]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | ******************************************************************************* | |
3 | * | |
4 | * Copyright (C) 2003-2014, International Business Machines | |
5 | * Corporation and others. All Rights Reserved. | |
6 | * | |
7 | ******************************************************************************* | |
8 | * file name: gencnvex.c | |
9 | * encoding: US-ASCII | |
10 | * tab size: 8 (not used) | |
11 | * indentation:4 | |
12 | * | |
13 | * created on: 2003oct12 | |
14 | * created by: Markus W. Scherer | |
15 | */ | |
16 | ||
17 | #include <stdio.h> | |
18 | #include "unicode/utypes.h" | |
19 | #include "unicode/ustring.h" | |
20 | #include "cstring.h" | |
21 | #include "cmemory.h" | |
22 | #include "ucnv_cnv.h" | |
23 | #include "ucnvmbcs.h" | |
24 | #include "toolutil.h" | |
25 | #include "unewdata.h" | |
26 | #include "ucm.h" | |
27 | #include "makeconv.h" | |
28 | #include "genmbcs.h" | |
29 | ||
30 | static void | |
31 | CnvExtClose(NewConverter *cnvData); | |
32 | ||
33 | static UBool | |
34 | CnvExtIsValid(NewConverter *cnvData, | |
35 | const uint8_t *bytes, int32_t length); | |
36 | ||
37 | static UBool | |
38 | CnvExtAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData); | |
39 | ||
40 | static uint32_t | |
41 | CnvExtWrite(NewConverter *cnvData, const UConverterStaticData *staticData, | |
42 | UNewDataMemory *pData, int32_t tableType); | |
43 | ||
44 | typedef struct CnvExtData { | |
45 | NewConverter newConverter; | |
46 | ||
47 | UCMFile *ucm; | |
48 | ||
49 | /* toUnicode (state table in ucm->states) */ | |
50 | UToolMemory *toUTable, *toUUChars; | |
51 | ||
52 | /* fromUnicode */ | |
53 | UToolMemory *fromUTableUChars, *fromUTableValues, *fromUBytes; | |
54 | ||
55 | uint16_t stage1[MBCS_STAGE_1_SIZE]; | |
56 | uint16_t stage2[MBCS_STAGE_2_SIZE]; | |
57 | uint16_t stage3[0x10000<<UCNV_EXT_STAGE_2_LEFT_SHIFT]; /* 0x10000 because of 16-bit stage 2/3 indexes */ | |
58 | uint32_t stage3b[0x10000]; | |
59 | ||
60 | int32_t stage1Top, stage2Top, stage3Top, stage3bTop; | |
61 | ||
62 | /* for stage3 compaction of <subchar1> |2 mappings */ | |
63 | uint16_t stage3Sub1Block; | |
64 | ||
65 | /* statistics */ | |
66 | int32_t | |
67 | maxInBytes, maxOutBytes, maxBytesPerUChar, | |
68 | maxInUChars, maxOutUChars, maxUCharsPerByte; | |
69 | } CnvExtData; | |
70 | ||
71 | NewConverter * | |
72 | CnvExtOpen(UCMFile *ucm) { | |
73 | CnvExtData *extData; | |
74 | ||
75 | extData=(CnvExtData *)uprv_malloc(sizeof(CnvExtData)); | |
76 | if(extData==NULL) { | |
77 | printf("out of memory\n"); | |
78 | exit(U_MEMORY_ALLOCATION_ERROR); | |
79 | } | |
80 | uprv_memset(extData, 0, sizeof(CnvExtData)); | |
81 | ||
82 | extData->ucm=ucm; /* aliased, not owned */ | |
83 | ||
84 | extData->newConverter.close=CnvExtClose; | |
85 | extData->newConverter.isValid=CnvExtIsValid; | |
86 | extData->newConverter.addTable=CnvExtAddTable; | |
87 | extData->newConverter.write=CnvExtWrite; | |
88 | return &extData->newConverter; | |
89 | } | |
90 | ||
91 | static void | |
92 | CnvExtClose(NewConverter *cnvData) { | |
93 | CnvExtData *extData=(CnvExtData *)cnvData; | |
94 | if(extData!=NULL) { | |
95 | utm_close(extData->toUTable); | |
96 | utm_close(extData->toUUChars); | |
97 | utm_close(extData->fromUTableUChars); | |
98 | utm_close(extData->fromUTableValues); | |
99 | utm_close(extData->fromUBytes); | |
100 | uprv_free(extData); | |
101 | } | |
102 | } | |
103 | ||
104 | /* we do not expect this to be called */ | |
105 | static UBool | |
106 | CnvExtIsValid(NewConverter *cnvData, | |
107 | const uint8_t *bytes, int32_t length) { | |
108 | return FALSE; | |
109 | } | |
110 | ||
111 | static uint32_t | |
112 | CnvExtWrite(NewConverter *cnvData, const UConverterStaticData *staticData, | |
113 | UNewDataMemory *pData, int32_t tableType) { | |
114 | CnvExtData *extData=(CnvExtData *)cnvData; | |
115 | int32_t length, top, headerSize; | |
116 | ||
117 | int32_t indexes[UCNV_EXT_INDEXES_MIN_LENGTH]={ 0 }; | |
118 | ||
119 | if(tableType&TABLE_BASE) { | |
120 | headerSize=0; | |
121 | } else { | |
122 | _MBCSHeader header={ { 0, 0, 0, 0 }, 0, 0, 0, 0, 0, 0, 0 }; | |
123 | ||
124 | /* write the header and base table name for an extension-only table */ | |
125 | length=(int32_t)uprv_strlen(extData->ucm->baseName)+1; | |
126 | while(length&3) { | |
127 | /* add padding */ | |
128 | extData->ucm->baseName[length++]=0; | |
129 | } | |
130 | ||
131 | headerSize=MBCS_HEADER_V4_LENGTH*4+length; | |
132 | ||
133 | /* fill the header */ | |
134 | header.version[0]=4; | |
135 | header.version[1]=2; | |
136 | header.flags=(uint32_t)((headerSize<<8)|MBCS_OUTPUT_EXT_ONLY); | |
137 | ||
138 | /* write the header and the base table name */ | |
139 | udata_writeBlock(pData, &header, MBCS_HEADER_V4_LENGTH*4); | |
140 | udata_writeBlock(pData, extData->ucm->baseName, length); | |
141 | } | |
142 | ||
