]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | ******************************************************************************* | |
3 | * Copyright (C) 1997-2006, International Business Machines Corporation and * | |
4 | * others. All Rights Reserved. * | |
5 | ******************************************************************************* | |
6 | * | |
7 | * File DECIMFMT.CPP | |
8 | * | |
9 | * Modification History: | |
10 | * | |
11 | * Date Name Description | |
12 | * 02/19/97 aliu Converted from java. | |
13 | * 03/20/97 clhuang Implemented with new APIs. | |
14 | * 03/31/97 aliu Moved isLONG_MIN to DigitList, and fixed it. | |
15 | * 04/3/97 aliu Rewrote parsing and formatting completely, and | |
16 | * cleaned up and debugged. Actually works now. | |
17 | * Implemented NAN and INF handling, for both parsing | |
18 | * and formatting. Extensive testing & debugging. | |
19 | * 04/10/97 aliu Modified to compile on AIX. | |
20 | * 04/16/97 aliu Rewrote to use DigitList, which has been resurrected. | |
21 | * Changed DigitCount to int per code review. | |
22 | * 07/09/97 helena Made ParsePosition into a class. | |
23 | * 08/26/97 aliu Extensive changes to applyPattern; completely | |
24 | * rewritten from the Java. | |
25 | * 09/09/97 aliu Ported over support for exponential formats. | |
26 | * 07/20/98 stephen JDK 1.2 sync up. | |
27 | * Various instances of '0' replaced with 'NULL' | |
28 | * Check for grouping size in subFormat() | |
29 | * Brought subParse() in line with Java 1.2 | |
30 | * Added method appendAffix() | |
31 | * 08/24/1998 srl Removed Mutex calls. This is not a thread safe class! | |
32 | * 02/22/99 stephen Removed character literals for EBCDIC safety | |
33 | * 06/24/99 helena Integrated Alan's NF enhancements and Java2 bug fixes | |
34 | * 06/28/99 stephen Fixed bugs in toPattern(). | |
35 | * 06/29/99 stephen Fixed operator= to copy fFormatWidth, fPad, | |
36 | * fPadPosition | |
37 | ******************************************************************************** | |
38 | */ | |
39 | ||
40 | #include "unicode/utypes.h" | |
41 | ||
42 | #if !UCONFIG_NO_FORMATTING | |
43 | ||
44 | #include "unicode/decimfmt.h" | |
45 | #include "unicode/choicfmt.h" | |
46 | #include "unicode/ucurr.h" | |
47 | #include "unicode/ustring.h" | |
48 | #include "unicode/dcfmtsym.h" | |
49 | #include "unicode/ures.h" | |
50 | #include "unicode/uchar.h" | |
51 | #include "unicode/curramt.h" | |
52 | #include "ucurrimp.h" | |
53 | #include "util.h" | |
54 | #include "digitlst.h" | |
55 | #include "cmemory.h" | |
56 | #include "cstring.h" | |
57 | #include "umutex.h" | |
58 | #include "uassert.h" | |
59 | #include "putilimp.h" | |
60 | ||
61 | U_NAMESPACE_BEGIN | |
62 | ||
63 | //#define FMT_DEBUG | |
64 | ||
65 | #ifdef FMT_DEBUG | |
66 | #include <stdio.h> | |
67 | static void debugout(UnicodeString s) { | |
68 | char buf[2000]; | |
69 | s.extract((int32_t) 0, s.length(), buf); | |
70 | printf("%s", buf); | |
71 | } | |
72 | #define debug(x) printf("%s", x); | |
73 | #else | |
74 | #define debugout(x) | |
75 | #define debug(x) | |
76 | #endif | |
77 | ||
78 | // ***************************************************************************** | |
79 | // class DecimalFormat | |
80 | // ***************************************************************************** | |
81 | ||
82 | UOBJECT_DEFINE_RTTI_IMPLEMENTATION(DecimalFormat) | |
83 | ||
84 | // Constants for characters used in programmatic (unlocalized) patterns. | |
85 | #define kPatternZeroDigit ((UChar)0x0030) /*'0'*/ | |
86 | #define kPatternSignificantDigit ((UChar)0x0040) /*'@'*/ | |
87 | #define kPatternGroupingSeparator ((UChar)0x002C) /*','*/ | |
88 | #define kPatternDecimalSeparator ((UChar)0x002E) /*'.'*/ | |
89 | #define kPatternPerMill ((UChar)0x2030) | |
90 | #define kPatternPercent ((UChar)0x0025) /*'%'*/ | |
91 | #define kPatternDigit ((UChar)0x0023) /*'#'*/ | |
92 | #define kPatternSeparator ((UChar)0x003B) /*';'*/ | |
93 | #define kPatternExponent ((UChar)0x0045) /*'E'*/ | |
94 | #define kPatternPlus ((UChar)0x002B) /*'+'*/ | |
95 | #define kPatternMinus ((UChar)0x002D) /*'-'*/ | |
96 | #define kPatternPadEscape ((UChar)0x002A) /*'*'*/ | |
97 | #define kQuote ((UChar)0x0027) /*'\''*/ | |
98 | /** | |
99 | * The CURRENCY_SIGN is the standard Unicode symbol for currency. It | |
100 | * is used in patterns and substitued with either the currency symbol, | |
101 | * or if it is doubled, with the international currency symbol. If the | |
102 | * CURRENCY_SIGN is seen in a pattern, then the decimal separator is | |
103 | * replaced with the monetary decimal separator. | |
104 | */ | |
105 | #define kCurrencySign ((UChar)0x00A4) | |
106 | #define kDefaultPad ((UChar)0x0020) /* */ | |
107 | ||
108 | const int32_t DecimalFormat::kDoubleIntegerDigits = 309; | |
109 | const int32_t DecimalFormat::kDoubleFractionDigits = 340; | |
110 | ||
111 | const int32_t DecimalFormat::kMaxScientificIntegerDigits = 8; | |
112 | ||
113 | /** | |
114 | * These are the tags we expect to see in normal resource bundle files associated | |
115 | * with a locale. | |
116 | */ | |
117 | const char DecimalFormat::fgNumberPatterns[]="NumberPatterns"; | |
118 | ||
119 | inline int32_t _min(int32_t a, int32_t b) { return (a<b) ? a : b; } | |
120 | inline int32_t _max(int32_t a, int32_t b) { return (a<b) ? b : a; } | |
121 | ||
122 | //------------------------------------------------------------------------------ | |
123 | // Constructs a DecimalFormat instance in the default locale. | |
124 | ||
125 | DecimalFormat::DecimalFormat(UErrorCode& status) | |
126 | : NumberFormat(), | |
127 | fPosPrefixPattern(0), | |
128 | fPosSuffixPattern(0), | |
129 | fNegPrefixPattern(0), | |
130 | fNegSuffixPattern(0), | |
131 | fCurrencyChoice(0), | |
132 | fMultiplier(0), | |
133 | fGroupingSize(0), | |
134 | fGroupingSize2(0), | |
135 | fSymbols(0), | |
136 | fUseSignificantDigits(FALSE), | |
137 | fMinSignificantDigits(1), | |
138 | fMaxSignificantDigits(6), | |
139 | fMinExponentDigits(0), | |
140 | fRoundingIncrement(0), | |
141 | fPad(0), | |
142 | fFormatWidth(0) | |
143 | { | |
144 | UParseError parseError; | |
145 | construct(status, parseError); | |
146 | } | |
147 | ||
148 | //------------------------------------------------------------------------------ | |
149 | // Constructs a DecimalFormat instance with the specified number format | |
150 | // pattern in the default locale. | |
151 | ||
152 | DecimalFormat::DecimalFormat(const UnicodeString& pattern, | |
153 | UErrorCode& status) | |
154 | : NumberFormat(), | |
155 | fPosPrefixPattern(0), | |
156 | fPosSuffixPattern(0), | |
157 | fNegPrefixPattern(0), | |
158 | fNegSuffixPattern(0), | |
159 | fCurrencyChoice(0), | |
160 | fMultiplier(0), | |
161 | fGroupingSize(0), | |
162 | fGroupingSize2(0), | |
163 | fSymbols(0), | |
164 | fUseSignificantDigits(FALSE), | |
165 | fMinSignificantDigits(1), | |
166 | fMaxSignificantDigits(6), | |
167 | fMinExponentDigits(0), | |
168 | fRoundingIncrement(0), | |
169 | fPad(0), | |
170 | fFormatWidth(0) | |
171 | { | |
172 | UParseError parseError; | |
173 | construct(status, parseError, &pattern); | |
174 | } | |
175 | ||
176 | //------------------------------------------------------------------------------ | |
177 | // Constructs a DecimalFormat instance with the specified number format | |
178 | // pattern and the number format symbols in the default locale. The | |
179 | // created instance owns the symbols. | |
180 | ||
181 | DecimalFormat::DecimalFormat(const UnicodeString& pattern, | |
182 | DecimalFormatSymbols* symbolsToAdopt, | |
183 | UErrorCode& status) | |
184 | : NumberFormat(), | |
185 | fPosPrefixPattern(0), | |
186 | fPosSuffixPattern(0), | |
187 | fNegPrefixPattern(0), | |
188 | fNegSuffixPattern(0), | |
189 | fCurrencyChoice(0), | |
190 | fMultiplier(0), | |
191 | fGroupingSize(0), | |
192 | fGroupingSize2(0), | |
193 | fSymbols(0), | |
194 | fUseSignificantDigits(FALSE), | |
195 | fMinSignificantDigits(1), | |
196 | fMaxSignificantDigits(6), | |
197 | fMinExponentDigits(0), | |
198 | fRoundingIncrement(0), | |
199 | fPad(0), | |
200 | fFormatWidth(0) | |
201 | { | |
202 | UParseError parseError; | |
203 | if (symbolsToAdopt == NULL) | |
204 | status = U_ILLEGAL_ARGUMENT_ERROR; | |
205 | construct(status, parseError, &pattern, symbolsToAdopt); | |
206 | } | |
207 | ||
208 | DecimalFormat::DecimalFormat( const UnicodeString& pattern, | |
209 | DecimalFormatSymbols* symbolsToAdopt, | |
210 | UParseError& parseErr, | |
211 | UErrorCode& status) | |
212 | : NumberFormat(), | |
213 | fPosPrefixPattern(0), | |
214 | fPosSuffixPattern(0), | |
215 | fNegPrefixPattern(0), | |
216 | fNegSuffixPattern(0), | |
217 | fCurrencyChoice(0), | |
218 | fMultiplier(0), | |
219 | fGroupingSize(0), | |
220 | fGroupingSize2(0), | |
221 | fSymbols(0), | |
222 | fUseSignificantDigits(FALSE), | |
223 | fMinSignificantDigits(1), | |
224 | fMaxSignificantDigits(6), | |
225 | fMinExponentDigits(0), | |
226 | fRoundingIncrement(0), | |
227 | fPad(0), | |
228 | fFormatWidth(0) | |
229 | { | |
230 | if (symbolsToAdopt == NULL) | |
231 | status = U_ILLEGAL_ARGUMENT_ERROR; | |
232 | construct(status,parseErr, &pattern, symbolsToAdopt); | |
233 | } | |
234 | //------------------------------------------------------------------------------ | |
235 | // Constructs a DecimalFormat instance with the specified number format | |
236 | // pattern and the number format symbols in the default locale. The | |
237 | // created instance owns the clone of the symbols. | |
238 | ||
239 | DecimalFormat::DecimalFormat(const UnicodeString& pattern, | |
240 | const DecimalFormatSymbols& symbols, | |
241 | UErrorCode& status) | |
242 | : NumberFormat(), | |
243 | fPosPrefixPattern(0), | |
244 | fPosSuffixPattern(0), | |
245 | fNegPrefixPattern(0), | |
246 | fNegSuffixPattern(0), | |
247 | fCurrencyChoice(0), | |
248 | fMultiplier(0), | |
249 | fGroupingSize(0), | |
250 | fGroupingSize2(0), | |
251 | fSymbols(0), | |
252 | fUseSignificantDigits(FALSE), | |
253 | fMinSignificantDigits(1), | |
254 | fMaxSignificantDigits(6), | |
255 | fMinExponentDigits(0), | |
256 | fRoundingIncrement(0), | |
257 | fPad(0), | |
258 | fFormatWidth(0) | |
259 | { | |
260 | UParseError parseError; | |
261 | construct(status, parseError, &pattern, new DecimalFormatSymbols(symbols)); | |
262 | } | |
263 | ||
264 | //------------------------------------------------------------------------------ | |
265 | // Constructs a DecimalFormat instance with the specified number format | |
266 | // pattern and the number format symbols in the desired locale. The | |
267 | // created instance owns the symbols. | |
268 | ||
269 | void | |
270 | DecimalFormat::construct(UErrorCode& status, | |
271 | UParseError& parseErr, | |
272 | const UnicodeString* pattern, | |
273 | DecimalFormatSymbols* symbolsToAdopt) | |
274 | { | |
275 | fSymbols = symbolsToAdopt; // Do this BEFORE aborting on status failure!!! | |
276 | // fDigitList = new DigitList(); // Do this BEFORE aborting on status failure!!! | |
277 | fRoundingIncrement = NULL; | |
278 | fRoundingDouble = 0.0; | |
279 | fRoundingMode = kRoundHalfEven; | |
280 | fPad = kPatternPadEscape; | |
281 | fPadPosition = kPadBeforePrefix; | |
282 | if (U_FAILURE(status)) | |
283 | return; | |
284 | ||
285 | fPosPrefixPattern = fPosSuffixPattern = NULL; | |
286 | fNegPrefixPattern = fNegSuffixPattern = NULL; | |
287 | fMultiplier = 1; | |
288 | fGroupingSize = 3; | |
289 | fGroupingSize2 = 0; | |
290 | fDecimalSeparatorAlwaysShown = FALSE; | |
291 | fIsCurrencyFormat = FALSE; | |
292 | fUseExponentialNotation = FALSE; | |
293 | fMinExponentDigits = 0; | |
294 | ||
295 | if (fSymbols == NULL) | |
296 | { | |
297 | fSymbols = new DecimalFormatSymbols(Locale::getDefault(), status); | |
298 | /* test for NULL */ | |
299 | if (fSymbols == 0) { | |
