]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | ********************************************************************** | |
3 | * Copyright (C) 2002-2015, International Business Machines | |
4 | * Corporation and others. All Rights Reserved. | |
5 | ********************************************************************** | |
6 | * file name: ucnv_u7.c | |
7 | * encoding: US-ASCII | |
8 | * tab size: 8 (not used) | |
9 | * indentation:4 | |
10 | * | |
11 | * created on: 2002jul01 | |
12 | * created by: Markus W. Scherer | |
13 | * | |
14 | * UTF-7 converter implementation. Used to be in ucnv_utf.c. | |
15 | */ | |
16 | ||
17 | #include "unicode/utypes.h" | |
18 | ||
19 | #if !UCONFIG_NO_CONVERSION && !UCONFIG_ONLY_HTML_CONVERSION | |
20 | ||
21 | #include "unicode/ucnv.h" | |
22 | #include "ucnv_bld.h" | |
23 | #include "ucnv_cnv.h" | |
24 | #include "uassert.h" | |
25 | ||
26 | /* UTF-7 -------------------------------------------------------------------- */ | |
27 | ||
28 | /* | |
29 | * UTF-7 is a stateful encoding of Unicode. | |
30 | * It is defined in RFC 2152. (http://www.ietf.org/rfc/rfc2152.txt) | |
31 | * It was intended for use in Internet email systems, using in its bytewise | |
32 | * encoding only a subset of 7-bit US-ASCII. | |
33 | * UTF-7 is deprecated in favor of UTF-8/16/32 and SCSU, but still | |
34 | * occasionally used. | |
35 | * | |
36 | * For converting Unicode to UTF-7, the RFC allows to encode some US-ASCII | |
37 | * characters directly or in base64. Especially, the characters in set O | |
38 | * as defined in the RFC (see below) may be encoded directly but are not | |
39 | * allowed in, e.g., email headers. | |
40 | * By default, the ICU UTF-7 converter encodes set O directly. | |
41 | * By choosing the option "version=1", set O will be escaped instead. | |
42 | * For example: | |
43 | * utf7Converter=ucnv_open("UTF-7,version=1"); | |
44 | * | |
45 | * For details about email headers see RFC 2047. | |
46 | */ | |
47 | ||
48 | /* | |
49 | * Tests for US-ASCII characters belonging to character classes | |
50 | * defined in UTF-7. | |
51 | * | |
52 | * Set D (directly encoded characters) consists of the following | |
53 | * characters: the upper and lower case letters A through Z | |
54 | * and a through z, the 10 digits 0-9, and the following nine special | |
55 | * characters (note that "+" and "=" are omitted): | |
56 | * '(),-./:? | |
57 | * | |
58 | * Set O (optional direct characters) consists of the following | |
59 | * characters (note that "\" and "~" are omitted): | |
60 | * !"#$%&*;<=>@[]^_`{|} | |
61 | * | |
62 | * According to the rules in RFC 2152, the byte values for the following | |
63 | * US-ASCII characters are not used in UTF-7 and are therefore illegal: | |
64 | * - all C0 control codes except for CR LF TAB | |
65 | * - BACKSLASH | |
66 | * - TILDE | |
67 | * - DEL | |
68 | * - all codes beyond US-ASCII, i.e. all >127 | |
69 | */ | |
70 | #define inSetD(c) \ | |
71 | ((uint8_t)((c)-97)<26 || (uint8_t)((c)-65)<26 || /* letters */ \ | |
72 | (uint8_t)((c)-48)<10 || /* digits */ \ | |
73 | (uint8_t)((c)-39)<3 || /* '() */ \ | |
74 | (uint8_t)((c)-44)<4 || /* ,-./ */ \ | |
75 | (c)==58 || (c)==63 /* :? */ \ | |
76 | ) | |
77 | ||
78 | #define inSetO(c) \ | |
79 | ((uint8_t)((c)-33)<6 || /* !"#$%& */ \ | |
80 | (uint8_t)((c)-59)<4 || /* ;<=> */ \ | |
81 | (uint8_t)((c)-93)<4 || /* ]^_` */ \ | |
82 | (uint8_t)((c)-123)<3 || /* {|} */ \ | |
83 | (c)==42 || (c)==64 || (c)==91 /* *@[ */ \ | |
84 | ) | |
85 | ||
86 | #define isCRLFTAB(c) ((c)==13 || (c)==10 || (c)==9) | |
87 | #define isCRLFSPTAB(c) ((c)==32 || (c)==13 || (c)==10 || (c)==9) | |
88 | ||
89 | #define PLUS 43 | |
90 | #define MINUS 45 | |
91 | #define BACKSLASH 92 | |
92 | #define TILDE 126 | |
93 | ||
94 | /* legal byte values: all US-ASCII graphic characters from space to before tilde, and CR LF TAB */ | |
95 | #define isLegalUTF7(c) (((uint8_t)((c)-32)<94 && (c)!=BACKSLASH) || isCRLFTAB(c)) | |
96 | ||
97 | /* encode directly sets D and O and CR LF SP TAB */ | |
98 | static const UBool encodeDirectlyMaximum[128]={ | |
99 | /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ | |
100 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, | |
101 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
102 | ||
103 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, | |
104 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
105 | ||
106 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
107 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, | |
108 | ||
109 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
110 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0 | |
111 | }; | |
112 | ||
113 | /* encode directly set D and CR LF SP TAB but not set O */ | |
114 | static const UBool encodeDirectlyRestricted[128]={ | |
115 | /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ | |
116 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, | |
117 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
118 | ||
119 | 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, | |
120 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, | |
121 | ||
122 | 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
123 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, | |
124 | ||
125 | 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
126 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 | |
127 | }; | |
128 | ||
129 | static const uint8_t | |
130 | toBase64[64]={ | |
131 | /* A-Z */ | |
132 | 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, | |
133 | 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, | |
134 | /* a-z */ | |
135 | 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, | |
136 | 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, | |
137 | /* 0-9 */ | |
138 | 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, | |
139 | /* +/ */ | |
140 | 43, 47 | |
141 | }; | |
142 | ||
143 | static const int8_t | |
144 | fromBase64[128]={ | |
145 | /* C0 controls, -1 for legal ones (CR LF TAB), -3 for illegal ones */ | |
146 | -3, -3, -3, -3, -3, -3, -3, -3, -3, -1, -1, -3, -3, -1, -3, -3, | |
147 | -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, | |
148 | ||
149 | /* general punctuation with + and / and a special value (-2) for - */ | |
150 | -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 62, -1, -2, -1, 63, | |
151 | /* digits */ | |
152 | 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, -1, -1, -1, -1, | |
153 | ||
154 | /* A-Z */ | |
155 | -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, | |
