]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | ******************************************************************************* | |
3 | * | |
4 | * Copyright (C) 2008-2011, International Business Machines | |
5 | * Corporation, Google and others. All Rights Reserved. | |
6 | * | |
7 | ******************************************************************************* | |
8 | */ | |
9 | // Author : eldawy@google.com (Mohamed Eldawy) | |
10 | // ucnvsel.cpp | |
11 | // | |
12 | // Purpose: To generate a list of encodings capable of handling | |
13 | // a given Unicode text | |
14 | // | |
15 | // Started 09-April-2008 | |
16 | ||
17 | /** | |
18 | * \file | |
19 | * | |
20 | * This is an implementation of an encoding selector. | |
21 | * The goal is, given a unicode string, find the encodings | |
22 | * this string can be mapped to. To make processing faster | |
23 | * a trie is built when you call ucnvsel_open() that | |
24 | * stores all encodings a codepoint can map to | |
25 | */ | |
26 | ||
27 | #include "unicode/ucnvsel.h" | |
28 | ||
29 | #if !UCONFIG_NO_CONVERSION | |
30 | ||
31 | #include <string.h> | |
32 | ||
33 | #include "unicode/uchar.h" | |
34 | #include "unicode/uniset.h" | |
35 | #include "unicode/ucnv.h" | |
36 | #include "unicode/ustring.h" | |
37 | #include "unicode/uchriter.h" | |
38 | #include "utrie2.h" | |
39 | #include "propsvec.h" | |
40 | #include "uassert.h" | |
41 | #include "ucmndata.h" | |
42 | #include "uenumimp.h" | |
43 | #include "cmemory.h" | |
44 | #include "cstring.h" | |
45 | ||
46 | U_NAMESPACE_USE | |
47 | ||
48 | struct UConverterSelector { | |
49 | UTrie2 *trie; // 16 bit trie containing offsets into pv | |
50 | uint32_t* pv; // table of bits! | |
51 | int32_t pvCount; | |
52 | char** encodings; // which encodings did user ask to use? | |
53 | int32_t encodingsCount; | |
54 | int32_t encodingStrLength; | |
55 | uint8_t* swapped; | |
56 | UBool ownPv, ownEncodingStrings; | |
57 | }; | |
58 | ||
59 | static void generateSelectorData(UConverterSelector* result, | |
60 | UPropsVectors *upvec, | |
61 | const USet* excludedCodePoints, | |
62 | const UConverterUnicodeSet whichSet, | |
63 | UErrorCode* status) { | |
64 | if (U_FAILURE(*status)) { | |
65 | return; | |
66 | } | |
67 | ||
68 | int32_t columns = (result->encodingsCount+31)/32; | |
69 | ||
70 | // set errorValue to all-ones | |
71 | for (int32_t col = 0; col < columns; col++) { | |
72 | upvec_setValue(upvec, UPVEC_ERROR_VALUE_CP, UPVEC_ERROR_VALUE_CP, | |
73 | col, ~0, ~0, status); | |
74 | } | |
75 | ||
76 | for (int32_t i = 0; i < result->encodingsCount; ++i) { | |
77 | uint32_t mask; | |
78 | uint32_t column; | |
79 | int32_t item_count; | |
80 | int32_t j; | |
81 | UConverter* test_converter = ucnv_open(result->encodings[i], status); | |
82 | if (U_FAILURE(*status)) { | |
83 | return; | |
84 | } | |
85 | USet* unicode_point_set; | |
86 | unicode_point_set = uset_open(1, 0); // empty set | |
87 | ||
88 | ucnv_getUnicodeSet(test_converter, unicode_point_set, | |
89 | whichSet, status); | |
90 | if (U_FAILURE(*status)) { | |
91 | ucnv_close(test_converter); | |
92 | return; | |
93 | } | |
94 | ||
95 | column = i / 32; | |
96 | mask = 1 << (i%32); | |
97 | // now iterate over intervals on set i! | |
98 | item_count = uset_getItemCount(unicode_point_set); | |
99 | ||
100 | for (j = 0; j < item_count; ++j) { | |
101 | UChar32 start_char; | |
102 | UChar32 end_char; | |
103 | UErrorCode smallStatus = U_ZERO_ERROR; | |
104 | uset_getItem(unicode_point_set, j, &start_char, &end_char, NULL, 0, | |
105 | &smallStatus); | |
106 | if (U_FAILURE(smallStatus)) { | |
107 | // this will be reached for the converters that fill the set with | |
108 | // strings. Those should be ignored by our system | |