143 | /* fill indexes[] - offsets/indexes are in units of the target array */ | |
144 | top=0; | |
145 | ||
146 | indexes[UCNV_EXT_INDEXES_LENGTH]=length=UCNV_EXT_INDEXES_MIN_LENGTH; | |
147 | top+=length*4; | |
148 | ||
149 | indexes[UCNV_EXT_TO_U_INDEX]=top; | |
150 | indexes[UCNV_EXT_TO_U_LENGTH]=length=utm_countItems(extData->toUTable); | |
151 | top+=length*4; | |
152 | ||
153 | indexes[UCNV_EXT_TO_U_UCHARS_INDEX]=top; | |
154 | indexes[UCNV_EXT_TO_U_UCHARS_LENGTH]=length=utm_countItems(extData->toUUChars); | |
155 | top+=length*2; | |
156 | ||
157 | indexes[UCNV_EXT_FROM_U_UCHARS_INDEX]=top; | |
158 | length=utm_countItems(extData->fromUTableUChars); | |
159 | top+=length*2; | |
160 | ||
161 | if(top&3) { | |
162 | /* add padding */ | |
163 | *((UChar *)utm_alloc(extData->fromUTableUChars))=0; | |
164 | *((uint32_t *)utm_alloc(extData->fromUTableValues))=0; | |
165 | ++length; | |
166 | top+=2; | |
167 | } | |
168 | indexes[UCNV_EXT_FROM_U_LENGTH]=length; | |
169 | ||
170 | indexes[UCNV_EXT_FROM_U_VALUES_INDEX]=top; | |
171 | top+=length*4; | |
172 | ||
173 | indexes[UCNV_EXT_FROM_U_BYTES_INDEX]=top; | |
174 | length=utm_countItems(extData->fromUBytes); | |
175 | top+=length; | |
176 | ||
177 | if(top&1) { | |
178 | /* add padding */ | |
179 | *((uint8_t *)utm_alloc(extData->fromUBytes))=0; | |
180 | ++length; | |
181 | ++top; | |
182 | } | |
183 | indexes[UCNV_EXT_FROM_U_BYTES_LENGTH]=length; | |
184 | ||
185 | indexes[UCNV_EXT_FROM_U_STAGE_12_INDEX]=top; | |
186 | indexes[UCNV_EXT_FROM_U_STAGE_1_LENGTH]=length=extData->stage1Top; | |
187 | indexes[UCNV_EXT_FROM_U_STAGE_12_LENGTH]=length+=extData->stage2Top; | |
188 | top+=length*2; | |
189 | ||
190 | indexes[UCNV_EXT_FROM_U_STAGE_3_INDEX]=top; | |
191 | length=extData->stage3Top; | |
192 | top+=length*2; | |
193 | ||
194 | if(top&3) { | |
195 | /* add padding */ | |
196 | extData->stage3[extData->stage3Top++]=0; | |
197 | ++length; | |
198 | top+=2; | |
199 | } | |
200 | indexes[UCNV_EXT_FROM_U_STAGE_3_LENGTH]=length; | |
201 | ||
202 | indexes[UCNV_EXT_FROM_U_STAGE_3B_INDEX]=top; | |
203 | indexes[UCNV_EXT_FROM_U_STAGE_3B_LENGTH]=length=extData->stage3bTop; | |
204 | top+=length*4; | |
205 | ||
206 | indexes[UCNV_EXT_SIZE]=top; | |
207 | ||
208 | /* statistics */ | |
209 | indexes[UCNV_EXT_COUNT_BYTES]= | |
210 | (extData->maxInBytes<<16)| | |
211 | (extData->maxOutBytes<<8)| | |
212 | extData->maxBytesPerUChar; | |
213 | indexes[UCNV_EXT_COUNT_UCHARS]= | |
214 | (extData->maxInUChars<<16)| | |
215 | (extData->maxOutUChars<<8)| | |
216 | extData->maxUCharsPerByte; | |
217 | ||
218 | indexes[UCNV_EXT_FLAGS]=extData->ucm->ext->unicodeMask; | |
219 | ||
220 | /* write the extension data */ | |
221 | udata_writeBlock(pData, indexes, sizeof(indexes)); | |
222 | udata_writeBlock(pData, utm_getStart(extData->toUTable), indexes[UCNV_EXT_TO_U_LENGTH]*4); | |
223 | udata_writeBlock(pData, utm_getStart(extData->toUUChars), indexes[UCNV_EXT_TO_U_UCHARS_LENGTH]*2); | |
224 | ||
225 | udata_writeBlock(pData, utm_getStart(extData->fromUTableUChars), indexes[UCNV_EXT_FROM_U_LENGTH]*2); | |
226 | udata_writeBlock(pData, utm_getStart(extData->fromUTableValues), indexes[UCNV_EXT_FROM_U_LENGTH]*4); | |
227 | udata_writeBlock(pData, utm_getStart(extData->fromUBytes), indexes[UCNV_EXT_FROM_U_BYTES_LENGTH]); | |
228 | ||
229 | udata_writeBlock(pData, extData->stage1, extData->stage1Top*2); | |
230 | udata_writeBlock(pData, extData->stage2, extData->stage2Top*2); | |
231 | udata_writeBlock(pData, extData->stage3, extData->stage3Top*2); | |
232 | udata_writeBlock(pData, extData->stage3b, extData->stage3bTop*4); | |
233 | ||
234 | #if 0 | |
235 | { | |
236 | int32_t i, j; | |
237 | ||
238 | length=extData->stage1Top; | |
239 | printf("\nstage1[%x]:\n", length); | |
240 | ||
241 | for(i=0; i<length; ++i) { | |
242 | if(extData->stage1[i]!=length) { | |
243 | printf("stage1[%04x]=%04x\n", i, extData->stage1[i]); | |
244 | } | |
245 | } | |
246 | ||
247 | j=length; | |
248 | length=extData->stage2Top; | |
249 | printf("\nstage2[%x]:\n", length); | |
250 | ||
251 | for(i=0; i<length; ++j, ++i) { | |
252 | if(extData->stage2[i]!=0) { | |
253 | printf("stage12[%04x]=%04x\n", j, extData->stage2[i]); | |
254 | } | |
255 | } | |
256 | ||
257 | length=extData->stage3Top; | |
258 | printf("\nstage3[%x]:\n", length); | |
259 | ||
260 | for(i=0; i<length; ++i) { | |
261 | if(extData->stage3[i]!=0) { | |
262 | printf("stage3[%04x]=%04x\n", i, extData->stage3[i]); | |
263 | } | |
264 | } | |
265 | ||
266 | length=extData->stage3bTop; | |
267 | printf("\nstage3b[%x]:\n", length); | |
268 | ||
269 | for(i=0; i<length; ++i) { | |
270 | if(extData->stage3b[i]!=0) { | |
271 | printf("stage3b[%04x]=%08x\n", i, extData->stage3b[i]); | |
272 | } | |
273 | } | |
274 | } | |
275 | #endif | |
276 | ||
277 | if(VERBOSE) { | |
278 | printf("size of extension data: %ld\n", (long)top); | |
279 | } | |
280 | ||
281 | /* return the number of bytes that should have been written */ | |