156 | 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -1, -3, -1, -1, -1, | |
157 | ||
158 | /* a-z */ | |
159 | -1, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, | |
160 | 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, -1, -1, -1, -3, -3 | |
161 | }; | |
162 | ||
163 | /* | |
164 | * converter status values: | |
165 | * | |
166 | * toUnicodeStatus: | |
167 | * 24 inDirectMode (boolean) | |
168 | * 23..16 base64Counter (-1..7) | |
169 | * 15..0 bits (up to 14 bits incoming base64) | |
170 | * | |
171 | * fromUnicodeStatus: | |
172 | * 31..28 version (0: set O direct 1: set O escaped) | |
173 | * 24 inDirectMode (boolean) | |
174 | * 23..16 base64Counter (0..2) | |
175 | * 7..0 bits (6 bits outgoing base64) | |
176 | * | |
177 | */ | |
178 | ||
179 | static void | |
180 | _UTF7Reset(UConverter *cnv, UConverterResetChoice choice) { | |
181 | if(choice<=UCNV_RESET_TO_UNICODE) { | |
182 | /* reset toUnicode */ | |
183 | cnv->toUnicodeStatus=0x1000000; /* inDirectMode=TRUE */ | |
184 | cnv->toULength=0; | |
185 | } | |
186 | if(choice!=UCNV_RESET_TO_UNICODE) { | |
187 | /* reset fromUnicode */ | |
188 | cnv->fromUnicodeStatus=(cnv->fromUnicodeStatus&0xf0000000)|0x1000000; /* keep version, inDirectMode=TRUE */ | |
189 | } | |
190 | } | |
191 | ||
192 | static void | |
193 | _UTF7Open(UConverter *cnv, | |
194 | UConverterLoadArgs *pArgs, | |
195 | UErrorCode *pErrorCode) { | |
196 | if(UCNV_GET_VERSION(cnv)<=1) { | |
197 | /* TODO(markus): Should just use cnv->options rather than copying the version number. */ | |
198 | cnv->fromUnicodeStatus=UCNV_GET_VERSION(cnv)<<28; | |
199 | _UTF7Reset(cnv, UCNV_RESET_BOTH); | |
200 | } else { | |
201 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | |
202 | } | |
203 | } | |
204 | ||
205 | static void | |
206 | _UTF7ToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs, | |
207 | UErrorCode *pErrorCode) { | |
208 | UConverter *cnv; | |
209 | const uint8_t *source, *sourceLimit; | |
210 | UChar *target; | |
211 | const UChar *targetLimit; | |
212 | int32_t *offsets; | |
213 | ||
214 | uint8_t *bytes; | |
215 | uint8_t byteIndex; | |
216 | ||
217 | int32_t length, targetCapacity; | |
218 | ||
219 | /* UTF-7 state */ | |
220 | uint16_t bits; | |
221 | int8_t base64Counter; | |
222 | UBool inDirectMode; | |
223 | ||
224 | int8_t base64Value; | |
225 | ||
226 | int32_t sourceIndex, nextSourceIndex; | |
227 | ||
228 | uint8_t b; | |
229 | /* set up the local pointers */ | |
230 | cnv=pArgs->converter; | |
231 | ||
232 | source=(const uint8_t *)pArgs->source; | |
233 | sourceLimit=(const uint8_t *)pArgs->sourceLimit; | |
234 | target=pArgs->target; | |
235 | targetLimit=pArgs->targetLimit; | |
236 | offsets=pArgs->offsets; | |
237 | /* get the state machine state */ | |
238 | { | |
239 | uint32_t status=cnv->toUnicodeStatus; | |
240 | inDirectMode=(UBool)((status>>24)&1); | |
241 | base64Counter=(int8_t)(status>>16); | |
242 | bits=(uint16_t)status; | |
243 | } | |
244 | bytes=cnv->toUBytes; | |
245 | byteIndex=cnv->toULength; | |
246 | ||
247 | /* sourceIndex=-1 if the current character began in the previous buffer */ | |
248 | sourceIndex=byteIndex==0 ? 0 : -1; | |
249 | nextSourceIndex=0; | |
250 | ||
251 | if(inDirectMode) { | |
252 | directMode: | |
253 | /* | |
254 | * In Direct Mode, most US-ASCII characters are encoded directly, i.e., | |
255 | * with their US-ASCII byte values. | |
256 | * Backslash and Tilde and most control characters are not allowed in UTF-7. | |
257 | * A plus sign starts Unicode (or "escape") Mode. | |
258 | * | |
259 | * In Direct Mode, only the sourceIndex is used. | |
260 | */ | |
261 | byteIndex=0; | |
262 | length=(int32_t)(sourceLimit-source); | |
263 | targetCapacity=(int32_t)(targetLimit-target); | |
264 | if(length>targetCapacity) { | |
265 | length=targetCapacity; | |
266 | } | |
267 | while(length>0) { | |
268 | b=*source++; | |
269 | if(!isLegalUTF7(b)) { | |
270 | /* illegal */ | |
271 | bytes[0]=b; | |
272 | byteIndex=1; | |
273 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
274 | break; | |
275 | } else if(b!=PLUS) { | |
276 | /* write directly encoded character */ | |
277 | *target++=b; | |
278 | if(offsets!=NULL) { | |
279 | *offsets++=sourceIndex++; | |
280 | } | |
281 | } else /* PLUS */ { | |
282 | /* switch to Unicode mode */ | |
283 | nextSourceIndex=++sourceIndex; | |
284 | inDirectMode=FALSE; | |
285 | byteIndex=0; | |
286 | bits=0; | |
287 | base64Counter=-1; | |
288 | goto unicodeMode; | |
289 | } | |
290 | --length; | |
291 | } | |
292 | if(source<sourceLimit && target>=targetLimit) { | |
293 | /* target is full */ | |
294 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
295 | } | |
296 | } else { | |
297 | unicodeMode: | |
298 | /* | |
299 | * In Unicode (or "escape") Mode, UTF-16BE is base64-encoded. | |
300 | * The base64 sequence ends with any character that is not in the base64 alphabet. | |
301 | * A terminating minus sign is consumed. | |
302 | * | |
303 | * In Unicode Mode, the sourceIndex has the index to the start of the current | |
304 | * base64 bytes, while nextSourceIndex is precisely parallel to source, | |
305 | * keeping the index to the following byte. | |
306 | * Note that in 2 out of 3 cases, UChars overlap within a base64 byte. | |
307 | */ | |
308 | while(source<sourceLimit) { | |
309 | if(target<targetLimit) { | |
310 | bytes[byteIndex++]=b=*source++; | |
311 | ++nextSourceIndex; | |
312 | base64Value = -3; /* initialize as illegal */ | |
313 | if(b>=126 || (base64Value=fromBase64[b])==-3 || base64Value==-1) { | |
314 | /* either | |
315 | * base64Value==-1 for any legal character except base64 and minus sign, or | |
316 | * base64Value==-3 for illegal characters: | |
317 | * 1. In either case, leave Unicode mode. | |
318 | * 2.1. If we ended with an incomplete UChar or none after the +, then | |
319 | * generate an error for the preceding erroneous sequence and deal with | |
320 | * the current (possibly illegal) character next time through. | |
321 | * 2.2. Else the current char comes after a complete UChar, which was already | |
322 | * pushed to the output buf, so: | |
323 | * 2.2.1. If the current char is legal, just save it for processing next time. | |
324 | * It may be for example, a plus which we need to deal with in direct mode. | |
325 | * 2.2.2. Else if the current char is illegal, we might as well deal with it here. | |
326 | */ | |
327 | inDirectMode=TRUE; | |
328 | if(base64Counter==-1) { | |
329 | /* illegal: + immediately followed by something other than base64 or minus sign */ | |
