]> git.saurik.com Git - apple/icu.git/blame_incremental - icuSources/common/uhash.c
ICU-3.13.tar.gz
[apple/icu.git] / icuSources / common / uhash.c
... / ...
CommitLineData
1/*
2******************************************************************************
3* Copyright (C) 1997-2001, International Business Machines
4* Corporation and others. All Rights Reserved.
5******************************************************************************
6* Date Name Description
7* 03/22/00 aliu Adapted from original C++ ICU Hashtable.
8* 07/06/01 aliu Modified to support int32_t keys on
9* platforms with sizeof(void*) < 32.
10******************************************************************************
11*/
12
13#include "uhash.h"
14#include "unicode/ustring.h"
15#include "cstring.h"
16#include "cmemory.h"
17#include "uassert.h"
18
19/* This hashtable is implemented as a double hash. All elements are
20 * stored in a single array with no secondary storage for collision
21 * resolution (no linked list, etc.). When there is a hash collision
22 * (when two unequal keys have the same hashcode) we resolve this by
23 * using a secondary hash. The secondary hash is an increment
24 * computed as a hash function (a different one) of the primary
25 * hashcode. This increment is added to the initial hash value to
26 * obtain further slots assigned to the same hash code. For this to
27 * work, the length of the array and the increment must be relatively
28 * prime. The easiest way to achieve this is to have the length of
29 * the array be prime, and the increment be any value from
30 * 1..length-1.
31 *
32 * Hashcodes are 32-bit integers. We make sure all hashcodes are
33 * non-negative by masking off the top bit. This has two effects: (1)
34 * modulo arithmetic is simplified. If we allowed negative hashcodes,
35 * then when we computed hashcode % length, we could get a negative
36 * result, which we would then have to adjust back into range. It's
37 * simpler to just make hashcodes non-negative. (2) It makes it easy
38 * to check for empty vs. occupied slots in the table. We just mark
39 * empty or deleted slots with a negative hashcode.
40 *
41 * The central function is _uhash_find(). This function looks for a
42 * slot matching the given key and hashcode. If one is found, it
43 * returns a pointer to that slot. If the table is full, and no match
44 * is found, it returns NULL -- in theory. This would make the code
45 * more complicated, since all callers of _uhash_find() would then
46 * have to check for a NULL result. To keep this from happening, we
47 * don't allow the table to fill. When there is only one
48 * empty/deleted slot left, uhash_put() will refuse to increase the
49 * count, and fail. This simplifies the code. In practice, one will
50 * seldom encounter this using default UHashtables. However, if a
51 * hashtable is set to a U_FIXED resize policy, or if memory is
52 * exhausted, then the table may fill.
53 *
54 * High and low water ratios control rehashing. They establish levels
55 * of fullness (from 0 to 1) outside of which the data array is
56 * reallocated and repopulated. Setting the low water ratio to zero
57 * means the table will never shrink. Setting the high water ratio to
58 * one means the table will never grow. The ratios should be
59 * coordinated with the ratio between successive elements of the
60 * PRIMES table, so that when the primeIndex is incremented or
61 * decremented during rehashing, it brings the ratio of count / length
62 * back into the desired range (between low and high water ratios).
63 */
64
65/********************************************************************
66 * PRIVATE Constants, Macros
67 ********************************************************************/
68
69/* This is a list of non-consecutive primes chosen such that
70 * PRIMES[i+1] ~ 2*PRIMES[i]. (Currently, the ratio ranges from 1.81
71 * to 2.18; the inverse ratio ranges from 0.459 to 0.552.) If this
72 * ratio is changed, the low and high water ratios should also be
73 * adjusted to suit.
74 */
75static const int32_t PRIMES[] = {
76 17, 37, 67, 131, 257, 521, 1031, 2053, 4099, 8209, 16411, 32771,
77 65537, 131101, 262147, 524309, 1048583, 2097169, 4194319, 8388617,
78 16777259, 33554467, 67108879, 134217757, 268435459, 536870923,
79 1073741827, 2147483647
80};
81
82#define PRIMES_LENGTH (sizeof(PRIMES) / sizeof(PRIMES[0]))
83
84/* These ratios are tuned to the PRIMES array such that a resize
85 * places the table back into the zone of non-resizing. That is,
86 * after a call to _uhash_rehash(), a subsequent call to
87 * _uhash_rehash() should do nothing (should not churn). This is only
88 * a potential problem with U_GROW_AND_SHRINK.
