate we're currently looking at | |
102 | int32_t cuLengths[POSSIBLE_WORD_LIST_MAX]; // Word Lengths, in code units. | |
103 | int32_t cpLengths[POSSIBLE_WORD_LIST_MAX]; // Word Lengths, in code points. | |
104 | ||
105 | public: | |
106 | PossibleWord() : count(0), prefix(0), offset(-1), mark(0), current(0) {} | |
107 | ~PossibleWord() {} | |
108 | ||
109 | // Fill the list of candidates if needed, select the longest, and return the number found | |
110 | int32_t candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd ); | |
111 | ||
112 | // Select the currently marked candidate, point after it in the text, and invalidate self | |
113 | int32_t acceptMarked( UText *text ); | |
114 | ||
115 | // Back up from the current candidate to the next shorter one; return TRUE if that exists | |
116 | // and point the text after it | |
117 | UBool backUp( UText *text ); | |
118 | ||
119 | // Return the longest prefix this candidate location shares with a dictionary word | |
120 | // Return value is in code points. | |
121 | int32_t longestPrefix() { return prefix; } | |
122 | ||
123 | // Mark the current candidate as the one we like | |
124 | void markCurrent() { mark = current; } | |
125 | ||
126 | // Get length in code points of the marked word. | |
127 | int32_t markedCPLength() { return cpLengths[mark]; } | |
128 | }; | |
129 | ||
130 | ||
131 | int32_t PossibleWord::candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd ) { | |
132 | // TODO: If getIndex is too slow, use offset < 0 and add discardAll() | |
133 | int32_t start = (int32_t)utext_getNativeIndex(text); | |
134 | if (start != offset) { | |
135 | offset = start; | |
136 | count = dict->matches(text, rangeEnd-start, UPRV_LENGTHOF(cuLengths), cuLengths, cpLengths, NULL, &prefix); | |
137 | // Dictionary leaves text after longest prefix, not longest word. Back up. | |
138 | if (count <= 0) { | |
139 | utext_setNativeIndex(text, start); | |
140 | } | |
141 | } | |
142 | if (count > 0) { | |
143 | utext_setNativeIndex(text, start+cuLengths[count-1]); | |
144 | } | |
145 | current = count-1; | |
146 | mark = current; | |
147 | return count; | |
148 | } | |
149 | ||
150 | int32_t | |
151 | PossibleWord::acceptMarked( UText *text ) { | |
152 | utext_setNativeIndex(text, offset + cuLengths[mark]); | |
153 | return cuLengths[mark]; | |
154 | } | |
155 | ||
156 | ||
157 | UBool | |
158 | PossibleWord::backUp( UText *text ) { | |
159 | if (current > 0) { | |
160 | utext_setNativeIndex(text, offset + cuLengths[--current]); | |
161 | return TRUE; | |
162 | } | |
163 | return FALSE; | |
164 | } | |
165 | ||
166 | /* | |
167 | ****************************************************************** | |
168 | * ThaiBreakEngine | |
169 | */ | |
170 | ||
171 | // How many words in a row are "good enough"? | |
172 | static const int32_t THAI_LOOKAHEAD = 3; | |
173 | ||
174 | // Will not combine a non-word with a preceding dictionary word longer than this | |
175 | static const int32_t THAI_ROOT_COMBINE_THRESHOLD = 3; | |
176 | ||
177 | // Will not combine a non-word that shares at least this much prefix with a | |
178 | // dictionary word, with a preceding word | |
179 | static const int32_t THAI_PREFIX_COMBINE_THRESHOLD = 3; | |
180 | ||
181 | // Ellision character | |
182 | static const int32_t THAI_PAIYANNOI = 0x0E2F; | |
183 | ||
184 | // Repeat character | |
185 | static const int32_t THAI_MAIYAMOK = 0x0E46; | |
186 | ||
187 | // Minimum word size | |
188 | static const int32_t THAI_MIN_WORD = 2; | |
189 | ||
190 | // Minimum number of characters for two words | |
191 | static const int32_t THAI_MIN_WORD_SPAN = THAI_MIN_WORD * 2; | |
192 | ||
193 | ThaiBreakEngine::ThaiBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status) | |
194 | : DictionaryBreakEngine(), | |
195 | fDictionary(adoptDictionary) | |
196 | { | |
197 | fThaiWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Thai:]&[:LineBreak=SA:]]"), status); | |
198 | if (U_SUCCESS(status)) { | |
199 | setCharacters(fThaiWordSet); | |
200 | } | |
201 | fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Thai:]&[:LineBreak=SA:]&[:M:]]"), status); | |
202 | fMarkSet.add(0x0020); | |
203 | fEndWordSet = fThaiWordSet; | |
204 | fEndWordSet.remove(0x0E31); // MAI HAN-AKAT | |
205 | fEndWordSet.remove(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI | |
206 | fBeginWordSet.add(0x0E01, 0x0E2E); // KO KAI through HO NOKHUK | |
207 | fBeginWordSet.add(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI | |
208 | fSuffixSet.add(THAI_PAIYANNOI); | |
209 | fSuffixSet.add(THAI_MAIYAMOK); | |
210 | ||
211 | // Compact for caching. | |
212 | fMarkSet.compact(); | |
213 | fEndWordSet.compact(); | |
214 | fBeginWordSet.compact(); | |
215 | fSuffixSet.compact(); | |
216 | } | |
217 | ||
218 | ThaiBreakEngine::~ThaiBreakEngine() { | |
219 | delete fDictionary; | |
220 | } | |
221 | ||
222 | int32_t | |
223 | ThaiBreakEngine::divideUpDictionaryRange( UText *text, | |
224 | int32_t rangeStart, | |
225 | int32_t rangeEnd, | |
226 | UVector32 &foundBreaks ) const { | |
227 | utext_setNativeIndex(text, rangeStart); | |
228 | utext_moveIndex32(text, THAI_MIN_WORD_SPAN); | |
229 | if (utext_getNativeIndex(text) >= rangeEnd) { | |
230 | return 0; // Not enough characters for two words | |
231 | } | |
232 | utext_setNativeIndex(text, rangeStart); | |
233 | ||
234 | ||
235 | uint32_t wordsFound = 0; | |
236 | int32_t cpWordLength = 0; // Word Length in Code Points. | |
237 | int32_t cuWordLength = 0; // Word length in code units (UText native indexing) | |
238 | int32_t current; | |
239 | UErrorCode status = U_ZERO_ERROR; | |
240 | PossibleWord words[THAI_LOOKAHEAD]; | |
241 | ||
242 | utext_setNativeIndex(text, rangeStart); | |
243 | ||
244 | while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) { | |
245 | cpWordLength = 0; | |
246 | cuWordLength = 0; | |
247 | ||
248 | // Look for candidate words at the current position | |
249 | int32_t candidates = words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); | |
250 | ||
251 | // If we found exactly one, use that | |
252 | if (candidates == 1) { | |
253 | cuWordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text); | |
254 | cpWordLength = words[wordsFound % THAI_LOOKAHEAD].markedCPLength(); | |
255 | wordsFound += 1; | |
256 | } | |
257 | // If there was more than one, see which one can take us forward the most words | |
258 | else if (candidates > 1) { | |
259 | // If we're already at the end of the range, we're done | |
260 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { | |
261 | goto foundBest; | |
262 | } | |
263 | do { | |
264 | int32_t wordsMatched = 1; | |
265 | if (words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { | |
266 | if (wordsMatched < 2) { | |
267 | // Followed by another dictionary word; mark first word as a good candidate | |
268 | words[wordsFound%THAI_LOOKAHEAD].markCurrent(); | |