300 | status = U_MEMORY_ALLOCATION_ERROR; | |
301 | return; | |
302 | } | |
303 | } | |
304 | ||
305 | UnicodeString str; | |
306 | // Uses the default locale's number format pattern if there isn't | |
307 | // one specified. | |
308 | if (pattern == NULL) | |
309 | { | |
310 | int32_t len = 0; | |
311 | UResourceBundle *resource = ures_open(NULL, Locale::getDefault().getName(), &status); | |
312 | ||
313 | resource = ures_getByKey(resource, fgNumberPatterns, resource, &status); | |
314 | const UChar *resStr = ures_getStringByIndex(resource, (int32_t)0, &len, &status); | |
315 | str.setTo(TRUE, resStr, len); | |
316 | pattern = &str; | |
317 | ures_close(resource); | |
318 | } | |
319 | ||
320 | if (U_FAILURE(status)) | |
321 | { | |
322 | return; | |
323 | } | |
324 | ||
325 | if (pattern->indexOf((UChar)kCurrencySign) >= 0) { | |
326 | // If it looks like we are going to use a currency pattern | |
327 | // then do the time consuming lookup. | |
328 | if (symbolsToAdopt == NULL) { | |
329 | setCurrencyForLocale(uloc_getDefault(), status); | |
330 | } else { | |
331 | setCurrencyForSymbols(); | |
332 | } | |
333 | } else { | |
334 | setCurrency(NULL, status); | |
335 | } | |
336 | ||
337 | applyPattern(*pattern, FALSE /*not localized*/,parseErr, status); | |
338 | ||
339 | // If it was a currency format, apply the appropriate rounding by | |
340 | // resetting the currency. NOTE: this copies fCurrency on top of itself. | |
341 | if (fIsCurrencyFormat) { | |
342 | setCurrency(getCurrency(), status); | |
343 | } | |
344 | } | |
345 | ||
346 | /** | |
347 | * Sets our currency to be the default currency for the given locale. | |
348 | */ | |
349 | void DecimalFormat::setCurrencyForLocale(const char* locale, UErrorCode& ec) { | |
350 | const UChar* c = NULL; | |
351 | if (U_SUCCESS(ec)) { | |
352 | // Trap an error in mapping locale to currency. If we can't | |
353 | // map, then don't fail and set the currency to "". | |
354 | UErrorCode ec2 = U_ZERO_ERROR; | |
355 | UChar c[4]; | |
356 | ucurr_forLocale(locale, c, 4, &ec2); | |
357 | } | |
358 | setCurrency(c, ec); | |
359 | } | |
360 | ||
361 | //------------------------------------------------------------------------------ | |
362 | ||
363 | DecimalFormat::~DecimalFormat() | |
364 | { | |
365 | // delete fDigitList; | |
366 | delete fPosPrefixPattern; | |
367 | delete fPosSuffixPattern; | |
368 | delete fNegPrefixPattern; | |
369 | delete fNegSuffixPattern; | |
370 | delete fCurrencyChoice; | |
371 | delete fSymbols; | |
372 | delete fRoundingIncrement; | |
373 | } | |
374 | ||
375 | //------------------------------------------------------------------------------ | |
376 | // copy constructor | |
377 | ||
378 | DecimalFormat::DecimalFormat(const DecimalFormat &source) | |
379 | : NumberFormat(source), | |
380 | // fDigitList(NULL), | |
381 | fPosPrefixPattern(NULL), | |
382 | fPosSuffixPattern(NULL), | |
383 | fNegPrefixPattern(NULL), | |
384 | fNegSuffixPattern(NULL), | |
385 | fCurrencyChoice(NULL), | |
386 | fSymbols(NULL), | |
387 | fRoundingIncrement(NULL) | |
388 | { | |
389 | *this = source; | |
390 | } | |
391 | ||
392 | //------------------------------------------------------------------------------ | |
393 | // assignment operator | |
394 | // Note that fDigitList is not considered a significant part of the | |
395 | // DecimalFormat because it's used as a buffer to process the numbers. | |
396 | ||
397 | static void _copy_us_ptr(UnicodeString** pdest, const UnicodeString* source) { | |
398 | if (source == NULL) { | |
399 | delete *pdest; | |
400 | *pdest = NULL; | |
401 | } else if (*pdest == NULL) { | |
402 | *pdest = new UnicodeString(*source); | |
403 | } else { | |
404 | **pdest = *source; | |
405 | } | |
406 | } | |
407 | ||
408 | DecimalFormat& | |
409 | DecimalFormat::operator=(const DecimalFormat& rhs) | |
410 | { | |
411 | if(this != &rhs) { | |
412 | NumberFormat::operator=(rhs); | |
413 | fPositivePrefix = rhs.fPositivePrefix; | |
414 | fPositiveSuffix = rhs.fPositiveSuffix; | |
415 | fNegativePrefix = rhs.fNegativePrefix; | |
416 | fNegativeSuffix = rhs.fNegativeSuffix; | |
417 | _copy_us_ptr(&fPosPrefixPattern, rhs.fPosPrefixPattern); | |
418 | _copy_us_ptr(&fPosSuffixPattern, rhs.fPosSuffixPattern); | |
419 | _copy_us_ptr(&fNegPrefixPattern, rhs.fNegPrefixPattern); | |
420 | _copy_us_ptr(&fNegSuffixPattern, rhs.fNegSuffixPattern); | |
421 | if (rhs.fCurrencyChoice == 0) { | |
422 | delete fCurrencyChoice; | |
423 | fCurrencyChoice = 0; | |
424 | } else { | |
425 | fCurrencyChoice = (ChoiceFormat*) rhs.fCurrencyChoice->clone(); | |
426 | } | |
427 | if(rhs.fRoundingIncrement == NULL) { | |
428 | delete fRoundingIncrement; | |
429 | fRoundingIncrement = NULL; | |
430 | } | |
431 | else if(fRoundingIncrement == NULL) { | |
432 | fRoundingIncrement = new DigitList(*rhs.fRoundingIncrement); | |
433 | } | |
434 | else { | |
435 | *fRoundingIncrement = *rhs.fRoundingIncrement; | |
436 | } | |
437 | fRoundingDouble = rhs.fRoundingDouble; | |
438 | fMultiplier = rhs.fMultiplier; | |
439 | fGroupingSize = rhs.fGroupingSize; | |
440 | fGroupingSize2 = rhs.fGroupingSize2; | |
441 | fDecimalSeparatorAlwaysShown = rhs.fDecimalSeparatorAlwaysShown; | |
442 | if(fSymbols == NULL) { | |
443 | fSymbols = new DecimalFormatSymbols(*rhs.fSymbols); | |
444 | } else { | |
445 | *fSymbols = *rhs.fSymbols; | |
446 | } | |
447 | fUseExponentialNotation = rhs.fUseExponentialNotation; | |
448 | fExponentSignAlwaysShown = rhs.fExponentSignAlwaysShown; | |
449 | /*Bertrand A. D. Update 98.03.17*/ | |
450 | fIsCurrencyFormat = rhs.fIsCurrencyFormat; | |
451 | /*end of Update*/ | |
452 | fMinExponentDigits = rhs.fMinExponentDigits; | |
453 | // if (fDigitList == NULL) | |
454 | // fDigitList = new DigitList(); | |
455 | ||
456 | /* sfb 990629 */ | |
457 | fFormatWidth = rhs.fFormatWidth; | |
458 | fPad = rhs.fPad; | |
459 | fPadPosition = rhs.fPadPosition; | |
460 | /* end sfb */ | |
461 | fMinSignificantDigits = rhs.fMinSignificantDigits; | |
462 | fMaxSignificantDigits = rhs.fMaxSignificantDigits; | |
463 | fUseSignificantDigits = rhs.fUseSignificantDigits; | |
464 | } | |
465 | return *this; | |
466 | } | |
467 | ||
468 | //------------------------------------------------------------------------------ | |
469 | ||
470 | UBool | |
471 | DecimalFormat::operator==(const Format& that) const | |
472 | { | |
473 | if (this == &that) | |
474 | return TRUE; | |
475 | ||
476 | // NumberFormat::operator== guarantees this cast is safe | |
477 | const DecimalFormat* other = (DecimalFormat*)&that; | |
478 | ||
479 | #ifdef FMT_DEBUG | |
480 | // This code makes it easy to determine why two format objects that should | |
481 | // be equal aren't. | |
482 | UBool first = TRUE; | |
483 | if (!NumberFormat::operator==(that)) { | |
484 | if (first) { printf("[ "); first = FALSE; } else { printf(", "); } | |
485 | debug("NumberFormat::!="); | |
486 | } | |
487 | if (!((fPosPrefixPattern == other->fPosPrefixPattern && // both null | |
488 | fPositivePrefix == other->fPositivePrefix) | |
489 | || (fPosPrefixPattern != 0 && other->fPosPrefixPattern != 0 && | |
490 | *fPosPrefixPattern == *other->fPosPrefixPattern))) { | |
491 | if (first) { printf("[ "); first = FALSE; } else { printf(", "); } | |
492 | debug("Pos Prefix !="); | |
493 | } | |
494 | if (!((fPosSuffixPattern == other->fPosSuffixPattern && // both null | |
495 | fPositiveSuffix == other->fPositiveSuffix) | |
496 | || (fPosSuffixPattern != 0 && other->fPosSuffixPattern != 0 && | |
497 | *fPosSuffixPattern == *other->fPosSuffixPattern))) { | |
498 | if (first) { printf("[ "); first = FALSE; } else { printf(", "); } | |
499 | debug("Pos Suffix !="); | |
500 | } | |
501 | if (!((fNegPrefixPattern == other->fNegPrefixPattern && // both null | |
502 | fNegativePrefix == other->fNegativePrefix) | |
503 | || (fNegPrefixPattern != 0 && other->fNegPrefixPattern != 0 && | |
504 | *fNegPrefixPattern == *other->fNegPrefixPattern))) { | |
505 | if (first) { printf("[ "); first = FALSE; } else { printf(", "); } | |
506 | debug("Neg Prefix "); | |
507 | if (fNegPrefixPattern == NULL) { | |
508 | debug("NULL("); | |
509 | debugout(fNegativePrefix); | |
510 | debug(")"); | |
511 | } else { | |
512 | debugout(*fNegPrefixPattern); | |
513 | } | |
514 | debug(" != "); | |
515 | if (other->fNegPrefixPattern == NULL) { | |
516 | debug("NULL("); | |
517 | debugout(other->fNegativePrefix); | |
518 | debug(")"); | |
519 | } else { | |
520 | debugout(*other->fNegPrefixPattern); | |
521 | } | |
522 | } | |
523 | if (!((fNegSuffixPattern == other->fNegSuffixPattern && // both null | |
524 | fNegativeSuffix == other->fNegativeSuffix) | |
525 | || (fNegSuffixPattern != 0 && other->fNegSuffixPattern != 0 && | |
526 | *fNegSuffixPattern == *other->fNegSuffixPattern))) { | |
527 | if (first) { printf("[ "); first = FALSE; } else { printf(", "); } | |
528 | debug("Neg Suffix "); | |
529 | if (fNegSuffixPattern == NULL) { | |
530 | debug("NULL("); | |
531 | debugout(fNegativeSuffix); | |
532 | debug(")"); | |
533 | } else { | |
534 | debugout(*fNegSuffixPattern); | |
535 | } | |
536 | debug(" != "); | |
537 | if (other->fNegSuffixPattern == NULL) { | |
538 | debug("NULL("); | |
539 | debugout(other->fNegativeSuffix); | |
540 | debug(")"); | |
541 | } else { | |
542 | debugout(*other->fNegSuffixPattern); | |
543 | } | |
544 | } | |
545 | if (!((fRoundingIncrement == other->fRoundingIncrement) // both null | |
546 | || (fRoundingIncrement != NULL && | |
547 | other->fRoundingIncrement != NULL && | |
548 | *fRoundingIncrement == *other->fRoundingIncrement))) { | |
549 | if (first) { printf("[ "); first = FALSE; } else { printf(", "); } | |
550 | debug("Rounding Increment !="); | |
551 | } | |
552 | if (fMultiplier != other->fMultiplier) { | |
553 | if (first) { printf("[ "); first = FALSE; } | |
554 | printf("Multiplier %ld != %ld", fMultiplier, other->fMultiplier); | |
555 | } | |
556 | if (fGroupingSize != other->fGroupingSize) { | |
557 | if (first) { printf("[ "); first = FALSE; } else { printf(", "); } | |
558 | printf("Grouping Size %ld != %ld", fGroupingSize, other->fGroupingSize); | |
559 | } | |
560 | if (fGroupingSize2 != other->fGroupingSize2) { | |
561 | if (first) { printf("[ "); first = FALSE; } else { printf(", "); } | |
562 | printf("Secondary Grouping Size %ld != %ld", fGroupingSize2, other->fGroupingSize2); | |
563 | } | |
564 | if (fDecimalSeparatorAlwaysShown != other->fDecimalSeparatorAlwaysShown) { | |
565 | if (first) { printf("[ "); first = FALSE; } else { printf(", "); } | |
566 | printf("Dec Sep Always %d != %d", fDecimalSeparatorAlwaysShown, other->fDecimalSeparatorAlwaysShown); | |
567 | } | |
568 | if (fUseExponentialNotation != other->fUseExponentialNotation) { | |
569 | if (first) { printf("[ "); first = FALSE; } else { printf(", "); } | |
570 | debug("Use Exp !="); | |
571 | } | |
572 | if (!(!fUseExponentialNotation || | |
573 | fMinExponentDigits != other->fMinExponentDigits)) { | |
574 | if (first) { printf("[ "); first = FALSE; } else { printf(", "); } | |
575 | debug("Exp Digits !="); | |
576 | } | |
577 | if (*fSymbols != *(other->fSymbols)) { | |
578 | if (first) { printf("[ "); first = FALSE; } else { printf(", "); } | |
579 | debug("Symbols !="); | |
580 | } | |
581 | // TODO Add debug stuff for significant digits here | |
582 | if (!first) { printf(" ]"); } | |
583 | #endif | |
584 | ||
585 | return (NumberFormat::operator==(that) && | |
586 | ((fPosPrefixPattern == other->fPosPrefixPattern && // both null | |
587 | fPositivePrefix == other->fPositivePrefix) | |
588 | || (fPosPrefixPattern != 0 && other->fPosPrefixPattern != 0 && | |
589 | *fPosPrefixPattern == *other->fPosPrefixPattern)) && | |
590 | ((fPosSuffixPattern == other->fPosSuffixPattern && // both null | |
591 | fPositiveSuffix == other->fPositiveSuffix) | |