109 | } else { | |
110 | upvec_setValue(upvec, start_char, end_char, column, ~0, mask, | |
111 | status); | |
112 | } | |
113 | } | |
114 | ucnv_close(test_converter); | |
115 | uset_close(unicode_point_set); | |
116 | if (U_FAILURE(*status)) { | |
117 | return; | |
118 | } | |
119 | } | |
120 | ||
121 | // handle excluded encodings! Simply set their values to all 1's in the upvec | |
122 | if (excludedCodePoints) { | |
123 | int32_t item_count = uset_getItemCount(excludedCodePoints); | |
124 | for (int32_t j = 0; j < item_count; ++j) { | |
125 | UChar32 start_char; | |
126 | UChar32 end_char; | |
127 | ||
128 | uset_getItem(excludedCodePoints, j, &start_char, &end_char, NULL, 0, | |
129 | status); | |
130 | for (int32_t col = 0; col < columns; col++) { | |
131 | upvec_setValue(upvec, start_char, end_char, col, ~0, ~0, | |
132 | status); | |
133 | } | |
134 | } | |
135 | } | |
136 | ||
137 | // alright. Now, let's put things in the same exact form you'd get when you | |
138 | // unserialize things. | |
139 | result->trie = upvec_compactToUTrie2WithRowIndexes(upvec, status); | |
140 | result->pv = upvec_cloneArray(upvec, &result->pvCount, NULL, status); | |
141 | result->pvCount *= columns; // number of uint32_t = rows * columns | |
142 | result->ownPv = TRUE; | |
143 | } | |
144 | ||
145 | /* open a selector. If converterListSize is 0, build for all converters. | |
146 | If excludedCodePoints is NULL, don't exclude any codepoints */ | |
147 | U_CAPI UConverterSelector* U_EXPORT2 | |
148 | ucnvsel_open(const char* const* converterList, int32_t converterListSize, | |
149 | const USet* excludedCodePoints, | |
150 | const UConverterUnicodeSet whichSet, UErrorCode* status) { | |
151 | // check if already failed | |
152 | if (U_FAILURE(*status)) { | |
153 | return NULL; | |
154 | } | |
155 | // ensure args make sense! | |
156 | if (converterListSize < 0 || (converterList == NULL && converterListSize != 0)) { | |
157 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
158 | return NULL; | |
159 | } | |
160 | ||
161 | // allocate a new converter | |
162 | LocalUConverterSelectorPointer newSelector( | |
163 | (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector))); | |
164 | if (newSelector.isNull()) { | |
165 | *status = U_MEMORY_ALLOCATION_ERROR; | |
166 | return NULL; | |
167 | } | |
168 | uprv_memset(newSelector.getAlias(), 0, sizeof(UConverterSelector)); | |
169 | ||
170 | if (converterListSize == 0) { | |
171 | converterList = NULL; | |
172 | converterListSize = ucnv_countAvailable(); | |
173 | } | |
174 | newSelector->encodings = | |
175 | (char**)uprv_malloc(converterListSize * sizeof(char*)); | |
176 | if (!newSelector->encodings) { | |
177 | *status = U_MEMORY_ALLOCATION_ERROR; | |
178 | return NULL; | |
179 | } | |
180 | newSelector->encodings[0] = NULL; // now we can call ucnvsel_close() | |
181 | ||
182 | // make a backup copy of the list of converters | |
183 | int32_t totalSize = 0; | |
184 | int32_t i; | |
185 | for (i = 0; i < converterListSize; i++) { | |
186 | totalSize += | |
187 | (int32_t)uprv_strlen(converterList != NULL ? converterList[i] : ucnv_getAvailableName(i)) + 1; | |
188 | } | |
189 | // 4-align the totalSize to 4-align the size of the serialized form | |
190 | int32_t encodingStrPadding = totalSize & 3; | |
191 | if (encodingStrPadding != 0) { | |
192 | encodingStrPadding = 4 - encodingStrPadding; | |
193 | } | |
194 | newSelector->encodingStrLength = totalSize += encodingStrPadding; | |
195 | char* allStrings = (char*) uprv_malloc(totalSize); | |
196 | if (!allStrings) { | |
197 | *status = U_MEMORY_ALLOCATION_ERROR; | |
198 | return NULL; | |
199 | } | |
200 | ||
201 | for (i = 0; i < converterListSize; i++) { | |