330 | /* include the plus sign in the reported sequence, but not the subsequent char */ | |
331 | --source; | |
332 | bytes[0]=PLUS; | |
333 | byteIndex=1; | |
334 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
335 | break; | |
336 | } else if(bits!=0) { | |
337 | /* bits are illegally left over, a UChar is incomplete */ | |
338 | /* don't include current char (legal or illegal) in error seq */ | |
339 | --source; | |
340 | --byteIndex; | |
341 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
342 | break; | |
343 | } else { | |
344 | /* previous UChar was complete */ | |
345 | if(base64Value==-3) { | |
346 | /* current character is illegal, deal with it here */ | |
347 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
348 | break; | |
349 | } else { | |
350 | /* un-read the current character in case it is a plus sign */ | |
351 | --source; | |
352 | sourceIndex=nextSourceIndex-1; | |
353 | goto directMode; | |
354 | } | |
355 | } | |
356 | } else if(base64Value>=0) { | |
357 | /* collect base64 bytes into UChars */ | |
358 | switch(base64Counter) { | |
359 | case -1: /* -1 is immediately after the + */ | |
360 | case 0: | |
361 | bits=base64Value; | |
362 | base64Counter=1; | |
363 | break; | |
364 | case 1: | |
365 | case 3: | |
366 | case 4: | |
367 | case 6: | |
368 | bits=(uint16_t)((bits<<6)|base64Value); | |
369 | ++base64Counter; | |
370 | break; | |
371 | case 2: | |
372 | *target++=(UChar)((bits<<4)|(base64Value>>2)); | |
373 | if(offsets!=NULL) { | |
374 | *offsets++=sourceIndex; | |
375 | sourceIndex=nextSourceIndex-1; | |
376 | } | |
377 | bytes[0]=b; /* keep this byte in case an error occurs */ | |
378 | byteIndex=1; | |
379 | bits=(uint16_t)(base64Value&3); | |
380 | base64Counter=3; | |
381 | break; | |
382 | case 5: | |
383 | *target++=(UChar)((bits<<2)|(base64Value>>4)); | |
384 | if(offsets!=NULL) { | |
385 | *offsets++=sourceIndex; | |
386 | sourceIndex=nextSourceIndex-1; | |
387 | } | |
388 | bytes[0]=b; /* keep this byte in case an error occurs */ | |
389 | byteIndex=1; | |
390 | bits=(uint16_t)(base64Value&15); | |
391 | base64Counter=6; | |
392 | break; | |
393 | case 7: | |
394 | *target++=(UChar)((bits<<6)|base64Value); | |
395 | if(offsets!=NULL) { | |
396 | *offsets++=sourceIndex; | |
397 | sourceIndex=nextSourceIndex; | |
398 | } | |
399 | byteIndex=0; | |
400 | bits=0; | |
401 | base64Counter=0; | |
402 | break; | |
403 | default: | |
404 | /* will never occur */ | |
405 | break; | |
406 | } | |
407 | } else /*base64Value==-2*/ { | |
408 | /* minus sign terminates the base64 sequence */ | |
409 | inDirectMode=TRUE; | |
410 | if(base64Counter==-1) { | |
411 | /* +- i.e. a minus immediately following a plus */ | |
412 | *target++=PLUS; | |
413 | if(offsets!=NULL) { | |
414 | *offsets++=sourceIndex-1; | |
415 | } | |
416 | } else { | |
417 | /* absorb the minus and leave the Unicode Mode */ | |
418 | if(bits!=0) { | |
419 | /* bits are illegally left over, a UChar is incomplete */ | |
420 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
421 | break; | |
422 | } | |
423 | } | |
424 | sourceIndex=nextSourceIndex; | |
425 | goto directMode; | |
426 | } | |
427 | } else { | |
428 | /* target is full */ | |
429 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
430 | break; | |
431 | } | |
432 | } | |
433 | } | |
434 | ||
435 | if(U_SUCCESS(*pErrorCode) && pArgs->flush && source==sourceLimit && bits==0) { | |
436 | /* | |
437 | * if we are in Unicode mode, then the byteIndex might not be 0, | |
438 | * but that is ok if bits==0 | |
439 | * -> we set byteIndex=0 at the end of the stream to avoid a truncated error | |
440 | * (not true for IMAP-mailbox-name where we must end in direct mode) | |
441 | */ | |
442 | byteIndex=0; | |
443 | } | |
444 | ||
445 | /* set the converter state back into UConverter */ | |
446 | cnv->toUnicodeStatus=((uint32_t)inDirectMode<<24)|((uint32_t)((uint8_t)base64Counter)<<16)|(uint32_t)bits; | |
447 | cnv->toULength=byteIndex; | |
448 | ||
449 | /* write back the updated pointers */ | |
450 | pArgs->source=(const char *)source; | |
451 | pArgs->target=target; | |
452 | pArgs->offsets=offsets; | |
453 | return; | |
454 | } | |
455 | ||
456 | static void | |
457 | _UTF7FromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs, | |
458 | UErrorCode *pErrorCode) { | |
459 | UConverter *cnv; | |
460 | const UChar *source, *sourceLimit; | |
461 | uint8_t *target, *targetLimit; | |
462 | int32_t *offsets; | |
463 | ||
464 | int32_t length, targetCapacity, sourceIndex; | |
465 | UChar c; | |
466 | ||
467 | /* UTF-7 state */ | |
468 | const UBool *encodeDirectly; | |
469 | uint8_t bits; | |
470 | int8_t base64Counter; | |
471 | UBool inDirectMode; | |
472 | ||
473 | /* set up the local pointers */ | |
474 | cnv=pArgs->converter; | |
475 | ||
476 | /* set up the local pointers */ | |
477 | source=pArgs->source; | |
478 | sourceLimit=pArgs->sourceLimit; | |
479 | target=(uint8_t *)pArgs->target; | |
480 | targetLimit=(uint8_t *)pArgs->targetLimit; | |
481 | offsets=pArgs->offsets; | |
482 | ||
483 | /* get the state machine state */ | |
484 | { | |
485 | uint32_t status=cnv->fromUnicodeStatus; | |
486 | encodeDirectly= status<0x10000000 ? encodeDirectlyMaximum : encodeDirectlyRestricted; | |
487 | inDirectMode=(UBool)((status>>24)&1); | |
488 | base64Counter=(int8_t)(status>>16); | |
489 | bits=(uint8_t)status; | |
490 | U_ASSERT(bits<=sizeof(toBase64)/sizeof(toBase64[0])); | |
491 | } | |
492 | ||
493 | /* UTF-7 always encodes UTF-16 code units, therefore we need only a simple sourceIndex */ | |
494 | sourceIndex=0; | |
495 | ||
496 | if(inDirectMode) { | |
497 | directMode: | |
498 | length=(int32_t)(sourceLimit-source); | |
499 | targetCapacity=(int32_t)(targetLimit-target); | |
500 | if(length>targetCapacity) { | |
501 | length=targetCapacity; | |
502 | } | |
503 | while(length>0) { | |
504 | c=*source++; | |
505 | /* currently always encode CR LF SP TAB directly */ | |
506 | if(c<=127 && encodeDirectly[c]) { | |
507 | /* encode directly */ | |
508 | *target++=(uint8_t)c; | |
509 | if(offsets!=NULL) { | |
510 | *offsets++=sourceIndex++; | |
511 | } | |
512 | } else if(c==PLUS) { | |
513 | /* output +- for + */ | |
514 | *target++=PLUS; | |
515 | if(target<targetLimit) { | |
516 | *target++=MINUS; | |
517 | if(offsets!=NULL) { | |
518 | *offsets++=sourceIndex; | |
519 | *offsets++=sourceIndex++; | |
520 | } | |
521 | /* realign length and targetCapacity */ | |
522 | goto directMode; | |
523 | } else { | |
524 | if(offsets!=NULL) { | |
525 | *offsets++=sourceIndex++; | |
526 | } | |