592 | || (fPosSuffixPattern != 0 && other->fPosSuffixPattern != 0 && | |
593 | *fPosSuffixPattern == *other->fPosSuffixPattern)) && | |
594 | ((fNegPrefixPattern == other->fNegPrefixPattern && // both null | |
595 | fNegativePrefix == other->fNegativePrefix) | |
596 | || (fNegPrefixPattern != 0 && other->fNegPrefixPattern != 0 && | |
597 | *fNegPrefixPattern == *other->fNegPrefixPattern)) && | |
598 | ((fNegSuffixPattern == other->fNegSuffixPattern && // both null | |
599 | fNegativeSuffix == other->fNegativeSuffix) | |
600 | || (fNegSuffixPattern != 0 && other->fNegSuffixPattern != 0 && | |
601 | *fNegSuffixPattern == *other->fNegSuffixPattern)) && | |
602 | ((fCurrencyChoice == other->fCurrencyChoice) // both null | |
603 | || (fCurrencyChoice != NULL && | |
604 | other->fCurrencyChoice != NULL && | |
605 | *fCurrencyChoice == *other->fCurrencyChoice)) && | |
606 | ((fRoundingIncrement == other->fRoundingIncrement) // both null | |
607 | || (fRoundingIncrement != NULL && | |
608 | other->fRoundingIncrement != NULL && | |
609 | *fRoundingIncrement == *other->fRoundingIncrement)) && | |
610 | fRoundingDouble == other->fRoundingDouble && | |
611 | fMultiplier == other->fMultiplier && | |
612 | fGroupingSize == other->fGroupingSize && | |
613 | fGroupingSize2 == other->fGroupingSize2 && | |
614 | fDecimalSeparatorAlwaysShown == other->fDecimalSeparatorAlwaysShown && | |
615 | fUseExponentialNotation == other->fUseExponentialNotation && | |
616 | (!fUseExponentialNotation || | |
617 | (fExponentSignAlwaysShown == other->fExponentSignAlwaysShown && | |
618 | fMinExponentDigits == other->fMinExponentDigits)) && | |
619 | *fSymbols == *(other->fSymbols) && | |
620 | fIsCurrencyFormat == other->fIsCurrencyFormat && | |
621 | fFormatWidth == other->fFormatWidth && | |
622 | fPad == other->fPad && | |
623 | fPadPosition == other->fPadPosition && | |
624 | fUseSignificantDigits == other->fUseSignificantDigits && | |
625 | (!fUseSignificantDigits || | |
626 | (fMinSignificantDigits == other->fMinSignificantDigits && | |
627 | fMaxSignificantDigits == other->fMaxSignificantDigits))); | |
628 | } | |
629 | ||
630 | //------------------------------------------------------------------------------ | |
631 | ||
632 | Format* | |
633 | DecimalFormat::clone() const | |
634 | { | |
635 | return new DecimalFormat(*this); | |
636 | } | |
637 | ||
638 | //------------------------------------------------------------------------------ | |
639 | ||
640 | UnicodeString& | |
641 | DecimalFormat::format(int32_t number, | |
642 | UnicodeString& appendTo, | |
643 | FieldPosition& fieldPosition) const | |
644 | { | |
645 | return format((int64_t)number, appendTo, fieldPosition); | |
646 | } | |
647 | ||
648 | //------------------------------------------------------------------------------ | |
649 | ||
650 | UnicodeString& | |
651 | DecimalFormat::format(int64_t number, | |
652 | UnicodeString& appendTo, | |
653 | FieldPosition& fieldPosition) const | |
654 | { | |
655 | DigitList digits; | |
656 | ||
657 | // Clears field positions. | |
658 | fieldPosition.setBeginIndex(0); | |
659 | fieldPosition.setEndIndex(0); | |
660 | ||
661 | // If we are to do rounding, we need to move into the BigDecimal | |
662 | // domain in order to do divide/multiply correctly. | |
663 | // || | |
664 | // In general, long values always represent real finite numbers, so | |
665 | // we don't have to check for +/- Infinity or NaN. However, there | |
666 | // is one case we have to be careful of: The multiplier can push | |
667 | // a number near MIN_VALUE or MAX_VALUE outside the legal range. We | |
668 | // check for this before multiplying, and if it happens we use doubles | |
669 | // instead, trading off accuracy for range. | |
670 | if (fRoundingIncrement != NULL | |
671 | || (fMultiplier != 0 && (number > (U_INT64_MAX / fMultiplier) | |
672 | || number < (U_INT64_MIN / fMultiplier)))) | |
673 | { | |
674 | digits.set(((double)number) * fMultiplier, | |
675 | precision(FALSE), | |
676 | !fUseExponentialNotation && !areSignificantDigitsUsed()); | |
677 | } | |
678 | else | |
679 | { | |
680 | digits.set(number * fMultiplier, precision(TRUE)); | |
681 | } | |
682 | ||
683 | return subformat(appendTo, fieldPosition, digits, TRUE); | |
684 | } | |
685 | ||
686 | //------------------------------------------------------------------------------ | |
687 | ||
688 | UnicodeString& | |
689 | DecimalFormat::format( double number, | |
690 | UnicodeString& appendTo, | |
691 | FieldPosition& fieldPosition) const | |
692 | { | |
693 | // Clears field positions. | |
694 | fieldPosition.setBeginIndex(0); | |
695 | fieldPosition.setEndIndex(0); | |
696 | ||
697 | // Special case for NaN, sets the begin and end index to be the | |
698 | // the string length of localized name of NaN. | |
699 | if (uprv_isNaN(number)) | |
700 | { | |
701 | if (fieldPosition.getField() == NumberFormat::kIntegerField) | |
702 | fieldPosition.setBeginIndex(appendTo.length()); | |
703 | ||
704 | appendTo += getConstSymbol(DecimalFormatSymbols::kNaNSymbol); | |
705 | ||
706 | if (fieldPosition.getField() == NumberFormat::kIntegerField) | |
707 | fieldPosition.setEndIndex(appendTo.length()); | |
708 | ||
709 | addPadding(appendTo, fieldPosition, 0, 0); | |
710 | return appendTo; | |
711 | } | |
712 | ||
713 | /* Detecting whether a double is negative is easy with the exception of | |
714 | * the value -0.0. This is a double which has a zero mantissa (and | |
715 | * exponent), but a negative sign bit. It is semantically distinct from | |
716 | * a zero with a positive sign bit, and this distinction is important | |
717 | * to certain kinds of computations. However, it's a little tricky to | |
718 | * detect, since (-0.0 == 0.0) and !(-0.0 < 0.0). How then, you may | |
719 | * ask, does it behave distinctly from +0.0? Well, 1/(-0.0) == | |
720 | * -Infinity. Proper detection of -0.0 is needed to deal with the | |
721 | * issues raised by bugs 4106658, 4106667, and 4147706. Liu 7/6/98. | |
722 | */ | |
723 | UBool isNegative = uprv_isNegative(number); | |
724 | ||
725 | // Do this BEFORE checking to see if value is infinite! Sets the | |
726 | // begin and end index to be length of the string composed of | |
727 | // localized name of Infinite and the positive/negative localized | |
728 | // signs. | |
729 | ||
730 | number *= fMultiplier; | |
731 | ||
732 | // Apply rounding after multiplier | |
733 | if (fRoundingIncrement != NULL) { | |
734 | if (isNegative) // For rounding in the correct direction | |
735 | number = -number; | |
736 | number = fRoundingDouble | |
737 | * round(number / fRoundingDouble, fRoundingMode, isNegative); | |
738 | if (isNegative) | |
739 | number = -number; | |
740 | } | |
741 | ||
742 | // Special case for INFINITE, | |
743 | if (uprv_isInfinite(number)) | |
744 | { | |
745 | int32_t prefixLen = appendAffix(appendTo, number, isNegative, TRUE); | |
746 | ||
747 | if (fieldPosition.getField() == NumberFormat::kIntegerField) | |
748 | fieldPosition.setBeginIndex(appendTo.length()); | |
749 | ||
750 | appendTo += getConstSymbol(DecimalFormatSymbols::kInfinitySymbol); | |
751 | ||
752 | if (fieldPosition.getField() == NumberFormat::kIntegerField) | |
753 | fieldPosition.setEndIndex(appendTo.length()); | |
754 | ||
755 | int32_t suffixLen = appendAffix(appendTo, number, isNegative, FALSE); | |
756 | ||
757 | addPadding(appendTo, fieldPosition, prefixLen, suffixLen); | |
758 | return appendTo; | |
759 | } | |
760 | ||
761 | DigitList digits; | |
762 | ||
763 | // This detects negativity too. | |
764 | digits.set(number, precision(FALSE), | |
765 | !fUseExponentialNotation && !areSignificantDigitsUsed()); | |
766 | ||
767 | return subformat(appendTo, fieldPosition, digits, FALSE); | |
768 | } | |
769 | ||
770 | /** | |
771 | * Round a double value to the nearest integer according to the | |
772 | * given mode. | |
773 | * @param a the absolute value of the number to be rounded | |
774 | * @param mode a BigDecimal rounding mode | |
775 | * @param isNegative true if the number to be rounded is negative | |
776 | * @return the absolute value of the rounded result | |
777 | */ | |
778 | double DecimalFormat::round(double a, ERoundingMode mode, UBool isNegative) { | |
779 | switch (mode) { | |
780 | case kRoundCeiling: | |
781 | return isNegative ? uprv_floor(a) : uprv_ceil(a); | |
782 | case kRoundFloor: | |
783 | return isNegative ? uprv_ceil(a) : uprv_floor(a); | |
784 | case kRoundDown: | |
785 | return uprv_floor(a); | |
786 | case kRoundUp: | |
787 | return uprv_ceil(a); | |
788 | case kRoundHalfEven: | |
789 | { | |
790 | double f = uprv_floor(a); | |
791 | if ((a - f) != 0.5) { | |
792 | return uprv_floor(a + 0.5); | |
793 | } | |
794 | double g = f / 2.0; | |
795 | return (g == uprv_floor(g)) ? f : (f + 1.0); | |
796 | } | |
797 | case kRoundHalfDown: | |
798 | return ((a - uprv_floor(a)) <= 0.5) ? uprv_floor(a) : uprv_ceil(a); | |
799 | case kRoundHalfUp: | |
800 | return ((a - uprv_floor(a)) < 0.5) ? uprv_floor(a) : uprv_ceil(a); | |
801 | } | |
802 | return 1.0; | |
803 | } | |
804 | ||
805 | UnicodeString& | |
806 | DecimalFormat::format( const Formattable& obj, | |
807 | UnicodeString& appendTo, | |
808 | FieldPosition& fieldPosition, | |
809 | UErrorCode& status) const | |
810 | { | |
811 | return NumberFormat::format(obj, appendTo, fieldPosition, status); | |
812 | } | |
813 | ||
814 | /** | |
815 | * Return true if a grouping separator belongs at the given | |
816 | * position, based on whether grouping is in use and the values of | |
817 | * the primary and secondary grouping interval. | |
818 | * @param pos the number of integer digits to the right of | |
819 | * the current position. Zero indicates the position after the | |
820 | * rightmost integer digit. | |
821 | * @return true if a grouping character belongs at the current | |
822 | * position. | |
823 | */ | |
824 | UBool DecimalFormat::isGroupingPosition(int32_t pos) const { | |
825 | UBool result = FALSE; | |
826 | if (isGroupingUsed() && (pos > 0) && (fGroupingSize > 0)) { | |
827 | if ((fGroupingSize2 > 0) && (pos > fGroupingSize)) { | |
828 | result = ((pos - fGroupingSize) % fGroupingSize2) == 0; | |
829 | } else { | |
830 | result = pos % fGroupingSize == 0; | |
831 | } | |
832 | } | |
833 | return result; | |
834 | } | |
835 | ||
836 | //------------------------------------------------------------------------------ | |
837 | ||
838 | /** | |
839 | * Complete the formatting of a finite number. On entry, the fDigitList must | |
840 | * be filled in with the correct digits. | |
841 | */ | |
842 | UnicodeString& | |
843 | DecimalFormat::subformat(UnicodeString& appendTo, | |
844 | FieldPosition& fieldPosition, | |
845 | DigitList& digits, | |
846 | UBool isInteger) const | |
847 | { | |
848 | // Gets the localized zero Unicode character. | |
849 | UChar32 zero = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0); | |
850 | int32_t zeroDelta = zero - '0'; // '0' is the DigitList representation of zero | |
851 | const UnicodeString *grouping ; | |
852 | if(fIsCurrencyFormat) { | |
853 | grouping = &getConstSymbol(DecimalFormatSymbols::kMonetaryGroupingSeparatorSymbol); | |
854 | }else{ | |
855 | grouping = &getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol); | |
856 | } | |
857 | const UnicodeString *decimal; | |
858 | if(fIsCurrencyFormat) { | |
859 | decimal = &getConstSymbol(DecimalFormatSymbols::kMonetarySeparatorSymbol); | |
860 | } else { | |
861 | decimal = &getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol); | |
862 | } | |
863 | UBool useSigDig = areSignificantDigitsUsed(); | |
864 | int32_t maxIntDig = getMaximumIntegerDigits(); | |
865 | int32_t minIntDig = getMinimumIntegerDigits(); | |
866 | ||
867 | /* Per bug 4147706, DecimalFormat must respect the sign of numbers which | |
