]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | ****************************************************************************** | |
3 | * | |
4 | * Copyright (C) 2001-2014, International Business Machines | |
5 | * Corporation and others. All Rights Reserved. | |
6 | * | |
7 | ****************************************************************************** | |
8 | * file name: utrie2_builder.cpp | |
9 | * encoding: US-ASCII | |
10 | * tab size: 8 (not used) | |
11 | * indentation:4 | |
12 | * | |
13 | * created on: 2008sep26 (split off from utrie2.c) | |
14 | * created by: Markus W. Scherer | |
15 | * | |
16 | * This is a common implementation of a Unicode trie. | |
17 | * It is a kind of compressed, serializable table of 16- or 32-bit values associated with | |
18 | * Unicode code points (0..0x10ffff). | |
19 | * This is the second common version of a Unicode trie (hence the name UTrie2). | |
20 | * See utrie2.h for a comparison. | |
21 | * | |
22 | * This file contains only the builder code. | |
23 | * See utrie2.c for the runtime and enumeration code. | |
24 | */ | |
25 | #ifdef UTRIE2_DEBUG | |
26 | # include <stdio.h> | |
27 | #endif | |
28 | ||
29 | #include "unicode/utypes.h" | |
30 | #include "cmemory.h" | |
31 | #include "utrie2.h" | |
32 | #include "utrie2_impl.h" | |
33 | ||
34 | #include "utrie.h" /* for utrie2_fromUTrie() and utrie_swap() */ | |
35 | ||
36 | /* Implementation notes ----------------------------------------------------- */ | |
37 | ||
38 | /* | |
39 | * The UTRIE2_SHIFT_1, UTRIE2_SHIFT_2, UTRIE2_INDEX_SHIFT and other values | |
40 | * have been chosen to minimize trie sizes overall. | |
41 | * Most of the code is flexible enough to work with a range of values, | |
42 | * within certain limits. | |
43 | * | |
44 | * Exception: Support for separate values for lead surrogate code _units_ | |
45 | * vs. code _points_ was added after the constants were fixed, | |
46 | * and has not been tested nor particularly designed for different constant values. | |
47 | * (Especially the utrie2_enum() code that jumps to the special LSCP index-2 | |
48 | * part and back.) | |
49 | * | |
50 | * Requires UTRIE2_SHIFT_2<=6. Otherwise 0xc0 which is the top of the ASCII-linear data | |
51 | * including the bad-UTF-8-data block is not a multiple of UTRIE2_DATA_BLOCK_LENGTH | |
52 | * and map[block>>UTRIE2_SHIFT_2] (used in reference counting and compaction | |
53 | * remapping) stops working. | |
54 | * | |
55 | * Requires UTRIE2_SHIFT_1>=10 because utrie2_enumForLeadSurrogate() | |
56 | * assumes that a single index-2 block is used for 0x400 code points | |
57 | * corresponding to one lead surrogate. | |
58 | * | |
59 | * Requires UTRIE2_SHIFT_1<=16. Otherwise one single index-2 block contains | |
60 | * more than one Unicode plane, and the split of the index-2 table into a BMP | |
61 | * part and a supplementary part, with a gap in between, would not work. | |
62 | * | |
63 | * Requires UTRIE2_INDEX_SHIFT>=1 not because of the code but because | |
64 | * there is data with more than 64k distinct values, | |
65 | * for example for Unihan collation with a separate collation weight per | |
66 | * Han character. | |
67 | */ | |
68 | ||
69 | /* Building a trie ----------------------------------------------------------*/ | |
70 | ||
71 | enum { | |
72 | /** The null index-2 block, following the gap in the index-2 table. */ | |
73 | UNEWTRIE2_INDEX_2_NULL_OFFSET=UNEWTRIE2_INDEX_GAP_OFFSET+UNEWTRIE2_INDEX_GAP_LENGTH, | |
74 | ||
75 | /** The start of allocated index-2 blocks. */ | |
76 | UNEWTRIE2_INDEX_2_START_OFFSET=UNEWTRIE2_INDEX_2_NULL_OFFSET+UTRIE2_INDEX_2_BLOCK_LENGTH, | |
77 | ||
78 | /** | |
79 | * The null data block. | |
80 | * Length 64=0x40 even if UTRIE2_DATA_BLOCK_LENGTH is smaller, | |
81 | * to work with 6-bit trail bytes from 2-byte UTF-8. | |
82 | */ | |
83 | UNEWTRIE2_DATA_NULL_OFFSET=UTRIE2_DATA_START_OFFSET, | |
84 | ||
85 | /** The start of allocated data blocks. */ | |
86 | UNEWTRIE2_DATA_START_OFFSET=UNEWTRIE2_DATA_NULL_OFFSET+0x40, | |
87 | ||
88 | /** | |
89 | * The start of data blocks for U+0800 and above. | |
90 | * Below, compaction uses a block length of 64 for 2-byte UTF-8. | |
91 | * From here on, compaction uses UTRIE2_DATA_BLOCK_LENGTH. | |
92 | * Data values for 0x780 code points beyond ASCII. | |
93 | */ | |
94 | UNEWTRIE2_DATA_0800_OFFSET=UNEWTRIE2_DATA_START_OFFSET+0x780 | |
95 | }; | |
96 | ||
97 | /* Start with allocation of 16k data entries. */ | |
98 | #define UNEWTRIE2_INITIAL_DATA_LENGTH ((int32_t)1<<14) | |
99 | ||
100 | /* Grow about 8x each time. */ | |
101 | #define UNEWTRIE2_MEDIUM_DATA_LENGTH ((int32_t)1<<17) | |
102 | ||
103 | static int32_t | |
104 | allocIndex2Block(UNewTrie2 *trie); | |
105 | ||
106 | U_CAPI UTrie2 * U_EXPORT2 | |
107 | utrie2_open(uint32_t initialValue, uint32_t errorValue, UErrorCode *pErrorCode) { | |
108 | UTrie2 *trie; | |
109 | UNewTrie2 *newTrie; | |
110 | uint32_t *data; | |
111 | int32_t i, j; | |
112 | ||
113 | if(U_FAILURE(*pErrorCode)) { | |
114 | return NULL; | |
115 | } | |
116 | ||
117 | trie=(UTrie2 *)uprv_malloc(sizeof(UTrie2)); | |
118 | newTrie=(UNewTrie2 *)uprv_malloc(sizeof(UNewTrie2)); | |
119 | data=(uint32_t *)uprv_malloc(UNEWTRIE2_INITIAL_DATA_LENGTH*4); | |
120 | if(trie==NULL || newTrie==NULL || data==NULL) { | |
121 | uprv_free(trie); | |
122 | uprv_free(newTrie); | |
123 | uprv_free(data); | |
124 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; | |
125 | return 0; | |
126 | } | |
127 | ||
128 | uprv_memset(trie, 0, sizeof(UTrie2)); | |
129 | trie->initialValue=initialValue; | |
130 | trie->errorValue=errorValue; | |
131 | trie->highStart=0x110000; | |
132 | trie->newTrie=newTrie; | |
133 | ||
134 | newTrie->data=data; | |
135 | newTrie->dataCapacity=UNEWTRIE2_INITIAL_DATA_LENGTH; | |
136 | newTrie->initialValue=initialValue; | |
137 | newTrie->errorValue=errorValue; | |
138 | newTrie->highStart=0x110000; | |
139 | newTrie->firstFreeBlock=0; /* no free block in the list */ | |
140 | newTrie->isCompacted=FALSE; | |
141 | ||
142 | /* | |
143 | * preallocate and reset | |
144 | * - ASCII | |
145 | * - the bad-UTF-8-data block | |
146 | * - the null data block | |
147 | */ | |
148 | for(i=0; i<0x80; ++i) { | |
149 | newTrie->data[i]=initialValue; | |
150 | } | |
151 | for(; i<0xc0; ++i) { | |
152 | newTrie->data[i]=errorValue; | |
153 | } | |
154 | for(i=UNEWTRIE2_DATA_NULL_OFFSET; i<UNEWTRIE2_DATA_START_OFFSET; ++i) { | |
155 | newTrie->data[i]=initialValue; | |
156 | } | |
157 | newTrie->dataNullOffset=UNEWTRIE2_DATA_NULL_OFFSET; | |
158 | newTrie->dataLength=UNEWTRIE2_DATA_START_OFFSET; | |
159 | ||
160 | /* set the index-2 indexes for the 2=0x80>>UTRIE2_SHIFT_2 ASCII data blocks */ | |