202 | newSelector->encodings[i] = allStrings; | |
203 | uprv_strcpy(newSelector->encodings[i], | |
204 | converterList != NULL ? converterList[i] : ucnv_getAvailableName(i)); | |
205 | allStrings += uprv_strlen(newSelector->encodings[i]) + 1; | |
206 | } | |
207 | while (encodingStrPadding > 0) { | |
208 | *allStrings++ = 0; | |
209 | --encodingStrPadding; | |
210 | } | |
211 | ||
212 | newSelector->ownEncodingStrings = TRUE; | |
213 | newSelector->encodingsCount = converterListSize; | |
214 | UPropsVectors *upvec = upvec_open((converterListSize+31)/32, status); | |
215 | generateSelectorData(newSelector.getAlias(), upvec, excludedCodePoints, whichSet, status); | |
216 | upvec_close(upvec); | |
217 | ||
218 | if (U_FAILURE(*status)) { | |
219 | return NULL; | |
220 | } | |
221 | ||
222 | return newSelector.orphan(); | |
223 | } | |
224 | ||
225 | /* close opened selector */ | |
226 | U_CAPI void U_EXPORT2 | |
227 | ucnvsel_close(UConverterSelector *sel) { | |
228 | if (!sel) { | |
229 | return; | |
230 | } | |
231 | if (sel->ownEncodingStrings) { | |
232 | uprv_free(sel->encodings[0]); | |
233 | } | |
234 | uprv_free(sel->encodings); | |
235 | if (sel->ownPv) { | |
236 | uprv_free(sel->pv); | |
237 | } | |
238 | utrie2_close(sel->trie); | |
239 | uprv_free(sel->swapped); | |
240 | uprv_free(sel); | |
241 | } | |
242 | ||
243 | static const UDataInfo dataInfo = { | |
244 | sizeof(UDataInfo), | |
245 | 0, | |
246 | ||
247 | U_IS_BIG_ENDIAN, | |
248 | U_CHARSET_FAMILY, | |
249 | U_SIZEOF_UCHAR, | |
250 | 0, | |
251 | ||
252 | { 0x43, 0x53, 0x65, 0x6c }, /* dataFormat="CSel" */ | |
253 | { 1, 0, 0, 0 }, /* formatVersion */ | |
254 | { 0, 0, 0, 0 } /* dataVersion */ | |
255 | }; | |
256 | ||
257 | enum { | |
258 | UCNVSEL_INDEX_TRIE_SIZE, // trie size in bytes | |
259 | UCNVSEL_INDEX_PV_COUNT, // number of uint32_t in the bit vectors | |
260 | UCNVSEL_INDEX_NAMES_COUNT, // number of encoding names | |
261 | UCNVSEL_INDEX_NAMES_LENGTH, // number of encoding name bytes including padding | |
262 | UCNVSEL_INDEX_SIZE = 15, // bytes following the DataHeader | |
263 | UCNVSEL_INDEX_COUNT = 16 | |
264 | }; | |
265 | ||
266 | /* | |
267 | * Serialized form of a UConverterSelector, formatVersion 1: | |
268 | * | |
269 | * The serialized form begins with a standard ICU DataHeader with a UDataInfo | |
270 | * as the template above. | |
271 | * This is followed by: | |
272 | * int32_t indexes[UCNVSEL_INDEX_COUNT]; // see index entry constants above | |
273 | * serialized UTrie2; // indexes[UCNVSEL_INDEX_TRIE_SIZE] bytes | |
274 | * uint32_t pv[indexes[UCNVSEL_INDEX_PV_COUNT]]; // bit vectors | |
275 | * char* encodingNames[indexes[UCNVSEL_INDEX_NAMES_LENGTH]]; // NUL-terminated strings + padding | |
276 | */ | |
277 | ||
278 | /* serialize a selector */ | |
279 | U_CAPI int32_t U_EXPORT2 | |
280 | ucnvsel_serialize(const UConverterSelector* sel, | |
281 | void* buffer, int32_t bufferCapacity, UErrorCode* status) { | |
282 | // check if already failed | |
283 | if (U_FAILURE(*status)) { | |
284 | return 0; | |
285 | } | |
286 | // ensure args make sense! | |
287 | uint8_t *p = (uint8_t *)buffer; | |
288 | if (bufferCapacity < 0 || | |
289 | (bufferCapacity > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0))) | |
290 | ) { | |
291 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
292 | return 0; | |
293 | } | |
294 | // add up the size of the serialized form | |
295 | int32_t serializedTrieSize = utrie2_serialize(sel->trie, NULL, 0, status); | |
296 | if (*status != U_BUFFER_OVERFLOW_ERROR && U_FAILURE(*status)) { | |
297 | return 0; | |
298 | } | |
299 | *status = U_ZERO_ERROR; | |
300 | ||
301 | DataHeader header; | |
302 | uprv_memset(&header, 0, sizeof(header)); | |
