]>
Commit | Line | Data |
---|---|---|
1 | // © 2016 and later: Unicode, Inc. and others. | |
2 | // License & terms of use: http://www.unicode.org/copyright.html | |
3 | /* | |
4 | ********************************************************************** | |
5 | * Copyright (c) 2003-2008, International Business Machines | |
6 | * Corporation and others. All Rights Reserved. | |
7 | ********************************************************************** | |
8 | * Author: Alan Liu | |
9 | * Created: September 2 2003 | |
10 | * Since: ICU 2.8 | |
11 | ********************************************************************** | |
12 | */ | |
13 | ||
14 | #include "gregoimp.h" | |
15 | ||
16 | #if !UCONFIG_NO_FORMATTING | |
17 | ||
18 | #include "unicode/ucal.h" | |
19 | #include "uresimp.h" | |
20 | #include "cstring.h" | |
21 | #include "uassert.h" | |
22 | ||
23 | U_NAMESPACE_BEGIN | |
24 | ||
25 | int32_t ClockMath::floorDivide(int32_t numerator, int32_t denominator) { | |
26 | return (numerator >= 0) ? | |
27 | numerator / denominator : ((numerator + 1) / denominator) - 1; | |
28 | } | |
29 | ||
30 | int64_t ClockMath::floorDivide(int64_t numerator, int64_t denominator) { | |
31 | return (numerator >= 0) ? | |
32 | numerator / denominator : ((numerator + 1) / denominator) - 1; | |
33 | } | |
34 | ||
35 | int32_t ClockMath::floorDivide(double numerator, int32_t denominator, | |
36 | int32_t& remainder) { | |
37 | double quotient; | |
38 | quotient = uprv_floor(numerator / denominator); | |
39 | remainder = (int32_t) (numerator - (quotient * denominator)); | |
40 | return (int32_t) quotient; | |
41 | } | |
42 | ||
43 | double ClockMath::floorDivide(double dividend, double divisor, | |
44 | double& remainder) { | |
45 | // Only designed to work for positive divisors | |
46 | U_ASSERT(divisor > 0); | |
47 | double quotient = floorDivide(dividend, divisor); | |
48 | remainder = dividend - (quotient * divisor); | |
49 | // N.B. For certain large dividends, on certain platforms, there | |
50 | // is a bug such that the quotient is off by one. If you doubt | |
51 | // this to be true, set a breakpoint below and run cintltst. | |
52 | if (remainder < 0 || remainder >= divisor) { | |
53 | // E.g. 6.7317038241449352e+022 / 86400000.0 is wrong on my | |
54 | // machine (too high by one). 4.1792057231752762e+024 / | |
55 | // 86400000.0 is wrong the other way (too low). | |
56 | double q = quotient; | |
57 | quotient += (remainder < 0) ? -1 : +1; | |
58 | if (q == quotient) { | |
59 | // For quotients > ~2^53, we won't be able to add or | |
60 | // subtract one, since the LSB of the mantissa will be > | |
61 | // 2^0; that is, the exponent (base 2) will be larger than | |
62 | // the length, in bits, of the mantissa. In that case, we | |
63 | // can't give a correct answer, so we set the remainder to | |
64 | // zero. This has the desired effect of making extreme | |
65 | // values give back an approximate answer rather than | |
66 | // crashing. For example, UDate values above a ~10^25 | |
67 | // might all have a time of midnight. | |
68 | remainder = 0; | |
69 | } else { | |
70 | remainder = dividend - (quotient * divisor); | |
71 | } | |
72 | } | |
73 | U_ASSERT(0 <= remainder && remainder < divisor); | |
74 | return quotient; | |
75 | } | |
76 | ||
77 | const int32_t JULIAN_1_CE = 1721426; // January 1, 1 CE Gregorian | |
78 | const int32_t JULIAN_1970_CE = 2440588; // January 1, 1970 CE Gregorian | |
79 | ||
80 | const int16_t Grego::DAYS_BEFORE[24] = | |