89 */
90static const float RESIZE_POLICY_RATIO_TABLE[6] = {
91 /* low, high water ratio */
92 0.0F, 0.5F, /* U_GROW: Grow on demand, do not shrink */
93 0.1F, 0.5F, /* U_GROW_AND_SHRINK: Grow and shrink on demand */
94 0.0F, 1.0F /* U_FIXED: Never change size */
95};
96
97/*
98 Invariants for hashcode values:
99
100 * DELETED < 0
101 * EMPTY < 0
102 * Real hashes >= 0
103
104 Hashcodes may not start out this way, but internally they are
105 adjusted so that they are always positive. We assume 32-bit
106 hashcodes; adjust these constants for other hashcode sizes.
107*/
108#define HASH_DELETED ((int32_t) 0x80000000)
109#define HASH_EMPTY ((int32_t) HASH_DELETED + 1)
110
111#define IS_EMPTY_OR_DELETED(x) ((x) < 0)
112
113/* This macro expects a UHashTok.pointer as its keypointer and
114 valuepointer parameters */
115#define HASH_DELETE_KEY_VALUE(hash, keypointer, valuepointer) \
116 if (hash->keyDeleter != NULL && keypointer != NULL) { \
117 (*hash->keyDeleter)(keypointer); \
118 } \
119 if (hash->valueDeleter != NULL && valuepointer != NULL) { \
120 (*hash->valueDeleter)(valuepointer); \
121 }
122
123/*
124 * Constants for hinting whether a key or value is an integer
125 * or a pointer. If a hint bit is zero, then the associated
126 * token is assumed to be an integer.
127 */
128#define HINT_KEY_POINTER (1)
129#define HINT_VALUE_POINTER (2)
130
131/********************************************************************
132 * Debugging
133 ********************************************************************/
134
135
136/********************************************************************
137 * PRIVATE Prototypes
138 ********************************************************************/
139
140static UHashtable* _uhash_create(UHashFunction *keyHash, UKeyComparator *keyComp,
141 int32_t primeIndex, UErrorCode *status);
142
143static void _uhash_allocate(UHashtable *hash, int32_t primeIndex,
144 UErrorCode *status);
145
146static void _uhash_rehash(UHashtable *hash);
147
148static UHashElement* _uhash_find(const UHashtable *hash, UHashTok key,
149 int32_t hashcode);
150
151static UHashTok _uhash_put(UHashtable *hash,
152 UHashTok key,
153 UHashTok value,
154 int8_t hint,
155 UErrorCode *status);
156
157static UHashTok _uhash_remove(UHashtable *hash,
158 UHashTok key);
159
160static UHashTok _uhash_internalRemoveElement(UHashtable *hash, UHashElement* e);
161
162static UHashTok _uhash_setElement(UHashtable* hash, UHashElement* e,
163 int32_t hashcode,
164 UHashTok key, UHashTok value,
165 int8_t hint);
166
167static void _uhash_internalSetResizePolicy(UHashtable *hash, enum UHashResizePolicy policy);
168
169/********************************************************************
170 * PUBLIC API
171 ********************************************************************/
172
173U_CAPI UHashtable* U_EXPORT2
174uhash_open(UHashFunction *keyHash, UKeyComparator *keyComp,
175 UErrorCode *status) {
176
177 return _uhash_create(keyHash, keyComp, 3, status);
178}
179
180U_CAPI UHashtable* U_EXPORT2
181uhash_openSize(UHashFunction *keyHash, UKeyComparator *keyComp,
182 int32_t size,
183 UErrorCode *status) {
184
185 /* Find the smallest index i for which PRIMES[i] >= size. */
186 int32_t i = 0;
187 while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) {
188 ++i;
189 }
190
191 return _uhash_create(keyHash, keyComp, i, status);
192}
193
194U_CAPI void U_EXPORT2
195uhash_close(UHashtable *hash) {
196 U_ASSERT(hash != NULL);
197 if (hash->elements != NULL) {