303 | header.dataHeader.headerSize = (uint16_t)((sizeof(header) + 15) & ~15); | |
304 | header.dataHeader.magic1 = 0xda; | |
305 | header.dataHeader.magic2 = 0x27; | |
306 | uprv_memcpy(&header.info, &dataInfo, sizeof(dataInfo)); | |
307 | ||
308 | int32_t indexes[UCNVSEL_INDEX_COUNT] = { | |
309 | serializedTrieSize, | |
310 | sel->pvCount, | |
311 | sel->encodingsCount, | |
312 | sel->encodingStrLength | |
313 | }; | |
314 | ||
315 | int32_t totalSize = | |
316 | header.dataHeader.headerSize + | |
317 | (int32_t)sizeof(indexes) + | |
318 | serializedTrieSize + | |
319 | sel->pvCount * 4 + | |
320 | sel->encodingStrLength; | |
321 | indexes[UCNVSEL_INDEX_SIZE] = totalSize - header.dataHeader.headerSize; | |
322 | if (totalSize > bufferCapacity) { | |
323 | *status = U_BUFFER_OVERFLOW_ERROR; | |
324 | return totalSize; | |
325 | } | |
326 | // ok, save! | |
327 | int32_t length = header.dataHeader.headerSize; | |
328 | uprv_memcpy(p, &header, sizeof(header)); | |
329 | uprv_memset(p + sizeof(header), 0, length - sizeof(header)); | |
330 | p += length; | |
331 | ||
332 | length = (int32_t)sizeof(indexes); | |
333 | uprv_memcpy(p, indexes, length); | |
334 | p += length; | |
335 | ||
336 | utrie2_serialize(sel->trie, p, serializedTrieSize, status); | |
337 | p += serializedTrieSize; | |
338 | ||
339 | length = sel->pvCount * 4; | |
340 | uprv_memcpy(p, sel->pv, length); | |
341 | p += length; | |
342 | ||
343 | uprv_memcpy(p, sel->encodings[0], sel->encodingStrLength); | |
344 | p += sel->encodingStrLength; | |
345 | ||
346 | return totalSize; | |
347 | } | |
348 | ||
349 | /** | |
350 | * swap a selector into the desired Endianness and Asciiness of | |
351 | * the system. Just as FYI, selectors are always saved in the format | |
352 | * of the system that created them. They are only converted if used | |
353 | * on another system. In other words, selectors created on different | |
354 | * system can be different even if the params are identical (endianness | |
355 | * and Asciiness differences only) | |
356 | * | |
357 | * @param ds pointer to data swapper containing swapping info | |
358 | * @param inData pointer to incoming data | |
359 | * @param length length of inData in bytes | |
360 | * @param outData pointer to output data. Capacity should | |
361 | * be at least equal to capacity of inData | |
362 | * @param status an in/out ICU UErrorCode | |
363 | * @return 0 on failure, number of bytes swapped on success | |
364 | * number of bytes swapped can be smaller than length | |
365 | */ | |
366 | static int32_t | |
367 | ucnvsel_swap(const UDataSwapper *ds, | |
368 | const void *inData, int32_t length, | |
369 | void *outData, UErrorCode *status) { | |
370 | /* udata_swapDataHeader checks the arguments */ | |
371 | int32_t headerSize = udata_swapDataHeader(ds, inData, length, outData, status); | |
372 | if(U_FAILURE(*status)) { | |
373 | return 0; | |
374 | } | |
375 | ||
376 | /* check data format and format version */ | |
377 | const UDataInfo *pInfo = (const UDataInfo *)((const char *)inData + 4); | |
378 | if(!( | |
379 | pInfo->dataFormat[0] == 0x43 && /* dataFormat="CSel" */ | |
380 | pInfo->dataFormat[1] == 0x53 && | |
381 | pInfo->dataFormat[2] == 0x65 && | |
382 | pInfo->dataFormat[3] == 0x6c | |
383 | )) { | |
384 | udata_printError(ds, "ucnvsel_swap(): data format %02x.%02x.%02x.%02x is not recognized as UConverterSelector data\n", | |
385 | pInfo->dataFormat[0], pInfo->dataFormat[1], | |
386 | pInfo->dataFormat[2], pInfo->dataFormat[3]); | |
387 | *status = U_INVALID_FORMAT_ERROR; | |
388 | return 0; | |
389 | } | |
390 | if(pInfo->formatVersion[0] != 1) { | |
391 | udata_printError(ds, "ucnvsel_swap(): format version %02x is not supported\n", | |
392 | pInfo->formatVersion[0]); | |