282 | return (uint32_t)(headerSize+top); | |
283 | } | |
284 | ||
285 | /* to Unicode --------------------------------------------------------------- */ | |
286 | ||
287 | /* | |
288 | * Remove fromUnicode fallbacks and SUB mappings which are irrelevant for | |
289 | * the toUnicode table. | |
290 | * This includes mappings with MBCS_FROM_U_EXT_FLAG which were suitable | |
291 | * for the base toUnicode table but not for the base fromUnicode table. | |
292 | * The table must be sorted. | |
293 | * Modifies previous data in the reverseMap. | |
294 | */ | |
295 | static int32_t | |
296 | reduceToUMappings(UCMTable *table) { | |
297 | UCMapping *mappings; | |
298 | int32_t *map; | |
299 | int32_t i, j, count; | |
300 | int8_t flag; | |
301 | ||
302 | mappings=table->mappings; | |
303 | map=table->reverseMap; | |
304 | count=table->mappingsLength; | |
305 | ||
306 | /* leave the map alone for the initial mappings with desired flags */ | |
307 | for(i=j=0; i<count; ++i) { | |
308 | flag=mappings[map[i]].f; | |
309 | if(flag!=0 && flag!=3) { | |
310 | break; | |
311 | } | |
312 | } | |
313 | ||
314 | /* reduce from here to the rest */ | |
315 | for(j=i; i<count; ++i) { | |
316 | flag=mappings[map[i]].f; | |
317 | if(flag==0 || flag==3) { | |
318 | map[j++]=map[i]; | |
319 | } | |
320 | } | |
321 | ||
322 | return j; | |
323 | } | |
324 | ||
325 | static uint32_t | |
326 | getToUnicodeValue(CnvExtData *extData, UCMTable *table, UCMapping *m) { | |
327 | UChar32 *u32; | |
328 | UChar *u; | |
329 | uint32_t value; | |
330 | int32_t u16Length, ratio; | |
331 | UErrorCode errorCode; | |
332 | ||
333 | /* write the Unicode result code point or string index */ | |
334 | if(m->uLen==1) { | |
335 | u16Length=U16_LENGTH(m->u); | |
336 | value=(uint32_t)(UCNV_EXT_TO_U_MIN_CODE_POINT+m->u); | |
337 | } else { | |
338 | /* the parser enforces m->uLen<=UCNV_EXT_MAX_UCHARS */ | |
339 | ||
340 | /* get the result code point string and its 16-bit string length */ | |
341 | u32=UCM_GET_CODE_POINTS(table, m); | |
342 | errorCode=U_ZERO_ERROR; | |
343 | u_strFromUTF32(NULL, 0, &u16Length, u32, m->uLen, &errorCode); | |
344 | if(U_FAILURE(errorCode) && errorCode!=U_BUFFER_OVERFLOW_ERROR) { | |
345 | exit(errorCode); | |
346 | } | |
347 | ||
348 | /* allocate it and put its length and index into the value */ | |
349 | value= | |
350 | (((uint32_t)u16Length+UCNV_EXT_TO_U_LENGTH_OFFSET)<<UCNV_EXT_TO_U_LENGTH_SHIFT)| | |
351 | ((uint32_t)utm_countItems(extData->toUUChars)); | |
352 | u=utm_allocN(extData->toUUChars, u16Length); | |
353 | ||
354 | /* write the result 16-bit string */ | |
355 | errorCode=U_ZERO_ERROR; | |
356 | u_strFromUTF32(u, u16Length, NULL, u32, m->uLen, &errorCode); | |
357 | if(U_FAILURE(errorCode) && errorCode!=U_BUFFER_OVERFLOW_ERROR) { | |
358 | exit(errorCode); | |
359 | } | |
360 | } | |
361 | if(m->f==0) { | |
362 | value|=UCNV_EXT_TO_U_ROUNDTRIP_FLAG; | |
363 | } | |
364 | ||
365 | /* update statistics */ | |
366 | if(m->bLen>extData->maxInBytes) { | |
367 | extData->maxInBytes=m->bLen; | |
368 | } | |
369 | if(u16Length>extData->maxOutUChars) { | |
370 | extData->maxOutUChars=u16Length; | |
371 | } | |
372 | ||
373 | ratio=(u16Length+(m->bLen-1))/m->bLen; | |
374 | if(ratio>extData->maxUCharsPerByte) { | |
375 | extData->maxUCharsPerByte=ratio; | |
376 | } | |
377 | ||
378 | return value; | |
379 | } | |
380 | ||
381 | /* | |
382 | * Recursive toUTable generator core function. | |
383 | * Preconditions: | |
384 | * - start<limit (There is at least one mapping.) | |
385 | * - The mappings are sorted lexically. (Access is through the reverseMap.) | |
386 | * - All mappings between start and limit have input sequences that share | |
387 | * the same prefix of unitIndex length, and therefore all of these sequences | |
388 | * are at least unitIndex+1 long. | |
389 | * - There are only relevant mappings available through the reverseMap, | |
390 | * see reduceToUMappings(). | |
391 | * | |
392 | * One function invocation generates one section table. | |
393 | * | |
394 | * Steps: | |
395 | * 1. Count the number of unique unit values and get the low/high unit values | |
396 | * that occur at unitIndex. | |
397 | * 2. Allocate the section table with possible optimization for linear access. | |
398 | * 3. Write temporary version of the section table with start indexes of | |
399 | * subsections, each corresponding to one unit value at unitIndex. | |
400 | * 4. Iterate through the table once more, and depending on the subsection length: | |
401 | * 0: write 0 as a result value (unused byte in linear-access section table) | |
402 | * >0: if there is one mapping with an input unit sequence of unitIndex+1 | |
403 | * then defaultValue=compute the mapping result for this whole sequence | |
404 | * else defaultValue=0 | |
405 | * | |
406 | * recurse into the subsection | |
407 | */ | |
408 | static UBool | |
409 | generateToUTable(CnvExtData *extData, UCMTable *table, | |