868 | * format as zero. This allows sensible computations and preserves | |
869 | * relations such as signum(1/x) = signum(x), where x is +Infinity or | |
870 | * -Infinity. Prior to this fix, we always formatted zero values as if | |
871 | * they were positive. Liu 7/6/98. | |
872 | */ | |
873 | if (digits.isZero()) | |
874 | { | |
875 | digits.fDecimalAt = digits.fCount = 0; // Normalize | |
876 | } | |
877 | ||
878 | // Appends the prefix. | |
879 | double doubleValue = digits.getDouble(); | |
880 | int32_t prefixLen = appendAffix(appendTo, doubleValue, !digits.fIsPositive, TRUE); | |
881 | ||
882 | if (fUseExponentialNotation) | |
883 | { | |
884 | // Record field information for caller. | |
885 | if (fieldPosition.getField() == NumberFormat::kIntegerField) | |
886 | { | |
887 | fieldPosition.setBeginIndex(appendTo.length()); | |
888 | fieldPosition.setEndIndex(-1); | |
889 | } | |
890 | else if (fieldPosition.getField() == NumberFormat::kFractionField) | |
891 | { | |
892 | fieldPosition.setBeginIndex(-1); | |
893 | } | |
894 | ||
895 | int32_t minFracDig = 0; | |
896 | if (useSigDig) { | |
897 | maxIntDig = minIntDig = 1; | |
898 | minFracDig = getMinimumSignificantDigits() - 1; | |
899 | } else { | |
900 | minFracDig = getMinimumFractionDigits(); | |
901 | if (maxIntDig > kMaxScientificIntegerDigits) { | |
902 | maxIntDig = 1; | |
903 | if (maxIntDig < minIntDig) { | |
904 | maxIntDig = minIntDig; | |
905 | } | |
906 | } | |
907 | if (maxIntDig > minIntDig) { | |
908 | minIntDig = 1; | |
909 | } | |
910 | } | |
911 | ||
912 | // Minimum integer digits are handled in exponential format by | |
913 | // adjusting the exponent. For example, 0.01234 with 3 minimum | |
914 | // integer digits is "123.4E-4". | |
915 | ||
916 | // Maximum integer digits are interpreted as indicating the | |
917 | // repeating range. This is useful for engineering notation, in | |
918 | // which the exponent is restricted to a multiple of 3. For | |
919 | // example, 0.01234 with 3 maximum integer digits is "12.34e-3". | |
920 | // If maximum integer digits are defined and are larger than | |
921 | // minimum integer digits, then minimum integer digits are | |
922 | // ignored. | |
923 | int32_t exponent = digits.fDecimalAt; | |
924 | if (maxIntDig > 1 && maxIntDig != minIntDig) { | |
925 | // A exponent increment is defined; adjust to it. | |
926 | exponent = (exponent > 0) ? (exponent - 1) / maxIntDig | |
927 | : (exponent / maxIntDig) - 1; | |
928 | exponent *= maxIntDig; | |
929 | } else { | |
930 | // No exponent increment is defined; use minimum integer digits. | |
931 | // If none is specified, as in "#E0", generate 1 integer digit. | |
932 | exponent -= (minIntDig > 0 || minFracDig > 0) | |
933 | ? minIntDig : 1; | |
934 | } | |
935 | ||
936 | // We now output a minimum number of digits, and more if there | |
937 | // are more digits, up to the maximum number of digits. We | |
938 | // place the decimal point after the "integer" digits, which | |
939 | // are the first (decimalAt - exponent) digits. | |
940 | int32_t minimumDigits = minIntDig + minFracDig; | |
941 | // The number of integer digits is handled specially if the number | |
942 | // is zero, since then there may be no digits. | |
943 | int32_t integerDigits = digits.isZero() ? minIntDig : | |
944 | digits.fDecimalAt - exponent; | |
945 | int32_t totalDigits = digits.fCount; | |
946 | if (minimumDigits > totalDigits) | |
947 | totalDigits = minimumDigits; | |
948 | if (integerDigits > totalDigits) | |
949 | totalDigits = integerDigits; | |
950 | ||
951 | // totalDigits records total number of digits needs to be processed | |
952 | int32_t i; | |
953 | for (i=0; i<totalDigits; ++i) | |
954 | { | |
955 | if (i == integerDigits) | |
956 | { | |
957 | // Record field information for caller. | |
958 | if (fieldPosition.getField() == NumberFormat::kIntegerField) | |
959 | fieldPosition.setEndIndex(appendTo.length()); | |
960 | ||
961 | appendTo += *decimal; | |
962 | ||
963 | // Record field information for caller. | |
964 | if (fieldPosition.getField() == NumberFormat::kFractionField) | |
965 | fieldPosition.setBeginIndex(appendTo.length()); | |
966 | } | |
967 | // Restores the digit character or pads the buffer with zeros. | |
968 | UChar32 c = (UChar32)((i < digits.fCount) ? | |
969 | (digits.fDigits[i] + zeroDelta) : | |
970 | zero); | |
971 | appendTo += c; | |
972 | } | |
973 | ||
974 | // Record field information | |
975 | if (fieldPosition.getField() == NumberFormat::kIntegerField) | |
976 | { | |
977 | if (fieldPosition.getEndIndex() < 0) | |
978 | fieldPosition.setEndIndex(appendTo.length()); | |
979 | } | |
980 | else if (fieldPosition.getField() == NumberFormat::kFractionField) | |
981 | { | |
982 | if (fieldPosition.getBeginIndex() < 0) | |
983 | fieldPosition.setBeginIndex(appendTo.length()); | |
984 | fieldPosition.setEndIndex(appendTo.length()); | |
985 | } | |
986 | ||
987 | // The exponent is output using the pattern-specified minimum | |
988 | // exponent digits. There is no maximum limit to the exponent | |
989 | // digits, since truncating the exponent would appendTo in an | |
990 | // unacceptable inaccuracy. | |
991 | appendTo += getConstSymbol(DecimalFormatSymbols::kExponentialSymbol); | |
992 | ||
993 | // For zero values, we force the exponent to zero. We | |
994 | // must do this here, and not earlier, because the value | |
995 | // is used to determine integer digit count above. | |
996 | if (digits.isZero()) | |
997 | exponent = 0; | |
998 | ||
999 | if (exponent < 0) { | |
1000 | appendTo += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol); | |
1001 | } else if (fExponentSignAlwaysShown) { | |
1002 | appendTo += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol); | |
1003 | } | |
1004 | ||
1005 | DigitList expDigits; | |
1006 | expDigits.set(exponent); | |
1007 | { | |
1008 | int expDig = fMinExponentDigits; | |
1009 | if (fUseExponentialNotation && expDig < 1) { | |
1010 | expDig = 1; | |
1011 | } | |
1012 | for (i=expDigits.fDecimalAt; i<expDig; ++i) | |
1013 | appendTo += (zero); | |
1014 | } | |
1015 | for (i=0; i<expDigits.fDecimalAt; ++i) | |
1016 | { | |
1017 | UChar32 c = (UChar32)((i < expDigits.fCount) ? | |
1018 | (expDigits.fDigits[i] + zeroDelta) : zero); | |
1019 | appendTo += c; | |
1020 | } | |
1021 | } | |
1022 | else // Not using exponential notation | |
1023 | { | |
1024 | // Record field information for caller. | |
1025 | if (fieldPosition.getField() == NumberFormat::kIntegerField) | |
1026 | fieldPosition.setBeginIndex(appendTo.length()); | |
1027 | ||
1028 | int32_t sigCount = 0; | |
1029 | int32_t minSigDig = getMinimumSignificantDigits(); | |
1030 | int32_t maxSigDig = getMaximumSignificantDigits(); | |
1031 | if (!useSigDig) { | |
1032 | minSigDig = 0; | |
1033 | maxSigDig = INT32_MAX; | |
1034 | } | |
1035 | ||
1036 | // Output the integer portion. Here 'count' is the total | |
1037 | // number of integer digits we will display, including both | |
1038 | // leading zeros required to satisfy getMinimumIntegerDigits, | |
1039 | // and actual digits present in the number. | |
1040 | int32_t count = useSigDig ? | |
1041 | _max(1, digits.fDecimalAt) : minIntDig; | |
1042 | if (digits.fDecimalAt > 0 && count < digits.fDecimalAt) { | |
1043 | count = digits.fDecimalAt; | |
1044 | } | |
1045 | ||
1046 | // Handle the case where getMaximumIntegerDigits() is smaller | |
1047 | // than the real number of integer digits. If this is so, we | |
1048 | // output the least significant max integer digits. For example, | |
1049 | // the value 1997 printed with 2 max integer digits is just "97". | |
1050 | ||
1051 | int32_t digitIndex = 0; // Index into digitList.fDigits[] | |
1052 | if (count > maxIntDig && maxIntDig >= 0) { | |
1053 | count = maxIntDig; | |
1054 | digitIndex = digits.fDecimalAt - count; | |
1055 | } | |
1056 | ||
1057 | int32_t sizeBeforeIntegerPart = appendTo.length(); | |
1058 | ||
1059 | int32_t i; | |
1060 | for (i=count-1; i>=0; --i) | |
1061 | { | |
1062 | if (i < digits.fDecimalAt && digitIndex < digits.fCount && | |
1063 | sigCount < maxSigDig) { | |
1064 | // Output a real digit | |
1065 | appendTo += ((UChar32)(digits.fDigits[digitIndex++] + zeroDelta)); | |
1066 | ++sigCount; | |
1067 | } | |
1068 | else | |
1069 | { | |
1070 | // Output a zero (leading or trailing) | |
1071 | appendTo += (zero); | |
1072 | if (sigCount > 0) { | |
1073 | ++sigCount; | |
1074 | } | |
1075 | } | |
1076 | ||
1077 | // Output grouping separator if necessary. | |
1078 | if (isGroupingPosition(i)) { | |
1079 | appendTo.append(*grouping); | |
1080 | } | |
1081 | } | |
1082 | ||
1083 | // Record field information for caller. | |
1084 | if (fieldPosition.getField() == NumberFormat::kIntegerField) | |
1085 | fieldPosition.setEndIndex(appendTo.length()); | |
1086 | ||
1087 | // Determine whether or not there are any printable fractional | |
1088 | // digits. If we've used up the digits we know there aren't. | |
1089 | UBool fractionPresent = (!isInteger && digitIndex < digits.fCount) || | |
1090 | (useSigDig ? (sigCount < minSigDig) : (getMinimumFractionDigits() > 0)); | |
1091 | ||
1092 | // If there is no fraction present, and we haven't printed any | |
1093 | // integer digits, then print a zero. Otherwise we won't print | |
1094 | // _any_ digits, and we won't be able to parse this string. | |
1095 | if (!fractionPresent && appendTo.length() == sizeBeforeIntegerPart) | |
1096 | appendTo += (zero); | |
1097 | ||
1098 | // Output the decimal separator if we always do so. | |
1099 | if (fDecimalSeparatorAlwaysShown || fractionPresent) | |
1100 | appendTo += *decimal; | |
1101 | ||
1102 | // Record field information for caller. | |
1103 | if (fieldPosition.getField() == NumberFormat::kFractionField) | |
1104 | fieldPosition.setBeginIndex(appendTo.length()); | |
1105 | ||
1106 | count = useSigDig ? INT32_MAX : getMaximumFractionDigits(); | |
1107 | if (useSigDig && (sigCount == maxSigDig || | |
1108 | (sigCount >= minSigDig && digitIndex == digits.fCount))) { | |
1109 | count = 0; | |
1110 | } | |
1111 | ||
1112 | for (i=0; i < count; ++i) { | |
1113 | // Here is where we escape from the loop. We escape | |
1114 | // if we've output the maximum fraction digits | |
1115 | // (specified in the for expression above). We also | |
1116 | // stop when we've output the minimum digits and | |
1117 | // either: we have an integer, so there is no | |
1118 | // fractional stuff to display, or we're out of | |
1119 | // significant digits. | |
1120 | if (!useSigDig && i >= getMinimumFractionDigits() && | |
1121 | (isInteger || digitIndex >= digits.fCount)) { | |
1122 | break; | |
1123 | } | |
1124 | ||
1125 | // Output leading fractional zeros. These are zeros | |
1126 | // that come after the decimal but before any | |
1127 | // significant digits. These are only output if | |
1128 | // abs(number being formatted) < 1.0. | |
1129 | if (-1-i > (digits.fDecimalAt-1)) { | |
1130 | appendTo += zero; | |
1131 | continue; | |
1132 | } | |
1133 | ||
1134 | // Output a digit, if we have any precision left, or a | |
1135 | // zero if we don't. We don't want to output noise digits. | |
1136 | if (!isInteger && digitIndex < digits.fCount) { | |
1137 | appendTo += ((UChar32)(digits.fDigits[digitIndex++] + zeroDelta)); | |
1138 | } else { | |
1139 | appendTo += zero; | |
1140 | } | |
1141 | ||
1142 | // If we reach the maximum number of significant | |
1143 | // digits, or if we output all the real digits and | |
1144 | // reach the minimum, then we are done. | |
1145 | ++sigCount; | |
1146 | if (useSigDig && | |
1147 | (sigCount == maxSigDig || | |
1148 | (digitIndex == digits.fCount && sigCount >= minSigDig))) { | |
1149 | break; | |
1150 | } | |
1151 | } | |
1152 | ||
1153 | // Record field information for caller. | |