161 | for(i=0, j=0; j<0x80; ++i, j+=UTRIE2_DATA_BLOCK_LENGTH) { | |
162 | newTrie->index2[i]=j; | |
163 | newTrie->map[i]=1; | |
164 | } | |
165 | /* reference counts for the bad-UTF-8-data block */ | |
166 | for(; j<0xc0; ++i, j+=UTRIE2_DATA_BLOCK_LENGTH) { | |
167 | newTrie->map[i]=0; | |
168 | } | |
169 | /* | |
170 | * Reference counts for the null data block: all blocks except for the ASCII blocks. | |
171 | * Plus 1 so that we don't drop this block during compaction. | |
172 | * Plus as many as needed for lead surrogate code points. | |
173 | */ | |
174 | /* i==newTrie->dataNullOffset */ | |
175 | newTrie->map[i++]= | |
176 | (0x110000>>UTRIE2_SHIFT_2)- | |
177 | (0x80>>UTRIE2_SHIFT_2)+ | |
178 | 1+ | |
179 | UTRIE2_LSCP_INDEX_2_LENGTH; | |
180 | j+=UTRIE2_DATA_BLOCK_LENGTH; | |
181 | for(; j<UNEWTRIE2_DATA_START_OFFSET; ++i, j+=UTRIE2_DATA_BLOCK_LENGTH) { | |
182 | newTrie->map[i]=0; | |
183 | } | |
184 | ||
185 | /* | |
186 | * set the remaining indexes in the BMP index-2 block | |
187 | * to the null data block | |
188 | */ | |
189 | for(i=0x80>>UTRIE2_SHIFT_2; i<UTRIE2_INDEX_2_BMP_LENGTH; ++i) { | |
190 | newTrie->index2[i]=UNEWTRIE2_DATA_NULL_OFFSET; | |
191 | } | |
192 | ||
193 | /* | |
194 | * Fill the index gap with impossible values so that compaction | |
195 | * does not overlap other index-2 blocks with the gap. | |
196 | */ | |
197 | for(i=0; i<UNEWTRIE2_INDEX_GAP_LENGTH; ++i) { | |
198 | newTrie->index2[UNEWTRIE2_INDEX_GAP_OFFSET+i]=-1; | |
199 | } | |
200 | ||
201 | /* set the indexes in the null index-2 block */ | |
202 | for(i=0; i<UTRIE2_INDEX_2_BLOCK_LENGTH; ++i) { | |
203 | newTrie->index2[UNEWTRIE2_INDEX_2_NULL_OFFSET+i]=UNEWTRIE2_DATA_NULL_OFFSET; | |
204 | } | |
205 | newTrie->index2NullOffset=UNEWTRIE2_INDEX_2_NULL_OFFSET; | |
206 | newTrie->index2Length=UNEWTRIE2_INDEX_2_START_OFFSET; | |
207 | ||
208 | /* set the index-1 indexes for the linear index-2 block */ | |
209 | for(i=0, j=0; | |
210 | i<UTRIE2_OMITTED_BMP_INDEX_1_LENGTH; | |
211 | ++i, j+=UTRIE2_INDEX_2_BLOCK_LENGTH | |
212 | ) { | |
213 | newTrie->index1[i]=j; | |
214 | } | |
215 | ||
216 | /* set the remaining index-1 indexes to the null index-2 block */ | |
217 | for(; i<UNEWTRIE2_INDEX_1_LENGTH; ++i) { | |
218 | newTrie->index1[i]=UNEWTRIE2_INDEX_2_NULL_OFFSET; | |
219 | } | |
220 | ||
221 | /* | |
222 | * Preallocate and reset data for U+0080..U+07ff, | |
223 | * for 2-byte UTF-8 which will be compacted in 64-blocks | |
224 | * even if UTRIE2_DATA_BLOCK_LENGTH is smaller. | |
225 | */ | |
226 | for(i=0x80; i<0x800; i+=UTRIE2_DATA_BLOCK_LENGTH) { | |
227 | utrie2_set32(trie, i, initialValue, pErrorCode); | |
228 | } | |
229 | ||
230 | return trie; | |
231 | } | |
232 | ||
233 | static UNewTrie2 * | |
234 | cloneBuilder(const UNewTrie2 *other) { | |
235 | UNewTrie2 *trie; | |
236 | ||
237 | trie=(UNewTrie2 *)uprv_malloc(sizeof(UNewTrie2)); | |
238 | if(trie==NULL) { | |
239 | return NULL; | |
240 | } | |
241 | ||
242 | trie->data=(uint32_t *)uprv_malloc(other->dataCapacity*4); | |
243 | if(trie->data==NULL) { | |
244 | uprv_free(trie); | |
245 | return NULL; | |
246 | } | |
247 | trie->dataCapacity=other->dataCapacity; | |
248 | ||
249 | /* clone data */ | |
250 | uprv_memcpy(trie->index1, other->index1, sizeof(trie->index1)); | |
251 | uprv_memcpy(trie->index2, other->index2, other->index2Length*4); | |
252 | trie->index2NullOffset=other->index2NullOffset; | |
253 | trie->index2Length=other->index2Length; | |
254 | ||
255 | uprv_memcpy(trie->data, other->data, other->dataLength*4); | |
256 | trie->dataNullOffset=other->dataNullOffset; | |
257 | trie->dataLength=other->dataLength; | |
258 | ||
259 | /* reference counters */ | |
260 | if(other->isCompacted) { | |
261 | trie->firstFreeBlock=0; | |
262 | } else { | |
263 | uprv_memcpy(trie->map, other->map, (other->dataLength>>UTRIE2_SHIFT_2)*4); | |
264 | trie->firstFreeBlock=other->firstFreeBlock; | |
265 | } | |
266 | ||
267 | trie->initialValue=other->initialValue; | |
268 | trie->errorValue=other->errorValue; | |
269 | trie->highStart=other->highStart; | |
270 | trie->isCompacted=other->isCompacted; | |
271 | ||
272 | return trie; | |
273 | } | |
274 | ||
275 | U_CAPI UTrie2 * U_EXPORT2 | |
276 | utrie2_clone(const UTrie2 *other, UErrorCode *pErrorCode) { | |
277 | UTrie2 *trie; | |
278 | ||
279 | if(U_FAILURE(*pErrorCode)) { | |
280 | return NULL; | |
281 | } | |
282 | if(other==NULL || (other->memory==NULL && other->newTrie==NULL)) { | |
283 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | |
284 | return NULL; | |
285 | } | |
286 | ||
287 | trie=(UTrie2 *)uprv_malloc(sizeof(UTrie2)); | |
288 | if(trie==NULL) { | |
289 | return NULL; | |
290 | } | |
291 | uprv_memcpy(trie, other, sizeof(UTrie2)); | |
292 | ||
293 | if(other->memory!=NULL) { | |
294 | trie->memory=uprv_malloc(other->length); | |
295 | if(trie->memory!=NULL) { | |
296 | trie->isMemoryOwned=TRUE; | |
297 | uprv_memcpy(trie->memory, other->memory, other->length); | |
298 | ||
299 | /* make the clone's pointers point to its own memory */ | |
300 | trie->index=(uint16_t *)trie->memory+(other->index-(uint16_t *)other->memory); | |
301 | if(other->data16!=NULL) { | |
302 | trie->data16=(uint16_t *)trie->memory+(other->data16-(uint16_t *)other->memory); | |
303 | } | |
304 | if(other->data32!=NULL) { | |
305 | trie->data32=(uint32_t *)trie->memory+(other->data32-(uint32_t *)other->memory); | |
306 | } | |
307 | } | |
308 | } else /* other->newTrie!=NULL */ { | |
309 | trie->newTrie=cloneBuilder(other->newTrie); | |
310 | } | |
311 | ||
312 | if(trie->memory==NULL && trie->newTrie==NULL) { | |
313 | uprv_free(trie); | |
314 | trie=NULL; | |
315 | } | |
316 | return trie; | |
317 | } | |
318 | ||
319 | typedef struct NewTrieAndStatus { | |
320 | UTrie2 *trie; | |
321 | UErrorCode errorCode; | |
322 | UBool exclusiveLimit; /* rather than inclusive range end */ | |
323 | } NewTrieAndStatus; | |
324 | ||
325 | static UBool U_CALLCONV | |
326 | copyEnumRange(const void *context, UChar32 start, UChar32 end, uint32_t value) { | |
327 | NewTrieAndStatus *nt=(NewTrieAndStatus *)context; | |
328 | if(value!=nt->trie->initialValue) { | |
329 | if(nt->exclusiveLimit) { | |
330 | --end; | |
331 | } | |
332 | if(start==end) { | |
333 | utrie2_set32(nt->trie, start, value, &nt->errorCode); | |
334 | } else { | |
335 | utrie2_setRange32(nt->trie, start, end, value, TRUE, &nt->errorCode); | |
336 | } | |
337 | return U_SUCCESS(nt->errorCode); | |
338 | } else { | |
339 | return TRUE; | |
340 | } | |
341 | } | |
342 | ||
343 | #ifdef UTRIE2_DEBUG | |
344 | static void | |
345 | utrie_printLengths(const UTrie *trie) { | |