410 | int32_t start, int32_t limit, int32_t unitIndex, | |
411 | uint32_t defaultValue) { | |
412 | UCMapping *mappings, *m; | |
413 | int32_t *map; | |
414 | int32_t i, j, uniqueCount, count, subStart, subLimit; | |
415 | ||
416 | uint8_t *bytes; | |
417 | int32_t low, high, prev; | |
418 | ||
419 | uint32_t *section; | |
420 | ||
421 | mappings=table->mappings; | |
422 | map=table->reverseMap; | |
423 | ||
424 | /* step 1: examine the input units; set low, high, uniqueCount */ | |
425 | m=mappings+map[start]; | |
426 | bytes=UCM_GET_BYTES(table, m); | |
427 | low=bytes[unitIndex]; | |
428 | uniqueCount=1; | |
429 | ||
430 | prev=high=low; | |
431 | for(i=start+1; i<limit; ++i) { | |
432 | m=mappings+map[i]; | |
433 | bytes=UCM_GET_BYTES(table, m); | |
434 | high=bytes[unitIndex]; | |
435 | ||
436 | if(high!=prev) { | |
437 | prev=high; | |
438 | ++uniqueCount; | |
439 | } | |
440 | } | |
441 | ||
442 | /* step 2: allocate the section; set count, section */ | |
443 | count=(high-low)+1; | |
444 | if(count<0x100 && (unitIndex==0 || uniqueCount>=(3*count)/4)) { | |
445 | /* | |
446 | * for the root table and for fairly full tables: | |
447 | * allocate for direct, linear array access | |
448 | * by keeping count, to write an entry for each unit value | |
449 | * from low to high | |
450 | * exception: use a compact table if count==0x100 because | |
451 | * that cannot be encoded in the length byte | |
452 | */ | |
453 | } else { | |
454 | count=uniqueCount; | |
455 | } | |
456 | ||
457 | if(count>=0x100) { | |
458 | fprintf(stderr, "error: toUnicode extension table section overflow: %ld section entries\n", (long)count); | |
459 | return FALSE; | |
460 | } | |
461 | ||
462 | /* allocate the section: 1 entry for the header + count for the items */ | |
463 | section=(uint32_t *)utm_allocN(extData->toUTable, 1+count); | |
464 | ||
465 | /* write the section header */ | |
466 | *section++=((uint32_t)count<<UCNV_EXT_TO_U_BYTE_SHIFT)|defaultValue; | |
467 | ||
468 | /* step 3: write temporary section table with subsection starts */ | |
469 | prev=low-1; /* just before low to prevent empty subsections before low */ | |
470 | j=0; /* section table index */ | |
471 | for(i=start; i<limit; ++i) { | |
472 | m=mappings+map[i]; | |
473 | bytes=UCM_GET_BYTES(table, m); | |
474 | high=bytes[unitIndex]; | |
475 | ||
476 | if(high!=prev) { | |
477 | /* start of a new subsection for unit high */ | |
478 | if(count>uniqueCount) { | |
479 | /* write empty subsections for unused units in a linear table */ | |
480 | while(++prev<high) { | |
481 | section[j++]=((uint32_t)prev<<UCNV_EXT_TO_U_BYTE_SHIFT)|(uint32_t)i; | |
482 | } | |
483 | } else { | |
484 | prev=high; | |
485 | } | |
486 | ||
487 | /* write the entry with the subsection start */ | |
488 | section[j++]=((uint32_t)high<<UCNV_EXT_TO_U_BYTE_SHIFT)|(uint32_t)i; | |
489 | } | |
490 | } | |
491 | /* assert(j==count) */ | |
492 | ||
493 | /* step 4: recurse and write results */ | |
494 | subLimit=UCNV_EXT_TO_U_GET_VALUE(section[0]); | |
495 | for(j=0; j<count; ++j) { | |
496 | subStart=subLimit; | |
497 | subLimit= (j+1)<count ? UCNV_EXT_TO_U_GET_VALUE(section[j+1]) : limit; | |
498 | ||
499 | /* remove the subStart temporary value */ | |
500 | section[j]&=~UCNV_EXT_TO_U_VALUE_MASK; | |
501 | ||
502 | if(subStart==subLimit) { | |
503 | /* leave the value zero: empty subsection for unused unit in a linear table */ | |
504 | continue; | |
505 | } | |
506 | ||
507 | /* see if there is exactly one input unit sequence of length unitIndex+1 */ | |
508 | defaultValue=0; | |
509 | m=mappings+map[subStart]; | |
510 | if(m->bLen==unitIndex+1) { | |
511 | /* do not include this in generateToUTable() */ | |
512 | ++subStart; | |
513 | ||
514 | if(subStart<subLimit && mappings[map[subStart]].bLen==unitIndex+1) { | |
515 | /* print error for multiple same-input-sequence mappings */ | |
516 | fprintf(stderr, "error: multiple mappings from same bytes\n"); | |
517 | ucm_printMapping(table, m, stderr); | |
518 | ucm_printMapping(table, mappings+map[subStart], stderr); | |
519 | return FALSE; | |
520 | } | |
521 | ||
522 | defaultValue=getToUnicodeValue(extData, table, m); | |
523 | } | |
524 | ||
525 | if(subStart==subLimit) { | |
526 | /* write the result for the input sequence ending here */ | |
527 | section[j]|=defaultValue; | |
528 | } else { | |
529 | /* write the index to the subsection table */ | |
530 | section[j]|=(uint32_t)utm_countItems(extData->toUTable); | |
531 | ||
532 | /* recurse */ | |
533 | if(!generateToUTable(extData, table, subStart, subLimit, unitIndex+1, defaultValue)) { | |
534 | return FALSE; | |
535 | } | |
536 | } | |
537 | } | |
538 | return TRUE; | |
539 | } | |
540 | ||
541 | /* | |
542 | * Generate the toUTable and toUUChars from the input table. | |
543 | * The input table must be sorted, and all precision flags must be 0..3. | |
544 | * This function will modify the table's reverseMap. | |