527 | cnv->charErrorBuffer[0]=MINUS; | |
528 | cnv->charErrorBufferLength=1; | |
529 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
530 | break; | |
531 | } | |
532 | } else { | |
533 | /* un-read this character and switch to Unicode Mode */ | |
534 | --source; | |
535 | *target++=PLUS; | |
536 | if(offsets!=NULL) { | |
537 | *offsets++=sourceIndex; | |
538 | } | |
539 | inDirectMode=FALSE; | |
540 | base64Counter=0; | |
541 | goto unicodeMode; | |
542 | } | |
543 | --length; | |
544 | } | |
545 | if(source<sourceLimit && target>=targetLimit) { | |
546 | /* target is full */ | |
547 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
548 | } | |
549 | } else { | |
550 | unicodeMode: | |
551 | while(source<sourceLimit) { | |
552 | if(target<targetLimit) { | |
553 | c=*source++; | |
554 | if(c<=127 && encodeDirectly[c]) { | |
555 | /* encode directly */ | |
556 | inDirectMode=TRUE; | |
557 | ||
558 | /* trick: back out this character to make this easier */ | |
559 | --source; | |
560 | ||
561 | /* terminate the base64 sequence */ | |
562 | if(base64Counter!=0) { | |
563 | /* write remaining bits for the previous character */ | |
564 | *target++=toBase64[bits]; | |
565 | if(offsets!=NULL) { | |
566 | *offsets++=sourceIndex-1; | |
567 | } | |
568 | } | |
569 | if(fromBase64[c]!=-1) { | |
570 | /* need to terminate with a minus */ | |
571 | if(target<targetLimit) { | |
572 | *target++=MINUS; | |
573 | if(offsets!=NULL) { | |
574 | *offsets++=sourceIndex-1; | |
575 | } | |
576 | } else { | |
577 | cnv->charErrorBuffer[0]=MINUS; | |
578 | cnv->charErrorBufferLength=1; | |
579 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
580 | break; | |
581 | } | |
582 | } | |
583 | goto directMode; | |
584 | } else { | |
585 | /* | |
586 | * base64 this character: | |
587 | * Output 2 or 3 base64 bytes for the remaining bits of the previous character | |
588 | * and the bits of this character, each implicitly in UTF-16BE. | |
589 | * | |
590 | * Here, bits is an 8-bit variable because only 6 bits need to be kept from one | |
591 | * character to the next. The actual 2 or 4 bits are shifted to the left edge | |
592 | * of the 6-bits field 5..0 to make the termination of the base64 sequence easier. | |
593 | */ | |
594 | switch(base64Counter) { | |
595 | case 0: | |
596 | *target++=toBase64[c>>10]; | |
597 | if(target<targetLimit) { | |
598 | *target++=toBase64[(c>>4)&0x3f]; | |
599 | if(offsets!=NULL) { | |
600 | *offsets++=sourceIndex; | |
601 | *offsets++=sourceIndex++; | |
602 | } | |
603 | } else { | |
604 | if(offsets!=NULL) { | |
605 | *offsets++=sourceIndex++; | |
606 | } | |
607 | cnv->charErrorBuffer[0]=toBase64[(c>>4)&0x3f]; | |
608 | cnv->charErrorBufferLength=1; | |
609 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
610 | } | |
611 | bits=(uint8_t)((c&15)<<2); | |
612 | base64Counter=1; | |
613 | break; | |
614 | case 1: | |
615 | *target++=toBase64[bits|(c>>14)]; | |
616 | if(target<targetLimit) { | |
617 | *target++=toBase64[(c>>8)&0x3f]; | |
618 | if(target<targetLimit) { | |
619 | *target++=toBase64[(c>>2)&0x3f]; | |
620 | if(offsets!=NULL) { | |
621 | *offsets++=sourceIndex; | |
622 | *offsets++=sourceIndex; | |
623 | *offsets++=sourceIndex++; | |
624 | } | |
625 | } else { | |
626 | if(offsets!=NULL) { | |
627 | *offsets++=sourceIndex; | |
628 | *offsets++=sourceIndex++; | |
629 | } | |
630 | cnv->charErrorBuffer[0]=toBase64[(c>>2)&0x3f]; | |
631 | cnv->charErrorBufferLength=1; | |
632 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
633 | } | |
634 | } else { | |
635 | if(offsets!=NULL) { | |
636 | *offsets++=sourceIndex++; | |
637 | } | |
638 | cnv->charErrorBuffer[0]=toBase64[(c>>8)&0x3f]; | |
639 | cnv->charErrorBuffer[1]=toBase64[(c>>2)&0x3f]; | |
640 | cnv->charErrorBufferLength=2; | |
641 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
642 | } | |
643 | bits=(uint8_t)((c&3)<<4); | |
644 | base64Counter=2; | |
645 | break; | |
646 | case 2: | |
647 | *target++=toBase64[bits|(c>>12)]; | |
648 | if(target<targetLimit) { | |
649 | *target++=toBase64[(c>>6)&0x3f]; | |
650 | if(target<targetLimit) { | |
651 | *target++=toBase64[c&0x3f]; | |
652 | if(offsets!=NULL) { | |
653 | *offsets++=sourceIndex; | |
654 | *offsets++=sourceIndex; | |
655 | *offsets++=sourceIndex++; | |
656 | } | |
657 | } else { | |
658 | if(offsets!=NULL) { | |
659 | *offsets++=sourceIndex; | |
660 | *offsets++=sourceIndex++; | |
661 | } | |
662 | cnv->charErrorBuffer[0]=toBase64[c&0x3f]; | |
663 | cnv->charErrorBufferLength=1; | |
664 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
665 | } | |
666 | } else { | |
667 | if(offsets!=NULL) { | |
668 | *offsets++=sourceIndex++; | |
669 | } | |
670 | cnv->charErrorBuffer[0]=toBase64[(c>>6)&0x3f]; | |
671 | cnv->charErrorBuffer[1]=toBase64[c&0x3f]; | |
672 | cnv->charErrorBufferLength=2; | |
673 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
674 | } | |
675 | bits=0; | |
676 | base64Counter=0; | |
677 | break; | |
678 | default: | |
679 | /* will never occur */ | |
680 | break; | |
681 | } | |
682 | } | |
683 | } else { | |
684 | /* target is full */ | |
685 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
686 | break; | |
687 | } | |
688 | } | |
689 | } | |
690 | ||
691 | if(pArgs->flush && source>=sourceLimit) { | |
692 | /* flush remaining bits to the target */ | |
693 | if(!inDirectMode) { | |
694 | if (base64Counter!=0) { | |
695 | if(target<targetLimit) { | |
696 | *target++=toBase64[bits]; | |
697 | if(offsets!=NULL) { | |
698 | *offsets++=sourceIndex-1; | |
699 | } | |
700 | } else { | |
701 | cnv->charErrorBuffer[cnv->charErrorBufferLength++]=toBase64[bits]; | |
702 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
703 | } | |
704 | } | |
705 | /* Add final MINUS to terminate unicodeMode */ | |
706 | if(target<targetLimit) { | |
707 | *target++=MINUS; | |
708 | if(offsets!=NULL) { | |
709 | *offsets++=sourceIndex-1; | |
710 | } | |
711 | } else { | |
712 | cnv->charErrorBuffer[cnv->charErrorBufferLength++]=MINUS; | |
713 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
714 | } | |
715 | } | |
716 | /* reset the state for the next conversion */ | |
717 | cnv->fromUnicodeStatus=(cnv->fromUnicodeStatus&0xf0000000)|0x1000000; /* keep version, inDirectMode=TRUE */ | |
718 | } else { | |
719 | /* set the converter state back into UConverter */ | |
720 | cnv->fromUnicodeStatus= | |
721 | (cnv->fromUnicodeStatus&0xf0000000)| /* keep version*/ | |
722 | ((uint32_t)inDirectMode<<24)|((uint32_t)base64Counter<<16)|(uint32_t)bits; | |
723 | } | |
724 | ||
725 | /* write back the updated pointers */ | |