198 if (hash->keyDeleter != NULL || hash->valueDeleter != NULL) {
199 int32_t pos=-1;
200 UHashElement *e;
201 while ((e = (UHashElement*) uhash_nextElement(hash, &pos)) != NULL) {
202 HASH_DELETE_KEY_VALUE(hash, e->key.pointer, e->value.pointer);
203 }
204 }
205 uprv_free(hash->elements);
206 hash->elements = NULL;
207 }
208 uprv_free(hash);
209}
210
211U_CAPI UHashFunction *U_EXPORT2
212uhash_setKeyHasher(UHashtable *hash, UHashFunction *fn) {
213 UHashFunction *result = hash->keyHasher;
214 hash->keyHasher = fn;
215 return result;
216}
217
218U_CAPI UKeyComparator *U_EXPORT2
219uhash_setKeyComparator(UHashtable *hash, UKeyComparator *fn) {
220 UKeyComparator *result = hash->keyComparator;
221 hash->keyComparator = fn;
222 return result;
223}
224
225U_CAPI UObjectDeleter *U_EXPORT2
226uhash_setKeyDeleter(UHashtable *hash, UObjectDeleter *fn) {
227 UObjectDeleter *result = hash->keyDeleter;
228 hash->keyDeleter = fn;
229 return result;
230}
231
232U_CAPI UObjectDeleter *U_EXPORT2
233uhash_setValueDeleter(UHashtable *hash, UObjectDeleter *fn) {
234 UObjectDeleter *result = hash->valueDeleter;
235 hash->valueDeleter = fn;
236 return result;
237}
238
239U_CAPI void U_EXPORT2
240uhash_setResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) {
241 _uhash_internalSetResizePolicy(hash, policy);
242 hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio);
243 hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio);
244 _uhash_rehash(hash);
245}
246
247U_CAPI int32_t U_EXPORT2
248uhash_count(const UHashtable *hash) {
249 return hash->count;
250}
251
252U_CAPI void* U_EXPORT2
253uhash_get(const UHashtable *hash,
254 const void* key) {
255 UHashTok keyholder;
256 keyholder.pointer = (void*) key;
257 return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer;
258}
259
260U_CAPI void* U_EXPORT2
261uhash_iget(const UHashtable *hash,
262 int32_t key) {
263 UHashTok keyholder;
264 keyholder.integer = key;
265 return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer;
266}
267
268U_CAPI int32_t U_EXPORT2
269uhash_geti(const UHashtable *hash,
270 const void* key) {
271 UHashTok keyholder;
272 keyholder.pointer = (void*) key;
273 return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer;
274}
275
276U_CAPI void* U_EXPORT2
277uhash_put(UHashtable *hash,
278 void* key,
279 void* value,
280 UErrorCode *status) {
281 UHashTok keyholder, valueholder;
282 keyholder.pointer = key;
283 valueholder.pointer = value;
284 return _uhash_put(hash, keyholder, valueholder,
285 HINT_KEY_POINTER | HINT_VALUE_POINTER,
286 status).pointer;
287}
288
289U_CAPI void* U_EXPORT2
290uhash_iput(UHashtable *hash,
291 int32_t key,
292 void* value,
293 UErrorCode *status) {
294 UHashTok keyholder, valueholder;
295 keyholder.integer = key;
296 valueholder.pointer = value;
297 return _uhash_put(hash, keyholder, valueholder,
298 HINT_VALUE_POINTER,
299 status).pointer;
300}
301
302U_CAPI int32_t U_EXPORT2
303uhash_puti(UHashtable *hash,
304 void* key,
305 int32_t value,
306 UErrorCode *status) {
307 UHashTok keyholder, valueholder;
308 keyholder.pointer = key;
309 valueholder.integer = value;
310 return _uhash_put(hash, keyholder, valueholder,
311 HINT_KEY_POINTER,
312 status).integer;
313}
314
315U_CAPI void* U_EXPORT2
316uhash_remove(UHashtable *hash,
317 const void* key) {
318 UHashTok keyholder;
319 keyholder.pointer = (void*) key;
320 return _uhash_remove(hash, keyholder).pointer;
321}
322
323U_CAPI void* U_EXPORT2
324uhash_iremove(UHashtable *hash,
325 int32_t key) {
326 UHashTok keyholder;