346 | long indexLength=trie->indexLength; | |
347 | long dataLength=(long)trie->dataLength; | |
348 | long totalLength=(long)sizeof(UTrieHeader)+indexLength*2+dataLength*(trie->data32!=NULL ? 4 : 2); | |
349 | printf("**UTrieLengths** index:%6ld data:%6ld serialized:%6ld\n", | |
350 | indexLength, dataLength, totalLength); | |
351 | } | |
352 | ||
353 | static void | |
354 | utrie2_printLengths(const UTrie2 *trie, const char *which) { | |
355 | long indexLength=trie->indexLength; | |
356 | long dataLength=(long)trie->dataLength; | |
357 | long totalLength=(long)sizeof(UTrie2Header)+indexLength*2+dataLength*(trie->data32!=NULL ? 4 : 2); | |
358 | printf("**UTrie2Lengths(%s)** index:%6ld data:%6ld serialized:%6ld\n", | |
359 | which, indexLength, dataLength, totalLength); | |
360 | } | |
361 | #endif | |
362 | ||
363 | U_CAPI UTrie2 * U_EXPORT2 | |
364 | utrie2_cloneAsThawed(const UTrie2 *other, UErrorCode *pErrorCode) { | |
365 | NewTrieAndStatus context; | |
366 | UChar lead; | |
367 | ||
368 | if(U_FAILURE(*pErrorCode)) { | |
369 | return NULL; | |
370 | } | |
371 | if(other==NULL || (other->memory==NULL && other->newTrie==NULL)) { | |
372 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | |
373 | return NULL; | |
374 | } | |
375 | if(other->newTrie!=NULL && !other->newTrie->isCompacted) { | |
376 | return utrie2_clone(other, pErrorCode); /* clone an unfrozen trie */ | |
377 | } | |
378 | ||
379 | /* Clone the frozen trie by enumerating it and building a new one. */ | |
380 | context.trie=utrie2_open(other->initialValue, other->errorValue, pErrorCode); | |
381 | if(U_FAILURE(*pErrorCode)) { | |
382 | return NULL; | |
383 | } | |
384 | context.exclusiveLimit=FALSE; | |
385 | context.errorCode=*pErrorCode; | |
386 | utrie2_enum(other, NULL, copyEnumRange, &context); | |
387 | *pErrorCode=context.errorCode; | |
388 | for(lead=0xd800; lead<0xdc00; ++lead) { | |
389 | uint32_t value; | |
390 | if(other->data32==NULL) { | |
391 | value=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(other, lead); | |
392 | } else { | |
393 | value=UTRIE2_GET32_FROM_U16_SINGLE_LEAD(other, lead); | |
394 | } | |
395 | if(value!=other->initialValue) { | |
396 | utrie2_set32ForLeadSurrogateCodeUnit(context.trie, lead, value, pErrorCode); | |
397 | } | |
398 | } | |
399 | if(U_FAILURE(*pErrorCode)) { | |
400 | utrie2_close(context.trie); | |
401 | context.trie=NULL; | |
402 | } | |
403 | return context.trie; | |
404 | } | |
405 | ||
406 | /* Almost the same as utrie2_cloneAsThawed() but copies a UTrie and freezes the clone. */ | |
407 | U_CAPI UTrie2 * U_EXPORT2 | |
408 | utrie2_fromUTrie(const UTrie *trie1, uint32_t errorValue, UErrorCode *pErrorCode) { | |
409 | NewTrieAndStatus context; | |
410 | UChar lead; | |
411 | ||
412 | if(U_FAILURE(*pErrorCode)) { | |
413 | return NULL; | |
414 | } | |
415 | if(trie1==NULL) { | |
416 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | |
417 | return NULL; | |
418 | } | |
419 | context.trie=utrie2_open(trie1->initialValue, errorValue, pErrorCode); | |
420 | if(U_FAILURE(*pErrorCode)) { | |
421 | return NULL; | |
422 | } | |
423 | context.exclusiveLimit=TRUE; | |
424 | context.errorCode=*pErrorCode; | |
425 | utrie_enum(trie1, NULL, copyEnumRange, &context); | |
426 | *pErrorCode=context.errorCode; | |
427 | for(lead=0xd800; lead<0xdc00; ++lead) { | |
428 | uint32_t value; | |
429 | if(trie1->data32==NULL) { | |
430 | value=UTRIE_GET16_FROM_LEAD(trie1, lead); | |
431 | } else { | |
432 | value=UTRIE_GET32_FROM_LEAD(trie1, lead); | |
433 | } | |
434 | if(value!=trie1->initialValue) { | |
435 | utrie2_set32ForLeadSurrogateCodeUnit(context.trie, lead, value, pErrorCode); | |
436 | } | |
437 | } | |
438 | if(U_SUCCESS(*pErrorCode)) { | |
439 | utrie2_freeze(context.trie, | |
440 | trie1->data32!=NULL ? UTRIE2_32_VALUE_BITS : UTRIE2_16_VALUE_BITS, | |
441 | pErrorCode); | |
442 | } | |
443 | #ifdef UTRIE2_DEBUG | |
444 | if(U_SUCCESS(*pErrorCode)) { | |
445 | utrie_printLengths(trie1); | |
446 | utrie2_printLengths(context.trie, "fromUTrie"); | |
447 | } | |
448 | #endif | |
449 | if(U_FAILURE(*pErrorCode)) { | |
450 | utrie2_close(context.trie); | |
451 | context.trie=NULL; | |
452 | } | |
453 | return context.trie; | |
454 | } | |
455 | ||
456 | static inline UBool | |
457 | isInNullBlock(UNewTrie2 *trie, UChar32 c, UBool forLSCP) { | |
458 | int32_t i2, block; | |
459 | ||
460 | if(U_IS_LEAD(c) && forLSCP) { | |
461 | i2=(UTRIE2_LSCP_INDEX_2_OFFSET-(0xd800>>UTRIE2_SHIFT_2))+ | |
462 | (c>>UTRIE2_SHIFT_2); | |
463 | } else { | |
464 | i2=trie->index1[c>>UTRIE2_SHIFT_1]+ | |
465 | ((c>>UTRIE2_SHIFT_2)&UTRIE2_INDEX_2_MASK); | |
466 | } | |
467 | block=trie->index2[i2]; | |
468 | return (UBool)(block==trie->dataNullOffset); | |
469 | } | |
470 | ||
471 | static int32_t | |
472 | allocIndex2Block(UNewTrie2 *trie) { | |
473 | int32_t newBlock, newTop; | |
474 | ||
475 | newBlock=trie->index2Length; | |
476 | newTop=newBlock+UTRIE2_INDEX_2_BLOCK_LENGTH; | |
477 | if(newTop>UPRV_LENGTHOF(trie->index2)) { | |
478 | /* | |
479 | * Should never occur. | |
480 | * Either UTRIE2_MAX_BUILD_TIME_INDEX_LENGTH is incorrect, | |
481 | * or the code writes more values than should be possible. | |
482 | */ | |
483 | return -1; | |
484 | } | |
485 | trie->index2Length=newTop; | |
486 | uprv_memcpy(trie->index2+newBlock, trie->index2+trie->index2NullOffset, UTRIE2_INDEX_2_BLOCK_LENGTH*4); | |
487 | return newBlock; | |
488 | } | |
489 | ||
490 | static int32_t | |
491 | getIndex2Block(UNewTrie2 *trie, UChar32 c, UBool forLSCP) { | |
492 | int32_t i1, i2; | |
493 | ||
494 | if(U_IS_LEAD(c) && forLSCP) { | |
495 | return UTRIE2_LSCP_INDEX_2_OFFSET; | |
496 | } | |
497 | ||
498 | i1=c>>UTRIE2_SHIFT_1; | |
499 | i2=trie->index1[i1]; | |
500 | if(i2==trie->index2NullOffset) { | |
501 | i2=allocIndex2Block(trie); | |
502 | if(i2<0) { | |
503 | return -1; /* program error */ | |
504 | } | |
505 | trie->index1[i1]=i2; | |
506 | } | |
507 | return i2; | |
508 | } | |
509 | ||
510 | static int32_t | |
511 | allocDataBlock(UNewTrie2 *trie, int32_t copyBlock) { | |
512 | int32_t newBlock, newTop; | |
513 | ||
514 | if(trie->firstFreeBlock!=0) { | |
515 | /* get the first free block */ | |
516 | newBlock=trie->firstFreeBlock; | |
517 | trie->firstFreeBlock=-trie->map[newBlock>>UTRIE2_SHIFT_2]; | |
518 | } else { | |
519 | /* get a new block from the high end */ | |
520 | newBlock=trie->dataLength; | |
521 | newTop=newBlock+UTRIE2_DATA_BLOCK_LENGTH; | |
522 | if(newTop>trie->dataCapacity) { | |
523 | /* out of memory in the data array */ | |
524 | int32_t capacity; | |
525 | uint32_t *data; | |
526 | ||
527 | if(trie->dataCapacity<UNEWTRIE2_MEDIUM_DATA_LENGTH) { | |
528 | capacity=UNEWTRIE2_MEDIUM_DATA_LENGTH; | |