726 | pArgs->source=source; | |
727 | pArgs->target=(char *)target; | |
728 | pArgs->offsets=offsets; | |
729 | return; | |
730 | } | |
731 | ||
732 | static const char * | |
733 | _UTF7GetName(const UConverter *cnv) { | |
734 | switch(cnv->fromUnicodeStatus>>28) { | |
735 | case 1: | |
736 | return "UTF-7,version=1"; | |
737 | default: | |
738 | return "UTF-7"; | |
739 | } | |
740 | } | |
741 | ||
742 | static const UConverterImpl _UTF7Impl={ | |
743 | UCNV_UTF7, | |
744 | ||
745 | NULL, | |
746 | NULL, | |
747 | ||
748 | _UTF7Open, | |
749 | NULL, | |
750 | _UTF7Reset, | |
751 | ||
752 | _UTF7ToUnicodeWithOffsets, | |
753 | _UTF7ToUnicodeWithOffsets, | |
754 | _UTF7FromUnicodeWithOffsets, | |
755 | _UTF7FromUnicodeWithOffsets, | |
756 | NULL, | |
757 | ||
758 | NULL, | |
759 | _UTF7GetName, | |
760 | NULL, /* we don't need writeSub() because we never call a callback at fromUnicode() */ | |
761 | NULL, | |
762 | ucnv_getCompleteUnicodeSet | |
763 | }; | |
764 | ||
765 | static const UConverterStaticData _UTF7StaticData={ | |
766 | sizeof(UConverterStaticData), | |
767 | "UTF-7", | |
768 | 0, /* TODO CCSID for UTF-7 */ | |
769 | UCNV_IBM, UCNV_UTF7, | |
770 | 1, 4, | |
771 | { 0x3f, 0, 0, 0 }, 1, /* the subchar is not used */ | |
772 | FALSE, FALSE, | |
773 | 0, | |
774 | 0, | |
775 | { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } /* reserved */ | |
776 | }; | |
777 | ||
778 | const UConverterSharedData _UTF7Data={ | |
779 | sizeof(UConverterSharedData), ~((uint32_t)0), | |
780 | NULL, NULL, &_UTF7StaticData, FALSE, &_UTF7Impl, | |
781 | 0 | |
782 | }; | |
783 | ||
784 | /* IMAP mailbox name encoding ----------------------------------------------- */ | |
785 | ||
786 | /* | |
787 | * RFC 2060: INTERNET MESSAGE ACCESS PROTOCOL - VERSION 4rev1 | |
788 | * http://www.ietf.org/rfc/rfc2060.txt | |
789 | * | |
790 | * 5.1.3. Mailbox International Naming Convention | |
791 | * | |
792 | * By convention, international mailbox names are specified using a | |
793 | * modified version of the UTF-7 encoding described in [UTF-7]. The | |
794 | * purpose of these modifications is to correct the following problems | |
795 | * with UTF-7: | |
796 | * | |
797 | * 1) UTF-7 uses the "+" character for shifting; this conflicts with | |
798 | * the common use of "+" in mailbox names, in particular USENET | |
799 | * newsgroup names. | |
800 | * | |
801 | * 2) UTF-7's encoding is BASE64 which uses the "/" character; this | |
802 | * conflicts with the use of "/" as a popular hierarchy delimiter. | |
803 | * | |
804 | * 3) UTF-7 prohibits the unencoded usage of "\"; this conflicts with | |
805 | * the use of "\" as a popular hierarchy delimiter. | |
806 | * | |
807 | * 4) UTF-7 prohibits the unencoded usage of "~"; this conflicts with | |
808 | * the use of "~" in some servers as a home directory indicator. | |
809 | * | |
810 | * 5) UTF-7 permits multiple alternate forms to represent the same | |
811 | * string; in particular, printable US-ASCII chararacters can be | |
812 | * represented in encoded form. | |
813 | * | |
814 | * In modified UTF-7, printable US-ASCII characters except for "&" | |
815 | * represent themselves; that is, characters with octet values 0x20-0x25 | |
816 | * and 0x27-0x7e. The character "&" (0x26) is represented by the two- | |
817 | * octet sequence "&-". | |
818 | * | |
819 | * All other characters (octet values 0x00-0x1f, 0x7f-0xff, and all | |
820 | * Unicode 16-bit octets) are represented in modified BASE64, with a | |
821 | * further modification from [UTF-7] that "," is used instead of "/". | |
822 | * Modified BASE64 MUST NOT be used to represent any printing US-ASCII | |
823 | * character which can represent itself. | |
824 | * | |
825 | * "&" is used to shift to modified BASE64 and "-" to shift back to US- | |
826 | * ASCII. All names start in US-ASCII, and MUST end in US-ASCII (that | |
827 | * is, a name that ends with a Unicode 16-bit octet MUST end with a "- | |
828 | * "). | |
829 | * | |
830 | * For example, here is a mailbox name which mixes English, Japanese, | |
831 | * and Chinese text: ~peter/mail/&ZeVnLIqe-/&U,BTFw- | |
832 | */ | |
833 | ||
834 | /* | |
835 | * Tests for US-ASCII characters belonging to character classes | |
836 | * defined in UTF-7. | |
837 | * | |
838 | * Set D (directly encoded characters) consists of the following | |
839 | * characters: the upper and lower case letters A through Z | |
840 | * and a through z, the 10 digits 0-9, and the following nine special | |
841 | * characters (note that "+" and "=" are omitted): | |
842 | * '(),-./:? | |
843 | * | |
844 | * Set O (optional direct characters) consists of the following | |
845 | * characters (note that "\" and "~" are omitted): | |
846 | * !"#$%&*;<=>@[]^_`{|} | |
847 | * | |
848 | * According to the rules in RFC 2152, the byte values for the following | |
849 | * US-ASCII characters are not used in UTF-7 and are therefore illegal: | |
850 | * - all C0 control codes except for CR LF TAB | |
851 | * - BACKSLASH | |
852 | * - TILDE | |
853 | * - DEL | |
854 | * - all codes beyond US-ASCII, i.e. all >127 | |
855 | */ | |
856 | ||
857 | /* uses '&' not '+' to start a base64 sequence */ | |
858 | #define AMPERSAND 0x26 | |
859 | #define COMMA 0x2c | |
860 | #define SLASH 0x2f | |
861 | ||
862 | /* legal byte values: all US-ASCII graphic characters 0x20..0x7e */ | |
863 | #define isLegalIMAP(c) (0x20<=(c) && (c)<=0x7e) | |
864 | ||
865 | /* direct-encode all of printable ASCII 0x20..0x7e except '&' 0x26 */ | |
866 | #define inSetDIMAP(c) (isLegalIMAP(c) && c!=AMPERSAND) | |
867 | ||
868 | #define TO_BASE64_IMAP(n) ((n)<63 ? toBase64[n] : COMMA) | |
869 | #define FROM_BASE64_IMAP(c) ((c)==COMMA ? 63 : (c)==SLASH ? -1 : fromBase64[c]) | |
870 | ||
871 | /* | |
872 | * converter status values: | |
873 | * | |
874 | * toUnicodeStatus: | |
875 | * 24 inDirectMode (boolean) | |
876 | * 23..16 base64Counter (-1..7) | |
877 | * 15..0 bits (up to 14 bits incoming base64) | |
878 | * | |
879 | * fromUnicodeStatus: | |
880 | * 24 inDirectMode (boolean) | |
881 | * 23..16 base64Counter (0..2) | |
882 | * 7..0 bits (6 bits outgoing base64) | |
883 | * | |
884 | * ignore bits 31..25 | |
885 | */ | |
886 | ||
887 | static void | |
888 | _IMAPToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs, | |
889 | UErrorCode *pErrorCode) { | |
890 | UConverter *cnv; | |
891 | const uint8_t *source, *sourceLimit; | |
892 | UChar *target; | |
893 | const UChar *targetLimit; | |
894 | int32_t *offsets; | |
895 | ||
896 | uint8_t *bytes; | |
897 | uint8_t byteIndex; | |