545 | */ | |
546 | static UBool | |
547 | makeToUTable(CnvExtData *extData, UCMTable *table) { | |
548 | int32_t toUCount; | |
549 | ||
550 | toUCount=reduceToUMappings(table); | |
551 | ||
552 | extData->toUTable=utm_open("cnv extension toUTable", 0x10000, UCNV_EXT_TO_U_MIN_CODE_POINT, 4); | |
553 | extData->toUUChars=utm_open("cnv extension toUUChars", 0x10000, UCNV_EXT_TO_U_INDEX_MASK+1, 2); | |
554 | ||
555 | return generateToUTable(extData, table, 0, toUCount, 0, 0); | |
556 | } | |
557 | ||
558 | /* from Unicode ------------------------------------------------------------- */ | |
559 | ||
560 | /* | |
561 | * preprocessing: | |
562 | * rebuild reverseMap with mapping indexes for mappings relevant for from Unicode | |
563 | * change each Unicode string to encode all but the first code point in 16-bit form | |
564 | * | |
565 | * generation: | |
566 | * for each unique code point | |
567 | * write an entry in the 3-stage trie | |
568 | * check that there is only one single-code point sequence | |
569 | * start recursion for following 16-bit input units | |
570 | */ | |
571 | ||
572 | /* | |
573 | * Remove toUnicode fallbacks and non-<subchar1> SUB mappings | |
574 | * which are irrelevant for the fromUnicode extension table. | |
575 | * Remove MBCS_FROM_U_EXT_FLAG bits. | |
576 | * Overwrite the reverseMap with an index array to the relevant mappings. | |
577 | * Modify the code point sequences to a generator-friendly format where | |
578 | * the first code points remains unchanged but the following are recoded | |
579 | * into 16-bit Unicode string form. | |
580 | * The table must be sorted. | |
581 | * Destroys previous data in the reverseMap. | |
582 | */ | |
583 | static int32_t | |
584 | prepareFromUMappings(UCMTable *table) { | |
585 | UCMapping *mappings, *m; | |
586 | int32_t *map; | |
587 | int32_t i, j, count; | |
588 | int8_t flag; | |
589 | ||
590 | mappings=table->mappings; | |
591 | map=table->reverseMap; | |
592 | count=table->mappingsLength; | |
593 | ||
594 | /* | |
595 | * we do not go through the map on input because the mappings are | |
596 | * sorted lexically | |
597 | */ | |
598 | m=mappings; | |
599 | ||
600 | for(i=j=0; i<count; ++m, ++i) { | |
601 | flag=m->f; | |
602 | if(flag>=0) { | |
603 | flag&=MBCS_FROM_U_EXT_MASK; | |
604 | m->f=flag; | |
605 | } | |
606 | if(flag==0 || flag==1 || (flag==2 && m->bLen==1) || flag==4) { | |
607 | map[j++]=i; | |
608 | ||
609 | if(m->uLen>1) { | |
610 | /* recode all but the first code point to 16-bit Unicode */ | |
611 | UChar32 *u32; | |
612 | UChar *u; | |
613 | UChar32 c; | |
614 | int32_t q, r; | |
615 | ||
616 | u32=UCM_GET_CODE_POINTS(table, m); | |
617 | u=(UChar *)u32; /* destructive in-place recoding */ | |
618 | for(r=2, q=1; q<m->uLen; ++q) { | |
619 | c=u32[q]; | |
620 | U16_APPEND_UNSAFE(u, r, c); | |
621 | } | |
622 | ||
623 | /* counts the first code point always at 2 - the first 16-bit unit is at 16-bit index 2 */ | |
624 | m->uLen=(int8_t)r; | |
625 | } | |
626 | } | |
627 | } | |
628 | ||
629 | return j; | |
630 | } | |
631 | ||
632 | static uint32_t | |
633 | getFromUBytesValue(CnvExtData *extData, UCMTable *table, UCMapping *m) { | |
634 | uint8_t *bytes, *resultBytes; | |
635 | uint32_t value; | |
636 | int32_t u16Length, ratio; | |
637 | ||
638 | if(m->f==2) { | |
639 | /* | |
640 | * no mapping, <subchar1> preferred | |
641 | * | |
642 | * no need to count in statistics because the subchars are already | |
643 | * counted for maxOutBytes and maxBytesPerUChar in UConverterStaticData, | |
644 | * and this non-mapping does not count for maxInUChars which are always | |
645 | * trivially at least two if counting unmappable supplementary code points | |
646 | */ | |
647 | return UCNV_EXT_FROM_U_SUBCHAR1; | |
648 | } | |
649 | ||
650 | bytes=UCM_GET_BYTES(table, m); | |
651 | value=0; | |
652 | switch(m->bLen) { | |
653 | /* 1..3: store the bytes in the value word */ | |
654 | case 3: | |
655 | value=((uint32_t)*bytes++)<<16; | |
656 | case 2: | |
657 | value|=((uint32_t)*bytes++)<<8; | |
658 | case 1: | |
659 | value|=*bytes; | |
660 | break; | |
661 | default: | |
662 | /* the parser enforces m->bLen<=UCNV_EXT_MAX_BYTES */ | |
663 | /* store the bytes in fromUBytes[] and the index in the value word */ | |
664 | value=(uint32_t)utm_countItems(extData->fromUBytes); | |
665 | resultBytes=utm_allocN(extData->fromUBytes, m->bLen); | |
666 | uprv_memcpy(resultBytes, bytes, m->bLen); | |
667 | break; | |
668 | } | |
669 | value|=(uint32_t)m->bLen<<UCNV_EXT_FROM_U_LENGTH_SHIFT; | |
670 | if(m->f==0) { | |
671 | value|=UCNV_EXT_FROM_U_ROUNDTRIP_FLAG; | |
672 | } else if(m->f==4) { | |
673 | value|=UCNV_EXT_FROM_U_GOOD_ONE_WAY_FLAG; | |
674 | } | |
675 | ||
676 | /* calculate the real UTF-16 length (see recoding in prepareFromUMappings()) */ | |
677 | if(m->uLen==1) { | |
678 | u16Length=U16_LENGTH(m->u); | |
679 | } else { | |