269 | wordsMatched = 2; | |
270 | } | |
271 | ||
272 | // If we're already at the end of the range, we're done | |
273 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { | |
274 | goto foundBest; | |
275 | } | |
276 | ||
277 | // See if any of the possible second words is followed by a third word | |
278 | do { | |
279 | // If we find a third word, stop right away | |
280 | if (words[(wordsFound + 2) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { | |
281 | words[wordsFound % THAI_LOOKAHEAD].markCurrent(); | |
282 | goto foundBest; | |
283 | } | |
284 | } | |
285 | while (words[(wordsFound + 1) % THAI_LOOKAHEAD].backUp(text)); | |
286 | } | |
287 | } | |
288 | while (words[wordsFound % THAI_LOOKAHEAD].backUp(text)); | |
289 | foundBest: | |
290 | // Set UText position to after the accepted word. | |
291 | cuWordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text); | |
292 | cpWordLength = words[wordsFound % THAI_LOOKAHEAD].markedCPLength(); | |
293 | wordsFound += 1; | |
294 | } | |
295 | ||
296 | // We come here after having either found a word or not. We look ahead to the | |
297 | // next word. If it's not a dictionary word, we will combine it with the word we | |
298 | // just found (if there is one), but only if the preceding word does not exceed | |
299 | // the threshold. | |
300 | // The text iterator should now be positioned at the end of the word we found. | |
301 | ||
302 | UChar32 uc = 0; | |
303 | if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < THAI_ROOT_COMBINE_THRESHOLD) { | |
304 | // if it is a dictionary word, do nothing. If it isn't, then if there is | |
305 | // no preceding word, or the non-word shares less than the minimum threshold | |
306 | // of characters with a dictionary word, then scan to resynchronize | |
307 | if (words[wordsFound % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 | |
308 | && (cuWordLength == 0 | |
309 | || words[wordsFound%THAI_LOOKAHEAD].longestPrefix() < THAI_PREFIX_COMBINE_THRESHOLD)) { | |
310 | // Look for a plausible word boundary | |
311 | int32_t remaining = rangeEnd - (current+cuWordLength); | |
312 | UChar32 pc; | |
313 | int32_t chars = 0; | |
314 | for (;;) { | |
315 | int32_t pcIndex = (int32_t)utext_getNativeIndex(text); | |
316 | pc = utext_next32(text); | |
317 | int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex; | |
318 | chars += pcSize; | |
319 | remaining -= pcSize; | |
320 | if (remaining <= 0) { | |
321 | break; | |
322 | } | |
323 | uc = utext_current32(text); | |
324 | if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { | |
325 | // Maybe. See if it's in the dictionary. | |
326 | // NOTE: In the original Apple code, checked that the next | |
327 | // two characters after uc were not 0x0E4C THANTHAKHAT before | |
328 | // checking the dictionary. That is just a performance filter, | |
329 | // but it's not clear it's faster than checking the trie. | |
330 | int32_t num_candidates = words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); | |
331 | utext_setNativeIndex(text, current + cuWordLength + chars); | |
332 | if (num_candidates > 0) { | |
333 | break; | |
334 | } | |
335 | } | |
336 | } | |
337 | ||
338 | // Bump the word count if there wasn't already one | |
339 | if (cuWordLength <= 0) { | |
340 | wordsFound += 1; | |
341 | } | |
342 | ||
343 | // Update the length with the passed-over characters | |
344 | cuWordLength += chars; | |
345 | } | |
346 | else { | |
347 | // Back up to where we were for next iteration | |
348 | utext_setNativeIndex(text, current+cuWordLength); | |
349 | } | |
350 | } | |
351 | ||
352 | // Never stop before a combining mark. | |
353 | int32_t currPos; | |
354 | while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { | |
355 | utext_next32(text); | |
356 | cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos; | |
357 | } | |
358 | ||
359 | // Look ahead for possible suffixes if a dictionary word does not follow. | |
360 | // We do this in code rather than using a rule so that the heuristic | |
361 | // resynch continues to function. For example, one of the suffix characters | |
362 | // could be a typo in the middle of a word. | |
363 | if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cuWordLength > 0) { | |
364 | if (words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 | |
365 | && fSuffixSet.contains(uc = utext_current32(text))) { | |
366 | if (uc == THAI_PAIYANNOI) { | |
367 | if (!fSuffixSet.contains(utext_previous32(text))) { | |
368 | // Skip over previous end and PAIYANNOI | |
369 | utext_next32(text); | |
370 | int32_t paiyannoiIndex = (int32_t)utext_getNativeIndex(text); | |
371 | utext_next32(text); | |
372 | cuWordLength += (int32_t)utext_getNativeIndex(text) - paiyannoiIndex; // Add PAIYANNOI to word | |
373 | uc = utext_current32(text); // Fetch next character | |
374 | } | |
375 | else { | |
376 | // Restore prior position | |
377 | utext_next32(text); | |
378 | } | |
379 | } | |
380 | if (uc == THAI_MAIYAMOK) { | |
381 | if (utext_previous32(text) != THAI_MAIYAMOK) { | |
382 | // Skip over previous end and MAIYAMOK | |
383 | utext_next32(text); | |
384 | int32_t maiyamokIndex = (int32_t)utext_getNativeIndex(text); | |
385 | utext_next32(text); | |
386 | cuWordLength += (int32_t)utext_getNativeIndex(text) - maiyamokIndex; // Add MAIYAMOK to word | |
387 | } | |
388 | else { | |
389 | // Restore prior position | |
390 | utext_next32(text); | |
391 | } | |
392 | } | |
393 | } | |
394 | else { | |
395 | utext_setNativeIndex(text, current+cuWordLength); | |
396 | } | |
397 | } | |
398 | ||
399 | // Did we find a word on this iteration? If so, push it on the break stack | |
400 | if (cuWordLength > 0) { | |
401 | foundBreaks.push((current+cuWordLength), status); | |
402 | } | |
403 | } | |
404 | ||
405 | // Don't return a break for the end of the dictionary range if there is one there. | |
406 | if (foundBreaks.peeki() >= rangeEnd) { | |
407 | (void) foundBreaks.popi(); | |
408 | wordsFound -= 1; | |
409 | } | |
410 | ||
411 | return wordsFound; | |
412 | } | |
413 | ||
414 | /* | |
415 | ****************************************************************** | |
416 | * LaoBreakEngine | |
417 | */ | |
418 | ||
419 | // How many words in a row are "good enough"? | |
420 | static const int32_t LAO_LOOKAHEAD = 3; | |
421 | ||
422 | // Will not combine a non-word with a preceding dictionary word longer than this | |
423 | static const int32_t LAO_ROOT_COMBINE_THRESHOLD = 3; | |
424 | ||
425 | // Will not combine a non-word that shares at least this much prefix with a | |
426 | // dictionary word, with a preceding word | |
427 | static const int32_t LAO_PREFIX_COMBINE_THRESHOLD = 3; | |
428 | ||
429 | // Minimum word size | |
430 | static const int32_t LAO_MIN_WORD = 2; | |
431 | ||
432 | // Minimum number of characters for two words | |