529 | } else if(trie->dataCapacity<UNEWTRIE2_MAX_DATA_LENGTH) { | |
530 | capacity=UNEWTRIE2_MAX_DATA_LENGTH; | |
531 | } else { | |
532 | /* | |
533 | * Should never occur. | |
534 | * Either UNEWTRIE2_MAX_DATA_LENGTH is incorrect, | |
535 | * or the code writes more values than should be possible. | |
536 | */ | |
537 | return -1; | |
538 | } | |
539 | data=(uint32_t *)uprv_malloc(capacity*4); | |
540 | if(data==NULL) { | |
541 | return -1; | |
542 | } | |
543 | uprv_memcpy(data, trie->data, trie->dataLength*4); | |
544 | uprv_free(trie->data); | |
545 | trie->data=data; | |
546 | trie->dataCapacity=capacity; | |
547 | } | |
548 | trie->dataLength=newTop; | |
549 | } | |
550 | uprv_memcpy(trie->data+newBlock, trie->data+copyBlock, UTRIE2_DATA_BLOCK_LENGTH*4); | |
551 | trie->map[newBlock>>UTRIE2_SHIFT_2]=0; | |
552 | return newBlock; | |
553 | } | |
554 | ||
555 | /* call when the block's reference counter reaches 0 */ | |
556 | static void | |
557 | releaseDataBlock(UNewTrie2 *trie, int32_t block) { | |
558 | /* put this block at the front of the free-block chain */ | |
559 | trie->map[block>>UTRIE2_SHIFT_2]=-trie->firstFreeBlock; | |
560 | trie->firstFreeBlock=block; | |
561 | } | |
562 | ||
563 | static inline UBool | |
564 | isWritableBlock(UNewTrie2 *trie, int32_t block) { | |
565 | return (UBool)(block!=trie->dataNullOffset && 1==trie->map[block>>UTRIE2_SHIFT_2]); | |
566 | } | |
567 | ||
568 | static inline void | |
569 | setIndex2Entry(UNewTrie2 *trie, int32_t i2, int32_t block) { | |
570 | int32_t oldBlock; | |
571 | ++trie->map[block>>UTRIE2_SHIFT_2]; /* increment first, in case block==oldBlock! */ | |
572 | oldBlock=trie->index2[i2]; | |
573 | if(0 == --trie->map[oldBlock>>UTRIE2_SHIFT_2]) { | |
574 | releaseDataBlock(trie, oldBlock); | |
575 | } | |
576 | trie->index2[i2]=block; | |
577 | } | |
578 | ||
579 | /** | |
580 | * No error checking for illegal arguments. | |
581 | * | |
582 | * @return -1 if no new data block available (out of memory in data array) | |
583 | * @internal | |
584 | */ | |
585 | static int32_t | |
586 | getDataBlock(UNewTrie2 *trie, UChar32 c, UBool forLSCP) { | |
587 | int32_t i2, oldBlock, newBlock; | |
588 | ||
589 | i2=getIndex2Block(trie, c, forLSCP); | |
590 | if(i2<0) { | |
591 | return -1; /* program error */ | |
592 | } | |
593 | ||
594 | i2+=(c>>UTRIE2_SHIFT_2)&UTRIE2_INDEX_2_MASK; | |
595 | oldBlock=trie->index2[i2]; | |
596 | if(isWritableBlock(trie, oldBlock)) { | |
597 | return oldBlock; | |
598 | } | |
599 | ||
600 | /* allocate a new data block */ | |
601 | newBlock=allocDataBlock(trie, oldBlock); | |
602 | if(newBlock<0) { | |
603 | /* out of memory in the data array */ | |
604 | return -1; | |
605 | } | |
606 | setIndex2Entry(trie, i2, newBlock); | |
607 | return newBlock; | |
608 | } | |
609 | ||
610 | /** | |
611 | * @return TRUE if the value was successfully set | |
612 | */ | |
613 | static void | |
614 | set32(UNewTrie2 *trie, | |
615 | UChar32 c, UBool forLSCP, uint32_t value, | |
616 | UErrorCode *pErrorCode) { | |
617 | int32_t block; | |
618 | ||
619 | if(trie==NULL || trie->isCompacted) { | |
620 | *pErrorCode=U_NO_WRITE_PERMISSION; | |
621 | return; | |
622 | } | |
623 | ||
624 | block=getDataBlock(trie, c, forLSCP); | |
625 | if(block<0) { | |
626 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; | |
627 | return; | |
628 | } | |
629 | ||
630 | trie->data[block+(c&UTRIE2_DATA_MASK)]=value; | |
631 | } | |
632 | ||
633 | U_CAPI void U_EXPORT2 | |
634 | utrie2_set32(UTrie2 *trie, UChar32 c, uint32_t value, UErrorCode *pErrorCode) { | |
635 | if(U_FAILURE(*pErrorCode)) { | |
636 | return; | |
637 | } | |
638 | if((uint32_t)c>0x10ffff) { | |
639 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | |
640 | return; | |
641 | } | |
642 | set32(trie->newTrie, c, TRUE, value, pErrorCode); | |
643 | } | |
644 | ||
645 | U_CAPI void U_EXPORT2 | |
646 | utrie2_set32ForLeadSurrogateCodeUnit(UTrie2 *trie, | |
647 | UChar32 c, uint32_t value, | |
648 | UErrorCode *pErrorCode) { | |
649 | if(U_FAILURE(*pErrorCode)) { | |
650 | return; | |
651 | } | |
652 | if(!U_IS_LEAD(c)) { | |
653 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | |
654 | return; | |
655 | } | |
656 | set32(trie->newTrie, c, FALSE, value, pErrorCode); | |
657 | } | |
658 | ||
659 | static void | |
660 | writeBlock(uint32_t *block, uint32_t value) { | |
661 | uint32_t *limit=block+UTRIE2_DATA_BLOCK_LENGTH; | |
662 | while(block<limit) { | |
663 | *block++=value; | |
664 | } | |
665 | } | |
666 | ||
667 | /** | |
668 | * initialValue is ignored if overwrite=TRUE | |
669 | * @internal | |
670 | */ | |
671 | static void | |
672 | fillBlock(uint32_t *block, UChar32 start, UChar32 limit, | |
673 | uint32_t value, uint32_t initialValue, UBool overwrite) { | |
674 | uint32_t *pLimit; | |
675 | ||
676 | pLimit=block+limit; | |
677 | block+=start; | |
678 | if(overwrite) { | |
679 | while(block<pLimit) { | |
680 | *block++=value; | |
681 | } | |
682 | } else { | |
683 | while(block<pLimit) { | |
684 | if(*block==initialValue) { | |
685 | *block=value; | |
686 | } | |
687 | ++block; | |
688 | } | |
689 | } | |
690 | } | |
691 | ||
692 | U_CAPI void U_EXPORT2 | |
693 | utrie2_setRange32(UTrie2 *trie, | |
694 | UChar32 start, UChar32 end, | |
695 | uint32_t value, UBool overwrite, | |
696 | UErrorCode *pErrorCode) { | |
697 | /* | |
698 | * repeat value in [start..end] | |
699 | * mark index values for repeat-data blocks by setting bit 31 of the index values | |
700 | * fill around existing values if any, if(overwrite) | |
701 | */ | |
702 | UNewTrie2 *newTrie; | |
703 | int32_t block, rest, repeatBlock; | |
704 | UChar32 limit; | |
705 | ||
706 | if(U_FAILURE(*pErrorCode)) { | |
707 | return; | |
708 | } | |
709 | if((uint32_t)start>0x10ffff || (uint32_t)end>0x10ffff || start>end) { | |
710 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | |
711 | return; | |
712 | } | |
713 | newTrie=trie->newTrie; | |
714 | if(newTrie==NULL || newTrie->isCompacted) { | |
715 | *pErrorCode=U_NO_WRITE_PERMISSION; | |
716 | return; | |
717 | } | |
718 | if(!overwrite && value==newTrie->initialValue) { | |
719 | return; /* nothing to do */ | |
720 | } | |
721 | ||
722 | limit=end+1; | |
723 | if(start&UTRIE2_DATA_MASK) { | |
724 | UChar32 nextStart; | |
725 | ||
726 | /* set partial block at [start..following block boundary[ */ | |
727 | block=getDataBlock(newTrie, start, TRUE); | |
728 | if(block<0) { | |
729 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; | |
730 | return; | |
731 | } | |
732 | ||
733 | nextStart=(start+UTRIE2_DATA_BLOCK_LENGTH)&~UTRIE2_DATA_MASK; | |
734 | if(nextStart<=limit) { | |