680 | u16Length=U16_LENGTH(UCM_GET_CODE_POINTS(table, m)[0])+(m->uLen-2); | |
681 | } | |
682 | ||
683 | /* update statistics */ | |
684 | if(u16Length>extData->maxInUChars) { | |
685 | extData->maxInUChars=u16Length; | |
686 | } | |
687 | if(m->bLen>extData->maxOutBytes) { | |
688 | extData->maxOutBytes=m->bLen; | |
689 | } | |
690 | ||
691 | ratio=(m->bLen+(u16Length-1))/u16Length; | |
692 | if(ratio>extData->maxBytesPerUChar) { | |
693 | extData->maxBytesPerUChar=ratio; | |
694 | } | |
695 | ||
696 | return value; | |
697 | } | |
698 | ||
699 | /* | |
700 | * works like generateToUTable(), except that the | |
701 | * output section consists of two arrays, one for input UChars and one | |
702 | * for result values | |
703 | * | |
704 | * also, fromUTable sections are always stored in a compact form for | |
705 | * access via binary search | |
706 | */ | |
707 | static UBool | |
708 | generateFromUTable(CnvExtData *extData, UCMTable *table, | |
709 | int32_t start, int32_t limit, int32_t unitIndex, | |
710 | uint32_t defaultValue) { | |
711 | UCMapping *mappings, *m; | |
712 | int32_t *map; | |
713 | int32_t i, j, uniqueCount, count, subStart, subLimit; | |
714 | ||
715 | UChar *uchars; | |
716 | UChar32 low, high, prev; | |
717 | ||
718 | UChar *sectionUChars; | |
719 | uint32_t *sectionValues; | |
720 | ||
721 | mappings=table->mappings; | |
722 | map=table->reverseMap; | |
723 | ||
724 | /* step 1: examine the input units; set low, high, uniqueCount */ | |
725 | m=mappings+map[start]; | |
726 | uchars=(UChar *)UCM_GET_CODE_POINTS(table, m); | |
727 | low=uchars[unitIndex]; | |
728 | uniqueCount=1; | |
729 | ||
730 | prev=high=low; | |
731 | for(i=start+1; i<limit; ++i) { | |
732 | m=mappings+map[i]; | |
733 | uchars=(UChar *)UCM_GET_CODE_POINTS(table, m); | |
734 | high=uchars[unitIndex]; | |
735 | ||
736 | if(high!=prev) { | |
737 | prev=high; | |
738 | ++uniqueCount; | |
739 | } | |
740 | } | |
741 | ||
742 | /* step 2: allocate the section; set count, section */ | |
743 | /* the fromUTable always stores for access via binary search */ | |
744 | count=uniqueCount; | |
745 | ||
746 | /* allocate the section: 1 entry for the header + count for the items */ | |
747 | sectionUChars=(UChar *)utm_allocN(extData->fromUTableUChars, 1+count); | |
748 | sectionValues=(uint32_t *)utm_allocN(extData->fromUTableValues, 1+count); | |
749 | ||
750 | /* write the section header */ | |
751 | *sectionUChars++=(UChar)count; | |
752 | *sectionValues++=defaultValue; | |
753 | ||
754 | /* step 3: write temporary section table with subsection starts */ | |
755 | prev=low-1; /* just before low to prevent empty subsections before low */ | |
756 | j=0; /* section table index */ | |
757 | for(i=start; i<limit; ++i) { | |
758 | m=mappings+map[i]; | |
759 | uchars=(UChar *)UCM_GET_CODE_POINTS(table, m); | |
760 | high=uchars[unitIndex]; | |
761 | ||
762 | if(high!=prev) { | |
763 | /* start of a new subsection for unit high */ | |
764 | prev=high; | |
765 | ||
766 | /* write the entry with the subsection start */ | |
767 | sectionUChars[j]=(UChar)high; | |
768 | sectionValues[j]=(uint32_t)i; | |
769 | ++j; | |
770 | } | |
771 | } | |
772 | /* assert(j==count) */ | |
773 | ||
774 | /* step 4: recurse and write results */ | |
775 | subLimit=(int32_t)(sectionValues[0]); | |
776 | for(j=0; j<count; ++j) { | |
777 | subStart=subLimit; | |
778 | subLimit= (j+1)<count ? (int32_t)(sectionValues[j+1]) : limit; | |
779 | ||
780 | /* see if there is exactly one input unit sequence of length unitIndex+1 */ | |
781 | defaultValue=0; | |
782 | m=mappings+map[subStart]; | |
783 | if(m->uLen==unitIndex+1) { | |
784 | /* do not include this in generateToUTable() */ | |
785 | ++subStart; | |
786 | ||
787 | if(subStart<subLimit && mappings[map[subStart]].uLen==unitIndex+1) { | |
788 | /* print error for multiple same-input-sequence mappings */ | |
789 | fprintf(stderr, "error: multiple mappings from same Unicode code points\n"); | |
790 | ucm_printMapping(table, m, stderr); | |
791 | ucm_printMapping(table, mappings+map[subStart], stderr); | |
792 | return FALSE; | |
793 | } | |
794 | ||
795 | defaultValue=getFromUBytesValue(extData, table, m); | |
796 | } | |
797 | ||
798 | if(subStart==subLimit) { | |
799 | /* write the result for the input sequence ending here */ | |
800 | sectionValues[j]=defaultValue; | |
801 | } else { | |
802 | /* write the index to the subsection table */ | |
803 | sectionValues[j]=(uint32_t)utm_countItems(extData->fromUTableValues); | |
804 | ||
805 | /* recurse */ | |
806 | if(!generateFromUTable(extData, table, subStart, subLimit, unitIndex+1, defaultValue)) { | |
807 | return FALSE; | |
808 | } | |
809 | } | |
810 | } | |
811 | return TRUE; | |
812 | } | |
813 | ||
814 | /* | |
815 | * add entries to the fromUnicode trie, | |
816 | * assume to be called with code points in ascending order | |
817 | * and use that to build the trie in precompacted form | |
818 | */ | |