433 | static const int32_t LAO_MIN_WORD_SPAN = LAO_MIN_WORD * 2; | |
434 | ||
435 | LaoBreakEngine::LaoBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status) | |
436 | : DictionaryBreakEngine(), | |
437 | fDictionary(adoptDictionary) | |
438 | { | |
439 | fLaoWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Laoo:]&[:LineBreak=SA:]]"), status); | |
440 | if (U_SUCCESS(status)) { | |
441 | setCharacters(fLaoWordSet); | |
442 | } | |
443 | fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Laoo:]&[:LineBreak=SA:]&[:M:]]"), status); | |
444 | fMarkSet.add(0x0020); | |
445 | fEndWordSet = fLaoWordSet; | |
446 | fEndWordSet.remove(0x0EC0, 0x0EC4); // prefix vowels | |
447 | fBeginWordSet.add(0x0E81, 0x0EAE); // basic consonants (including holes for corresponding Thai characters) | |
448 | fBeginWordSet.add(0x0EDC, 0x0EDD); // digraph consonants (no Thai equivalent) | |
449 | fBeginWordSet.add(0x0EC0, 0x0EC4); // prefix vowels | |
450 | ||
451 | // Compact for caching. | |
452 | fMarkSet.compact(); | |
453 | fEndWordSet.compact(); | |
454 | fBeginWordSet.compact(); | |
455 | } | |
456 | ||
457 | LaoBreakEngine::~LaoBreakEngine() { | |
458 | delete fDictionary; | |
459 | } | |
460 | ||
461 | int32_t | |
462 | LaoBreakEngine::divideUpDictionaryRange( UText *text, | |
463 | int32_t rangeStart, | |
464 | int32_t rangeEnd, | |
465 | UVector32 &foundBreaks ) const { | |
466 | if ((rangeEnd - rangeStart) < LAO_MIN_WORD_SPAN) { | |
467 | return 0; // Not enough characters for two words | |
468 | } | |
469 | ||
470 | uint32_t wordsFound = 0; | |
471 | int32_t cpWordLength = 0; | |
472 | int32_t cuWordLength = 0; | |
473 | int32_t current; | |
474 | UErrorCode status = U_ZERO_ERROR; | |
475 | PossibleWord words[LAO_LOOKAHEAD]; | |
476 | ||
477 | utext_setNativeIndex(text, rangeStart); | |
478 | ||
479 | while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) { | |
480 | cuWordLength = 0; | |
481 | cpWordLength = 0; | |
482 | ||
483 | // Look for candidate words at the current position | |
484 | int32_t candidates = words[wordsFound%LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); | |
485 | ||
486 | // If we found exactly one, use that | |
487 | if (candidates == 1) { | |
488 | cuWordLength = words[wordsFound % LAO_LOOKAHEAD].acceptMarked(text); | |
489 | cpWordLength = words[wordsFound % LAO_LOOKAHEAD].markedCPLength(); | |
490 | wordsFound += 1; | |
491 | } | |
492 | // If there was more than one, see which one can take us forward the most words | |
493 | else if (candidates > 1) { | |
494 | // If we're already at the end of the range, we're done | |
495 | if (utext_getNativeIndex(text) >= rangeEnd) { | |
496 | goto foundBest; | |
497 | } | |
498 | do { | |
499 | int32_t wordsMatched = 1; | |
500 | if (words[(wordsFound + 1) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { | |
501 | if (wordsMatched < 2) { | |
502 | // Followed by another dictionary word; mark first word as a good candidate | |
503 | words[wordsFound%LAO_LOOKAHEAD].markCurrent(); | |
504 | wordsMatched = 2; | |
505 | } | |
506 | ||
507 | // If we're already at the end of the range, we're done | |
508 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { | |
509 | goto foundBest; | |
510 | } | |
511 | ||
512 | // See if any of the possible second words is followed by a third word | |
513 | do { | |
514 | // If we find a third word, stop right away | |
515 | if (words[(wordsFound + 2) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { | |
516 | words[wordsFound % LAO_LOOKAHEAD].markCurrent(); | |
517 | goto foundBest; | |
518 | } | |
519 | } | |
520 | while (words[(wordsFound + 1) % LAO_LOOKAHEAD].backUp(text)); | |
521 | } | |
522 | } | |
523 | while (words[wordsFound % LAO_LOOKAHEAD].backUp(text)); | |
524 | foundBest: | |
525 | cuWordLength = words[wordsFound % LAO_LOOKAHEAD].acceptMarked(text); | |
526 | cpWordLength = words[wordsFound % LAO_LOOKAHEAD].markedCPLength(); | |
527 | wordsFound += 1; | |
528 | } | |
529 | ||
530 | // We come here after having either found a word or not. We look ahead to the | |
531 | // next word. If it's not a dictionary word, we will combine it withe the word we | |
532 | // just found (if there is one), but only if the preceding word does not exceed | |
533 | // the threshold. | |
534 | // The text iterator should now be positioned at the end of the word we found. | |
535 | if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < LAO_ROOT_COMBINE_THRESHOLD) { | |
536 | // if it is a dictionary word, do nothing. If it isn't, then if there is | |
537 | // no preceding word, or the non-word shares less than the minimum threshold | |
538 | // of characters with a dictionary word, then scan to resynchronize | |
539 | if (words[wordsFound % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 | |
540 | && (cuWordLength == 0 | |
541 | || words[wordsFound%LAO_LOOKAHEAD].longestPrefix() < LAO_PREFIX_COMBINE_THRESHOLD)) { | |
542 | // Look for a plausible word boundary | |
543 | int32_t remaining = rangeEnd - (current + cuWordLength); | |
544 | UChar32 pc; | |
545 | UChar32 uc; | |
546 | int32_t chars = 0; | |
547 | for (;;) { | |
548 | int32_t pcIndex = (int32_t)utext_getNativeIndex(text); | |
549 | pc = utext_next32(text); | |
550 | int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex; | |
551 | chars += pcSize; | |
552 | remaining -= pcSize; | |
553 | if (remaining <= 0) { | |
554 | break; | |
555 | } | |
556 | uc = utext_current32(text); | |
557 | if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { | |
558 | // Maybe. See if it's in the dictionary. | |
559 | // TODO: this looks iffy; compare with old code. | |
560 | int32_t num_candidates = words[(wordsFound + 1) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); | |
561 | utext_setNativeIndex(text, current + cuWordLength + chars); | |
562 | if (num_candidates > 0) { | |
563 | break; | |
564 | } | |
565 | } | |
566 | } | |
567 | ||
568 | // Bump the word count if there wasn't already one | |
569 | if (cuWordLength <= 0) { | |
570 | wordsFound += 1; | |
571 | } | |
572 | ||
573 | // Update the length with the passed-over characters | |
574 | cuWordLength += chars; | |
575 | } | |
576 | else { | |
577 | // Back up to where we were for next iteration | |
578 | utext_setNativeIndex(text, current + cuWordLength); | |
579 | } | |
580 | } | |
581 | ||
582 | // Never stop before a combining mark. | |
583 | int32_t currPos; | |
584 | while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { | |
585 | utext_next32(text); | |
586 | cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos; | |
587 | } | |
588 | ||
589 | // Look ahead for possible suffixes if a dictionary word does not follow. | |
590 | // We do this in code rather than using a rule so that the heuristic | |
591 | // resynch continues to function. For example, one of the suffix characters | |