327 keyholder.integer = key;
328 return _uhash_remove(hash, keyholder).pointer;
329}
330
331U_CAPI int32_t U_EXPORT2
332uhash_removei(UHashtable *hash,
333 const void* key) {
334 UHashTok keyholder;
335 keyholder.pointer = (void*) key;
336 return _uhash_remove(hash, keyholder).integer;
337}
338
339U_CAPI void U_EXPORT2
340uhash_removeAll(UHashtable *hash) {
341 int32_t pos = -1;
342 const UHashElement *e;
343 U_ASSERT(hash != NULL);
344 if (hash->count != 0) {
345 while ((e = uhash_nextElement(hash, &pos)) != NULL) {
346 uhash_removeElement(hash, e);
347 }
348 }
349 U_ASSERT(hash->count == 0);
350}
351
352U_CAPI const UHashElement* U_EXPORT2
353uhash_find(const UHashtable *hash, const void* key) {
354 UHashTok keyholder;
355 const UHashElement *e;
356 keyholder.pointer = (void*) key;
357 e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder));
358 return IS_EMPTY_OR_DELETED(e->hashcode) ? NULL : e;
359}
360
361U_CAPI const UHashElement* U_EXPORT2
362uhash_nextElement(const UHashtable *hash, int32_t *pos) {
363 /* Walk through the array until we find an element that is not
364 * EMPTY and not DELETED.
365 */
366 int32_t i;
367 U_ASSERT(hash != NULL);
368 for (i = *pos + 1; i < hash->length; ++i) {
369 if (!IS_EMPTY_OR_DELETED(hash->elements[i].hashcode)) {
370 *pos = i;
371 return &(hash->elements[i]);
372 }
373 }
374
375 /* No more elements */
376 return NULL;
377}
378
379U_CAPI void* U_EXPORT2
380uhash_removeElement(UHashtable *hash, const UHashElement* e) {
381 U_ASSERT(hash != NULL);
382 U_ASSERT(e != NULL);
383 if (!IS_EMPTY_OR_DELETED(e->hashcode)) {
384 return _uhash_internalRemoveElement(hash, (UHashElement*) e).pointer;
385 }
386 return NULL;
387}
388
389/********************************************************************
390 * UHashTok convenience
391 ********************************************************************/
392
393/**
394 * Return a UHashTok for an integer.
395 */
396U_CAPI UHashTok U_EXPORT2
397uhash_toki(int32_t i) {
398 UHashTok tok;
399 tok.integer = i;
400 return tok;
401}
402
403/**
404 * Return a UHashTok for a pointer.
405 */
406U_CAPI UHashTok U_EXPORT2
407uhash_tokp(void* p) {
408 UHashTok tok;
409 tok.pointer = p;
410 return tok;
411}
412
413/********************************************************************
414 * PUBLIC Key Hash Functions
415 ********************************************************************/
416
417/*
418 Compute the hash by iterating sparsely over about 32 (up to 63)
419 characters spaced evenly through the string. For each character,
420 multiply the previous hash value by a prime number and add the new
421 character in, like a linear congruential random number generator,
422 producing a pseudorandom deterministic value well distributed over
423 the output range. [LIU]
424*/
425
426#define STRING_HASH(TYPE, STR, STRLEN, DEREF) \
427 int32_t hash = 0; \
428 const TYPE *p = (const TYPE*) STR; \
429 if (p != NULL) { \
430 int32_t len = (int32_t)(STRLEN); \
431 int32_t inc = ((len - 32) / 32) + 1; \
432 const TYPE *limit = p + len; \
433 while (p<limit) { \
434 hash = (hash * 37) + DEREF; \
435 p += inc; \
436 } \
437 } \
438 return hash
439
440U_CAPI int32_t U_EXPORT2
441uhash_hashUChars(const UHashTok key) {
442 STRING_HASH(UChar, key.pointer, u_strlen(p), *p);
443}
444
445/* Used by UnicodeString to compute its hashcode - Not public API. */
446U_CAPI int32_t U_EXPORT2
447uhash_hashUCharsN(const UChar *str, int32_t length) {
448 STRING_HASH(UChar, str, length, *p);
449}
450
451U_CAPI int32_t U_EXPORT2