819 | static void | |
820 | addFromUTrieEntry(CnvExtData *extData, UChar32 c, uint32_t value) { | |
821 | int32_t i1, i2, i3, i3b, nextOffset, min, newBlock; | |
822 | ||
823 | if(value==0) { | |
824 | return; | |
825 | } | |
826 | ||
827 | /* | |
828 | * compute the index for each stage, | |
829 | * allocate a stage block if necessary, | |
830 | * and write the stage value | |
831 | */ | |
832 | i1=c>>10; | |
833 | if(i1>=extData->stage1Top) { | |
834 | extData->stage1Top=i1+1; | |
835 | } | |
836 | ||
837 | nextOffset=(c>>4)&0x3f; | |
838 | ||
839 | if(extData->stage1[i1]==0) { | |
840 | /* allocate another block in stage 2; overlap with the previous block */ | |
841 | newBlock=extData->stage2Top; | |
842 | min=newBlock-nextOffset; /* minimum block start with overlap */ | |
843 | while(min<newBlock && extData->stage2[newBlock-1]==0) { | |
844 | --newBlock; | |
845 | } | |
846 | ||
847 | extData->stage1[i1]=(uint16_t)newBlock; | |
848 | extData->stage2Top=newBlock+MBCS_STAGE_2_BLOCK_SIZE; | |
849 | if(extData->stage2Top>UPRV_LENGTHOF(extData->stage2)) { | |
850 | fprintf(stderr, "error: too many stage 2 entries at U+%04x\n", (int)c); | |
851 | exit(U_MEMORY_ALLOCATION_ERROR); | |
852 | } | |
853 | } | |
854 | ||
855 | i2=extData->stage1[i1]+nextOffset; | |
856 | nextOffset=c&0xf; | |
857 | ||
858 | if(extData->stage2[i2]==0) { | |
859 | /* allocate another block in stage 3; overlap with the previous block */ | |
860 | newBlock=extData->stage3Top; | |
861 | min=newBlock-nextOffset; /* minimum block start with overlap */ | |
862 | while(min<newBlock && extData->stage3[newBlock-1]==0) { | |
863 | --newBlock; | |
864 | } | |
865 | ||
866 | /* round up to a multiple of stage 3 granularity >1 (similar to utrie.c) */ | |
867 | newBlock=(newBlock+(UCNV_EXT_STAGE_3_GRANULARITY-1))&~(UCNV_EXT_STAGE_3_GRANULARITY-1); | |
868 | extData->stage2[i2]=(uint16_t)(newBlock>>UCNV_EXT_STAGE_2_LEFT_SHIFT); | |
869 | ||
870 | extData->stage3Top=newBlock+MBCS_STAGE_3_BLOCK_SIZE; | |
871 | if(extData->stage3Top>UPRV_LENGTHOF(extData->stage3)) { | |
872 | fprintf(stderr, "error: too many stage 3 entries at U+%04x\n", (int)c); | |
873 | exit(U_MEMORY_ALLOCATION_ERROR); | |
874 | } | |
875 | } | |
876 | ||
877 | i3=((int32_t)extData->stage2[i2]<<UCNV_EXT_STAGE_2_LEFT_SHIFT)+nextOffset; | |
878 | /* | |
879 | * assume extData->stage3[i3]==0 because we get | |
880 | * code points in strictly ascending order | |
881 | */ | |
882 | ||
883 | if(value==UCNV_EXT_FROM_U_SUBCHAR1) { | |
884 | /* <subchar1> SUB mapping, see getFromUBytesValue() and prepareFromUMappings() */ | |
885 | extData->stage3[i3]=1; | |
886 | ||
887 | /* | |
888 | * precompaction is not optimal for <subchar1> |2 mappings because | |
889 | * stage3 values for them are all the same, unlike for other mappings | |
890 | * which all have unique values; | |
891 | * use a simple compaction of reusing a whole block filled with these | |
892 | * mappings | |
893 | */ | |
894 | ||
895 | /* is the entire block filled with <subchar1> |2 mappings? */ | |
896 | if(nextOffset==MBCS_STAGE_3_BLOCK_SIZE-1) { | |
897 | for(min=i3-nextOffset; | |
898 | min<i3 && extData->stage3[min]==1; | |
899 | ++min) {} | |
900 | ||
901 | if(min==i3) { | |
902 | /* the entire block is filled with these mappings */ | |
903 | if(extData->stage3Sub1Block!=0) { | |
904 | /* point to the previous such block and remove this block from stage3 */ | |
905 | extData->stage2[i2]=extData->stage3Sub1Block; | |
906 | extData->stage3Top-=MBCS_STAGE_3_BLOCK_SIZE; | |
907 | uprv_memset(extData->stage3+extData->stage3Top, 0, MBCS_STAGE_3_BLOCK_SIZE*2); | |
908 | } else { | |
909 | /* remember this block's stage2 entry */ | |
910 | extData->stage3Sub1Block=extData->stage2[i2]; | |
911 | } | |
912 | } | |
913 | } | |
914 | } else { | |
915 | if((i3b=extData->stage3bTop++)>=UPRV_LENGTHOF(extData->stage3b)) { | |
916 | fprintf(stderr, "error: too many stage 3b entries at U+%04x\n", (int)c); | |
917 | exit(U_MEMORY_ALLOCATION_ERROR); | |
918 | } | |
919 | ||
920 | /* roundtrip or fallback mapping */ | |
921 | extData->stage3[i3]=(uint16_t)i3b; | |
922 | extData->stage3b[i3b]=value; | |
923 | } | |
924 | } | |
925 | ||
926 | static UBool | |
927 | generateFromUTrie(CnvExtData *extData, UCMTable *table, int32_t mapLength) { | |
928 | UCMapping *mappings, *m; | |
929 | int32_t *map; | |
930 | uint32_t value; | |
931 | int32_t subStart, subLimit; | |
932 | ||
933 | UChar32 *codePoints; | |
934 | UChar32 c, next; | |
935 | ||
936 | if(mapLength==0) { | |
937 | return TRUE; | |
938 | } | |
939 | ||
940 | mappings=table->mappings; | |
941 | map=table->reverseMap; | |
942 | ||
943 | /* | |
944 | * iterate over same-initial-code point mappings, | |
945 | * enter the initial code point into the trie, | |
946 | * and start a recursion on the corresponding mappings section | |
947 | * with generateFromUTable() | |
948 | */ | |
949 | m=mappings+map[0]; | |
950 | codePoints=UCM_GET_CODE_POINTS(table, m); | |