735 | fillBlock(newTrie->data+block, start&UTRIE2_DATA_MASK, UTRIE2_DATA_BLOCK_LENGTH, | |
736 | value, newTrie->initialValue, overwrite); | |
737 | start=nextStart; | |
738 | } else { | |
739 | fillBlock(newTrie->data+block, start&UTRIE2_DATA_MASK, limit&UTRIE2_DATA_MASK, | |
740 | value, newTrie->initialValue, overwrite); | |
741 | return; | |
742 | } | |
743 | } | |
744 | ||
745 | /* number of positions in the last, partial block */ | |
746 | rest=limit&UTRIE2_DATA_MASK; | |
747 | ||
748 | /* round down limit to a block boundary */ | |
749 | limit&=~UTRIE2_DATA_MASK; | |
750 | ||
751 | /* iterate over all-value blocks */ | |
752 | if(value==newTrie->initialValue) { | |
753 | repeatBlock=newTrie->dataNullOffset; | |
754 | } else { | |
755 | repeatBlock=-1; | |
756 | } | |
757 | ||
758 | while(start<limit) { | |
759 | int32_t i2; | |
760 | UBool setRepeatBlock=FALSE; | |
761 | ||
762 | if(value==newTrie->initialValue && isInNullBlock(newTrie, start, TRUE)) { | |
763 | start+=UTRIE2_DATA_BLOCK_LENGTH; /* nothing to do */ | |
764 | continue; | |
765 | } | |
766 | ||
767 | /* get index value */ | |
768 | i2=getIndex2Block(newTrie, start, TRUE); | |
769 | if(i2<0) { | |
770 | *pErrorCode=U_INTERNAL_PROGRAM_ERROR; | |
771 | return; | |
772 | } | |
773 | i2+=(start>>UTRIE2_SHIFT_2)&UTRIE2_INDEX_2_MASK; | |
774 | block=newTrie->index2[i2]; | |
775 | if(isWritableBlock(newTrie, block)) { | |
776 | /* already allocated */ | |
777 | if(overwrite && block>=UNEWTRIE2_DATA_0800_OFFSET) { | |
778 | /* | |
779 | * We overwrite all values, and it's not a | |
780 | * protected (ASCII-linear or 2-byte UTF-8) block: | |
781 | * replace with the repeatBlock. | |
782 | */ | |
783 | setRepeatBlock=TRUE; | |
784 | } else { | |
785 | /* !overwrite, or protected block: just write the values into this block */ | |
786 | fillBlock(newTrie->data+block, | |
787 | 0, UTRIE2_DATA_BLOCK_LENGTH, | |
788 | value, newTrie->initialValue, overwrite); | |
789 | } | |
790 | } else if(newTrie->data[block]!=value && (overwrite || block==newTrie->dataNullOffset)) { | |
791 | /* | |
792 | * Set the repeatBlock instead of the null block or previous repeat block: | |
793 | * | |
794 | * If !isWritableBlock() then all entries in the block have the same value | |
795 | * because it's the null block or a range block (the repeatBlock from a previous | |
796 | * call to utrie2_setRange32()). | |
797 | * No other blocks are used multiple times before compacting. | |
798 | * | |
799 | * The null block is the only non-writable block with the initialValue because | |
800 | * of the repeatBlock initialization above. (If value==initialValue, then | |
801 | * the repeatBlock will be the null data block.) | |
802 | * | |
803 | * We set our repeatBlock if the desired value differs from the block's value, | |
804 | * and if we overwrite any data or if the data is all initial values | |
805 | * (which is the same as the block being the null block, see above). | |
806 | */ | |
807 | setRepeatBlock=TRUE; | |
808 | } | |
809 | if(setRepeatBlock) { | |
810 | if(repeatBlock>=0) { | |
811 | setIndex2Entry(newTrie, i2, repeatBlock); | |
812 | } else { | |
813 | /* create and set and fill the repeatBlock */ | |
814 | repeatBlock=getDataBlock(newTrie, start, TRUE); | |
815 | if(repeatBlock<0) { | |
816 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; | |
817 | return; | |
818 | } | |
819 | writeBlock(newTrie->data+repeatBlock, value); | |
820 | } | |
821 | } | |
822 | ||
823 | start+=UTRIE2_DATA_BLOCK_LENGTH; | |
824 | } | |
825 | ||
826 | if(rest>0) { | |
827 | /* set partial block at [last block boundary..limit[ */ | |
828 | block=getDataBlock(newTrie, start, TRUE); | |
829 | if(block<0) { | |
830 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; | |
831 | return; | |
832 | } | |
833 | ||
834 | fillBlock(newTrie->data+block, 0, rest, value, newTrie->initialValue, overwrite); | |
835 | } | |
836 | ||
837 | return; | |
838 | } | |
839 | ||
840 | /* compaction --------------------------------------------------------------- */ | |
841 | ||
842 | static inline UBool | |
843 | equal_int32(const int32_t *s, const int32_t *t, int32_t length) { | |
844 | while(length>0 && *s==*t) { | |
845 | ++s; | |
846 | ++t; | |
847 | --length; | |
848 | } | |
849 | return (UBool)(length==0); | |
850 | } | |
851 | ||
852 | static inline UBool | |
853 | equal_uint32(const uint32_t *s, const uint32_t *t, int32_t length) { | |
854 | while(length>0 && *s==*t) { | |
855 | ++s; | |
856 | ++t; | |
857 | --length; | |
858 | } | |
859 | return (UBool)(length==0); | |
860 | } | |
861 | ||
862 | static int32_t | |
863 | findSameIndex2Block(const int32_t *idx, int32_t index2Length, int32_t otherBlock) { | |
864 | int32_t block; | |
865 | ||
866 | /* ensure that we do not even partially get past index2Length */ | |
867 | index2Length-=UTRIE2_INDEX_2_BLOCK_LENGTH; | |
868 | ||
869 | for(block=0; block<=index2Length; ++block) { | |
870 | if(equal_int32(idx+block, idx+otherBlock, UTRIE2_INDEX_2_BLOCK_LENGTH)) { | |
871 | return block; | |
872 | } | |
873 | } | |
874 | return -1; | |
875 | } | |
876 | ||
877 | static int32_t | |
878 | findSameDataBlock(const uint32_t *data, int32_t dataLength, int32_t otherBlock, int32_t blockLength) { | |
879 | int32_t block; | |
880 | ||
881 | /* ensure that we do not even partially get past dataLength */ | |
882 | dataLength-=blockLength; | |
883 | ||
884 | for(block=0; block<=dataLength; block+=UTRIE2_DATA_GRANULARITY) { | |
885 | if(equal_uint32(data+block, data+otherBlock, blockLength)) { | |
886 | return block; | |
887 | } | |
888 | } | |
889 | return -1; | |
890 | } | |
891 | ||
892 | /* | |
893 | * Find the start of the last range in the trie by enumerating backward. | |
894 | * Indexes for supplementary code points higher than this will be omitted. | |
895 | */ | |
896 | static UChar32 | |
897 | findHighStart(UNewTrie2 *trie, uint32_t highValue) { | |
898 | const uint32_t *data32; | |
899 | ||
900 | uint32_t value, initialValue; | |
901 | UChar32 c, prev; | |
902 | int32_t i1, i2, j, i2Block, prevI2Block, index2NullOffset, block, prevBlock, nullBlock; | |
903 | ||
904 | data32=trie->data; | |
905 | initialValue=trie->initialValue; | |
906 | ||
907 | index2NullOffset=trie->index2NullOffset; | |
908 | nullBlock=trie->dataNullOffset; | |
909 | ||
910 | /* set variables for previous range */ | |
911 | if(highValue==initialValue) { | |
912 | prevI2Block=index2NullOffset; | |
913 | prevBlock=nullBlock; | |
914 | } else { | |
915 | prevI2Block=-1; | |
916 | prevBlock=-1; | |
917 | } | |
918 | prev=0x110000; | |
919 | ||
920 | /* enumerate index-2 blocks */ | |
921 | i1=UNEWTRIE2_INDEX_1_LENGTH; | |
922 | c=prev; | |
923 | while(c>0) { | |