393 | *status = U_UNSUPPORTED_ERROR; | |
394 | return 0; | |
395 | } | |
396 | ||
397 | if(length >= 0) { | |
398 | length -= headerSize; | |
399 | if(length < 16*4) { | |
400 | udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for UConverterSelector data\n", | |
401 | length); | |
402 | *status = U_INDEX_OUTOFBOUNDS_ERROR; | |
403 | return 0; | |
404 | } | |
405 | } | |
406 | ||
407 | const uint8_t *inBytes = (const uint8_t *)inData + headerSize; | |
408 | uint8_t *outBytes = (uint8_t *)outData + headerSize; | |
409 | ||
410 | /* read the indexes */ | |
411 | const int32_t *inIndexes = (const int32_t *)inBytes; | |
412 | int32_t indexes[16]; | |
413 | int32_t i; | |
414 | for(i = 0; i < 16; ++i) { | |
415 | indexes[i] = udata_readInt32(ds, inIndexes[i]); | |
416 | } | |
417 | ||
418 | /* get the total length of the data */ | |
419 | int32_t size = indexes[UCNVSEL_INDEX_SIZE]; | |
420 | if(length >= 0) { | |
421 | if(length < size) { | |
422 | udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for all of UConverterSelector data\n", | |
423 | length); | |
424 | *status = U_INDEX_OUTOFBOUNDS_ERROR; | |
425 | return 0; | |
426 | } | |
427 | ||
428 | /* copy the data for inaccessible bytes */ | |
429 | if(inBytes != outBytes) { | |
430 | uprv_memcpy(outBytes, inBytes, size); | |
431 | } | |
432 | ||
433 | int32_t offset = 0, count; | |
434 | ||
435 | /* swap the int32_t indexes[] */ | |
436 | count = UCNVSEL_INDEX_COUNT*4; | |
437 | ds->swapArray32(ds, inBytes, count, outBytes, status); | |
438 | offset += count; | |
439 | ||
440 | /* swap the UTrie2 */ | |
441 | count = indexes[UCNVSEL_INDEX_TRIE_SIZE]; | |
442 | utrie2_swap(ds, inBytes + offset, count, outBytes + offset, status); | |
443 | offset += count; | |
444 | ||
445 | /* swap the uint32_t pv[] */ | |
446 | count = indexes[UCNVSEL_INDEX_PV_COUNT]*4; | |
447 | ds->swapArray32(ds, inBytes + offset, count, outBytes + offset, status); | |
448 | offset += count; | |
449 | ||
450 | /* swap the encoding names */ | |
451 | count = indexes[UCNVSEL_INDEX_NAMES_LENGTH]; | |
452 | ds->swapInvChars(ds, inBytes + offset, count, outBytes + offset, status); | |
453 | offset += count; | |
454 | ||
455 | U_ASSERT(offset == size); | |
456 | } | |
457 | ||
458 | return headerSize + size; | |
459 | } | |
460 | ||
461 | /* unserialize a selector */ | |
462 | U_CAPI UConverterSelector* U_EXPORT2 | |
463 | ucnvsel_openFromSerialized(const void* buffer, int32_t length, UErrorCode* status) { | |
464 | // check if already failed | |
465 | if (U_FAILURE(*status)) { | |
466 | return NULL; | |
467 | } | |
468 | // ensure args make sense! | |
469 | const uint8_t *p = (const uint8_t *)buffer; | |
470 | if (length <= 0 || | |
471 | (length > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0))) | |
472 | ) { | |
473 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
474 | return NULL; | |
475 | } | |
476 | // header | |
477 | if (length < 32) { | |
478 | // not even enough space for a minimal header | |
479 | *status = U_INDEX_OUTOFBOUNDS_ERROR; | |
480 | return NULL; | |
481 | } | |
482 | const DataHeader *pHeader = (const DataHeader *)p; | |
483 | if (!( | |
484 | pHeader->dataHeader.magic1==0xda && | |
485 | pHeader->dataHeader.magic2==0x27 && | |
486 | pHeader->info.dataFormat[0] == 0x43 && | |
487 | pHeader->info.dataFormat[1] == 0x53 && | |
488 | pHeader->info.dataFormat[2] == 0x65 && | |
489 | pHeader->info.dataFormat[3] == 0x6c | |
490 | )) { | |
491 | /* header not valid or dataFormat not recognized */ | |
492 | *status = U_INVALID_FORMAT_ERROR; | |
493 | return NULL; | |
494 | } | |
495 | if (pHeader->info.formatVersion[0] != 1) { | |
496 | *status = U_UNSUPPORTED_ERROR; | |
497 | return NULL; | |
498 | } | |