592 | // could be a typo in the middle of a word. | |
593 | // NOT CURRENTLY APPLICABLE TO LAO | |
594 | ||
595 | // Did we find a word on this iteration? If so, push it on the break stack | |
596 | if (cuWordLength > 0) { | |
597 | foundBreaks.push((current+cuWordLength), status); | |
598 | } | |
599 | } | |
600 | ||
601 | // Don't return a break for the end of the dictionary range if there is one there. | |
602 | if (foundBreaks.peeki() >= rangeEnd) { | |
603 | (void) foundBreaks.popi(); | |
604 | wordsFound -= 1; | |
605 | } | |
606 | ||
607 | return wordsFound; | |
608 | } | |
609 | ||
610 | /* | |
611 | ****************************************************************** | |
612 | * BurmeseBreakEngine | |
613 | */ | |
614 | ||
615 | // How many words in a row are "good enough"? | |
616 | static const int32_t BURMESE_LOOKAHEAD = 3; | |
617 | ||
618 | // Will not combine a non-word with a preceding dictionary word longer than this | |
619 | static const int32_t BURMESE_ROOT_COMBINE_THRESHOLD = 3; | |
620 | ||
621 | // Will not combine a non-word that shares at least this much prefix with a | |
622 | // dictionary word, with a preceding word | |
623 | static const int32_t BURMESE_PREFIX_COMBINE_THRESHOLD = 3; | |
624 | ||
625 | // Minimum word size | |
626 | static const int32_t BURMESE_MIN_WORD = 2; | |
627 | ||
628 | // Minimum number of characters for two words | |
629 | static const int32_t BURMESE_MIN_WORD_SPAN = BURMESE_MIN_WORD * 2; | |
630 | ||
631 | BurmeseBreakEngine::BurmeseBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status) | |
632 | : DictionaryBreakEngine(), | |
633 | fDictionary(adoptDictionary) | |
634 | { | |
635 | fBurmeseWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Mymr:]&[:LineBreak=SA:]]"), status); | |
636 | if (U_SUCCESS(status)) { | |
637 | setCharacters(fBurmeseWordSet); | |
638 | } | |
639 | fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Mymr:]&[:LineBreak=SA:]&[:M:]]"), status); | |
640 | fMarkSet.add(0x0020); | |
641 | fEndWordSet = fBurmeseWordSet; | |
642 | fBeginWordSet.add(0x1000, 0x102A); // basic consonants and independent vowels | |
643 | ||
644 | // Compact for caching. | |
645 | fMarkSet.compact(); | |
646 | fEndWordSet.compact(); | |
647 | fBeginWordSet.compact(); | |
648 | } | |
649 | ||
650 | BurmeseBreakEngine::~BurmeseBreakEngine() { | |
651 | delete fDictionary; | |
652 | } | |
653 | ||
654 | int32_t | |
655 | BurmeseBreakEngine::divideUpDictionaryRange( UText *text, | |
656 | int32_t rangeStart, | |
657 | int32_t rangeEnd, | |
658 | UVector32 &foundBreaks ) const { | |
659 | if ((rangeEnd - rangeStart) < BURMESE_MIN_WORD_SPAN) { | |
660 | return 0; // Not enough characters for two words | |
661 | } | |
662 | ||
663 | uint32_t wordsFound = 0; | |
664 | int32_t cpWordLength = 0; | |
665 | int32_t cuWordLength = 0; | |
666 | int32_t current; | |
667 | UErrorCode status = U_ZERO_ERROR; | |
668 | PossibleWord words[BURMESE_LOOKAHEAD]; | |
669 | ||
670 | utext_setNativeIndex(text, rangeStart); | |
671 | ||
672 | while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) { | |
673 | cuWordLength = 0; | |
674 | cpWordLength = 0; | |
675 | ||
676 | // Look for candidate words at the current position | |
677 | int32_t candidates = words[wordsFound%BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); | |
678 | ||
679 | // If we found exactly one, use that | |
680 | if (candidates == 1) { | |
681 | cuWordLength = words[wordsFound % BURMESE_LOOKAHEAD].acceptMarked(text); | |
682 | cpWordLength = words[wordsFound % BURMESE_LOOKAHEAD].markedCPLength(); | |
683 | wordsFound += 1; | |
684 | } | |
685 | // If there was more than one, see which one can take us forward the most words | |
686 | else if (candidates > 1) { | |
687 | // If we're already at the end of the range, we're done | |
688 | if (utext_getNativeIndex(text) >= rangeEnd) { | |
689 | goto foundBest; | |
690 | } | |
691 | do { | |
692 | int32_t wordsMatched = 1; | |
693 | if (words[(wordsFound + 1) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { | |
694 | if (wordsMatched < 2) { | |
695 | // Followed by another dictionary word; mark first word as a good candidate | |
696 | words[wordsFound%BURMESE_LOOKAHEAD].markCurrent(); | |
697 | wordsMatched = 2; | |
698 | } | |
699 | ||
700 | // If we're already at the end of the range, we're done | |
701 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { | |
702 | goto foundBest; | |
703 | } | |
704 | ||
705 | // See if any of the possible second words is followed by a third word | |
706 | do { | |
707 | // If we find a third word, stop right away | |
708 | if (words[(wordsFound + 2) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { | |
709 | words[wordsFound % BURMESE_LOOKAHEAD].markCurrent(); | |
710 | goto foundBest; | |
711 | } | |
712 | } | |
713 | while (words[(wordsFound + 1) % BURMESE_LOOKAHEAD].backUp(text)); | |
714 | } | |
715 | } | |
716 | while (words[wordsFound % BURMESE_LOOKAHEAD].backUp(text)); | |
717 | foundBest: | |
718 | cuWordLength = words[wordsFound % BURMESE_LOOKAHEAD].acceptMarked(text); | |
719 | cpWordLength = words[wordsFound % BURMESE_LOOKAHEAD].markedCPLength(); | |
720 | wordsFound += 1; | |
721 | } | |
722 | ||
723 | // We come here after having either found a word or not. We look ahead to the | |
724 | // next word. If it's not a dictionary word, we will combine it withe the word we | |
725 | // just found (if there is one), but only if the preceding word does not exceed | |
726 | // the threshold. | |
727 | // The text iterator should now be positioned at the end of the word we found. | |
728 | if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < BURMESE_ROOT_COMBINE_THRESHOLD) { | |
729 | // if it is a dictionary word, do nothing. If it isn't, then if there is | |
730 | // no preceding word, or the non-word shares less than the minimum threshold | |
731 | // of characters with a dictionary word, then scan to resynchronize | |
732 | if (words[wordsFound % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 | |
733 | && (cuWordLength == 0 | |
734 | || words[wordsFound%BURMESE_LOOKAHEAD].longestPrefix() < BURMESE_PREFIX_COMBINE_THRESHOLD)) { | |
735 | // Look for a plausible word boundary | |
736 | int32_t remaining = rangeEnd - (current + cuWordLength); | |
737 | UChar32 pc; | |
738 | UChar32 uc; | |
739 | int32_t chars = 0; | |
740 | for (;;) { | |
741 | int32_t pcIndex = (int32_t)utext_getNativeIndex(text); | |
742 | pc = utext_next32(text); | |
743 | int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex; | |
744 | chars += pcSize; | |
745 | remaining -= pcSize; | |
746 | if (remaining <= 0) { | |
747 | break; | |
748 | } | |
749 | uc = utext_current32(text); | |
750 | if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { | |
751 | // Maybe. See if it's in the dictionary. | |
752 | // TODO: this looks iffy; compare with old code. | |