924 | i2Block=trie->index1[--i1]; | |
925 | if(i2Block==prevI2Block) { | |
926 | /* the index-2 block is the same as the previous one, and filled with highValue */ | |
927 | c-=UTRIE2_CP_PER_INDEX_1_ENTRY; | |
928 | continue; | |
929 | } | |
930 | prevI2Block=i2Block; | |
931 | if(i2Block==index2NullOffset) { | |
932 | /* this is the null index-2 block */ | |
933 | if(highValue!=initialValue) { | |
934 | return c; | |
935 | } | |
936 | c-=UTRIE2_CP_PER_INDEX_1_ENTRY; | |
937 | } else { | |
938 | /* enumerate data blocks for one index-2 block */ | |
939 | for(i2=UTRIE2_INDEX_2_BLOCK_LENGTH; i2>0;) { | |
940 | block=trie->index2[i2Block+ --i2]; | |
941 | if(block==prevBlock) { | |
942 | /* the block is the same as the previous one, and filled with highValue */ | |
943 | c-=UTRIE2_DATA_BLOCK_LENGTH; | |
944 | continue; | |
945 | } | |
946 | prevBlock=block; | |
947 | if(block==nullBlock) { | |
948 | /* this is the null data block */ | |
949 | if(highValue!=initialValue) { | |
950 | return c; | |
951 | } | |
952 | c-=UTRIE2_DATA_BLOCK_LENGTH; | |
953 | } else { | |
954 | for(j=UTRIE2_DATA_BLOCK_LENGTH; j>0;) { | |
955 | value=data32[block+ --j]; | |
956 | if(value!=highValue) { | |
957 | return c; | |
958 | } | |
959 | --c; | |
960 | } | |
961 | } | |
962 | } | |
963 | } | |
964 | } | |
965 | ||
966 | /* deliver last range */ | |
967 | return 0; | |
968 | } | |
969 | ||
970 | /* | |
971 | * Compact a build-time trie. | |
972 | * | |
973 | * The compaction | |
974 | * - removes blocks that are identical with earlier ones | |
975 | * - overlaps adjacent blocks as much as possible (if overlap==TRUE) | |
976 | * - moves blocks in steps of the data granularity | |
977 | * - moves and overlaps blocks that overlap with multiple values in the overlap region | |
978 | * | |
979 | * It does not | |
980 | * - try to move and overlap blocks that are not already adjacent | |
981 | */ | |
982 | static void | |
983 | compactData(UNewTrie2 *trie) { | |
984 | int32_t start, newStart, movedStart; | |
985 | int32_t blockLength, overlap; | |
986 | int32_t i, mapIndex, blockCount; | |
987 | ||
988 | /* do not compact linear-ASCII data */ | |
989 | newStart=UTRIE2_DATA_START_OFFSET; | |
990 | for(start=0, i=0; start<newStart; start+=UTRIE2_DATA_BLOCK_LENGTH, ++i) { | |
991 | trie->map[i]=start; | |
992 | } | |
993 | ||
994 | /* | |
995 | * Start with a block length of 64 for 2-byte UTF-8, | |
996 | * then switch to UTRIE2_DATA_BLOCK_LENGTH. | |
997 | */ | |
998 | blockLength=64; | |
999 | blockCount=blockLength>>UTRIE2_SHIFT_2; | |
1000 | for(start=newStart; start<trie->dataLength;) { | |
1001 | /* | |
1002 | * start: index of first entry of current block | |
1003 | * newStart: index where the current block is to be moved | |
1004 | * (right after current end of already-compacted data) | |
1005 | */ | |
1006 | if(start==UNEWTRIE2_DATA_0800_OFFSET) { | |
1007 | blockLength=UTRIE2_DATA_BLOCK_LENGTH; | |
1008 | blockCount=1; | |
1009 | } | |
1010 | ||
1011 | /* skip blocks that are not used */ | |
1012 | if(trie->map[start>>UTRIE2_SHIFT_2]<=0) { | |
1013 | /* advance start to the next block */ | |
1014 | start+=blockLength; | |
1015 | ||
1016 | /* leave newStart with the previous block! */ | |
1017 | continue; | |
1018 | } | |
1019 | ||
1020 | /* search for an identical block */ | |
1021 | if( (movedStart=findSameDataBlock(trie->data, newStart, start, blockLength)) | |
1022 | >=0 | |
1023 | ) { | |
1024 | /* found an identical block, set the other block's index value for the current block */ | |
1025 | for(i=blockCount, mapIndex=start>>UTRIE2_SHIFT_2; i>0; --i) { | |
1026 | trie->map[mapIndex++]=movedStart; | |
1027 | movedStart+=UTRIE2_DATA_BLOCK_LENGTH; | |
1028 | } | |
1029 | ||
1030 | /* advance start to the next block */ | |
1031 | start+=blockLength; | |
1032 | ||
1033 | /* leave newStart with the previous block! */ | |
1034 | continue; | |
1035 | } | |
1036 | ||
1037 | /* see if the beginning of this block can be overlapped with the end of the previous block */ | |
1038 | /* look for maximum overlap (modulo granularity) with the previous, adjacent block */ | |
1039 | for(overlap=blockLength-UTRIE2_DATA_GRANULARITY; | |
1040 | overlap>0 && !equal_uint32(trie->data+(newStart-overlap), trie->data+start, overlap); | |
1041 | overlap-=UTRIE2_DATA_GRANULARITY) {} | |
1042 | ||
1043 | if(overlap>0 || newStart<start) { | |
1044 | /* some overlap, or just move the whole block */ | |
1045 | movedStart=newStart-overlap; | |
1046 | for(i=blockCount, mapIndex=start>>UTRIE2_SHIFT_2; i>0; --i) { | |
1047 | trie->map[mapIndex++]=movedStart; | |
1048 | movedStart+=UTRIE2_DATA_BLOCK_LENGTH; | |
1049 | } | |
1050 | ||
1051 | /* move the non-overlapping indexes to their new positions */ | |
1052 | start+=overlap; | |
1053 | for(i=blockLength-overlap; i>0; --i) { | |
1054 | trie->data[newStart++]=trie->data[start++]; | |
1055 | } | |
1056 | } else /* no overlap && newStart==start */ { | |
1057 | for(i=blockCount, mapIndex=start>>UTRIE2_SHIFT_2; i>0; --i) { | |
1058 | trie->map[mapIndex++]=start; | |
1059 | start+=UTRIE2_DATA_BLOCK_LENGTH; | |
1060 | } | |
1061 | newStart=start; | |
1062 | } | |
1063 | } | |
1064 | ||
1065 | /* now adjust the index-2 table */ | |
1066 | for(i=0; i<trie->index2Length; ++i) { | |
1067 | if(i==UNEWTRIE2_INDEX_GAP_OFFSET) { | |
1068 | /* Gap indexes are invalid (-1). Skip over the gap. */ | |
1069 | i+=UNEWTRIE2_INDEX_GAP_LENGTH; | |
1070 | } | |
1071 | trie->index2[i]=trie->map[trie->index2[i]>>UTRIE2_SHIFT_2]; | |
1072 | } | |
1073 | trie->dataNullOffset=trie->map[trie->dataNullOffset>>UTRIE2_SHIFT_2]; | |
1074 | ||
1075 | /* ensure dataLength alignment */ | |
1076 | while((newStart&(UTRIE2_DATA_GRANULARITY-1))!=0) { | |
1077 | trie->data[newStart++]=trie->initialValue; | |
1078 | } | |
1079 | ||
1080 | #ifdef UTRIE2_DEBUG | |
1081 | /* we saved some space */ | |
1082 | printf("compacting UTrie2: count of 32-bit data words %lu->%lu\n", | |
1083 | (long)trie->dataLength, (long)newStart); | |
1084 | #endif | |
1085 | ||
1086 | trie->dataLength=newStart; | |
1087 | } | |
1088 | ||
1089 | static void | |
1090 | compactIndex2(UNewTrie2 *trie) { | |
1091 | int32_t i, start, newStart, movedStart, overlap; | |
1092 | ||
1093 | /* do not compact linear-BMP index-2 blocks */ | |
1094 | newStart=UTRIE2_INDEX_2_BMP_LENGTH; | |
1095 | for(start=0, i=0; start<newStart; start+=UTRIE2_INDEX_2_BLOCK_LENGTH, ++i) { | |
1096 | trie->map[i]=start; | |
1097 | } | |
1098 | ||
1099 | /* Reduce the index table gap to what will be needed at runtime. */ | |
1100 | newStart+=UTRIE2_UTF8_2B_INDEX_2_LENGTH+((trie->highStart-0x10000)>>UTRIE2_SHIFT_1); | |
1101 | ||
1102 | for(start=UNEWTRIE2_INDEX_2_NULL_OFFSET; start<trie->index2Length;) { | |