452uhash_hashChars(const UHashTok key) {
453 STRING_HASH(uint8_t, key.pointer, uprv_strlen((char*)p), *p);
454}
455
456U_CAPI int32_t U_EXPORT2
457uhash_hashIChars(const UHashTok key) {
458 STRING_HASH(uint8_t, key.pointer, uprv_strlen((char*)p), uprv_tolower(*p));
459}
460
461/********************************************************************
462 * PUBLIC Comparator Functions
463 ********************************************************************/
464
465U_CAPI UBool U_EXPORT2
466uhash_compareUChars(const UHashTok key1, const UHashTok key2) {
467 const UChar *p1 = (const UChar*) key1.pointer;
468 const UChar *p2 = (const UChar*) key2.pointer;
469 if (p1 == p2) {
470 return TRUE;
471 }
472 if (p1 == NULL || p2 == NULL) {
473 return FALSE;
474 }
475 while (*p1 != 0 && *p1 == *p2) {
476 ++p1;
477 ++p2;
478 }
479 return (UBool)(*p1 == *p2);
480}
481
482U_CAPI UBool U_EXPORT2
483uhash_compareChars(const UHashTok key1, const UHashTok key2) {
484 const char *p1 = (const char*) key1.pointer;
485 const char *p2 = (const char*) key2.pointer;
486 if (p1 == p2) {
487 return TRUE;
488 }
489 if (p1 == NULL || p2 == NULL) {
490 return FALSE;
491 }
492 while (*p1 != 0 && *p1 == *p2) {
493 ++p1;
494 ++p2;
495 }
496 return (UBool)(*p1 == *p2);
497}
498
499U_CAPI UBool U_EXPORT2
500uhash_compareIChars(const UHashTok key1, const UHashTok key2) {
501 const char *p1 = (const char*) key1.pointer;
502 const char *p2 = (const char*) key2.pointer;
503 if (p1 == p2) {
504 return TRUE;
505 }
506 if (p1 == NULL || p2 == NULL) {
507 return FALSE;
508 }
509 while (*p1 != 0 && uprv_tolower(*p1) == uprv_tolower(*p2)) {
510 ++p1;
511 ++p2;
512 }
513 return (UBool)(*p1 == *p2);
514}
515
516/********************************************************************
517 * PUBLIC int32_t Support Functions
518 ********************************************************************/
519
520U_CAPI int32_t U_EXPORT2
521uhash_hashLong(const UHashTok key) {
522 return key.integer;
523}
524
525U_CAPI UBool U_EXPORT2
526uhash_compareLong(const UHashTok key1, const UHashTok key2) {
527 return (UBool)(key1.integer == key2.integer);
528}
529
530/********************************************************************
531 * PUBLIC Deleter Functions
532 ********************************************************************/
533
534U_CAPI void U_EXPORT2
535uhash_freeBlock(void *obj) {
536 uprv_free(obj);
537}
538
539/********************************************************************
540 * PRIVATE Implementation
541 ********************************************************************/
542
543static UHashtable*
544_uhash_create(UHashFunction *keyHash, UKeyComparator *keyComp,
545 int32_t primeIndex,
546 UErrorCode *status) {
547 UHashtable *result;
548
549 if (U_FAILURE(*status)) return NULL;
550 U_ASSERT(keyHash != NULL);
551 U_ASSERT(keyComp != NULL);
552
553 result = (UHashtable*) uprv_malloc(sizeof(UHashtable));
554 if (result == NULL) {
555 *status = U_MEMORY_ALLOCATION_ERROR;
556 return NULL;
557 }
558
559 result->keyHasher = keyHash;
560 result->keyComparator = keyComp;
561 result->keyDeleter = NULL;
562 result->valueDeleter = NULL;
563 _uhash_internalSetResizePolicy(result, U_GROW);
564
565 _uhash_allocate(result, primeIndex, status);
566
567 if (U_FAILURE(*status)) {
568 uprv_free(result);
569 return NULL;
570 }
571
572 return result;
573}
574
575/**
576 * Allocate internal data array of a size determined by the given
577 * prime index. If the index is out of range it is pinned into range.