1154 | if (fieldPosition.getField() == NumberFormat::kFractionField) | |
1155 | fieldPosition.setEndIndex(appendTo.length()); | |
1156 | } | |
1157 | ||
1158 | int32_t suffixLen = appendAffix(appendTo, doubleValue, !digits.fIsPositive, FALSE); | |
1159 | ||
1160 | addPadding(appendTo, fieldPosition, prefixLen, suffixLen); | |
1161 | return appendTo; | |
1162 | } | |
1163 | ||
1164 | /** | |
1165 | * Inserts the character fPad as needed to expand result to fFormatWidth. | |
1166 | * @param result the string to be padded | |
1167 | */ | |
1168 | void DecimalFormat::addPadding(UnicodeString& appendTo, | |
1169 | FieldPosition& fieldPosition, | |
1170 | int32_t prefixLen, | |
1171 | int32_t suffixLen) const | |
1172 | { | |
1173 | if (fFormatWidth > 0) { | |
1174 | int32_t len = fFormatWidth - appendTo.length(); | |
1175 | if (len > 0) { | |
1176 | UnicodeString padding; | |
1177 | for (int32_t i=0; i<len; ++i) { | |
1178 | padding += fPad; | |
1179 | } | |
1180 | switch (fPadPosition) { | |
1181 | case kPadAfterPrefix: | |
1182 | appendTo.insert(prefixLen, padding); | |
1183 | break; | |
1184 | case kPadBeforePrefix: | |
1185 | appendTo.insert(0, padding); | |
1186 | break; | |
1187 | case kPadBeforeSuffix: | |
1188 | appendTo.insert(appendTo.length() - suffixLen, padding); | |
1189 | break; | |
1190 | case kPadAfterSuffix: | |
1191 | appendTo += padding; | |
1192 | break; | |
1193 | } | |
1194 | if (fPadPosition == kPadBeforePrefix || | |
1195 | fPadPosition == kPadAfterPrefix) { | |
1196 | fieldPosition.setBeginIndex(len + fieldPosition.getBeginIndex()); | |
1197 | fieldPosition.setEndIndex(len + fieldPosition.getEndIndex()); | |
1198 | } | |
1199 | } | |
1200 | } | |
1201 | } | |
1202 | ||
1203 | //------------------------------------------------------------------------------ | |
1204 | ||
1205 | void | |
1206 | DecimalFormat::parse(const UnicodeString& text, | |
1207 | Formattable& result, | |
1208 | UErrorCode& status) const | |
1209 | { | |
1210 | NumberFormat::parse(text, result, status); | |
1211 | } | |
1212 | ||
1213 | void | |
1214 | DecimalFormat::parse(const UnicodeString& text, | |
1215 | Formattable& result, | |
1216 | ParsePosition& parsePosition) const { | |
1217 | parse(text, result, parsePosition, FALSE); | |
1218 | } | |
1219 | ||
1220 | Formattable& DecimalFormat::parseCurrency(const UnicodeString& text, | |
1221 | Formattable& result, | |
1222 | ParsePosition& pos) const { | |
1223 | parse(text, result, pos, TRUE); | |
1224 | return result; | |
1225 | } | |
1226 | ||
1227 | /** | |
1228 | * Parses the given text as either a number or a currency amount. | |
1229 | * @param text the string to parse | |
1230 | * @param result output parameter for the result | |
1231 | * @param parsePosition input-output position; on input, the | |
1232 | * position within text to match; must have 0 <= pos.getIndex() < | |
1233 | * text.length(); on output, the position after the last matched | |
1234 | * character. If the parse fails, the position in unchanged upon | |
1235 | * output. | |
1236 | * @param parseCurrency if true, a currency amount is parsed; | |
1237 | * otherwise a Number is parsed | |
1238 | */ | |
1239 | void DecimalFormat::parse(const UnicodeString& text, | |
1240 | Formattable& result, | |
1241 | ParsePosition& parsePosition, | |
1242 | UBool parseCurrency) const { | |
1243 | int32_t backup; | |
1244 | int32_t i = backup = parsePosition.getIndex(); | |
1245 | ||
1246 | // Handle NaN as a special case: | |
1247 | ||
1248 | // Skip padding characters, if around prefix | |
1249 | if (fFormatWidth > 0 && (fPadPosition == kPadBeforePrefix || | |
1250 | fPadPosition == kPadAfterPrefix)) { | |
1251 | i = skipPadding(text, i); | |
1252 | } | |
1253 | // If the text is composed of the representation of NaN, returns NaN.length | |
1254 | const UnicodeString *nan = &getConstSymbol(DecimalFormatSymbols::kNaNSymbol); | |
1255 | int32_t nanLen = (text.compare(i, nan->length(), *nan) | |
1256 | ? 0 : nan->length()); | |
1257 | if (nanLen) { | |
1258 | i += nanLen; | |
1259 | if (fFormatWidth > 0 && (fPadPosition == kPadBeforeSuffix || | |
1260 | fPadPosition == kPadAfterSuffix)) { | |
1261 | i = skipPadding(text, i); | |
1262 | } | |
1263 | parsePosition.setIndex(i); | |
1264 | result.setDouble(uprv_getNaN()); | |
1265 | return; | |
1266 | } | |
1267 | ||
1268 | // NaN parse failed; start over | |
1269 | i = backup; | |
1270 | ||
1271 | // status is used to record whether a number is infinite. | |
1272 | UBool status[fgStatusLength]; | |
1273 | UChar curbuf[4]; | |
1274 | UChar* currency = parseCurrency ? curbuf : NULL; | |
1275 | DigitList digits; | |
1276 | ||
1277 | if (!subparse(text, parsePosition, digits, status, currency)) { | |
1278 | parsePosition.setIndex(backup); | |
1279 | return; | |
1280 | } | |
1281 | ||
1282 | // Handle infinity | |
1283 | if (status[fgStatusInfinite]) { | |
1284 | double inf = uprv_getInfinity(); | |
1285 | result.setDouble(digits.fIsPositive ? inf : -inf); | |
1286 | } | |
1287 | ||
1288 | else { | |
1289 | // Do as much of the multiplier conversion as possible without | |
1290 | // losing accuracy. | |
1291 | int32_t mult = fMultiplier; // Don't modify this.multiplier | |
1292 | while (mult % 10 == 0) { | |
1293 | mult /= 10; | |
1294 | --digits.fDecimalAt; | |
1295 | } | |
1296 | ||
1297 | // Handle integral values. We want to return the most | |
1298 | // parsimonious type that will accommodate all of the result's | |
1299 | // precision. We therefore only return a long if the result fits | |
1300 | // entirely within a long (taking into account the multiplier) -- | |
1301 | // otherwise we fall through and return a double. When more | |
1302 | // numeric types are supported by Formattable (e.g., 64-bit | |
1303 | // integers, bignums) we will extend this logic to include them. | |
1304 | if (digits.fitsIntoLong(isParseIntegerOnly())) { | |
1305 | int32_t n = digits.getLong(); | |
1306 | if (n % mult == 0) { | |
1307 | result.setLong(n / mult); | |
1308 | } | |
1309 | else { // else handle the remainder | |
1310 | result.setDouble(((double)n) / mult); | |
1311 | } | |
1312 | } | |
1313 | else if (digits.fitsIntoInt64(isParseIntegerOnly())) { | |
1314 | int64_t n = digits.getInt64(); | |
1315 | if (n % mult == 0) { | |
1316 | result.setInt64(n / mult); | |
1317 | } | |
1318 | else { // else handle the remainder | |
1319 | result.setDouble(((double)n) / mult); | |
1320 | } | |
1321 | } | |
1322 | else { | |
1323 | // Handle non-integral or very large values | |
1324 | // Dividing by one is okay and not that costly. | |
1325 | result.setDouble(digits.getDouble() / mult); | |
1326 | } | |
1327 | } | |
1328 | ||
1329 | if (parseCurrency) { | |
1330 | UErrorCode ec = U_ZERO_ERROR; | |
1331 | Formattable n(result); | |
1332 | result.adoptObject(new CurrencyAmount(n, curbuf, ec)); | |
1333 | U_ASSERT(U_SUCCESS(ec)); // should always succeed | |
1334 | } | |
1335 | } | |
1336 | ||
1337 | ||
1338 | /* | |
1339 | This is an old implimentation that was preparing for 64-bit numbers in ICU. | |
1340 | It is very slow, and 64-bit numbers are not ANSI-C compatible. This code | |
1341 | is here if we change our minds. | |
1342 | ||
1343 | ^^^ what is this referring to? remove? ^^^ [alan] | |
1344 | */ | |
1345 | ||
1346 | /** | |
1347 | * Parse the given text into a number. The text is parsed beginning at | |
1348 | * parsePosition, until an unparseable character is seen. | |
1349 | * @param text the string to parse. | |
1350 | * @param parsePosition The position at which to being parsing. Upon | |
1351 | * return, the first unparsed character. | |
1352 | * @param digits the DigitList to set to the parsed value. | |
1353 | * @param status output param containing boolean status flags indicating | |
1354 | * whether the value was infinite and whether it was positive. | |
1355 | * @param currency return value for parsed currency, for generic | |
1356 | * currency parsing mode, or NULL for normal parsing. In generic | |
1357 | * currency parsing mode, any currency is parsed, not just the | |
1358 | * currency that this formatter is set to. | |
1359 | */ | |
1360 | UBool DecimalFormat::subparse(const UnicodeString& text, ParsePosition& parsePosition, | |
1361 | DigitList& digits, UBool* status, | |
1362 | UChar* currency) const | |
1363 | { | |
1364 | int32_t position = parsePosition.getIndex(); | |
1365 | int32_t oldStart = position; | |
1366 | ||
1367 | // Match padding before prefix | |
1368 | if (fFormatWidth > 0 && fPadPosition == kPadBeforePrefix) { | |
1369 | position = skipPadding(text, position); | |
1370 | } | |
1371 | ||
1372 | // Match positive and negative prefixes; prefer longest match. | |
1373 | int32_t posMatch = compareAffix(text, position, FALSE, TRUE, currency); | |
1374 | int32_t negMatch = compareAffix(text, position, TRUE, TRUE, currency); | |
1375 | if (posMatch >= 0 && negMatch >= 0) { | |
1376 | if (posMatch > negMatch) { | |
1377 | negMatch = -1; | |
1378 | } else if (negMatch > posMatch) { | |
1379 | posMatch = -1; | |
1380 | } | |
1381 | } | |
1382 | if (posMatch >= 0) { | |
1383 | position += posMatch; | |
1384 | } else if (negMatch >= 0) { | |
1385 | position += negMatch; | |
1386 | } else { | |
1387 | parsePosition.setErrorIndex(position); | |
1388 | return FALSE; | |
1389 | } | |
1390 | ||
1391 | // Match padding before prefix | |
1392 | if (fFormatWidth > 0 && fPadPosition == kPadAfterPrefix) { | |
1393 | position = skipPadding(text, position); | |
1394 | } | |
1395 | ||
1396 | // process digits or Inf, find decimal position | |
1397 | const UnicodeString *inf = &getConstSymbol(DecimalFormatSymbols::kInfinitySymbol); | |
1398 | int32_t infLen = (text.compare(position, inf->length(), *inf) | |
1399 | ? 0 : inf->length()); | |
1400 | position += infLen; // infLen is non-zero when it does equal to infinity | |
1401 | status[fgStatusInfinite] = (UBool)infLen; | |
1402 | if (!infLen) | |
1403 | { | |
1404 | // We now have a string of digits, possibly with grouping symbols, | |
1405 | // and decimal points. We want to process these into a DigitList. | |
1406 | // We don't want to put a bunch of leading zeros into the DigitList | |
1407 | // though, so we keep track of the location of the decimal point, | |
1408 | // put only significant digits into the DigitList, and adjust the | |
1409 | // exponent as needed. | |
1410 | ||
1411 | digits.fDecimalAt = digits.fCount = 0; | |
1412 | UChar32 zero = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0); | |
1413 | ||
1414 | const UnicodeString *decimal; | |
1415 | if(fIsCurrencyFormat) { | |
1416 | decimal = &getConstSymbol(DecimalFormatSymbols::kMonetarySeparatorSymbol); | |
1417 | } else { | |
1418 | decimal = &getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol); | |
1419 | } | |
1420 | const UnicodeString *grouping = &getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol); | |
1421 | UBool sawDecimal = FALSE; | |
1422 | UBool sawDigit = FALSE; | |
1423 | int32_t backup = -1; | |
1424 | int32_t digit; | |
1425 | int32_t textLength = text.length(); // One less pointer to follow | |
1426 | int32_t groupingLen = grouping->length(); | |
1427 | int32_t decimalLen = decimal->length(); | |
1428 | ||
1429 | // We have to track digitCount ourselves, because digits.fCount will | |
1430 | // pin when the maximum allowable digits is reached. | |
1431 | int32_t digitCount = 0; | |
1432 | ||
1433 | for (; position < textLength; ) | |
1434 | { | |
1435 | UChar32 ch = text.char32At(position); | |
1436 | ||
1437 | /* We recognize all digit ranges, not only the Latin digit range | |
1438 | * '0'..'9'. We do so by using the Character.digit() method, | |
1439 | * which converts a valid Unicode digit to the range 0..9. | |
1440 | * | |
1441 | * The character 'ch' may be a digit. If so, place its value | |