898 | ||
899 | int32_t length, targetCapacity; | |
900 | ||
901 | /* UTF-7 state */ | |
902 | uint16_t bits; | |
903 | int8_t base64Counter; | |
904 | UBool inDirectMode; | |
905 | ||
906 | int8_t base64Value; | |
907 | ||
908 | int32_t sourceIndex, nextSourceIndex; | |
909 | ||
910 | UChar c; | |
911 | uint8_t b; | |
912 | ||
913 | /* set up the local pointers */ | |
914 | cnv=pArgs->converter; | |
915 | ||
916 | source=(const uint8_t *)pArgs->source; | |
917 | sourceLimit=(const uint8_t *)pArgs->sourceLimit; | |
918 | target=pArgs->target; | |
919 | targetLimit=pArgs->targetLimit; | |
920 | offsets=pArgs->offsets; | |
921 | /* get the state machine state */ | |
922 | { | |
923 | uint32_t status=cnv->toUnicodeStatus; | |
924 | inDirectMode=(UBool)((status>>24)&1); | |
925 | base64Counter=(int8_t)(status>>16); | |
926 | bits=(uint16_t)status; | |
927 | } | |
928 | bytes=cnv->toUBytes; | |
929 | byteIndex=cnv->toULength; | |
930 | ||
931 | /* sourceIndex=-1 if the current character began in the previous buffer */ | |
932 | sourceIndex=byteIndex==0 ? 0 : -1; | |
933 | nextSourceIndex=0; | |
934 | ||
935 | if(inDirectMode) { | |
936 | directMode: | |
937 | /* | |
938 | * In Direct Mode, US-ASCII characters are encoded directly, i.e., | |
939 | * with their US-ASCII byte values. | |
940 | * An ampersand starts Unicode (or "escape") Mode. | |
941 | * | |
942 | * In Direct Mode, only the sourceIndex is used. | |
943 | */ | |
944 | byteIndex=0; | |
945 | length=(int32_t)(sourceLimit-source); | |
946 | targetCapacity=(int32_t)(targetLimit-target); | |
947 | if(length>targetCapacity) { | |
948 | length=targetCapacity; | |
949 | } | |
950 | while(length>0) { | |
951 | b=*source++; | |
952 | if(!isLegalIMAP(b)) { | |
953 | /* illegal */ | |
954 | bytes[0]=b; | |
955 | byteIndex=1; | |
956 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
957 | break; | |
958 | } else if(b!=AMPERSAND) { | |
959 | /* write directly encoded character */ | |
960 | *target++=b; | |
961 | if(offsets!=NULL) { | |
962 | *offsets++=sourceIndex++; | |
963 | } | |
964 | } else /* AMPERSAND */ { | |
965 | /* switch to Unicode mode */ | |
966 | nextSourceIndex=++sourceIndex; | |
967 | inDirectMode=FALSE; | |
968 | byteIndex=0; | |
969 | bits=0; | |
970 | base64Counter=-1; | |
971 | goto unicodeMode; | |
972 | } | |
973 | --length; | |
974 | } | |
975 | if(source<sourceLimit && target>=targetLimit) { | |
976 | /* target is full */ | |
977 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
978 | } | |
979 | } else { | |
980 | unicodeMode: | |
981 | /* | |
982 | * In Unicode (or "escape") Mode, UTF-16BE is base64-encoded. | |
983 | * The base64 sequence ends with any character that is not in the base64 alphabet. | |
984 | * A terminating minus sign is consumed. | |
985 | * US-ASCII must not be base64-ed. | |
986 | * | |
987 | * In Unicode Mode, the sourceIndex has the index to the start of the current | |
988 | * base64 bytes, while nextSourceIndex is precisely parallel to source, | |
989 | * keeping the index to the following byte. | |
990 | * Note that in 2 out of 3 cases, UChars overlap within a base64 byte. | |
991 | */ | |
992 | while(source<sourceLimit) { | |
993 | if(target<targetLimit) { | |
994 | bytes[byteIndex++]=b=*source++; | |
995 | ++nextSourceIndex; | |
996 | if(b>0x7e) { | |
997 | /* illegal - test other illegal US-ASCII values by base64Value==-3 */ | |
998 | inDirectMode=TRUE; | |
999 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
1000 | break; | |
1001 | } else if((base64Value=FROM_BASE64_IMAP(b))>=0) { | |
1002 | /* collect base64 bytes into UChars */ | |
1003 | switch(base64Counter) { | |
1004 | case -1: /* -1 is immediately after the & */ | |
1005 | case 0: | |
1006 | bits=base64Value; | |
1007 | base64Counter=1; | |
1008 | break; | |
1009 | case 1: | |
1010 | case 3: | |
1011 | case 4: | |
1012 | case 6: | |
1013 | bits=(uint16_t)((bits<<6)|base64Value); | |
1014 | ++base64Counter; | |
1015 | break; | |
1016 | case 2: | |
1017 | c=(UChar)((bits<<4)|(base64Value>>2)); | |
1018 | if(isLegalIMAP(c)) { | |
1019 | /* illegal */ | |
1020 | inDirectMode=TRUE; | |
1021 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
1022 | goto endloop; | |
1023 | } | |
1024 | *target++=c; | |
1025 | if(offsets!=NULL) { | |
1026 | *offsets++=sourceIndex; | |
1027 | sourceIndex=nextSourceIndex-1; | |
1028 | } | |
1029 | bytes[0]=b; /* keep this byte in case an error occurs */ | |
1030 | byteIndex=1; | |
1031 | bits=(uint16_t)(base64Value&3); | |
1032 | base64Counter=3; | |
1033 | break; | |
1034 | case 5: | |
1035 | c=(UChar)((bits<<2)|(base64Value>>4)); | |
1036 | if(isLegalIMAP(c)) { | |
1037 | /* illegal */ | |
1038 | inDirectMode=TRUE; | |
1039 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
1040 | goto endloop; | |
1041 | } | |
1042 | *target++=c; | |
1043 | if(offsets!=NULL) { | |
1044 | *offsets++=sourceIndex; | |
1045 | sourceIndex=nextSourceIndex-1; | |
1046 | } | |
1047 | bytes[0]=b; /* keep this byte in case an error occurs */ | |
1048 | byteIndex=1; | |
1049 | bits=(uint16_t)(base64Value&15); | |
1050 | base64Counter=6; | |
1051 | break; | |
1052 | case 7: | |
1053 | c=(UChar)((bits<<6)|base64Value); | |
1054 | if(isLegalIMAP(c)) { | |
1055 | /* illegal */ | |
1056 | inDirectMode=TRUE; | |
1057 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
1058 | goto endloop; | |
1059 | } | |
1060 | *target++=c; | |
1061 | if(offsets!=NULL) { | |
1062 | *offsets++=sourceIndex; | |
1063 | sourceIndex=nextSourceIndex; | |
1064 | } | |
1065 | byteIndex=0; | |
1066 | bits=0; | |
1067 | base64Counter=0; | |
1068 | break; | |
1069 | default: | |
1070 | /* will never occur */ | |
1071 | break; | |
1072 | } | |
1073 | } else if(base64Value==-2) { | |
1074 | /* minus sign terminates the base64 sequence */ | |
1075 | inDirectMode=TRUE; | |
1076 | if(base64Counter==-1) { | |
1077 | /* &- i.e. a minus immediately following an ampersand */ | |
1078 | *target++=AMPERSAND; | |
1079 | if(offsets!=NULL) { | |
1080 | *offsets++=sourceIndex-1; | |
1081 | } | |
1082 | } else { | |
1083 | /* absorb the minus and leave the Unicode Mode */ | |
1084 | if(bits!=0 || (base64Counter!=0 && base64Counter!=3 && base64Counter!=6)) { | |
1085 | /* bits are illegally left over, a UChar is incomplete */ | |
1086 | /* base64Counter other than 0, 3, 6 means non-minimal zero-padding, also illegal */ | |
1087 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
1088 | break; | |
1089 | } | |
1090 | } | |
1091 | sourceIndex=nextSourceIndex; | |
1092 | goto directMode; | |
1093 | } else { | |