1103 | /* | |
1104 | * start: index of first entry of current block | |
1105 | * newStart: index where the current block is to be moved | |
1106 | * (right after current end of already-compacted data) | |
1107 | */ | |
1108 | ||
1109 | /* search for an identical block */ | |
1110 | if( (movedStart=findSameIndex2Block(trie->index2, newStart, start)) | |
1111 | >=0 | |
1112 | ) { | |
1113 | /* found an identical block, set the other block's index value for the current block */ | |
1114 | trie->map[start>>UTRIE2_SHIFT_1_2]=movedStart; | |
1115 | ||
1116 | /* advance start to the next block */ | |
1117 | start+=UTRIE2_INDEX_2_BLOCK_LENGTH; | |
1118 | ||
1119 | /* leave newStart with the previous block! */ | |
1120 | continue; | |
1121 | } | |
1122 | ||
1123 | /* see if the beginning of this block can be overlapped with the end of the previous block */ | |
1124 | /* look for maximum overlap with the previous, adjacent block */ | |
1125 | for(overlap=UTRIE2_INDEX_2_BLOCK_LENGTH-1; | |
1126 | overlap>0 && !equal_int32(trie->index2+(newStart-overlap), trie->index2+start, overlap); | |
1127 | --overlap) {} | |
1128 | ||
1129 | if(overlap>0 || newStart<start) { | |
1130 | /* some overlap, or just move the whole block */ | |
1131 | trie->map[start>>UTRIE2_SHIFT_1_2]=newStart-overlap; | |
1132 | ||
1133 | /* move the non-overlapping indexes to their new positions */ | |
1134 | start+=overlap; | |
1135 | for(i=UTRIE2_INDEX_2_BLOCK_LENGTH-overlap; i>0; --i) { | |
1136 | trie->index2[newStart++]=trie->index2[start++]; | |
1137 | } | |
1138 | } else /* no overlap && newStart==start */ { | |
1139 | trie->map[start>>UTRIE2_SHIFT_1_2]=start; | |
1140 | start+=UTRIE2_INDEX_2_BLOCK_LENGTH; | |
1141 | newStart=start; | |
1142 | } | |
1143 | } | |
1144 | ||
1145 | /* now adjust the index-1 table */ | |
1146 | for(i=0; i<UNEWTRIE2_INDEX_1_LENGTH; ++i) { | |
1147 | trie->index1[i]=trie->map[trie->index1[i]>>UTRIE2_SHIFT_1_2]; | |
1148 | } | |
1149 | trie->index2NullOffset=trie->map[trie->index2NullOffset>>UTRIE2_SHIFT_1_2]; | |
1150 | ||
1151 | /* | |
1152 | * Ensure data table alignment: | |
1153 | * Needs to be granularity-aligned for 16-bit trie | |
1154 | * (so that dataMove will be down-shiftable), | |
1155 | * and 2-aligned for uint32_t data. | |
1156 | */ | |
1157 | while((newStart&((UTRIE2_DATA_GRANULARITY-1)|1))!=0) { | |
1158 | /* Arbitrary value: 0x3fffc not possible for real data. */ | |
1159 | trie->index2[newStart++]=(int32_t)0xffff<<UTRIE2_INDEX_SHIFT; | |
1160 | } | |
1161 | ||
1162 | #ifdef UTRIE2_DEBUG | |
1163 | /* we saved some space */ | |
1164 | printf("compacting UTrie2: count of 16-bit index-2 words %lu->%lu\n", | |
1165 | (long)trie->index2Length, (long)newStart); | |
1166 | #endif | |
1167 | ||
1168 | trie->index2Length=newStart; | |
1169 | } | |
1170 | ||
1171 | static void | |
1172 | compactTrie(UTrie2 *trie, UErrorCode *pErrorCode) { | |
1173 | UNewTrie2 *newTrie; | |
1174 | UChar32 highStart, suppHighStart; | |
1175 | uint32_t highValue; | |
1176 | ||
1177 | newTrie=trie->newTrie; | |
1178 | ||
1179 | /* find highStart and round it up */ | |
1180 | highValue=utrie2_get32(trie, 0x10ffff); | |
1181 | highStart=findHighStart(newTrie, highValue); | |
1182 | highStart=(highStart+(UTRIE2_CP_PER_INDEX_1_ENTRY-1))&~(UTRIE2_CP_PER_INDEX_1_ENTRY-1); | |
1183 | if(highStart==0x110000) { | |
1184 | highValue=trie->errorValue; | |
1185 | } | |
1186 | ||
1187 | /* | |
1188 | * Set trie->highStart only after utrie2_get32(trie, highStart). | |
1189 | * Otherwise utrie2_get32(trie, highStart) would try to read the highValue. | |
1190 | */ | |
1191 | trie->highStart=newTrie->highStart=highStart; | |
1192 | ||
1193 | #ifdef UTRIE2_DEBUG | |
1194 | printf("UTrie2: highStart U+%04lx highValue 0x%lx initialValue 0x%lx\n", | |
1195 | (long)highStart, (long)highValue, (long)trie->initialValue); | |
1196 | #endif | |
1197 | ||
1198 | if(highStart<0x110000) { | |
1199 | /* Blank out [highStart..10ffff] to release associated data blocks. */ | |
1200 | suppHighStart= highStart<=0x10000 ? 0x10000 : highStart; | |
1201 | utrie2_setRange32(trie, suppHighStart, 0x10ffff, trie->initialValue, TRUE, pErrorCode); | |
1202 | if(U_FAILURE(*pErrorCode)) { | |
1203 | return; | |
1204 | } | |
1205 | } | |
1206 | ||
1207 | compactData(newTrie); | |
1208 | if(highStart>0x10000) { | |
1209 | compactIndex2(newTrie); | |
1210 | #ifdef UTRIE2_DEBUG | |
1211 | } else { | |
1212 | printf("UTrie2: highStart U+%04lx count of 16-bit index-2 words %lu->%lu\n", | |
1213 | (long)highStart, (long)trie->newTrie->index2Length, (long)UTRIE2_INDEX_1_OFFSET); | |
1214 | #endif | |
1215 | } | |
1216 | ||
1217 | /* | |
1218 | * Store the highValue in the data array and round up the dataLength. | |
1219 | * Must be done after compactData() because that assumes that dataLength | |
1220 | * is a multiple of UTRIE2_DATA_BLOCK_LENGTH. | |
1221 | */ | |
1222 | newTrie->data[newTrie->dataLength++]=highValue; | |
1223 | while((newTrie->dataLength&(UTRIE2_DATA_GRANULARITY-1))!=0) { | |
1224 | newTrie->data[newTrie->dataLength++]=trie->initialValue; | |
1225 | } | |
1226 | ||
1227 | newTrie->isCompacted=TRUE; | |
1228 | } | |
1229 | ||
1230 | /* serialization ------------------------------------------------------------ */ | |
1231 | ||
1232 | /** | |
1233 | * Maximum length of the runtime index array. | |
1234 | * Limited by its own 16-bit index values, and by uint16_t UTrie2Header.indexLength. | |
1235 | * (The actual maximum length is lower, | |
1236 | * (0x110000>>UTRIE2_SHIFT_2)+UTRIE2_UTF8_2B_INDEX_2_LENGTH+UTRIE2_MAX_INDEX_1_LENGTH.) | |
1237 | */ | |
1238 | #define UTRIE2_MAX_INDEX_LENGTH 0xffff | |
1239 | ||
1240 | /** | |
1241 | * Maximum length of the runtime data array. | |
1242 | * Limited by 16-bit index values that are left-shifted by UTRIE2_INDEX_SHIFT, | |
1243 | * and by uint16_t UTrie2Header.shiftedDataLength. | |
1244 | */ | |
1245 | #define UTRIE2_MAX_DATA_LENGTH (0xffff<<UTRIE2_INDEX_SHIFT) | |
1246 | ||
1247 | /* Compact and internally serialize the trie. */ | |
1248 | U_CAPI void U_EXPORT2 | |
1249 | utrie2_freeze(UTrie2 *trie, UTrie2ValueBits valueBits, UErrorCode *pErrorCode) { | |
1250 | UNewTrie2 *newTrie; | |
1251 | UTrie2Header *header; | |
1252 | uint32_t *p; | |
1253 | uint16_t *dest16; | |
1254 | int32_t i, length; | |
1255 | int32_t allIndexesLength; | |
1256 | int32_t dataMove; /* >0 if the data is moved to the end of the index array */ | |
1257 | UChar32 highStart; | |
1258 | ||
1259 | /* argument check */ | |
1260 | if(U_FAILURE(*pErrorCode)) { | |
1261 | return; | |
1262 | } | |
1263 | if( trie==NULL || | |
1264 | valueBits<0 || UTRIE2_COUNT_VALUE_BITS<=valueBits | |