753 | int32_t num_candidates = words[(wordsFound + 1) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); | |
754 | utext_setNativeIndex(text, current + cuWordLength + chars); | |
755 | if (num_candidates > 0) { | |
756 | break; | |
757 | } | |
758 | } | |
759 | } | |
760 | ||
761 | // Bump the word count if there wasn't already one | |
762 | if (cuWordLength <= 0) { | |
763 | wordsFound += 1; | |
764 | } | |
765 | ||
766 | // Update the length with the passed-over characters | |
767 | cuWordLength += chars; | |
768 | } | |
769 | else { | |
770 | // Back up to where we were for next iteration | |
771 | utext_setNativeIndex(text, current + cuWordLength); | |
772 | } | |
773 | } | |
774 | ||
775 | // Never stop before a combining mark. | |
776 | int32_t currPos; | |
777 | while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { | |
778 | utext_next32(text); | |
779 | cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos; | |
780 | } | |
781 | ||
782 | // Look ahead for possible suffixes if a dictionary word does not follow. | |
783 | // We do this in code rather than using a rule so that the heuristic | |
784 | // resynch continues to function. For example, one of the suffix characters | |
785 | // could be a typo in the middle of a word. | |
786 | // NOT CURRENTLY APPLICABLE TO BURMESE | |
787 | ||
788 | // Did we find a word on this iteration? If so, push it on the break stack | |
789 | if (cuWordLength > 0) { | |
790 | foundBreaks.push((current+cuWordLength), status); | |
791 | } | |
792 | } | |
793 | ||
794 | // Don't return a break for the end of the dictionary range if there is one there. | |
795 | if (foundBreaks.peeki() >= rangeEnd) { | |
796 | (void) foundBreaks.popi(); | |
797 | wordsFound -= 1; | |
798 | } | |
799 | ||
800 | return wordsFound; | |
801 | } | |
802 | ||
803 | /* | |
804 | ****************************************************************** | |
805 | * KhmerBreakEngine | |
806 | */ | |
807 | ||
808 | // How many words in a row are "good enough"? | |
809 | static const int32_t KHMER_LOOKAHEAD = 3; | |
810 | ||
811 | // Will not combine a non-word with a preceding dictionary word longer than this | |
812 | static const int32_t KHMER_ROOT_COMBINE_THRESHOLD = 3; | |
813 | ||
814 | // Will not combine a non-word that shares at least this much prefix with a | |
815 | // dictionary word, with a preceding word | |
816 | static const int32_t KHMER_PREFIX_COMBINE_THRESHOLD = 3; | |
817 | ||
818 | // Minimum word size | |
819 | static const int32_t KHMER_MIN_WORD = 2; | |
820 | ||
821 | // Minimum number of characters for two words | |
822 | static const int32_t KHMER_MIN_WORD_SPAN = KHMER_MIN_WORD * 2; | |
823 | ||
824 | KhmerBreakEngine::KhmerBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status) | |
825 | : DictionaryBreakEngine(), | |
826 | fDictionary(adoptDictionary) | |
827 | { | |
828 | fKhmerWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Khmr:]&[:LineBreak=SA:]]"), status); | |
829 | if (U_SUCCESS(status)) { | |
830 | setCharacters(fKhmerWordSet); | |
831 | } | |
832 | fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Khmr:]&[:LineBreak=SA:]&[:M:]]"), status); | |
833 | fMarkSet.add(0x0020); | |
834 | fEndWordSet = fKhmerWordSet; | |
835 | fBeginWordSet.add(0x1780, 0x17B3); | |
836 | //fBeginWordSet.add(0x17A3, 0x17A4); // deprecated vowels | |
837 | //fEndWordSet.remove(0x17A5, 0x17A9); // Khmer independent vowels that can't end a word | |
838 | //fEndWordSet.remove(0x17B2); // Khmer independent vowel that can't end a word | |
839 | fEndWordSet.remove(0x17D2); // KHMER SIGN COENG that combines some following characters | |
840 | //fEndWordSet.remove(0x17B6, 0x17C5); // Remove dependent vowels | |
841 | // fEndWordSet.remove(0x0E31); // MAI HAN-AKAT | |
842 | // fEndWordSet.remove(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI | |
843 | // fBeginWordSet.add(0x0E01, 0x0E2E); // KO KAI through HO NOKHUK | |
844 | // fBeginWordSet.add(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI | |
845 | // fSuffixSet.add(THAI_PAIYANNOI); | |
846 | // fSuffixSet.add(THAI_MAIYAMOK); | |
847 | ||
848 | // Compact for caching. | |
849 | fMarkSet.compact(); | |
850 | fEndWordSet.compact(); | |
851 | fBeginWordSet.compact(); | |
852 | // fSuffixSet.compact(); | |
853 | } | |
854 | ||
855 | KhmerBreakEngine::~KhmerBreakEngine() { | |
856 | delete fDictionary; | |
857 | } | |
858 | ||
859 | int32_t | |
860 | KhmerBreakEngine::divideUpDictionaryRange( UText *text, | |
861 | int32_t rangeStart, | |
862 | int32_t rangeEnd, | |
863 | UVector32 &foundBreaks ) const { | |
864 | if ((rangeEnd - rangeStart) < KHMER_MIN_WORD_SPAN) { | |
865 | return 0; // Not enough characters for two words | |
866 | } | |
867 | ||
868 | uint32_t wordsFound = 0; | |
869 | int32_t cpWordLength = 0; | |
870 | int32_t cuWordLength = 0; | |
871 | int32_t current; | |
872 | UErrorCode status = U_ZERO_ERROR; | |
873 | PossibleWord words[KHMER_LOOKAHEAD]; | |
874 | ||
875 | utext_setNativeIndex(text, rangeStart); | |
876 | ||
877 | while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) { | |
878 | cuWordLength = 0; | |
879 | cpWordLength = 0; | |
880 | ||
881 | // Look for candidate words at the current position | |
882 | int32_t candidates = words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); | |
883 | ||
884 | // If we found exactly one, use that | |
885 | if (candidates == 1) { | |
886 | cuWordLength = words[wordsFound % KHMER_LOOKAHEAD].acceptMarked(text); | |
887 | cpWordLength = words[wordsFound % KHMER_LOOKAHEAD].markedCPLength(); | |
888 | wordsFound += 1; | |
889 | } | |
890 | ||
891 | // If there was more than one, see which one can take us forward the most words | |
892 | else if (candidates > 1) { | |
893 | // If we're already at the end of the range, we're done | |
894 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { | |
895 | goto foundBest; | |
896 | } | |
897 | do { | |
898 | int32_t wordsMatched = 1; | |
899 | if (words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { | |
900 | if (wordsMatched < 2) { | |
901 | // Followed by another dictionary word; mark first word as a good candidate | |
902 | words[wordsFound % KHMER_LOOKAHEAD].markCurrent(); | |
903 | wordsMatched = 2; | |
904 | } | |
905 | ||
906 | // If we're already at the end of the range, we're done | |
907 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { | |
908 | goto foundBest; | |
909 | } | |
910 | ||
911 | // See if any of the possible second words is followed by a third word | |
912 | do { | |
913 | // If we find a third word, stop right away | |
914 | if (words[(wordsFound + 2) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { | |
915 | words[wordsFound % KHMER_LOOKAHEAD].markCurrent(); | |
916 | goto foundBest; | |
917 | } | |
918 | } | |
919 | while (words[(wordsFound + 1) % KHMER_LOOKAHEAD].backUp(text)); | |
920 | } | |
921 | } | |