499 | uint8_t* swapped = NULL; | |
500 | if (pHeader->info.isBigEndian != U_IS_BIG_ENDIAN || | |
501 | pHeader->info.charsetFamily != U_CHARSET_FAMILY | |
502 | ) { | |
503 | // swap the data | |
504 | UDataSwapper *ds = | |
505 | udata_openSwapperForInputData(p, length, U_IS_BIG_ENDIAN, U_CHARSET_FAMILY, status); | |
506 | int32_t totalSize = ucnvsel_swap(ds, p, -1, NULL, status); | |
507 | if (U_FAILURE(*status)) { | |
508 | udata_closeSwapper(ds); | |
509 | return NULL; | |
510 | } | |
511 | if (length < totalSize) { | |
512 | udata_closeSwapper(ds); | |
513 | *status = U_INDEX_OUTOFBOUNDS_ERROR; | |
514 | return NULL; | |
515 | } | |
516 | swapped = (uint8_t*)uprv_malloc(totalSize); | |
517 | if (swapped == NULL) { | |
518 | udata_closeSwapper(ds); | |
519 | *status = U_MEMORY_ALLOCATION_ERROR; | |
520 | return NULL; | |
521 | } | |
522 | ucnvsel_swap(ds, p, length, swapped, status); | |
523 | udata_closeSwapper(ds); | |
524 | if (U_FAILURE(*status)) { | |
525 | uprv_free(swapped); | |
526 | return NULL; | |
527 | } | |
528 | p = swapped; | |
529 | pHeader = (const DataHeader *)p; | |
530 | } | |
531 | if (length < (pHeader->dataHeader.headerSize + 16 * 4)) { | |
532 | // not even enough space for the header and the indexes | |
533 | uprv_free(swapped); | |
534 | *status = U_INDEX_OUTOFBOUNDS_ERROR; | |
535 | return NULL; | |
536 | } | |
537 | p += pHeader->dataHeader.headerSize; | |
538 | length -= pHeader->dataHeader.headerSize; | |
539 | // indexes | |
540 | const int32_t *indexes = (const int32_t *)p; | |
541 | if (length < indexes[UCNVSEL_INDEX_SIZE]) { | |
542 | uprv_free(swapped); | |
543 | *status = U_INDEX_OUTOFBOUNDS_ERROR; | |
544 | return NULL; | |
545 | } | |
546 | p += UCNVSEL_INDEX_COUNT * 4; | |
547 | // create and populate the selector object | |
548 | UConverterSelector* sel = (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector)); | |
549 | char **encodings = | |
550 | (char **)uprv_malloc( | |
551 | indexes[UCNVSEL_INDEX_NAMES_COUNT] * sizeof(char *)); | |
552 | if (sel == NULL || encodings == NULL) { | |
553 | uprv_free(swapped); | |
554 | uprv_free(sel); | |
555 | uprv_free(encodings); | |
556 | *status = U_MEMORY_ALLOCATION_ERROR; | |
557 | return NULL; | |
558 | } | |
559 | uprv_memset(sel, 0, sizeof(UConverterSelector)); | |
560 | sel->pvCount = indexes[UCNVSEL_INDEX_PV_COUNT]; | |
561 | sel->encodings = encodings; | |
562 | sel->encodingsCount = indexes[UCNVSEL_INDEX_NAMES_COUNT]; | |
563 | sel->encodingStrLength = indexes[UCNVSEL_INDEX_NAMES_LENGTH]; | |
564 | sel->swapped = swapped; | |
565 | // trie | |
566 | sel->trie = utrie2_openFromSerialized(UTRIE2_16_VALUE_BITS, | |
567 | p, indexes[UCNVSEL_INDEX_TRIE_SIZE], NULL, | |
568 | status); | |
569 | p += indexes[UCNVSEL_INDEX_TRIE_SIZE]; | |
570 | if (U_FAILURE(*status)) { | |
571 | ucnvsel_close(sel); | |
572 | return NULL; | |
573 | } | |
574 | // bit vectors | |
575 | sel->pv = (uint32_t *)p; | |
576 | p += sel->pvCount * 4; | |
577 | // encoding names | |
578 | char* s = (char*)p; | |
579 | for (int32_t i = 0; i < sel->encodingsCount; ++i) { | |
580 | sel->encodings[i] = s; | |
581 | s += uprv_strlen(s) + 1; | |
582 | } | |
583 | p += sel->encodingStrLength; | |
584 | ||
585 | return sel; | |
586 | } | |
587 | ||
588 | // a bunch of functions for the enumeration thingie! Nothing fancy here. Just | |
589 | // iterate over the selected encodings | |
590 | struct Enumerator { | |
591 | int16_t* index; | |
592 | int16_t length; | |
593 | int16_t cur; | |
594 | const UConverterSelector* sel; | |
595 | }; | |
596 | ||
597 | U_CDECL_BEGIN | |
598 | ||
599 | static void U_CALLCONV | |
600 | ucnvsel_close_selector_iterator(UEnumeration *enumerator) { | |