1442 | * from 0 to 9 in 'digit'. First try using the locale digit, | |
1443 | * which may or MAY NOT be a standard Unicode digit range. If | |
1444 | * this fails, try using the standard Unicode digit ranges by | |
1445 | * calling Character.digit(). If this also fails, digit will | |
1446 | * have a value outside the range 0..9. | |
1447 | */ | |
1448 | digit = ch - zero; | |
1449 | if (digit < 0 || digit > 9) | |
1450 | { | |
1451 | digit = u_charDigitValue(ch); | |
1452 | } | |
1453 | ||
1454 | if (digit > 0 && digit <= 9) | |
1455 | { | |
1456 | // Cancel out backup setting (see grouping handler below) | |
1457 | backup = -1; | |
1458 | ||
1459 | sawDigit = TRUE; | |
1460 | // output a regular non-zero digit. | |
1461 | ++digitCount; | |
1462 | digits.append((char)(digit + '0')); | |
1463 | position += U16_LENGTH(ch); | |
1464 | } | |
1465 | else if (digit == 0) | |
1466 | { | |
1467 | // Cancel out backup setting (see grouping handler below) | |
1468 | backup = -1; | |
1469 | sawDigit = TRUE; | |
1470 | ||
1471 | // Check for leading zeros | |
1472 | if (digits.fCount != 0) | |
1473 | { | |
1474 | // output a regular zero digit. | |
1475 | ++digitCount; | |
1476 | digits.append((char)(digit + '0')); | |
1477 | } | |
1478 | else if (sawDecimal) | |
1479 | { | |
1480 | // If we have seen the decimal, but no significant digits yet, | |
1481 | // then we account for leading zeros by decrementing the | |
1482 | // digits.fDecimalAt into negative values. | |
1483 | --digits.fDecimalAt; | |
1484 | } | |
1485 | // else ignore leading zeros in integer part of number. | |
1486 | position += U16_LENGTH(ch); | |
1487 | } | |
1488 | else if (!text.compare(position, groupingLen, *grouping) && isGroupingUsed()) | |
1489 | { | |
1490 | // Ignore grouping characters, if we are using them, but require | |
1491 | // that they be followed by a digit. Otherwise we backup and | |
1492 | // reprocess them. | |
1493 | backup = position; | |
1494 | position += groupingLen; | |
1495 | } | |
1496 | else if (!text.compare(position, decimalLen, *decimal) && !isParseIntegerOnly() && !sawDecimal) | |
1497 | { | |
1498 | // If we're only parsing integers, or if we ALREADY saw the | |
1499 | // decimal, then don't parse this one. | |
1500 | ||
1501 | digits.fDecimalAt = digitCount; // Not digits.fCount! | |
1502 | sawDecimal = TRUE; | |
1503 | position += decimalLen; | |
1504 | } | |
1505 | else { | |
1506 | const UnicodeString *tmp; | |
1507 | tmp = &getConstSymbol(DecimalFormatSymbols::kExponentialSymbol); | |
1508 | if (!text.caseCompare(position, tmp->length(), *tmp, U_FOLD_CASE_DEFAULT)) // error code is set below if !sawDigit | |
1509 | { | |
1510 | // Parse sign, if present | |
1511 | int32_t pos = position + tmp->length(); | |
1512 | DigitList exponentDigits; | |
1513 | ||
1514 | if (pos < textLength) | |
1515 | { | |
1516 | tmp = &getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol); | |
1517 | if (!text.compare(pos, tmp->length(), *tmp)) | |
1518 | { | |
1519 | pos += tmp->length(); | |
1520 | } | |
1521 | else { | |
1522 | tmp = &getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol); | |
1523 | if (!text.compare(pos, tmp->length(), *tmp)) | |
1524 | { | |
1525 | pos += tmp->length(); | |
1526 | exponentDigits.fIsPositive = FALSE; | |
1527 | } | |
1528 | } | |
1529 | } | |
1530 | ||
1531 | while (pos < textLength) { | |
1532 | ch = text[(int32_t)pos]; | |
1533 | digit = ch - zero; | |
1534 | ||
1535 | if (digit < 0 || digit > 9) { | |
1536 | digit = u_charDigitValue(ch); | |
1537 | } | |
1538 | if (0 <= digit && digit <= 9) { | |
1539 | ++pos; | |
1540 | exponentDigits.append((char)(digit + '0')); | |
1541 | } else { | |
1542 | break; | |
1543 | } | |
1544 | } | |
1545 | ||
1546 | if (exponentDigits.fCount > 0) { | |
1547 | exponentDigits.fDecimalAt = exponentDigits.fCount; | |
1548 | digits.fDecimalAt += exponentDigits.getLong(); | |
1549 | position = pos; // Advance past the exponent | |
1550 | } | |
1551 | ||
1552 | break; // Whether we fail or succeed, we exit this loop | |
1553 | } | |
1554 | else { | |
1555 | break; | |
1556 | } | |
1557 | } | |
1558 | } | |
1559 | ||
1560 | if (backup != -1) | |
1561 | { | |
1562 | position = backup; | |
1563 | } | |
1564 | ||
1565 | // If there was no decimal point we have an integer | |
1566 | if (!sawDecimal) | |
1567 | { | |
1568 | digits.fDecimalAt += digitCount; // Not digits.fCount! | |
1569 | } | |
1570 | ||
1571 | // If none of the text string was recognized. For example, parse | |
1572 | // "x" with pattern "#0.00" (return index and error index both 0) | |
1573 | // parse "$" with pattern "$#0.00". (return index 0 and error index | |
1574 | // 1). | |
1575 | if (!sawDigit && digitCount == 0) { | |
1576 | parsePosition.setIndex(oldStart); | |
1577 | parsePosition.setErrorIndex(oldStart); | |
1578 | return FALSE; | |
1579 | } | |
1580 | } | |
1581 | ||
1582 | // Match padding before suffix | |
1583 | if (fFormatWidth > 0 && fPadPosition == kPadBeforeSuffix) { | |
1584 | position = skipPadding(text, position); | |
1585 | } | |
1586 | ||
1587 | // Match positive and negative suffixes; prefer longest match. | |
1588 | if (posMatch >= 0) { | |
1589 | posMatch = compareAffix(text, position, FALSE, FALSE, currency); | |
1590 | } | |
1591 | if (negMatch >= 0) { | |
1592 | negMatch = compareAffix(text, position, TRUE, FALSE, currency); | |
1593 | } | |
1594 | if (posMatch >= 0 && negMatch >= 0) { | |
1595 | if (posMatch > negMatch) { | |
1596 | negMatch = -1; | |
1597 | } else if (negMatch > posMatch) { | |
1598 | posMatch = -1; | |
1599 | } | |
1600 | } | |
1601 | ||
1602 | // Fail if neither or both | |
1603 | if ((posMatch >= 0) == (negMatch >= 0)) { | |
1604 | parsePosition.setErrorIndex(position); | |
1605 | return FALSE; | |
1606 | } | |
1607 | ||
1608 | position += (posMatch>=0 ? posMatch : negMatch); | |
1609 | ||
1610 | // Match padding before suffix | |
1611 | if (fFormatWidth > 0 && fPadPosition == kPadAfterSuffix) { | |
1612 | position = skipPadding(text, position); | |
1613 | } | |
1614 | ||
1615 | parsePosition.setIndex(position); | |
1616 | ||
1617 | digits.fIsPositive = (posMatch >= 0); | |
1618 | ||
1619 | if(parsePosition.getIndex() == oldStart) | |
1620 | { | |
1621 | parsePosition.setErrorIndex(position); | |
1622 | return FALSE; | |
1623 | } | |
1624 | return TRUE; | |
1625 | } | |
1626 | ||
1627 | /** | |
1628 | * Starting at position, advance past a run of pad characters, if any. | |
1629 | * Return the index of the first character after position that is not a pad | |
1630 | * character. Result is >= position. | |
1631 | */ | |
1632 | int32_t DecimalFormat::skipPadding(const UnicodeString& text, int32_t position) const { | |
1633 | int32_t padLen = U16_LENGTH(fPad); | |
1634 | while (position < text.length() && | |
1635 | text.char32At(position) == fPad) { | |
1636 | position += padLen; | |
1637 | } | |
1638 | return position; | |
1639 | } | |
1640 | ||
1641 | /** | |
1642 | * Return the length matched by the given affix, or -1 if none. | |
1643 | * Runs of white space in the affix, match runs of white space in | |
1644 | * the input. Pattern white space and input white space are | |
1645 | * determined differently; see code. | |
1646 | * @param text input text | |
1647 | * @param pos offset into input at which to begin matching | |
1648 | * @param isNegative | |
1649 | * @param isPrefix | |
1650 | * @param currency return value for parsed currency, for generic | |
1651 | * currency parsing mode, or null for normal parsing. In generic | |
1652 | * currency parsing mode, any currency is parsed, not just the | |
1653 | * currency that this formatter is set to. | |
1654 | * @return length of input that matches, or -1 if match failure | |
1655 | */ | |
1656 | int32_t DecimalFormat::compareAffix(const UnicodeString& text, | |
1657 | int32_t pos, | |
1658 | UBool isNegative, | |
1659 | UBool isPrefix, | |
1660 | UChar* currency) const { | |
1661 | if (fCurrencyChoice != NULL || currency != NULL) { | |
1662 | if (isPrefix) { | |
1663 | return compareComplexAffix(isNegative ? *fNegPrefixPattern : *fPosPrefixPattern, | |
1664 | text, pos, currency); | |
1665 | } else { | |
1666 | return compareComplexAffix(isNegative ? *fNegSuffixPattern : *fPosSuffixPattern, | |
1667 | text, pos, currency); | |
1668 | } | |
1669 | } | |
1670 | ||
1671 | if (isPrefix) { | |
1672 | return compareSimpleAffix(isNegative ? fNegativePrefix : fPositivePrefix, | |
1673 | text, pos); | |
1674 | } else { | |
1675 | return compareSimpleAffix(isNegative ? fNegativeSuffix : fPositiveSuffix, | |
1676 | text, pos); | |
1677 | } | |
1678 | } | |
1679 | ||
1680 | /** | |
1681 | * Return the length matched by the given affix, or -1 if none. | |
1682 | * Runs of white space in the affix, match runs of white space in | |
1683 | * the input. Pattern white space and input white space are | |
1684 | * determined differently; see code. | |
1685 | * @param affix pattern string, taken as a literal | |
1686 | * @param input input text | |
1687 | * @param pos offset into input at which to begin matching | |
1688 | * @return length of input that matches, or -1 if match failure | |
1689 | */ | |
1690 | int32_t DecimalFormat::compareSimpleAffix(const UnicodeString& affix, | |
1691 | const UnicodeString& input, | |
1692 | int32_t pos) { | |
1693 | int32_t start = pos; | |
1694 | for (int32_t i=0; i<affix.length(); ) { | |
1695 | UChar32 c = affix.char32At(i); | |
1696 | int32_t len = U16_LENGTH(c); | |
1697 | if (uprv_isRuleWhiteSpace(c)) { | |
1698 | // We may have a pattern like: \u200F \u0020 | |
1699 | // and input text like: \u200F \u0020 | |
1700 | // Note that U+200F and U+0020 are RuleWhiteSpace but only | |
1701 | // U+0020 is UWhiteSpace. So we have to first do a direct | |
1702 | // match of the run of RULE whitespace in the pattern, | |
1703 | // then match any extra characters. | |
1704 | UBool literalMatch = FALSE; | |
1705 | while (pos < input.length() && | |
1706 | input.char32At(pos) == c) { | |
1707 | literalMatch = TRUE; | |
1708 | i += len; | |
1709 | pos += len; | |
1710 | if (i == affix.length()) { | |
1711 | break; | |
1712 | } | |
1713 | c = affix.char32At(i); | |
1714 | len = U16_LENGTH(c); | |
1715 | if (!uprv_isRuleWhiteSpace(c)) { | |
1716 | break; | |
1717 | } | |
1718 | } | |
1719 | ||
1720 | // Advance over run in pattern | |
1721 | i = skipRuleWhiteSpace(affix, i); | |
1722 | ||
1723 | // Advance over run in input text | |
1724 | // Must see at least one white space char in input, | |
1725 | // unless we've already matched some characters literally. | |
1726 | int32_t s = pos; | |
1727 | pos = skipUWhiteSpace(input, pos); | |
1728 | if (pos == s && !literalMatch) { | |
1729 | return -1; | |
1730 | } | |
1731 | } else { | |
1732 | if (pos < input.length() && | |
1733 | input.char32At(pos) == c) { | |
1734 | i += len; | |
1735 | pos += len; | |
1736 | } else { | |
1737 | return -1; | |
1738 | } | |
1739 | } | |
1740 | } | |
1741 | return pos - start; | |
1742 | } | |
1743 | ||
1744 | /** | |
1745 | * Skip over a run of zero or more isRuleWhiteSpace() characters at | |
1746 | * pos in text. | |
1747 | */ | |
1748 | int32_t DecimalFormat::skipRuleWhiteSpace(const UnicodeString& text, int32_t pos) { | |
1749 | while (pos < text.length()) { | |
1750 | UChar32 c = text.char32At(pos); | |
1751 | if (!uprv_isRuleWhiteSpace(c)) { | |
1752 | break; | |
1753 | } | |
1754 | pos += U16_LENGTH(c); | |
1755 | } | |
1756 | return pos; | |
1757 | } | |
1758 | ||
1759 | /** | |
1760 | * Skip over a run of zero or more isUWhiteSpace() characters at pos | |
1761 | * in text. | |
1762 | */ | |
1763 | int32_t DecimalFormat::skipUWhiteSpace(const UnicodeString& text, int32_t pos) { | |
1764 | while (pos < text.length()) { | |
1765 | UChar32 c = text.char32At(pos); | |
1766 | if (!u_isUWhiteSpace(c)) { | |
1767 | break; | |
1768 | } | |