81 | {0,31,59,90,120,151,181,212,243,273,304,334, | |
82 | 0,31,60,91,121,152,182,213,244,274,305,335}; | |
83 | ||
84 | const int8_t Grego::MONTH_LENGTH[24] = | |
85 | {31,28,31,30,31,30,31,31,30,31,30,31, | |
86 | 31,29,31,30,31,30,31,31,30,31,30,31}; | |
87 | ||
88 | double Grego::fieldsToDay(int32_t year, int32_t month, int32_t dom) { | |
89 | ||
90 | int32_t y = year - 1; | |
91 | ||
92 | double julian = 365 * y + ClockMath::floorDivide(y, 4) + (JULIAN_1_CE - 3) + // Julian cal | |
93 | ClockMath::floorDivide(y, 400) - ClockMath::floorDivide(y, 100) + 2 + // => Gregorian cal | |
94 | DAYS_BEFORE[month + (isLeapYear(year) ? 12 : 0)] + dom; // => month/dom | |
95 | ||
96 | return julian - JULIAN_1970_CE; // JD => epoch day | |
97 | } | |
98 | ||
99 | void Grego::dayToFields(double day, int32_t& year, int32_t& month, | |
100 | int32_t& dom, int32_t& dow, int32_t& doy) { | |
101 | ||
102 | // Convert from 1970 CE epoch to 1 CE epoch (Gregorian calendar) | |
103 | day += JULIAN_1970_CE - JULIAN_1_CE; | |
104 | ||
105 | // Convert from the day number to the multiple radix | |
106 | // representation. We use 400-year, 100-year, and 4-year cycles. | |
107 | // For example, the 4-year cycle has 4 years + 1 leap day; giving | |
108 | // 1461 == 365*4 + 1 days. | |
109 | int32_t n400 = ClockMath::floorDivide(day, 146097, doy); // 400-year cycle length | |
110 | int32_t n100 = ClockMath::floorDivide(doy, 36524, doy); // 100-year cycle length | |
111 | int32_t n4 = ClockMath::floorDivide(doy, 1461, doy); // 4-year cycle length | |
112 | int32_t n1 = ClockMath::floorDivide(doy, 365, doy); | |
113 | year = 400*n400 + 100*n100 + 4*n4 + n1; | |
114 | if (n100 == 4 || n1 == 4) { | |
115 | doy = 365; // Dec 31 at end of 4- or 400-year cycle | |
116 | } else { | |
117 | ++year; | |
118 | } | |
119 | ||
120 | UBool isLeap = isLeapYear(year); | |
121 | ||
122 | // Gregorian day zero is a Monday. | |
123 | dow = (int32_t) uprv_fmod(day + 1, 7); | |
124 | dow += (dow < 0) ? (UCAL_SUNDAY + 7) : UCAL_SUNDAY; | |
125 | ||
126 | // Common Julian/Gregorian calculation | |
127 | int32_t correction = 0; | |
128 | int32_t march1 = isLeap ? 60 : 59; // zero-based DOY for March 1 | |
129 | if (doy >= march1) { | |
130 | correction = isLeap ? 1 : 2; | |
131 | } | |
132 | month = (12 * (doy + correction) + 6) / 367; // zero-based month | |
133 | dom = doy - DAYS_BEFORE[month + (isLeap ? 12 : 0)] + 1; // one-based DOM | |
134 | doy++; // one-based doy | |
135 | } | |
136 | ||
137 | void Grego::timeToFields(UDate time, int32_t& year, int32_t& month, | |
138 | int32_t& dom, int32_t& dow, int32_t& doy, int32_t& mid) { | |
139 | double millisInDay; | |
140 | double day = ClockMath::floorDivide((double)time, (double)U_MILLIS_PER_DAY, millisInDay); | |
141 | mid = (int32_t)millisInDay; | |
142 | dayToFields(day, year, month, dom, dow, doy); | |
143 | } | |
144 | ||
145 | int32_t Grego::dayOfWeek(double day) { | |
146 | int32_t dow; | |
147 | ClockMath::floorDivide(day + UCAL_THURSDAY, 7, dow); | |
148 | return (dow == 0) ? UCAL_SATURDAY : dow; | |
149 | } | |
150 | ||
151 | int32_t Grego::dayOfWeekInMonth(int32_t year, int32_t month, int32_t dom) { | |
152 | int32_t weekInMonth = (dom + 6)/7; | |
153 | if (weekInMonth == 4) { | |
154 | if (dom + 7 > monthLength(year, month)) { | |
155 | weekInMonth = -1; | |
156 | } | |
157 | } else if (weekInMonth == 5) { | |
158 | weekInMonth = -1; | |
159 | } | |
160 | return weekInMonth; | |
161 | } | |
162 | ||
163 | U_NAMESPACE_END | |
164 | ||
165 | #endif | |
166 | //eof |