601 | uprv_free(((Enumerator*)(enumerator->context))->index); | |
602 | uprv_free(enumerator->context); | |
603 | uprv_free(enumerator); | |
604 | } | |
605 | ||
606 | ||
607 | static int32_t U_CALLCONV | |
608 | ucnvsel_count_encodings(UEnumeration *enumerator, UErrorCode *status) { | |
609 | // check if already failed | |
610 | if (U_FAILURE(*status)) { | |
611 | return 0; | |
612 | } | |
613 | return ((Enumerator*)(enumerator->context))->length; | |
614 | } | |
615 | ||
616 | ||
617 | static const char* U_CALLCONV ucnvsel_next_encoding(UEnumeration* enumerator, | |
618 | int32_t* resultLength, | |
619 | UErrorCode* status) { | |
620 | // check if already failed | |
621 | if (U_FAILURE(*status)) { | |
622 | return NULL; | |
623 | } | |
624 | ||
625 | int16_t cur = ((Enumerator*)(enumerator->context))->cur; | |
626 | const UConverterSelector* sel; | |
627 | const char* result; | |
628 | if (cur >= ((Enumerator*)(enumerator->context))->length) { | |
629 | return NULL; | |
630 | } | |
631 | sel = ((Enumerator*)(enumerator->context))->sel; | |
632 | result = sel->encodings[((Enumerator*)(enumerator->context))->index[cur] ]; | |
633 | ((Enumerator*)(enumerator->context))->cur++; | |
634 | if (resultLength) { | |
635 | *resultLength = (int32_t)uprv_strlen(result); | |
636 | } | |
637 | return result; | |
638 | } | |
639 | ||
640 | static void U_CALLCONV ucnvsel_reset_iterator(UEnumeration* enumerator, | |
641 | UErrorCode* status) { | |
642 | // check if already failed | |
643 | if (U_FAILURE(*status)) { | |
644 | return ; | |
645 | } | |
646 | ((Enumerator*)(enumerator->context))->cur = 0; | |
647 | } | |
648 | ||
649 | U_CDECL_END | |
650 | ||
651 | ||
652 | static const UEnumeration defaultEncodings = { | |
653 | NULL, | |
654 | NULL, | |
655 | ucnvsel_close_selector_iterator, | |
656 | ucnvsel_count_encodings, | |
657 | uenum_unextDefault, | |
658 | ucnvsel_next_encoding, | |
659 | ucnvsel_reset_iterator | |
660 | }; | |
661 | ||
662 | ||
663 | // internal fn to intersect two sets of masks | |
664 | // returns whether the mask has reduced to all zeros | |
665 | static UBool intersectMasks(uint32_t* dest, const uint32_t* source1, int32_t len) { | |
666 | int32_t i; | |
667 | uint32_t oredDest = 0; | |
668 | for (i = 0 ; i < len ; ++i) { | |
669 | oredDest |= (dest[i] &= source1[i]); | |
670 | } | |
671 | return oredDest == 0; | |
672 | } | |
673 | ||
674 | // internal fn to count how many 1's are there in a mask | |
675 | // algorithm taken from http://graphics.stanford.edu/~seander/bithacks.html | |
676 | static int16_t countOnes(uint32_t* mask, int32_t len) { | |
677 | int32_t i, totalOnes = 0; | |
678 | for (i = 0 ; i < len ; ++i) { | |
679 | uint32_t ent = mask[i]; | |
680 | for (; ent; totalOnes++) | |
681 | { | |
682 | ent &= ent - 1; // clear the least significant bit set | |
683 | } | |
684 | } | |
685 | return totalOnes; | |
686 | } | |
687 | ||
688 | ||
689 | /* internal function! */ | |
690 | static UEnumeration *selectForMask(const UConverterSelector* sel, | |
691 | uint32_t *mask, UErrorCode *status) { | |
692 | // this is the context we will use. Store a table of indices to which | |
693 | // encodings are legit. | |
694 | struct Enumerator* result = (Enumerator*)uprv_malloc(sizeof(Enumerator)); | |
695 | if (result == NULL) { | |
696 | uprv_free(mask); | |
697 | *status = U_MEMORY_ALLOCATION_ERROR; | |
698 | return NULL; | |
699 | } | |
700 | result->index = NULL; // this will be allocated later! | |
701 | result->length = result->cur = 0; | |
702 | result->sel = sel; | |
703 | ||
704 | UEnumeration *en = (UEnumeration *)uprv_malloc(sizeof(UEnumeration)); | |
705 | if (en == NULL) { | |
706 | // TODO(markus): Combine Enumerator and UEnumeration into one struct. | |
707 | uprv_free(mask); | |