1094 | if(base64Counter==-1) { | |
1095 | /* illegal: & immediately followed by something other than base64 or minus sign */ | |
1096 | /* include the ampersand in the reported sequence */ | |
1097 | --sourceIndex; | |
1098 | bytes[0]=AMPERSAND; | |
1099 | bytes[1]=b; | |
1100 | byteIndex=2; | |
1101 | } | |
1102 | /* base64Value==-1 for characters that are illegal only in Unicode mode */ | |
1103 | /* base64Value==-3 for illegal characters */ | |
1104 | /* illegal */ | |
1105 | inDirectMode=TRUE; | |
1106 | *pErrorCode=U_ILLEGAL_CHAR_FOUND; | |
1107 | break; | |
1108 | } | |
1109 | } else { | |
1110 | /* target is full */ | |
1111 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
1112 | break; | |
1113 | } | |
1114 | } | |
1115 | } | |
1116 | endloop: | |
1117 | ||
1118 | /* | |
1119 | * the end of the input stream and detection of truncated input | |
1120 | * are handled by the framework, but here we must check if we are in Unicode | |
1121 | * mode and byteIndex==0 because we must end in direct mode | |
1122 | * | |
1123 | * conditions: | |
1124 | * successful | |
1125 | * in Unicode mode and byteIndex==0 | |
1126 | * end of input and no truncated input | |
1127 | */ | |
1128 | if( U_SUCCESS(*pErrorCode) && | |
1129 | !inDirectMode && byteIndex==0 && | |
1130 | pArgs->flush && source>=sourceLimit | |
1131 | ) { | |
1132 | if(base64Counter==-1) { | |
1133 | /* & at the very end of the input */ | |
1134 | /* make the ampersand the reported sequence */ | |
1135 | bytes[0]=AMPERSAND; | |
1136 | byteIndex=1; | |
1137 | } | |
1138 | /* else if(base64Counter!=-1) byteIndex remains 0 because there is no particular byte sequence */ | |
1139 | ||
1140 | inDirectMode=TRUE; /* avoid looping */ | |
1141 | *pErrorCode=U_TRUNCATED_CHAR_FOUND; | |
1142 | } | |
1143 | ||
1144 | /* set the converter state back into UConverter */ | |
1145 | cnv->toUnicodeStatus=((uint32_t)inDirectMode<<24)|((uint32_t)((uint8_t)base64Counter)<<16)|(uint32_t)bits; | |
1146 | cnv->toULength=byteIndex; | |
1147 | ||
1148 | /* write back the updated pointers */ | |
1149 | pArgs->source=(const char *)source; | |
1150 | pArgs->target=target; | |
1151 | pArgs->offsets=offsets; | |
1152 | return; | |
1153 | } | |
1154 | ||
1155 | static void | |
1156 | _IMAPFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs, | |
1157 | UErrorCode *pErrorCode) { | |
1158 | UConverter *cnv; | |
1159 | const UChar *source, *sourceLimit; | |
1160 | uint8_t *target, *targetLimit; | |
1161 | int32_t *offsets; | |
1162 | ||
1163 | int32_t length, targetCapacity, sourceIndex; | |
1164 | UChar c; | |
1165 | uint8_t b; | |
1166 | ||
1167 | /* UTF-7 state */ | |
1168 | uint8_t bits; | |
1169 | int8_t base64Counter; | |
1170 | UBool inDirectMode; | |
1171 | ||
1172 | /* set up the local pointers */ | |
1173 | cnv=pArgs->converter; | |
1174 | ||
1175 | /* set up the local pointers */ | |
1176 | source=pArgs->source; | |
1177 | sourceLimit=pArgs->sourceLimit; | |
1178 | target=(uint8_t *)pArgs->target; | |
1179 | targetLimit=(uint8_t *)pArgs->targetLimit; | |
1180 | offsets=pArgs->offsets; | |
1181 | ||
1182 | /* get the state machine state */ | |
1183 | { | |
1184 | uint32_t status=cnv->fromUnicodeStatus; | |
1185 | inDirectMode=(UBool)((status>>24)&1); | |
1186 | base64Counter=(int8_t)(status>>16); | |
1187 | bits=(uint8_t)status; | |
1188 | } | |
1189 | ||
1190 | /* UTF-7 always encodes UTF-16 code units, therefore we need only a simple sourceIndex */ | |
1191 | sourceIndex=0; | |
1192 | ||
1193 | if(inDirectMode) { | |
1194 | directMode: | |
1195 | length=(int32_t)(sourceLimit-source); | |
1196 | targetCapacity=(int32_t)(targetLimit-target); | |
1197 | if(length>targetCapacity) { | |
1198 | length=targetCapacity; | |
1199 | } | |
1200 | while(length>0) { | |
1201 | c=*source++; | |
1202 | /* encode 0x20..0x7e except '&' directly */ | |
1203 | if(inSetDIMAP(c)) { | |
1204 | /* encode directly */ | |
1205 | *target++=(uint8_t)c; | |
1206 | if(offsets!=NULL) { | |
1207 | *offsets++=sourceIndex++; | |
1208 | } | |
1209 | } else if(c==AMPERSAND) { | |
1210 | /* output &- for & */ | |
1211 | *target++=AMPERSAND; | |
1212 | if(target<targetLimit) { | |
1213 | *target++=MINUS; | |
1214 | if(offsets!=NULL) { | |
1215 | *offsets++=sourceIndex; | |
1216 | *offsets++=sourceIndex++; | |
1217 | } | |
1218 | /* realign length and targetCapacity */ | |
1219 | goto directMode; | |
1220 | } else { | |
1221 | if(offsets!=NULL) { | |
1222 | *offsets++=sourceIndex++; | |
1223 | } | |
1224 | cnv->charErrorBuffer[0]=MINUS; | |
1225 | cnv->charErrorBufferLength=1; | |
1226 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
1227 | break; | |
1228 | } | |
1229 | } else { | |
1230 | /* un-read this character and switch to Unicode Mode */ | |
1231 | --source; | |
1232 | *target++=AMPERSAND; | |
1233 | if(offsets!=NULL) { | |
1234 | *offsets++=sourceIndex; | |
1235 | } | |
1236 | inDirectMode=FALSE; | |
1237 | base64Counter=0; | |
1238 | goto unicodeMode; | |
1239 | } | |
1240 | --length; | |
1241 | } | |
1242 | if(source<sourceLimit && target>=targetLimit) { | |
1243 | /* target is full */ | |
1244 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
1245 | } | |
1246 | } else { | |
1247 | unicodeMode: | |
1248 | while(source<sourceLimit) { | |
1249 | if(target<targetLimit) { | |
1250 | c=*source++; | |
1251 | if(isLegalIMAP(c)) { | |
1252 | /* encode directly */ | |
1253 | inDirectMode=TRUE; | |
1254 | ||
1255 | /* trick: back out this character to make this easier */ | |
1256 | --source; | |
1257 | ||
1258 | /* terminate the base64 sequence */ | |
1259 | if(base64Counter!=0) { | |
1260 | /* write remaining bits for the previous character */ | |
1261 | *target++=TO_BASE64_IMAP(bits); | |
1262 | if(offsets!=NULL) { | |
1263 | *offsets++=sourceIndex-1; | |
1264 | } | |
1265 | } | |
1266 | /* need to terminate with a minus */ | |
1267 | if(target<targetLimit) { | |
1268 | *target++=MINUS; | |
1269 | if(offsets!=NULL) { | |
1270 | *offsets++=sourceIndex-1; | |
1271 | } | |
1272 | } else { | |
1273 | cnv->charErrorBuffer[0]=MINUS; | |
1274 | cnv->charErrorBufferLength=1; | |
1275 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
1276 | break; | |
1277 | } | |
1278 | goto directMode; | |
1279 | } else { | |
1280 | /* | |
1281 | * base64 this character: | |
1282 | * Output 2 or 3 base64 bytes for the remaining bits of the previous character | |
1283 | * and the bits of this character, each implicitly in UTF-16BE. | |
1284 | * | |
1285 | * Here, bits is an 8-bit variable because only 6 bits need to be kept from one | |