922 | while (words[wordsFound % KHMER_LOOKAHEAD].backUp(text)); | |
923 | foundBest: | |
924 | cuWordLength = words[wordsFound % KHMER_LOOKAHEAD].acceptMarked(text); | |
925 | cpWordLength = words[wordsFound % KHMER_LOOKAHEAD].markedCPLength(); | |
926 | wordsFound += 1; | |
927 | } | |
928 | ||
929 | // We come here after having either found a word or not. We look ahead to the | |
930 | // next word. If it's not a dictionary word, we will combine it with the word we | |
931 | // just found (if there is one), but only if the preceding word does not exceed | |
932 | // the threshold. | |
933 | // The text iterator should now be positioned at the end of the word we found. | |
934 | if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < KHMER_ROOT_COMBINE_THRESHOLD) { | |
935 | // if it is a dictionary word, do nothing. If it isn't, then if there is | |
936 | // no preceding word, or the non-word shares less than the minimum threshold | |
937 | // of characters with a dictionary word, then scan to resynchronize | |
938 | if (words[wordsFound % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 | |
939 | && (cuWordLength == 0 | |
940 | || words[wordsFound % KHMER_LOOKAHEAD].longestPrefix() < KHMER_PREFIX_COMBINE_THRESHOLD)) { | |
941 | // Look for a plausible word boundary | |
942 | int32_t remaining = rangeEnd - (current+cuWordLength); | |
943 | UChar32 pc; | |
944 | UChar32 uc; | |
945 | int32_t chars = 0; | |
946 | for (;;) { | |
947 | int32_t pcIndex = (int32_t)utext_getNativeIndex(text); | |
948 | pc = utext_next32(text); | |
949 | int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex; | |
950 | chars += pcSize; | |
951 | remaining -= pcSize; | |
952 | if (remaining <= 0) { | |
953 | break; | |
954 | } | |
955 | uc = utext_current32(text); | |
956 | if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { | |
957 | // Maybe. See if it's in the dictionary. | |
958 | int32_t num_candidates = words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); | |
959 | utext_setNativeIndex(text, current+cuWordLength+chars); | |
960 | if (num_candidates > 0) { | |
961 | break; | |
962 | } | |
963 | } | |
964 | } | |
965 | ||
966 | // Bump the word count if there wasn't already one | |
967 | if (cuWordLength <= 0) { | |
968 | wordsFound += 1; | |
969 | } | |
970 | ||
971 | // Update the length with the passed-over characters | |
972 | cuWordLength += chars; | |
973 | } | |
974 | else { | |
975 | // Back up to where we were for next iteration | |
976 | utext_setNativeIndex(text, current+cuWordLength); | |
977 | } | |
978 | } | |
979 | ||
980 | // Never stop before a combining mark. | |
981 | int32_t currPos; | |
982 | while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { | |
983 | utext_next32(text); | |
984 | cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos; | |
985 | } | |
986 | ||
987 | // Look ahead for possible suffixes if a dictionary word does not follow. | |
988 | // We do this in code rather than using a rule so that the heuristic | |
989 | // resynch continues to function. For example, one of the suffix characters | |
990 | // could be a typo in the middle of a word. | |
991 | // if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength > 0) { | |
992 | // if (words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 | |
993 | // && fSuffixSet.contains(uc = utext_current32(text))) { | |
994 | // if (uc == KHMER_PAIYANNOI) { | |
995 | // if (!fSuffixSet.contains(utext_previous32(text))) { | |
996 | // // Skip over previous end and PAIYANNOI | |
997 | // utext_next32(text); | |
998 | // utext_next32(text); | |
999 | // wordLength += 1; // Add PAIYANNOI to word | |
1000 | // uc = utext_current32(text); // Fetch next character | |
1001 | // } | |
1002 | // else { | |
1003 | // // Restore prior position | |
1004 | // utext_next32(text); | |
1005 | // } | |
1006 | // } | |
1007 | // if (uc == KHMER_MAIYAMOK) { | |
1008 | // if (utext_previous32(text) != KHMER_MAIYAMOK) { | |
1009 | // // Skip over previous end and MAIYAMOK | |
1010 | // utext_next32(text); | |
1011 | // utext_next32(text); | |
1012 | // wordLength += 1; // Add MAIYAMOK to word | |
1013 | // } | |
1014 | // else { | |
1015 | // // Restore prior position | |
1016 | // utext_next32(text); | |
1017 | // } | |
1018 | // } | |
1019 | // } | |
1020 | // else { | |
1021 | // utext_setNativeIndex(text, current+wordLength); | |
1022 | // } | |
1023 | // } | |
1024 | ||
1025 | // Did we find a word on this iteration? If so, push it on the break stack | |
1026 | if (cuWordLength > 0) { | |
1027 | foundBreaks.push((current+cuWordLength), status); | |
1028 | } | |
1029 | } | |
1030 | ||
1031 | // Don't return a break for the end of the dictionary range if there is one there. | |
1032 | if (foundBreaks.peeki() >= rangeEnd) { | |
1033 | (void) foundBreaks.popi(); | |
1034 | wordsFound -= 1; | |
1035 | } | |
1036 | ||
1037 | return wordsFound; | |
1038 | } | |
1039 | ||
1040 | #if !UCONFIG_NO_NORMALIZATION | |
1041 | /* | |
1042 | ****************************************************************** | |
1043 | * CjkBreakEngine | |
1044 | */ | |
1045 | static const uint32_t kuint32max = 0xFFFFFFFF; | |
1046 | CjkBreakEngine::CjkBreakEngine(DictionaryMatcher *adoptDictionary, LanguageType type, UErrorCode &status) | |
1047 | : DictionaryBreakEngine(), fDictionary(adoptDictionary) { | |
1048 | // Korean dictionary only includes Hangul syllables | |
1049 | fHangulWordSet.applyPattern(UNICODE_STRING_SIMPLE("[\\uac00-\\ud7a3]"), status); | |
1050 | fHanWordSet.applyPattern(UNICODE_STRING_SIMPLE("[:Han:]"), status); | |
1051 | fKatakanaWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Katakana:]\\uff9e\\uff9f]"), status); | |
1052 | fHiraganaWordSet.applyPattern(UNICODE_STRING_SIMPLE("[:Hiragana:]"), status); | |
1053 | nfkcNorm2 = Normalizer2::getNFKCInstance(status); | |
1054 | ||
1055 | if (U_SUCCESS(status)) { | |
1056 | // handle Korean and Japanese/Chinese using different dictionaries | |
1057 | if (type == kKorean) { | |
1058 | setCharacters(fHangulWordSet); | |
1059 | } else { //Chinese and Japanese | |
1060 | UnicodeSet cjSet; | |
1061 | cjSet.addAll(fHanWordSet); | |
1062 | cjSet.addAll(fKatakanaWordSet); | |
1063 | cjSet.addAll(fHiraganaWordSet); | |
1064 | cjSet.add(0xFF70); // HALFWIDTH KATAKANA-HIRAGANA PROLONGED SOUND MARK | |
1065 | cjSet.add(0x30FC); // KATAKANA-HIRAGANA PROLONGED SOUND MARK | |
1066 | setCharacters(cjSet); | |
1067 | } | |
1068 | } | |
1069 | } | |
1070 | ||
1071 | CjkBreakEngine::~CjkBreakEngine(){ | |
1072 | delete fDictionary; | |
1073 | } | |
1074 | ||
1075 | // The katakanaCost values below are based on the length frequencies of all | |
1076 | // katakana phrases in the dictionary | |
1077 | static const int32_t kMaxKatakanaLength = 8; | |
1078 | static const int32_t kMaxKatakanaGroupLength = 20; | |
1079 | static const uint32_t maxSnlp = 255; | |