708 | uprv_free(result); | |
709 | *status = U_MEMORY_ALLOCATION_ERROR; | |
710 | return NULL; | |
711 | } | |
712 | memcpy(en, &defaultEncodings, sizeof(UEnumeration)); | |
713 | en->context = result; | |
714 | ||
715 | int32_t columns = (sel->encodingsCount+31)/32; | |
716 | int16_t numOnes = countOnes(mask, columns); | |
717 | // now, we know the exact space we need for index | |
718 | if (numOnes > 0) { | |
719 | result->index = (int16_t*) uprv_malloc(numOnes * sizeof(int16_t)); | |
720 | ||
721 | int32_t i, j; | |
722 | int16_t k = 0; | |
723 | for (j = 0 ; j < columns; j++) { | |
724 | uint32_t v = mask[j]; | |
725 | for (i = 0 ; i < 32 && k < sel->encodingsCount; i++, k++) { | |
726 | if ((v & 1) != 0) { | |
727 | result->index[result->length++] = k; | |
728 | } | |
729 | v >>= 1; | |
730 | } | |
731 | } | |
732 | } //otherwise, index will remain NULL (and will never be touched by | |
733 | //the enumerator code anyway) | |
734 | uprv_free(mask); | |
735 | return en; | |
736 | } | |
737 | ||
738 | /* check a string against the selector - UTF16 version */ | |
739 | U_CAPI UEnumeration * U_EXPORT2 | |
740 | ucnvsel_selectForString(const UConverterSelector* sel, | |
741 | const UChar *s, int32_t length, UErrorCode *status) { | |
742 | // check if already failed | |
743 | if (U_FAILURE(*status)) { | |
744 | return NULL; | |
745 | } | |
746 | // ensure args make sense! | |
747 | if (sel == NULL || (s == NULL && length != 0)) { | |
748 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
749 | return NULL; | |
750 | } | |
751 | ||
752 | int32_t columns = (sel->encodingsCount+31)/32; | |
753 | uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4); | |
754 | if (mask == NULL) { | |
755 | *status = U_MEMORY_ALLOCATION_ERROR; | |
756 | return NULL; | |
757 | } | |
758 | uprv_memset(mask, ~0, columns *4); | |
759 | ||
760 | if(s!=NULL) { | |
761 | const UChar *limit; | |
762 | if (length >= 0) { | |
763 | limit = s + length; | |
764 | } else { | |
765 | limit = NULL; | |
766 | } | |
767 | ||
768 | while (limit == NULL ? *s != 0 : s != limit) { | |
769 | UChar32 c; | |
770 | uint16_t pvIndex; | |
771 | UTRIE2_U16_NEXT16(sel->trie, s, limit, c, pvIndex); | |
772 | if (intersectMasks(mask, sel->pv+pvIndex, columns)) { | |
773 | break; | |
774 | } | |
775 | } | |
776 | } | |
777 | return selectForMask(sel, mask, status); | |
778 | } | |
779 | ||
780 | /* check a string against the selector - UTF8 version */ | |
781 | U_CAPI UEnumeration * U_EXPORT2 | |
782 | ucnvsel_selectForUTF8(const UConverterSelector* sel, | |
783 | const char *s, int32_t length, UErrorCode *status) { | |
784 | // check if already failed | |
785 | if (U_FAILURE(*status)) { | |
786 | return NULL; | |
787 | } | |
788 | // ensure args make sense! | |
789 | if (sel == NULL || (s == NULL && length != 0)) { | |
790 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
791 | return NULL; | |
792 | } | |
793 | ||
794 | int32_t columns = (sel->encodingsCount+31)/32; | |
795 | uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4); | |
796 | if (mask == NULL) { | |
797 | *status = U_MEMORY_ALLOCATION_ERROR; | |
798 | return NULL; | |
799 | } | |
800 | uprv_memset(mask, ~0, columns *4); | |
801 | ||
802 | if (length < 0) { | |
803 | length = (int32_t)uprv_strlen(s); | |
804 | } | |
805 | ||
806 | if(s!=NULL) { | |
807 | const char *limit = s + length; | |
808 | ||
809 | while (s != limit) { | |
810 | uint16_t pvIndex; | |
811 | UTRIE2_U8_NEXT16(sel->trie, s, limit, pvIndex); | |
812 | if (intersectMasks(mask, sel->pv+pvIndex, columns)) { | |
813 | break; | |
814 | } | |
815 | } | |
816 | } | |
817 | return selectForMask(sel, mask, status); | |
818 | } | |
819 | ||
820 | #endif // !UCONFIG_NO_CONVERSION |