1265 | ) { | |
1266 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | |
1267 | return; | |
1268 | } | |
1269 | newTrie=trie->newTrie; | |
1270 | if(newTrie==NULL) { | |
1271 | /* already frozen */ | |
1272 | UTrie2ValueBits frozenValueBits= | |
1273 | trie->data16!=NULL ? UTRIE2_16_VALUE_BITS : UTRIE2_32_VALUE_BITS; | |
1274 | if(valueBits!=frozenValueBits) { | |
1275 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | |
1276 | } | |
1277 | return; | |
1278 | } | |
1279 | ||
1280 | /* compact if necessary */ | |
1281 | if(!newTrie->isCompacted) { | |
1282 | compactTrie(trie, pErrorCode); | |
1283 | if(U_FAILURE(*pErrorCode)) { | |
1284 | return; | |
1285 | } | |
1286 | } | |
1287 | highStart=trie->highStart; | |
1288 | ||
1289 | if(highStart<=0x10000) { | |
1290 | allIndexesLength=UTRIE2_INDEX_1_OFFSET; | |
1291 | } else { | |
1292 | allIndexesLength=newTrie->index2Length; | |
1293 | } | |
1294 | if(valueBits==UTRIE2_16_VALUE_BITS) { | |
1295 | dataMove=allIndexesLength; | |
1296 | } else { | |
1297 | dataMove=0; | |
1298 | } | |
1299 | ||
1300 | /* are indexLength and dataLength within limits? */ | |
1301 | if( /* for unshifted indexLength */ | |
1302 | allIndexesLength>UTRIE2_MAX_INDEX_LENGTH || | |
1303 | /* for unshifted dataNullOffset */ | |
1304 | (dataMove+newTrie->dataNullOffset)>0xffff || | |
1305 | /* for unshifted 2-byte UTF-8 index-2 values */ | |
1306 | (dataMove+UNEWTRIE2_DATA_0800_OFFSET)>0xffff || | |
1307 | /* for shiftedDataLength */ | |
1308 | (dataMove+newTrie->dataLength)>UTRIE2_MAX_DATA_LENGTH | |
1309 | ) { | |
1310 | *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; | |
1311 | return; | |
1312 | } | |
1313 | ||
1314 | /* calculate the total serialized length */ | |
1315 | length=sizeof(UTrie2Header)+allIndexesLength*2; | |
1316 | if(valueBits==UTRIE2_16_VALUE_BITS) { | |
1317 | length+=newTrie->dataLength*2; | |
1318 | } else { | |
1319 | length+=newTrie->dataLength*4; | |
1320 | } | |
1321 | ||
1322 | trie->memory=uprv_malloc(length); | |
1323 | if(trie->memory==NULL) { | |
1324 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; | |
1325 | return; | |
1326 | } | |
1327 | trie->length=length; | |
1328 | trie->isMemoryOwned=TRUE; | |
1329 | ||
1330 | trie->indexLength=allIndexesLength; | |
1331 | trie->dataLength=newTrie->dataLength; | |
1332 | if(highStart<=0x10000) { | |
1333 | trie->index2NullOffset=0xffff; | |
1334 | } else { | |
1335 | trie->index2NullOffset=UTRIE2_INDEX_2_OFFSET+newTrie->index2NullOffset; | |
1336 | } | |
1337 | trie->dataNullOffset=(uint16_t)(dataMove+newTrie->dataNullOffset); | |
1338 | trie->highValueIndex=dataMove+trie->dataLength-UTRIE2_DATA_GRANULARITY; | |
1339 | ||
1340 | /* set the header fields */ | |
1341 | header=(UTrie2Header *)trie->memory; | |
1342 | ||
1343 | header->signature=UTRIE2_SIG; /* "Tri2" */ | |
1344 | header->options=(uint16_t)valueBits; | |
1345 | ||
1346 | header->indexLength=(uint16_t)trie->indexLength; | |
1347 | header->shiftedDataLength=(uint16_t)(trie->dataLength>>UTRIE2_INDEX_SHIFT); | |
1348 | header->index2NullOffset=trie->index2NullOffset; | |
1349 | header->dataNullOffset=trie->dataNullOffset; | |
1350 | header->shiftedHighStart=(uint16_t)(highStart>>UTRIE2_SHIFT_1); | |
1351 | ||
1352 | /* fill the index and data arrays */ | |
1353 | dest16=(uint16_t *)(header+1); | |
1354 | trie->index=dest16; | |
1355 | ||
1356 | /* write the index-2 array values shifted right by UTRIE2_INDEX_SHIFT, after adding dataMove */ | |
1357 | p=(uint32_t *)newTrie->index2; | |
1358 | for(i=UTRIE2_INDEX_2_BMP_LENGTH; i>0; --i) { | |
1359 | *dest16++=(uint16_t)((dataMove + *p++)>>UTRIE2_INDEX_SHIFT); | |
1360 | } | |
1361 | ||
1362 | /* write UTF-8 2-byte index-2 values, not right-shifted */ | |
1363 | for(i=0; i<(0xc2-0xc0); ++i) { /* C0..C1 */ | |
1364 | *dest16++=(uint16_t)(dataMove+UTRIE2_BAD_UTF8_DATA_OFFSET); | |
1365 | } | |
1366 | for(; i<(0xe0-0xc0); ++i) { /* C2..DF */ | |
1367 | *dest16++=(uint16_t)(dataMove+newTrie->index2[i<<(6-UTRIE2_SHIFT_2)]); | |
1368 | } | |
1369 | ||
1370 | if(highStart>0x10000) { | |
1371 | int32_t index1Length=(highStart-0x10000)>>UTRIE2_SHIFT_1; | |
1372 | int32_t index2Offset=UTRIE2_INDEX_2_BMP_LENGTH+UTRIE2_UTF8_2B_INDEX_2_LENGTH+index1Length; | |
1373 | ||
1374 | /* write 16-bit index-1 values for supplementary code points */ | |
1375 | p=(uint32_t *)newTrie->index1+UTRIE2_OMITTED_BMP_INDEX_1_LENGTH; | |
1376 | for(i=index1Length; i>0; --i) { | |
1377 | *dest16++=(uint16_t)(UTRIE2_INDEX_2_OFFSET + *p++); | |
1378 | } | |
1379 | ||
1380 | /* | |
1381 | * write the index-2 array values for supplementary code points, | |
1382 | * shifted right by UTRIE2_INDEX_SHIFT, after adding dataMove | |
1383 | */ | |
1384 | p=(uint32_t *)newTrie->index2+index2Offset; | |
1385 | for(i=newTrie->index2Length-index2Offset; i>0; --i) { | |
1386 | *dest16++=(uint16_t)((dataMove + *p++)>>UTRIE2_INDEX_SHIFT); | |
1387 | } | |
1388 | } | |
1389 | ||
1390 | /* write the 16/32-bit data array */ | |
1391 | switch(valueBits) { | |
1392 | case UTRIE2_16_VALUE_BITS: | |
1393 | /* write 16-bit data values */ | |
1394 | trie->data16=dest16; | |
1395 | trie->data32=NULL; | |
1396 | p=newTrie->data; | |
1397 | for(i=newTrie->dataLength; i>0; --i) { | |
1398 | *dest16++=(uint16_t)*p++; | |
1399 | } | |
1400 | break; | |
1401 | case UTRIE2_32_VALUE_BITS: | |
1402 | /* write 32-bit data values */ | |
1403 | trie->data16=NULL; | |
1404 | trie->data32=(uint32_t *)dest16; | |
1405 | uprv_memcpy(dest16, newTrie->data, newTrie->dataLength*4); | |
1406 | break; | |
1407 | default: | |
1408 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | |
1409 | return; | |
1410 | } | |
1411 | ||
1412 | /* Delete the UNewTrie2. */ | |
1413 | uprv_free(newTrie->data); | |
1414 | uprv_free(newTrie); | |
1415 | trie->newTrie=NULL; | |
1416 | } | |
1417 | ||
1418 | /* | |
1419 | * This is here to avoid a dependency from utrie2.cpp on utrie.c. | |
1420 | * This file already depends on utrie.c. | |
1421 | * Otherwise, this should be in utrie2.cpp right after utrie2_swap(). | |
1422 | */ | |
1423 | U_CAPI int32_t U_EXPORT2 | |
1424 | utrie2_swapAnyVersion(const UDataSwapper *ds, | |
1425 | const void *inData, int32_t length, void *outData, | |
1426 | UErrorCode *pErrorCode) { | |
1427 | if(U_SUCCESS(*pErrorCode)) { | |
1428 | switch(utrie2_getVersion(inData, length, TRUE)) { | |
1429 | case 1: | |
1430 | return utrie_swap(ds, inData, length, outData, pErrorCode); | |
1431 | case 2: | |
1432 | return utrie2_swap(ds, inData, length, outData, pErrorCode); | |
1433 | default: | |
1434 | *pErrorCode=U_INVALID_FORMAT_ERROR; | |
1435 | return 0; | |
1436 | } | |
1437 | } | |
1438 | return 0; | |
1439 | } |