1080 | ||
1081 | static inline uint32_t getKatakanaCost(int32_t wordLength){ | |
1082 | //TODO: fill array with actual values from dictionary! | |
1083 | static const uint32_t katakanaCost[kMaxKatakanaLength + 1] | |
1084 | = {8192, 984, 408, 240, 204, 252, 300, 372, 480}; | |
1085 | return (wordLength > kMaxKatakanaLength) ? 8192 : katakanaCost[wordLength]; | |
1086 | } | |
1087 | ||
1088 | static inline bool isKatakana(UChar32 value) { | |
1089 | return (value >= 0x30A1 && value <= 0x30FE && value != 0x30FB) || | |
1090 | (value >= 0xFF66 && value <= 0xFF9f); | |
1091 | } | |
1092 | ||
1093 | ||
1094 | // Function for accessing internal utext flags. | |
1095 | // Replicates an internal UText function. | |
1096 | ||
1097 | static inline int32_t utext_i32_flag(int32_t bitIndex) { | |
1098 | return (int32_t)1 << bitIndex; | |
1099 | } | |
1100 | ||
1101 | ||
1102 | /* | |
1103 | * @param text A UText representing the text | |
1104 | * @param rangeStart The start of the range of dictionary characters | |
1105 | * @param rangeEnd The end of the range of dictionary characters | |
1106 | * @param foundBreaks vector<int32> to receive the break positions | |
1107 | * @return The number of breaks found | |
1108 | */ | |
1109 | int32_t | |
1110 | CjkBreakEngine::divideUpDictionaryRange( UText *inText, | |
1111 | int32_t rangeStart, | |
1112 | int32_t rangeEnd, | |
1113 | UVector32 &foundBreaks ) const { | |
1114 | if (rangeStart >= rangeEnd) { | |
1115 | return 0; | |
1116 | } | |
1117 | ||
1118 | // UnicodeString version of input UText, NFKC normalized if necessary. | |
1119 | UnicodeString inString; | |
1120 | ||
1121 | // inputMap[inStringIndex] = corresponding native index from UText inText. | |
1122 | // If NULL then mapping is 1:1 | |
1123 | LocalPointer<UVector32> inputMap; | |
1124 | ||
1125 | UErrorCode status = U_ZERO_ERROR; | |
1126 | ||
1127 | ||
1128 | // if UText has the input string as one contiguous UTF-16 chunk | |
1129 | if ((inText->providerProperties & utext_i32_flag(UTEXT_PROVIDER_STABLE_CHUNKS)) && | |
1130 | inText->chunkNativeStart <= rangeStart && | |
1131 | inText->chunkNativeLimit >= rangeEnd && | |
1132 | inText->nativeIndexingLimit >= rangeEnd - inText->chunkNativeStart) { | |
1133 | ||
1134 | // Input UText is in one contiguous UTF-16 chunk. | |
1135 | // Use Read-only aliasing UnicodeString. | |
1136 | inString.setTo(FALSE, | |
1137 | inText->chunkContents + rangeStart - inText->chunkNativeStart, | |
1138 | rangeEnd - rangeStart); | |
1139 | } else { | |
1140 | // Copy the text from the original inText (UText) to inString (UnicodeString). | |
1141 | // Create a map from UnicodeString indices -> UText offsets. | |
1142 | utext_setNativeIndex(inText, rangeStart); | |
1143 | int32_t limit = rangeEnd; | |
1144 | U_ASSERT(limit <= utext_nativeLength(inText)); | |
1145 | if (limit > utext_nativeLength(inText)) { | |
1146 | limit = (int32_t)utext_nativeLength(inText); | |
1147 | } | |
1148 | inputMap.adoptInsteadAndCheckErrorCode(new UVector32(status), status); | |
1149 | if (U_FAILURE(status)) { | |
1150 | return 0; | |
1151 | } | |
1152 | while (utext_getNativeIndex(inText) < limit) { | |
1153 | int32_t nativePosition = (int32_t)utext_getNativeIndex(inText); | |
1154 | UChar32 c = utext_next32(inText); | |
1155 | U_ASSERT(c != U_SENTINEL); | |
1156 | inString.append(c); | |
1157 | while (inputMap->size() < inString.length()) { | |
1158 | inputMap->addElement(nativePosition, status); | |
1159 | } | |
1160 | } | |
1161 | inputMap->addElement(limit, status); | |
1162 | } | |
1163 | ||
1164 | ||
1165 | if (!nfkcNorm2->isNormalized(inString, status)) { | |
1166 | UnicodeString normalizedInput; | |
1167 | // normalizedMap[normalizedInput position] == original UText position. | |
1168 | LocalPointer<UVector32> normalizedMap(new UVector32(status), status); | |
1169 | if (U_FAILURE(status)) { | |
1170 | return 0; | |
1171 | } | |
1172 | ||
1173 | UnicodeString fragment; | |
1174 | UnicodeString normalizedFragment; | |
1175 | for (int32_t srcI = 0; srcI < inString.length();) { // Once per normalization chunk | |
1176 | fragment.remove(); | |
1177 | int32_t fragmentStartI = srcI; | |
1178 | UChar32 c = inString.char32At(srcI); | |
1179 | for (;;) { | |
1180 | fragment.append(c); | |
1181 | srcI = inString.moveIndex32(srcI, 1); | |
1182 | if (srcI == inString.length()) { | |
1183 | break; | |
1184 | } | |
1185 | c = inString.char32At(srcI); | |
1186 | if (nfkcNorm2->hasBoundaryBefore(c)) { | |
1187 | break; | |
1188 | } | |
1189 | } | |
1190 | nfkcNorm2->normalize(fragment, normalizedFragment, status); | |
1191 | normalizedInput.append(normalizedFragment); | |
1192 | ||
1193 | // Map every position in the normalized chunk to the start of the chunk | |
1194 | // in the original input. | |
1195 | int32_t fragmentOriginalStart = inputMap.isValid() ? | |
1196 | inputMap->elementAti(fragmentStartI) : fragmentStartI+rangeStart; | |
1197 | while (normalizedMap->size() < normalizedInput.length()) { | |
1198 | normalizedMap->addElement(fragmentOriginalStart, status); | |
1199 | if (U_FAILURE(status)) { | |
1200 | break; | |
1201 | } | |
1202 | } | |
1203 | } | |
1204 | U_ASSERT(normalizedMap->size() == normalizedInput.length()); | |
1205 | int32_t nativeEnd = inputMap.isValid() ? | |
1206 | inputMap->elementAti(inString.length()) : inString.length()+rangeStart; | |
1207 | normalizedMap->addElement(nativeEnd, status); | |
1208 | ||
1209 | inputMap = std::move(normalizedMap); | |
1210 | inString = std::move(normalizedInput); | |
1211 | } | |
1212 | ||
1213 | int32_t numCodePts = inString.countChar32(); | |
1214 | if (numCodePts != inString.length()) { | |
1215 | // There are supplementary characters in the input. | |
1216 | // The dictionary will produce boundary positions in terms of code point indexes, | |
1217 | // not in terms of code unit string indexes. | |
1218 | // Use the inputMap mechanism to take care of this in addition to indexing differences | |
1219 | // from normalization and/or UTF-8 input. | |
1220 | UBool hadExistingMap = inputMap.isValid(); | |
1221 | if (!hadExistingMap) { | |
1222 | inputMap.adoptInsteadAndCheckErrorCode(new UVector32(status), status); | |
1223 | if (U_FAILURE(status)) { | |
1224 | return 0; | |
1225 | } | |
1226 | } | |
1227 | int32_t cpIdx = 0; | |
1228 | for (int32_t cuIdx = 0; ; cuIdx = inString.moveIndex32(cuIdx, 1)) { | |
1229 | U_ASSERT(cuIdx >= cpIdx); | |
1230 | if (hadExistingMap) { | |
1231 | inputMap->setElementAt(inputMap->elementAti(cuIdx), cpIdx); | |
1232 | } else { | |
1233 | inputMap->addElement(cuIdx+rangeStart, status); | |
1234 | } | |
1235 | cpIdx++; | |
1236 | if (cuIdx == inString.length()) { | |
1237 | break; | |
1238 | } | |
1239 | } | |
1240 | } | |
1241 | ||
1242 | // bestSnlp[i] is the snlp of the best segmentation of the first i | |
1243 | // code points in the range to be matched. | |