578 * If the allocation fails the status is set to
579 * U_MEMORY_ALLOCATION_ERROR and all array storage is freed. In
580 * either case the previous array pointer is overwritten.
581 *
582 * Caller must ensure primeIndex is in range 0..PRIME_LENGTH-1.
583 */
584static void
585_uhash_allocate(UHashtable *hash,
586 int32_t primeIndex,
587 UErrorCode *status) {
588
589 UHashElement *p, *limit;
590 UHashTok emptytok;
591
592 if (U_FAILURE(*status)) return;
593
594 U_ASSERT(primeIndex >= 0 && primeIndex < PRIMES_LENGTH);
595
596 hash->primeIndex = primeIndex;
597 hash->length = PRIMES[primeIndex];
598
599 p = hash->elements = (UHashElement*)
600 uprv_malloc(sizeof(UHashElement) * hash->length);
601
602 if (hash->elements == NULL) {
603 *status = U_MEMORY_ALLOCATION_ERROR;
604 return;
605 }
606
607 emptytok.pointer = NULL; /* Only one of these two is needed */
608 emptytok.integer = 0; /* but we don't know which one. */
609
610 limit = p + hash->length;
611 while (p < limit) {
612 p->key = emptytok;
613 p->value = emptytok;
614 p->hashcode = HASH_EMPTY;
615 ++p;
616 }
617
618 hash->count = 0;
619 hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio);
620 hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio);
621}
622
623/**
624 * Attempt to grow or shrink the data arrays in order to make the
625 * count fit between the high and low water marks. hash_put() and
626 * hash_remove() call this method when the count exceeds the high or
627 * low water marks. This method may do nothing, if memory allocation
628 * fails, or if the count is already in range, or if the length is
629 * already at the low or high limit. In any case, upon return the
630 * arrays will be valid.
631 */
632static void
633_uhash_rehash(UHashtable *hash) {
634
635 UHashElement *old = hash->elements;
636 int32_t oldLength = hash->length;
637 int32_t newPrimeIndex = hash->primeIndex;
638 int32_t i;
639 UErrorCode status = U_ZERO_ERROR;
640
641 if (hash->count > hash->highWaterMark) {
642 if (++newPrimeIndex >= PRIMES_LENGTH) {
643 return;
644 }
645 } else if (hash->count < hash->lowWaterMark) {
646 if (--newPrimeIndex < 0) {
647 return;
648 }
649 } else {
650 return;
651 }
652
653 _uhash_allocate(hash, newPrimeIndex, &status);
654
655 if (U_FAILURE(status)) {
656 hash->elements = old;
657 hash->length = oldLength;
658 return;
659 }
660
661 for (i = oldLength - 1; i >= 0; --i) {
662 if (!IS_EMPTY_OR_DELETED(old[i].hashcode)) {
663 UHashElement *e = _uhash_find(hash, old[i].key, old[i].hashcode);
664 U_ASSERT(e != NULL);
665 U_ASSERT(e->hashcode == HASH_EMPTY);
666 e->key = old[i].key;
667 e->value = old[i].value;
668 e->hashcode = old[i].hashcode;
669 ++hash->count;
670 }
671 }
672
673 uprv_free(old);
674}
675
676/**
677 * Look for a key in the table, or if no such key exists, the first
678 * empty slot matching the given hashcode. Keys are compared using
679 * the keyComparator function.
680 *
681 * First find the start position, which is the hashcode modulo
682 * the length. Test it to see if it is:
683 *
684 * a. identical: First check the hash values for a quick check,
685 * then compare keys for equality using keyComparator.
686 * b. deleted
687 * c. empty
688 *
689 * Stop if it is identical or empty, otherwise continue by adding a
690 * "jump" value (moduloing by the length again to keep it within
691 * range) and retesting. For efficiency, there need enough empty
692 * values so that the searchs stop within a reasonable amount of time.