1769 | pos += U16_LENGTH(c); | |
1770 | } | |
1771 | return pos; | |
1772 | } | |
1773 | ||
1774 | /** | |
1775 | * Return the length matched by the given affix, or -1 if none. | |
1776 | * @param affixPat pattern string | |
1777 | * @param input input text | |
1778 | * @param pos offset into input at which to begin matching | |
1779 | * @param currency return value for parsed currency, for generic | |
1780 | * currency parsing mode, or null for normal parsing. In generic | |
1781 | * currency parsing mode, any currency is parsed, not just the | |
1782 | * currency that this formatter is set to. | |
1783 | * @return length of input that matches, or -1 if match failure | |
1784 | */ | |
1785 | int32_t DecimalFormat::compareComplexAffix(const UnicodeString& affixPat, | |
1786 | const UnicodeString& text, | |
1787 | int32_t pos, | |
1788 | UChar* currency) const | |
1789 | { | |
1790 | int32_t start = pos; | |
1791 | U_ASSERT(currency != NULL || | |
1792 | (fCurrencyChoice != NULL && *getCurrency() != 0)); | |
1793 | ||
1794 | for (int32_t i=0; i<affixPat.length() && pos >= 0; ) { | |
1795 | UChar32 c = affixPat.char32At(i); | |
1796 | i += U16_LENGTH(c); | |
1797 | ||
1798 | if (c == kQuote) { | |
1799 | U_ASSERT(i <= affixPat.length()); | |
1800 | c = affixPat.char32At(i); | |
1801 | i += U16_LENGTH(c); | |
1802 | ||
1803 | const UnicodeString* affix = NULL; | |
1804 | ||
1805 | switch (c) { | |
1806 | case kCurrencySign: { | |
1807 | // If currency != null, then perform generic currency matching. | |
1808 | // Otherwise, do currency choice parsing. | |
1809 | UBool intl = i<affixPat.length() && | |
1810 | affixPat.char32At(i) == kCurrencySign; | |
1811 | // Parse generic currency -- anything for which we | |
1812 | // have a display name, or any 3-letter ISO code. | |
1813 | if (currency != NULL) { | |
1814 | // Try to parse display name for our locale; first | |
1815 | // determine our locale. | |
1816 | UErrorCode ec = U_ZERO_ERROR; | |
1817 | const char* loc = getLocaleID(ULOC_VALID_LOCALE, ec); | |
1818 | if (U_FAILURE(ec) || loc == NULL || *loc == 0) { | |
1819 | // applyPattern has been called; use the symbols | |
1820 | loc = fSymbols->getLocale().getName(); | |
1821 | ec = U_ZERO_ERROR; | |
1822 | } | |
1823 | // Delegate parse of display name => ISO code to Currency | |
1824 | ParsePosition ppos(pos); | |
1825 | UChar curr[4]; | |
1826 | uprv_parseCurrency(loc, text, ppos, curr, ec); | |
1827 | ||
1828 | // If parse succeeds, populate currency[0] | |
1829 | if (U_SUCCESS(ec) && ppos.getIndex() != pos) { | |
1830 | u_strcpy(currency, curr); | |
1831 | pos = ppos.getIndex(); | |
1832 | } else { | |
1833 | pos = -1; | |
1834 | } | |
1835 | } else { | |
1836 | if (intl) { | |
1837 | ++i; | |
1838 | pos = match(text, pos, getCurrency()); | |
1839 | } else { | |
1840 | ParsePosition ppos(pos); | |
1841 | Formattable result; | |
1842 | fCurrencyChoice->parse(text, result, ppos); | |
1843 | pos = (ppos.getIndex() == pos) ? -1 : ppos.getIndex(); | |
1844 | } | |
1845 | } | |
1846 | continue; | |
1847 | } | |
1848 | case kPatternPercent: | |
1849 | affix = &getConstSymbol(DecimalFormatSymbols::kPercentSymbol); | |
1850 | break; | |
1851 | case kPatternPerMill: | |
1852 | affix = &getConstSymbol(DecimalFormatSymbols::kPerMillSymbol); | |
1853 | break; | |
1854 | case kPatternPlus: | |
1855 | affix = &getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol); | |
1856 | break; | |
1857 | case kPatternMinus: | |
1858 | affix = &getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol); | |
1859 | break; | |
1860 | default: | |
1861 | // fall through to affix!=0 test, which will fail | |
1862 | break; | |
1863 | } | |
1864 | ||
1865 | if (affix != NULL) { | |
1866 | pos = match(text, pos, *affix); | |
1867 | continue; | |
1868 | } | |
1869 | } | |
1870 | ||
1871 | pos = match(text, pos, c); | |
1872 | if (uprv_isRuleWhiteSpace(c)) { | |
1873 | i = skipRuleWhiteSpace(affixPat, i); | |
1874 | } | |
1875 | } | |
1876 | return pos - start; | |
1877 | } | |
1878 | ||
1879 | /** | |
1880 | * Match a single character at text[pos] and return the index of the | |
1881 | * next character upon success. Return -1 on failure. If | |
1882 | * isRuleWhiteSpace(ch) then match a run of white space in text. | |
1883 | */ | |
1884 | int32_t DecimalFormat::match(const UnicodeString& text, int32_t pos, UChar32 ch) { | |
1885 | if (uprv_isRuleWhiteSpace(ch)) { | |
1886 | // Advance over run of white space in input text | |
1887 | // Must see at least one white space char in input | |
1888 | int32_t s = pos; | |
1889 | pos = skipUWhiteSpace(text, pos); | |
1890 | if (pos == s) { | |
1891 | return -1; | |
1892 | } | |
1893 | return pos; | |
1894 | } | |
1895 | return (pos >= 0 && text.char32At(pos) == ch) ? | |
1896 | (pos + U16_LENGTH(ch)) : -1; | |
1897 | } | |
1898 | ||
1899 | /** | |
1900 | * Match a string at text[pos] and return the index of the next | |
1901 | * character upon success. Return -1 on failure. Match a run of | |
1902 | * white space in str with a run of white space in text. | |
1903 | */ | |
1904 | int32_t DecimalFormat::match(const UnicodeString& text, int32_t pos, const UnicodeString& str) { | |
1905 | for (int32_t i=0; i<str.length() && pos >= 0; ) { | |
1906 | UChar32 ch = str.char32At(i); | |
1907 | i += U16_LENGTH(ch); | |
1908 | if (uprv_isRuleWhiteSpace(ch)) { | |
1909 | i = skipRuleWhiteSpace(str, i); | |
1910 | } | |
1911 | pos = match(text, pos, ch); | |
1912 | } | |
1913 | return pos; | |
1914 | } | |
1915 | ||
1916 | //------------------------------------------------------------------------------ | |
1917 | // Gets the pointer to the localized decimal format symbols | |
1918 | ||
1919 | const DecimalFormatSymbols* | |
1920 | DecimalFormat::getDecimalFormatSymbols() const | |
1921 | { | |
1922 | return fSymbols; | |
1923 | } | |
1924 | ||
1925 | //------------------------------------------------------------------------------ | |
1926 | // De-owning the current localized symbols and adopt the new symbols. | |
1927 | ||
1928 | void | |
1929 | DecimalFormat::adoptDecimalFormatSymbols(DecimalFormatSymbols* symbolsToAdopt) | |
1930 | { | |
1931 | if (symbolsToAdopt == NULL) { | |
1932 | return; // do not allow caller to set fSymbols to NULL | |
1933 | } | |
1934 | ||
1935 | UBool sameSymbols = FALSE; | |
1936 | if (fSymbols != NULL) { | |
1937 | sameSymbols = (UBool)(getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) == | |
1938 | symbolsToAdopt->getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) && | |
1939 | getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol) == | |
1940 | symbolsToAdopt->getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol)); | |
1941 | delete fSymbols; | |
1942 | } | |
1943 | ||
1944 | fSymbols = symbolsToAdopt; | |
1945 | if (!sameSymbols) { | |
1946 | // If the currency symbols are the same, there is no need to recalculate. | |
1947 | setCurrencyForSymbols(); | |
1948 | } | |
1949 | expandAffixes(); | |
1950 | } | |
1951 | //------------------------------------------------------------------------------ | |
1952 | // Setting the symbols is equlivalent to adopting a newly created localized | |
1953 | // symbols. | |
1954 | ||
1955 | void | |
1956 | DecimalFormat::setDecimalFormatSymbols(const DecimalFormatSymbols& symbols) | |
1957 | { | |
1958 | adoptDecimalFormatSymbols(new DecimalFormatSymbols(symbols)); | |
1959 | } | |
1960 | ||
1961 | /** | |
1962 | * Update the currency object to match the symbols. This method | |
1963 | * is used only when the caller has passed in a symbols object | |
1964 | * that may not be the default object for its locale. | |
1965 | */ | |
1966 | void | |
1967 | DecimalFormat::setCurrencyForSymbols() { | |
1968 | /*Bug 4212072 | |
1969 | Update the affix strings accroding to symbols in order to keep | |
1970 | the affix strings up to date. | |
1971 | [Richard/GCL] | |
1972 | */ | |
1973 | ||
1974 | // With the introduction of the Currency object, the currency | |
1975 | // symbols in the DFS object are ignored. For backward | |
1976 | // compatibility, we check any explicitly set DFS object. If it | |
1977 | // is a default symbols object for its locale, we change the | |
1978 | // currency object to one for that locale. If it is custom, | |
1979 | // we set the currency to null. | |
1980 | UErrorCode ec = U_ZERO_ERROR; | |
1981 | const UChar* c = NULL; | |
1982 | const char* loc = fSymbols->getLocale().getName(); | |
1983 | UChar intlCurrencySymbol[4]; | |
1984 | ucurr_forLocale(loc, intlCurrencySymbol, 4, &ec); | |
1985 | UnicodeString currencySymbol; | |
1986 | ||
1987 | uprv_getStaticCurrencyName(intlCurrencySymbol, loc, currencySymbol, ec); | |
1988 | if (U_SUCCESS(ec) | |
1989 | && getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) == currencySymbol | |
1990 | && getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol) == intlCurrencySymbol) | |
1991 | { | |
1992 | // Trap an error in mapping locale to currency. If we can't | |
1993 | // map, then don't fail and set the currency to "". | |
1994 | c = intlCurrencySymbol; | |
1995 | } | |
1996 | ec = U_ZERO_ERROR; // reset local error code! | |
1997 | setCurrency(c, ec); | |
1998 | } | |
1999 | ||
2000 | ||
2001 | //------------------------------------------------------------------------------ | |
2002 | // Gets the positive prefix of the number pattern. | |
2003 | ||
2004 | UnicodeString& | |
2005 | DecimalFormat::getPositivePrefix(UnicodeString& result) const | |
2006 | { | |
2007 | result = fPositivePrefix; | |
2008 | return result; | |
2009 | } | |
2010 | ||
2011 | //------------------------------------------------------------------------------ | |
2012 | // Sets the positive prefix of the number pattern. | |
2013 | ||
2014 | void | |
2015 | DecimalFormat::setPositivePrefix(const UnicodeString& newValue) | |
2016 | { | |
2017 | fPositivePrefix = newValue; | |
2018 | delete fPosPrefixPattern; | |
2019 | fPosPrefixPattern = 0; | |
2020 | } | |
2021 | ||
2022 | //------------------------------------------------------------------------------ | |
2023 | // Gets the negative prefix of the number pattern. | |
2024 | ||
2025 | UnicodeString& | |
2026 | DecimalFormat::getNegativePrefix(UnicodeString& result) const | |
2027 | { | |
2028 | result = fNegativePrefix; | |
2029 | return result; | |
2030 | } | |
2031 | ||
2032 | //------------------------------------------------------------------------------ | |
2033 | // Gets the negative prefix of the number pattern. | |
2034 | ||
2035 | void | |
2036 | DecimalFormat::setNegativePrefix(const UnicodeString& newValue) | |
2037 | { | |
2038 | fNegativePrefix = newValue; | |
2039 | delete fNegPrefixPattern; | |
2040 | fNegPrefixPattern = 0; | |
2041 | } | |
2042 | ||
2043 | //------------------------------------------------------------------------------ | |
2044 | // Gets the positive suffix of the number pattern. | |
2045 | ||
2046 | UnicodeString& | |
2047 | DecimalFormat::getPositiveSuffix(UnicodeString& result) const | |
2048 | { | |
2049 | result = fPositiveSuffix; | |
2050 | return result; | |
2051 | } | |
2052 | ||
2053 | //------------------------------------------------------------------------------ | |
2054 | // Sets the positive suffix of the number pattern. | |
2055 | ||
2056 | void | |
2057 | DecimalFormat::setPositiveSuffix(const UnicodeString& newValue) | |
2058 | { | |
2059 | fPositiveSuffix = newValue; | |
2060 | delete fPosSuffixPattern; | |
2061 | fPosSuffixPattern = 0; | |
2062 | } | |
2063 | ||
2064 | //------------------------------------------------------------------------------ | |
2065 | // Gets the negative suffix of the number pattern. | |
2066 | ||
2067 | UnicodeString& | |
2068 | DecimalFormat::getNegativeSuffix(UnicodeString& result) const | |
2069 | { | |
2070 | result = fNegativeSuffix; | |