1244 | UVector32 bestSnlp(numCodePts + 1, status); | |
1245 | bestSnlp.addElement(0, status); | |
1246 | for(int32_t i = 1; i <= numCodePts; i++) { | |
1247 | bestSnlp.addElement(kuint32max, status); | |
1248 | } | |
1249 | ||
1250 | ||
1251 | // prev[i] is the index of the last CJK code point in the previous word in | |
1252 | // the best segmentation of the first i characters. | |
1253 | UVector32 prev(numCodePts + 1, status); | |
1254 | for(int32_t i = 0; i <= numCodePts; i++){ | |
1255 | prev.addElement(-1, status); | |
1256 | } | |
1257 | ||
1258 | const int32_t maxWordSize = 20; | |
1259 | UVector32 values(numCodePts, status); | |
1260 | values.setSize(numCodePts); | |
1261 | UVector32 lengths(numCodePts, status); | |
1262 | lengths.setSize(numCodePts); | |
1263 | ||
1264 | UText fu = UTEXT_INITIALIZER; | |
1265 | utext_openUnicodeString(&fu, &inString, &status); | |
1266 | ||
1267 | // Dynamic programming to find the best segmentation. | |
1268 | ||
1269 | // In outer loop, i is the code point index, | |
1270 | // ix is the corresponding string (code unit) index. | |
1271 | // They differ when the string contains supplementary characters. | |
1272 | int32_t ix = 0; | |
1273 | bool is_prev_katakana = false; | |
1274 | for (int32_t i = 0; i < numCodePts; ++i, ix = inString.moveIndex32(ix, 1)) { | |
1275 | if ((uint32_t)bestSnlp.elementAti(i) == kuint32max) { | |
1276 | continue; | |
1277 | } | |
1278 | ||
1279 | int32_t count; | |
1280 | utext_setNativeIndex(&fu, ix); | |
1281 | count = fDictionary->matches(&fu, maxWordSize, numCodePts, | |
1282 | NULL, lengths.getBuffer(), values.getBuffer(), NULL); | |
1283 | // Note: lengths is filled with code point lengths | |
1284 | // The NULL parameter is the ignored code unit lengths. | |
1285 | ||
1286 | // if there are no single character matches found in the dictionary | |
1287 | // starting with this character, treat character as a 1-character word | |
1288 | // with the highest value possible, i.e. the least likely to occur. | |
1289 | // Exclude Korean characters from this treatment, as they should be left | |
1290 | // together by default. | |
1291 | if ((count == 0 || lengths.elementAti(0) != 1) && | |
1292 | !fHangulWordSet.contains(inString.char32At(ix))) { | |
1293 | values.setElementAt(maxSnlp, count); // 255 | |
1294 | lengths.setElementAt(1, count++); | |
1295 | } | |
1296 | ||
1297 | for (int32_t j = 0; j < count; j++) { | |
1298 | uint32_t newSnlp = (uint32_t)bestSnlp.elementAti(i) + (uint32_t)values.elementAti(j); | |
1299 | int32_t ln_j_i = lengths.elementAti(j) + i; | |
1300 | if (newSnlp < (uint32_t)bestSnlp.elementAti(ln_j_i)) { | |
1301 | bestSnlp.setElementAt(newSnlp, ln_j_i); | |
1302 | prev.setElementAt(i, ln_j_i); | |
1303 | } | |
1304 | } | |
1305 | ||
1306 | // In Japanese, | |
1307 | // Katakana word in single character is pretty rare. So we apply | |
1308 | // the following heuristic to Katakana: any continuous run of Katakana | |
1309 | // characters is considered a candidate word with a default cost | |
1310 | // specified in the katakanaCost table according to its length. | |
1311 | ||
1312 | bool is_katakana = isKatakana(inString.char32At(ix)); | |
1313 | int32_t katakanaRunLength = 1; | |
1314 | if (!is_prev_katakana && is_katakana) { | |
1315 | int32_t j = inString.moveIndex32(ix, 1); | |
1316 | // Find the end of the continuous run of Katakana characters | |
1317 | while (j < inString.length() && katakanaRunLength < kMaxKatakanaGroupLength && | |
1318 | isKatakana(inString.char32At(j))) { | |
1319 | j = inString.moveIndex32(j, 1); | |
1320 | katakanaRunLength++; | |
1321 | } | |
1322 | if (katakanaRunLength < kMaxKatakanaGroupLength) { | |
1323 | uint32_t newSnlp = bestSnlp.elementAti(i) + getKatakanaCost(katakanaRunLength); | |
1324 | if (newSnlp < (uint32_t)bestSnlp.elementAti(i+katakanaRunLength)) { | |
1325 | bestSnlp.setElementAt(newSnlp, i+katakanaRunLength); | |
1326 | prev.setElementAt(i, i+katakanaRunLength); // prev[j] = i; | |
1327 | } | |
1328 | } | |
1329 | } | |
1330 | is_prev_katakana = is_katakana; | |
1331 | } | |
1332 | utext_close(&fu); | |
1333 | ||
1334 | // Start pushing the optimal offset index into t_boundary (t for tentative). | |
1335 | // prev[numCodePts] is guaranteed to be meaningful. | |
1336 | // We'll first push in the reverse order, i.e., | |
1337 | // t_boundary[0] = numCodePts, and afterwards do a swap. | |
1338 | UVector32 t_boundary(numCodePts+1, status); | |
1339 | ||
1340 | int32_t numBreaks = 0; | |
1341 | // No segmentation found, set boundary to end of range | |
1342 | if ((uint32_t)bestSnlp.elementAti(numCodePts) == kuint32max) { | |
1343 | t_boundary.addElement(numCodePts, status); | |
1344 | numBreaks++; | |
1345 | } else { | |
1346 | for (int32_t i = numCodePts; i > 0; i = prev.elementAti(i)) { | |
1347 | t_boundary.addElement(i, status); | |
1348 | numBreaks++; | |
1349 | } | |
1350 | U_ASSERT(prev.elementAti(t_boundary.elementAti(numBreaks - 1)) == 0); | |
1351 | } | |
1352 | ||
1353 | // Add a break for the start of the dictionary range if there is not one | |
1354 | // there already. | |
1355 | if (foundBreaks.size() == 0 || foundBreaks.peeki() < rangeStart) { | |
1356 | t_boundary.addElement(0, status); | |
1357 | numBreaks++; | |
1358 | } | |
1359 | ||
1360 | // Now that we're done, convert positions in t_boundary[] (indices in | |
1361 | // the normalized input string) back to indices in the original input UText | |
1362 | // while reversing t_boundary and pushing values to foundBreaks. | |
1363 | int32_t prevCPPos = -1; | |
1364 | int32_t prevUTextPos = -1; | |
1365 | for (int32_t i = numBreaks-1; i >= 0; i--) { | |
1366 | int32_t cpPos = t_boundary.elementAti(i); | |
1367 | U_ASSERT(cpPos > prevCPPos); | |
1368 | int32_t utextPos = inputMap.isValid() ? inputMap->elementAti(cpPos) : cpPos + rangeStart; | |
1369 | U_ASSERT(utextPos >= prevUTextPos); | |
1370 | if (utextPos > prevUTextPos) { | |
1371 | // Boundaries are added to foundBreaks output in ascending order. | |
1372 | U_ASSERT(foundBreaks.size() == 0 || foundBreaks.peeki() < utextPos); | |
1373 | foundBreaks.push(utextPos, status); | |
1374 | } else { | |
1375 | // Normalization expanded the input text, the dictionary found a boundary | |
1376 | // within the expansion, giving two boundaries with the same index in the | |
1377 | // original text. Ignore the second. See ticket #12918. | |
1378 | --numBreaks; | |
1379 | } | |
1380 | prevCPPos = cpPos; | |
1381 | prevUTextPos = utextPos; | |
1382 | } | |
1383 | (void)prevCPPos; // suppress compiler warnings about unused variable | |
1384 | ||
1385 | // inString goes out of scope | |
1386 | // inputMap goes out of scope | |
1387 | return numBreaks; | |
1388 | } | |
1389 | #endif | |
1390 | ||
1391 | U_NAMESPACE_END | |
1392 | ||
1393 | #endif /* #if !UCONFIG_NO_BREAK_ITERATION */ | |
1394 |