951 | next=codePoints[0]; | |
952 | subLimit=0; | |
953 | while(subLimit<mapLength) { | |
954 | /* get a new subsection of mappings starting with the same code point */ | |
955 | subStart=subLimit; | |
956 | c=next; | |
957 | while(next==c && ++subLimit<mapLength) { | |
958 | m=mappings+map[subLimit]; | |
959 | codePoints=UCM_GET_CODE_POINTS(table, m); | |
960 | next=codePoints[0]; | |
961 | } | |
962 | ||
963 | /* | |
964 | * compute the value for this code point; | |
965 | * if there is a mapping for this code point alone, it is at subStart | |
966 | * because the table is sorted lexically | |
967 | */ | |
968 | value=0; | |
969 | m=mappings+map[subStart]; | |
970 | codePoints=UCM_GET_CODE_POINTS(table, m); | |
971 | if(m->uLen==1) { | |
972 | /* do not include this in generateFromUTable() */ | |
973 | ++subStart; | |
974 | ||
975 | if(subStart<subLimit && mappings[map[subStart]].uLen==1) { | |
976 | /* print error for multiple same-input-sequence mappings */ | |
977 | fprintf(stderr, "error: multiple mappings from same Unicode code points\n"); | |
978 | ucm_printMapping(table, m, stderr); | |
979 | ucm_printMapping(table, mappings+map[subStart], stderr); | |
980 | return FALSE; | |
981 | } | |
982 | ||
983 | value=getFromUBytesValue(extData, table, m); | |
984 | } | |
985 | ||
986 | if(subStart==subLimit) { | |
987 | /* write the result for this one code point */ | |
988 | addFromUTrieEntry(extData, c, value); | |
989 | } else { | |
990 | /* write the index to the subsection table */ | |
991 | addFromUTrieEntry(extData, c, (uint32_t)utm_countItems(extData->fromUTableValues)); | |
992 | ||
993 | /* recurse, starting from 16-bit-unit index 2, the first 16-bit unit after c */ | |
994 | if(!generateFromUTable(extData, table, subStart, subLimit, 2, value)) { | |
995 | return FALSE; | |
996 | } | |
997 | } | |
998 | } | |
999 | return TRUE; | |
1000 | } | |
1001 | ||
1002 | /* | |
1003 | * Generate the fromU data structures from the input table. | |
1004 | * The input table must be sorted, and all precision flags must be 0..3. | |
1005 | * This function will modify the table's reverseMap. | |
1006 | */ | |
1007 | static UBool | |
1008 | makeFromUTable(CnvExtData *extData, UCMTable *table) { | |
1009 | uint16_t *stage1; | |
1010 | int32_t i, stage1Top, fromUCount; | |
1011 | ||
1012 | fromUCount=prepareFromUMappings(table); | |
1013 | ||
1014 | extData->fromUTableUChars=utm_open("cnv extension fromUTableUChars", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 2); | |
1015 | extData->fromUTableValues=utm_open("cnv extension fromUTableValues", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 4); | |
1016 | extData->fromUBytes=utm_open("cnv extension fromUBytes", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 1); | |
1017 | ||
1018 | /* allocate all-unassigned stage blocks */ | |
1019 | extData->stage2Top=MBCS_STAGE_2_FIRST_ASSIGNED; | |
1020 | extData->stage3Top=MBCS_STAGE_3_FIRST_ASSIGNED; | |
1021 | ||
1022 | /* | |
1023 | * stage 3b stores only unique values, and in | |
1024 | * index 0: 0 for "no mapping" | |
1025 | * index 1: "no mapping" with preference for <subchar1> rather than <subchar> | |
1026 | */ | |
1027 | extData->stage3b[1]=UCNV_EXT_FROM_U_SUBCHAR1; | |
1028 | extData->stage3bTop=2; | |
1029 | ||
1030 | /* allocate the first entry in the fromUTable because index 0 means "no result" */ | |
1031 | utm_alloc(extData->fromUTableUChars); | |
1032 | utm_alloc(extData->fromUTableValues); | |
1033 | ||
1034 | if(!generateFromUTrie(extData, table, fromUCount)) { | |
1035 | return FALSE; | |
1036 | } | |
1037 | ||
1038 | /* | |
1039 | * offset the stage 1 trie entries by stage1Top because they will | |
1040 | * be stored in a single array | |
1041 | */ | |
1042 | stage1=extData->stage1; | |
1043 | stage1Top=extData->stage1Top; | |
1044 | for(i=0; i<stage1Top; ++i) { | |
1045 | stage1[i]=(uint16_t)(stage1[i]+stage1Top); | |
1046 | } | |
1047 | ||
1048 | return TRUE; | |
1049 | } | |
1050 | ||
1051 | /* -------------------------------------------------------------------------- */ | |
1052 | ||
1053 | static UBool | |
1054 | CnvExtAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData) { | |
1055 | CnvExtData *extData; | |
1056 | ||
1057 | if(table->unicodeMask&UCNV_HAS_SURROGATES) { | |
1058 | fprintf(stderr, "error: contains mappings for surrogate code points\n"); | |
1059 | return FALSE; | |
1060 | } | |
1061 | ||
1062 | staticData->conversionType=UCNV_MBCS; | |
1063 | ||
1064 | extData=(CnvExtData *)cnvData; | |
1065 | ||
1066 | /* | |
1067 | * assume that the table is sorted | |
1068 | * | |
1069 | * call the functions in this order because | |
1070 | * makeToUTable() modifies the original reverseMap, | |
1071 | * makeFromUTable() writes a whole new mapping into reverseMap | |
1072 | */ | |
1073 | return | |
1074 | makeToUTable(extData, table) && | |
1075 | makeFromUTable(extData, table); | |
1076 | } |