1286 | * character to the next. The actual 2 or 4 bits are shifted to the left edge | |
1287 | * of the 6-bits field 5..0 to make the termination of the base64 sequence easier. | |
1288 | */ | |
1289 | switch(base64Counter) { | |
1290 | case 0: | |
1291 | b=(uint8_t)(c>>10); | |
1292 | *target++=TO_BASE64_IMAP(b); | |
1293 | if(target<targetLimit) { | |
1294 | b=(uint8_t)((c>>4)&0x3f); | |
1295 | *target++=TO_BASE64_IMAP(b); | |
1296 | if(offsets!=NULL) { | |
1297 | *offsets++=sourceIndex; | |
1298 | *offsets++=sourceIndex++; | |
1299 | } | |
1300 | } else { | |
1301 | if(offsets!=NULL) { | |
1302 | *offsets++=sourceIndex++; | |
1303 | } | |
1304 | b=(uint8_t)((c>>4)&0x3f); | |
1305 | cnv->charErrorBuffer[0]=TO_BASE64_IMAP(b); | |
1306 | cnv->charErrorBufferLength=1; | |
1307 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
1308 | } | |
1309 | bits=(uint8_t)((c&15)<<2); | |
1310 | base64Counter=1; | |
1311 | break; | |
1312 | case 1: | |
1313 | b=(uint8_t)(bits|(c>>14)); | |
1314 | *target++=TO_BASE64_IMAP(b); | |
1315 | if(target<targetLimit) { | |
1316 | b=(uint8_t)((c>>8)&0x3f); | |
1317 | *target++=TO_BASE64_IMAP(b); | |
1318 | if(target<targetLimit) { | |
1319 | b=(uint8_t)((c>>2)&0x3f); | |
1320 | *target++=TO_BASE64_IMAP(b); | |
1321 | if(offsets!=NULL) { | |
1322 | *offsets++=sourceIndex; | |
1323 | *offsets++=sourceIndex; | |
1324 | *offsets++=sourceIndex++; | |
1325 | } | |
1326 | } else { | |
1327 | if(offsets!=NULL) { | |
1328 | *offsets++=sourceIndex; | |
1329 | *offsets++=sourceIndex++; | |
1330 | } | |
1331 | b=(uint8_t)((c>>2)&0x3f); | |
1332 | cnv->charErrorBuffer[0]=TO_BASE64_IMAP(b); | |
1333 | cnv->charErrorBufferLength=1; | |
1334 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
1335 | } | |
1336 | } else { | |
1337 | if(offsets!=NULL) { | |
1338 | *offsets++=sourceIndex++; | |
1339 | } | |
1340 | b=(uint8_t)((c>>8)&0x3f); | |
1341 | cnv->charErrorBuffer[0]=TO_BASE64_IMAP(b); | |
1342 | b=(uint8_t)((c>>2)&0x3f); | |
1343 | cnv->charErrorBuffer[1]=TO_BASE64_IMAP(b); | |
1344 | cnv->charErrorBufferLength=2; | |
1345 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
1346 | } | |
1347 | bits=(uint8_t)((c&3)<<4); | |
1348 | base64Counter=2; | |
1349 | break; | |
1350 | case 2: | |
1351 | b=(uint8_t)(bits|(c>>12)); | |
1352 | *target++=TO_BASE64_IMAP(b); | |
1353 | if(target<targetLimit) { | |
1354 | b=(uint8_t)((c>>6)&0x3f); | |
1355 | *target++=TO_BASE64_IMAP(b); | |
1356 | if(target<targetLimit) { | |
1357 | b=(uint8_t)(c&0x3f); | |
1358 | *target++=TO_BASE64_IMAP(b); | |
1359 | if(offsets!=NULL) { | |
1360 | *offsets++=sourceIndex; | |
1361 | *offsets++=sourceIndex; | |
1362 | *offsets++=sourceIndex++; | |
1363 | } | |
1364 | } else { | |
1365 | if(offsets!=NULL) { | |
1366 | *offsets++=sourceIndex; | |
1367 | *offsets++=sourceIndex++; | |
1368 | } | |
1369 | b=(uint8_t)(c&0x3f); | |
1370 | cnv->charErrorBuffer[0]=TO_BASE64_IMAP(b); | |
1371 | cnv->charErrorBufferLength=1; | |
1372 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
1373 | } | |
1374 | } else { | |
1375 | if(offsets!=NULL) { | |
1376 | *offsets++=sourceIndex++; | |
1377 | } | |
1378 | b=(uint8_t)((c>>6)&0x3f); | |
1379 | cnv->charErrorBuffer[0]=TO_BASE64_IMAP(b); | |
1380 | b=(uint8_t)(c&0x3f); | |
1381 | cnv->charErrorBuffer[1]=TO_BASE64_IMAP(b); | |
1382 | cnv->charErrorBufferLength=2; | |
1383 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
1384 | } | |
1385 | bits=0; | |
1386 | base64Counter=0; | |
1387 | break; | |
1388 | default: | |
1389 | /* will never occur */ | |
1390 | break; | |
1391 | } | |
1392 | } | |
1393 | } else { | |
1394 | /* target is full */ | |
1395 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
1396 | break; | |
1397 | } | |
1398 | } | |
1399 | } | |
1400 | ||
1401 | if(pArgs->flush && source>=sourceLimit) { | |
1402 | /* flush remaining bits to the target */ | |
1403 | if(!inDirectMode) { | |
1404 | if(base64Counter!=0) { | |
1405 | if(target<targetLimit) { | |
1406 | *target++=TO_BASE64_IMAP(bits); | |
1407 | if(offsets!=NULL) { | |
1408 | *offsets++=sourceIndex-1; | |
1409 | } | |
1410 | } else { | |
1411 | cnv->charErrorBuffer[cnv->charErrorBufferLength++]=TO_BASE64_IMAP(bits); | |
1412 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
1413 | } | |
1414 | } | |
1415 | /* need to terminate with a minus */ | |
1416 | if(target<targetLimit) { | |
1417 | *target++=MINUS; | |
1418 | if(offsets!=NULL) { | |
1419 | *offsets++=sourceIndex-1; | |
1420 | } | |
1421 | } else { | |
1422 | cnv->charErrorBuffer[cnv->charErrorBufferLength++]=MINUS; | |
1423 | *pErrorCode=U_BUFFER_OVERFLOW_ERROR; | |
1424 | } | |
1425 | } | |
1426 | /* reset the state for the next conversion */ | |
1427 | cnv->fromUnicodeStatus=(cnv->fromUnicodeStatus&0xf0000000)|0x1000000; /* keep version, inDirectMode=TRUE */ | |
1428 | } else { | |
1429 | /* set the converter state back into UConverter */ | |
1430 | cnv->fromUnicodeStatus= | |
1431 | (cnv->fromUnicodeStatus&0xf0000000)| /* keep version*/ | |
1432 | ((uint32_t)inDirectMode<<24)|((uint32_t)base64Counter<<16)|(uint32_t)bits; | |
1433 | } | |
1434 | ||
1435 | /* write back the updated pointers */ | |
1436 | pArgs->source=source; | |
1437 | pArgs->target=(char *)target; | |
1438 | pArgs->offsets=offsets; | |
1439 | return; | |
1440 | } | |
1441 | ||
1442 | static const UConverterImpl _IMAPImpl={ | |
1443 | UCNV_IMAP_MAILBOX, | |
1444 | ||
1445 | NULL, | |
1446 | NULL, | |
1447 | ||
1448 | _UTF7Open, | |
1449 | NULL, | |
1450 | _UTF7Reset, | |
1451 | ||
1452 | _IMAPToUnicodeWithOffsets, | |
1453 | _IMAPToUnicodeWithOffsets, | |
1454 | _IMAPFromUnicodeWithOffsets, | |
1455 | _IMAPFromUnicodeWithOffsets, | |
1456 | NULL, | |
1457 | ||
1458 | NULL, | |
1459 | NULL, | |
1460 | NULL, /* we don't need writeSub() because we never call a callback at fromUnicode() */ | |
1461 | NULL, | |
1462 | ucnv_getCompleteUnicodeSet | |
1463 | }; | |
1464 | ||
1465 | static const UConverterStaticData _IMAPStaticData={ | |
1466 | sizeof(UConverterStaticData), | |
1467 | "IMAP-mailbox-name", | |
1468 | 0, /* TODO CCSID for IMAP-mailbox-name */ | |
1469 | UCNV_IBM, UCNV_IMAP_MAILBOX, | |
1470 | 1, 4, | |
1471 | { 0x3f, 0, 0, 0 }, 1, /* the subchar is not used */ | |
1472 | FALSE, FALSE, | |
1473 | 0, | |
1474 | 0, | |
1475 | { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } /* reserved */ | |
1476 | }; | |
1477 | ||
1478 | const UConverterSharedData _IMAPData={ | |
1479 | sizeof(UConverterSharedData), ~((uint32_t)0), | |
1480 | NULL, NULL, &_IMAPStaticData, FALSE, &_IMAPImpl, | |
1481 | 0 | |
1482 | }; | |
1483 | ||
1484 | #endif |