693 * This can be changed by changing the high/low water marks.
694 *
695 * In theory, this function can return NULL, if it is full (no empty
696 * or deleted slots) and if no matching key is found. In practice, we
697 * prevent this elsewhere (in uhash_put) by making sure the last slot
698 * in the table is never filled.
699 *
700 * The size of the table should be prime for this algorithm to work;
701 * otherwise we are not guaranteed that the jump value (the secondary
702 * hash) is relatively prime to the table length.
703 */
704static UHashElement*
705_uhash_find(const UHashtable *hash, UHashTok key,
706 int32_t hashcode) {
707
708 int32_t firstDeleted = -1; /* assume invalid index */
709 int32_t theIndex, startIndex;
710 int32_t jump = 0; /* lazy evaluate */
711 int32_t tableHash;
712
713 hashcode &= 0x7FFFFFFF; /* must be positive */
714 startIndex = theIndex = (hashcode ^ 0x4000000) % hash->length;
715
716 do {
717 tableHash = hash->elements[theIndex].hashcode;
718 if (tableHash == hashcode) { /* quick check */
719 if ((*hash->keyComparator)(key, hash->elements[theIndex].key)) {
720 return &(hash->elements[theIndex]);
721 }
722 } else if (!IS_EMPTY_OR_DELETED(tableHash)) {
723 /* We have hit a slot which contains a key-value pair,
724 * but for which the hash code does not match. Keep
725 * looking.
726 */
727 } else if (tableHash == HASH_EMPTY) { /* empty, end o' the line */
728 break;
729 } else if (firstDeleted < 0) { /* remember first deleted */
730 firstDeleted = theIndex;
731 }
732 if (jump == 0) { /* lazy compute jump */
733 /* The jump value must be relatively prime to the table
734 * length. As long as the length is prime, then any value
735 * 1..length-1 will be relatively prime to it.
736 */
737 jump = (hashcode % (hash->length - 1)) + 1;
738 }
739 theIndex = (theIndex + jump) % hash->length;
740 } while (theIndex != startIndex);
741
742 if (firstDeleted >= 0) {
743 theIndex = firstDeleted; /* reset if had deleted slot */
744 } else if (tableHash != HASH_EMPTY) {
745 /* We get to this point if the hashtable is full (no empty or
746 * deleted slots), and we've failed to find a match. THIS
747 * WILL NEVER HAPPEN as long as uhash_put() makes sure that
748 * count is always < length.
749 */
750 U_ASSERT(FALSE);
751 return NULL; /* Never happens if uhash_put() behaves */
752 }
753 return &(hash->elements[theIndex]);
754}
755
756static UHashTok
757_uhash_put(UHashtable *hash,
758 UHashTok key,
759 UHashTok value,
760 int8_t hint,
761 UErrorCode *status) {
762
763 /* Put finds the position in the table for the new value. If the
764 * key is already in the table, it is deleted, if there is a
765 * non-NULL keyDeleter. Then the key, the hash and the value are
766 * all put at the position in their respective arrays.
767 */
768 int32_t hashcode;
769 UHashElement* e;
770 UHashTok emptytok;
771
772 if (U_FAILURE(*status)) {
773 goto err;
774 }
775 U_ASSERT(hash != NULL);
776 /* Cannot always check pointer here or iSeries sees NULL every time. */
777 if ((hint & HINT_VALUE_POINTER) && value.pointer == NULL) {
778 /* Disallow storage of NULL values, since NULL is returned by
779 * get() to indicate an absent key. Storing NULL == removing.
780 */
781 return _uhash_remove(hash, key);
782 }
783 if (hash->count > hash->highWaterMark) {
784 _uhash_rehash(hash);
785 }
786
787 hashcode = (*hash->keyHasher)(key);
788 e = _uhash_find(hash, key, hashcode);
789 U_ASSERT(e != NULL);
790
791 if (IS_EMPTY_OR_DELETED(e->hashcode)) {
792 /* Important: We must never actually fill the table up. If we
793 * do so, then _uhash_find() will return NULL, and we'll have
794 * to check for NULL after every call to _uhash_find(). To
795 * avoid this we make sure there is always at least one empty
796 * or deleted slot in the table. This only is a problem if we
797 * are out of memory and rehash isn't working.
798 */
799 ++hash->count;
800 if (hash->count == hash->length) {
801 /* Don't allow count to reach length */
802 --hash->count;
803 *status = U_MEMORY_ALLOCATION_ERROR;
804 goto err;
805 }
806 }
807
808 /* We must in all cases handle storage properly. If there was an
809 * old key, then it must be deleted (if the deleter != NULL).
810 * Make hashcodes stored in table positive.
811 */
812 return _uhash_setElement(hash, e, hashcode & 0x7FFFFFFF, key, value, hint);
813
814 err:
815 /* If the deleters are non-NULL, this method adopts its key and/or
816 * value arguments, and we must be sure to delete the key and/or
817 * value in all cases, even upon failure.
818 */
819 HASH_DELETE_KEY_VALUE(hash, key.pointer, value.pointer);
820 emptytok.pointer = NULL; emptytok.integer = 0;
821 return emptytok;
822}
823
824static UHashTok
825_uhash_remove(UHashtable *hash,
826 UHashTok key) {
827 /* First find the position of the key in the table. If the object
828 * has not been removed already, remove it. If the user wanted
829 * keys deleted, then delete it also. We have to put a special
830 * hashcode in that position that means that something has been
831 * deleted, since when we do a find, we have to continue PAST any
832 * deleted values.
833 */
834 UHashTok result;
835 UHashElement* e = _uhash_find(hash, key, hash->keyHasher(key));
836 U_ASSERT(e != NULL);
837 result.pointer = NULL; result.integer = 0;
838 if (!IS_EMPTY_OR_DELETED(e->hashcode)) {
839 result = _uhash_internalRemoveElement(hash, e);
840 if (hash->count < hash->lowWaterMark) {
841 _uhash_rehash(hash);
842 }
843 }
844 return result;
845}
846
847static UHashTok
848_uhash_setElement(UHashtable *hash, UHashElement* e,
849 int32_t hashcode,
850 UHashTok key, UHashTok value, int8_t hint) {
851
852 UHashTok oldValue = e->value;
853 if (hash->keyDeleter != NULL && e->key.pointer != NULL &&
854 e->key.pointer != key.pointer) { /* Avoid double deletion */
855 (*hash->keyDeleter)(e->key.pointer);
856 }
857 if (hash->valueDeleter != NULL) {
858 if (oldValue.pointer != NULL &&
859 oldValue.pointer != value.pointer) { /* Avoid double deletion */
860 (*hash->valueDeleter)(oldValue.pointer);
861 }
862 oldValue.pointer = NULL;
863 }
864 /* Compilers should copy the UHashTok union correctly, but even if
865 * they do, memory heap tools (e.g. BoundsChecker) can get
866 * confused when a pointer is cloaked in a union and then copied.
867 * TO ALLEVIATE THIS, we use hints (based on what API the user is
868 * calling) to copy pointers when we know the user thinks
869 * something is a pointer. */
870 if (hint & HINT_KEY_POINTER) {
871 e->key.pointer = key.pointer;
872 } else {
873 e->key = key;
874 }
875 if (hint & HINT_VALUE_POINTER) {
876 e->value.pointer = value.pointer;
877 } else {
878 e->value = value;
879 }
880 e->hashcode = hashcode;
881 return oldValue;
882}
883
884/**
885 * Assumes that the given element is not empty or deleted.
886 */
887static UHashTok
888_uhash_internalRemoveElement(UHashtable *hash, UHashElement* e) {
889 UHashTok empty;
890 U_ASSERT(!IS_EMPTY_OR_DELETED(e->hashcode));
891 --hash->count;
892 empty.pointer = NULL; empty.integer = 0;
893 return _uhash_setElement(hash, e, HASH_DELETED, empty, empty, 0);
894}
895
896static void
897_uhash_internalSetResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) {
898 U_ASSERT(hash != NULL);
899 U_ASSERT(((int32_t)policy) >= 0);
900 U_ASSERT(((int32_t)policy) < 3);
901 hash->lowWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2];
902 hash->highWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2 + 1];
903}