2071 | return result; | |
2072 | } | |
2073 | ||
2074 | //------------------------------------------------------------------------------ | |
2075 | // Sets the negative suffix of the number pattern. | |
2076 | ||
2077 | void | |
2078 | DecimalFormat::setNegativeSuffix(const UnicodeString& newValue) | |
2079 | { | |
2080 | fNegativeSuffix = newValue; | |
2081 | delete fNegSuffixPattern; | |
2082 | fNegSuffixPattern = 0; | |
2083 | } | |
2084 | ||
2085 | //------------------------------------------------------------------------------ | |
2086 | // Gets the multiplier of the number pattern. | |
2087 | ||
2088 | int32_t DecimalFormat::getMultiplier() const | |
2089 | { | |
2090 | return fMultiplier; | |
2091 | } | |
2092 | ||
2093 | //------------------------------------------------------------------------------ | |
2094 | // Sets the multiplier of the number pattern. | |
2095 | void | |
2096 | DecimalFormat::setMultiplier(int32_t newValue) | |
2097 | { | |
2098 | // This shouldn't be set to 0. | |
2099 | // Due to compatibility with ICU4J we cannot set an error code and refuse 0. | |
2100 | // So the rest of the code should ignore fMultiplier when it's 0. [grhoten] | |
2101 | fMultiplier = newValue; | |
2102 | } | |
2103 | ||
2104 | /** | |
2105 | * Get the rounding increment. | |
2106 | * @return A positive rounding increment, or 0.0 if rounding | |
2107 | * is not in effect. | |
2108 | * @see #setRoundingIncrement | |
2109 | * @see #getRoundingMode | |
2110 | * @see #setRoundingMode | |
2111 | */ | |
2112 | double DecimalFormat::getRoundingIncrement() const { | |
2113 | return fRoundingDouble; | |
2114 | } | |
2115 | ||
2116 | /** | |
2117 | * Set the rounding increment. This method also controls whether | |
2118 | * rounding is enabled. | |
2119 | * @param newValue A positive rounding increment, or 0.0 to disable rounding. | |
2120 | * Negative increments are equivalent to 0.0. | |
2121 | * @see #getRoundingIncrement | |
2122 | * @see #getRoundingMode | |
2123 | * @see #setRoundingMode | |
2124 | */ | |
2125 | void DecimalFormat::setRoundingIncrement(double newValue) { | |
2126 | if (newValue > 0.0) { | |
2127 | if (fRoundingIncrement == NULL) { | |
2128 | fRoundingIncrement = new DigitList(); | |
2129 | } | |
2130 | fRoundingIncrement->set((int32_t)newValue); | |
2131 | fRoundingDouble = newValue; | |
2132 | } else { | |
2133 | delete fRoundingIncrement; | |
2134 | fRoundingIncrement = NULL; | |
2135 | fRoundingDouble = 0.0; | |
2136 | } | |
2137 | } | |
2138 | ||
2139 | /** | |
2140 | * Get the rounding mode. | |
2141 | * @return A rounding mode | |
2142 | * @see #setRoundingIncrement | |
2143 | * @see #getRoundingIncrement | |
2144 | * @see #setRoundingMode | |
2145 | */ | |
2146 | DecimalFormat::ERoundingMode DecimalFormat::getRoundingMode() const { | |
2147 | return fRoundingMode; | |
2148 | } | |
2149 | ||
2150 | /** | |
2151 | * Set the rounding mode. This has no effect unless the rounding | |
2152 | * increment is greater than zero. | |
2153 | * @param roundingMode A rounding mode | |
2154 | * @see #setRoundingIncrement | |
2155 | * @see #getRoundingIncrement | |
2156 | * @see #getRoundingMode | |
2157 | */ | |
2158 | void DecimalFormat::setRoundingMode(ERoundingMode roundingMode) { | |
2159 | fRoundingMode = roundingMode; | |
2160 | } | |
2161 | ||
2162 | /** | |
2163 | * Get the width to which the output of <code>format()</code> is padded. | |
2164 | * @return the format width, or zero if no padding is in effect | |
2165 | * @see #setFormatWidth | |
2166 | * @see #getPadCharacter | |
2167 | * @see #setPadCharacter | |
2168 | * @see #getPadPosition | |
2169 | * @see #setPadPosition | |
2170 | */ | |
2171 | int32_t DecimalFormat::getFormatWidth() const { | |
2172 | return fFormatWidth; | |
2173 | } | |
2174 | ||
2175 | /** | |
2176 | * Set the width to which the output of <code>format()</code> is padded. | |
2177 | * This method also controls whether padding is enabled. | |
2178 | * @param width the width to which to pad the result of | |
2179 | * <code>format()</code>, or zero to disable padding. A negative | |
2180 | * width is equivalent to 0. | |
2181 | * @see #getFormatWidth | |
2182 | * @see #getPadCharacter | |
2183 | * @see #setPadCharacter | |
2184 | * @see #getPadPosition | |
2185 | * @see #setPadPosition | |
2186 | */ | |
2187 | void DecimalFormat::setFormatWidth(int32_t width) { | |
2188 | fFormatWidth = (width > 0) ? width : 0; | |
2189 | } | |
2190 | ||
2191 | UnicodeString DecimalFormat::getPadCharacterString() const { | |
2192 | return fPad; | |
2193 | } | |
2194 | ||
2195 | void DecimalFormat::setPadCharacter(const UnicodeString &padChar) { | |
2196 | if (padChar.length() > 0) { | |
2197 | fPad = padChar.char32At(0); | |
2198 | } | |
2199 | else { | |
2200 | fPad = kDefaultPad; | |
2201 | } | |
2202 | } | |
2203 | ||
2204 | /** | |
2205 | * Get the position at which padding will take place. This is the location | |
2206 | * at which padding will be inserted if the result of <code>format()</code> | |
2207 | * is shorter than the format width. | |
2208 | * @return the pad position, one of <code>kPadBeforePrefix</code>, | |
2209 | * <code>kPadAfterPrefix</code>, <code>kPadBeforeSuffix</code>, or | |
2210 | * <code>kPadAfterSuffix</code>. | |
2211 | * @see #setFormatWidth | |
2212 | * @see #getFormatWidth | |
2213 | * @see #setPadCharacter | |
2214 | * @see #getPadCharacter | |
2215 | * @see #setPadPosition | |
2216 | * @see #kPadBeforePrefix | |
2217 | * @see #kPadAfterPrefix | |
2218 | * @see #kPadBeforeSuffix | |
2219 | * @see #kPadAfterSuffix | |
2220 | */ | |
2221 | DecimalFormat::EPadPosition DecimalFormat::getPadPosition() const { | |
2222 | return fPadPosition; | |
2223 | } | |
2224 | ||
2225 | /** | |
2226 | * <strong><font face=helvetica color=red>NEW</font></strong> | |
2227 | * Set the position at which padding will take place. This is the location | |
2228 | * at which padding will be inserted if the result of <code>format()</code> | |
2229 | * is shorter than the format width. This has no effect unless padding is | |
2230 | * enabled. | |
2231 | * @param padPos the pad position, one of <code>kPadBeforePrefix</code>, | |
2232 | * <code>kPadAfterPrefix</code>, <code>kPadBeforeSuffix</code>, or | |
2233 | * <code>kPadAfterSuffix</code>. | |
2234 | * @see #setFormatWidth | |
2235 | * @see #getFormatWidth | |
2236 | * @see #setPadCharacter | |
2237 | * @see #getPadCharacter | |
2238 | * @see #getPadPosition | |
2239 | * @see #kPadBeforePrefix | |
2240 | * @see #kPadAfterPrefix | |
2241 | * @see #kPadBeforeSuffix | |
2242 | * @see #kPadAfterSuffix | |
2243 | */ | |
2244 | void DecimalFormat::setPadPosition(EPadPosition padPos) { | |
2245 | fPadPosition = padPos; | |
2246 | } | |
2247 | ||
2248 | /** | |
2249 | * Return whether or not scientific notation is used. | |
2250 | * @return TRUE if this object formats and parses scientific notation | |
2251 | * @see #setScientificNotation | |
2252 | * @see #getMinimumExponentDigits | |
2253 | * @see #setMinimumExponentDigits | |
2254 | * @see #isExponentSignAlwaysShown | |
2255 | * @see #setExponentSignAlwaysShown | |
2256 | */ | |
2257 | UBool DecimalFormat::isScientificNotation() { | |
2258 | return fUseExponentialNotation; | |
2259 | } | |
2260 | ||
2261 | /** | |
2262 | * Set whether or not scientific notation is used. | |
2263 | * @param useScientific TRUE if this object formats and parses scientific | |
2264 | * notation | |
2265 | * @see #isScientificNotation | |
2266 | * @see #getMinimumExponentDigits | |
2267 | * @see #setMinimumExponentDigits | |
2268 | * @see #isExponentSignAlwaysShown | |
2269 | * @see #setExponentSignAlwaysShown | |
2270 | */ | |
2271 | void DecimalFormat::setScientificNotation(UBool useScientific) { | |
2272 | fUseExponentialNotation = useScientific; | |
2273 | } | |
2274 | ||
2275 | /** | |
2276 | * Return the minimum exponent digits that will be shown. | |
2277 | * @return the minimum exponent digits that will be shown | |
2278 | * @see #setScientificNotation | |
2279 | * @see #isScientificNotation | |
2280 | * @see #setMinimumExponentDigits | |
2281 | * @see #isExponentSignAlwaysShown | |
2282 | * @see #setExponentSignAlwaysShown | |
2283 | */ | |
2284 | int8_t DecimalFormat::getMinimumExponentDigits() const { | |
2285 | return fMinExponentDigits; | |
2286 | } | |
2287 | ||
2288 | /** | |
2289 | * Set the minimum exponent digits that will be shown. This has no | |
2290 | * effect unless scientific notation is in use. | |
2291 | * @param minExpDig a value >= 1 indicating the fewest exponent digits | |
2292 | * that will be shown. Values less than 1 will be treated as 1. | |
2293 | * @see #setScientificNotation | |
2294 | * @see #isScientificNotation | |
2295 | * @see #getMinimumExponentDigits | |
2296 | * @see #isExponentSignAlwaysShown | |
2297 | * @see #setExponentSignAlwaysShown | |
2298 | */ | |
2299 | void DecimalFormat::setMinimumExponentDigits(int8_t minExpDig) { | |
2300 | fMinExponentDigits = (int8_t)((minExpDig > 0) ? minExpDig : 1); | |
2301 | } | |
2302 | ||
2303 | /** | |
2304 | * Return whether the exponent sign is always shown. | |
2305 | * @return TRUE if the exponent is always prefixed with either the | |
2306 | * localized minus sign or the localized plus sign, false if only negative | |
2307 | * exponents are prefixed with the localized minus sign. | |
2308 | * @see #setScientificNotation | |
2309 | * @see #isScientificNotation | |
2310 | * @see #setMinimumExponentDigits | |
2311 | * @see #getMinimumExponentDigits | |
2312 | * @see #setExponentSignAlwaysShown | |
2313 | */ | |
2314 | UBool DecimalFormat::isExponentSignAlwaysShown() { | |
2315 | return fExponentSignAlwaysShown; | |
2316 | } | |
2317 | ||
2318 | /** | |
2319 | * Set whether the exponent sign is always shown. This has no effect | |
2320 | * unless scientific notation is in use. | |
2321 | * @param expSignAlways TRUE if the exponent is always prefixed with either | |
2322 | * the localized minus sign or the localized plus sign, false if only | |
2323 | * negative exponents are prefixed with the localized minus sign. | |
2324 | * @see #setScientificNotation | |
2325 | * @see #isScientificNotation | |
2326 | * @see #setMinimumExponentDigits | |
2327 | * @see #getMinimumExponentDigits | |
2328 | * @see #isExponentSignAlwaysShown | |
2329 | */ | |
2330 | void DecimalFormat::setExponentSignAlwaysShown(UBool expSignAlways) { | |
2331 | fExponentSignAlwaysShown = expSignAlways; | |
2332 | } | |
2333 | ||
2334 | //------------------------------------------------------------------------------ | |
2335 | // Gets the grouping size of the number pattern. For example, thousand or 10 | |
2336 | // thousand groupings. | |
2337 | ||
2338 | int32_t | |
2339 | DecimalFormat::getGroupingSize() const | |
2340 | { | |
2341 | return fGroupingSize; | |
2342 | } | |
2343 | ||
2344 | //------------------------------------------------------------------------------ | |
2345 | // Gets the grouping size of the number pattern. | |
2346 | ||
2347 | void | |
2348 | DecimalFormat::setGroupingSize(int32_t newValue) | |
2349 | { | |
2350 | fGroupingSize = newValue; | |
2351 | } | |
2352 | ||
2353 | //------------------------------------------------------------------------------ | |
2354 | ||
2355 | int32_t | |
2356 | DecimalFormat::getSecondaryGroupingSize() const | |
2357 | { | |
2358 | return fGroupingSize2; | |
2359 | } | |
2360 | ||
2361 | //------------------------------------------------------------------------------ | |
2362 | ||
2363 | void | |
2364 | DecimalFormat::setSecondaryGroupingSize(int32_t newValue) | |
2365 | { | |
2366 | fGroupingSize2 = newValue; | |
2367 | } | |
2368 | ||
2369 | //------------------------------------------------------------------------------ | |
2370 | // Checks if to show the decimal separator. | |
2371 | ||
2372 | UBool | |
2373 | DecimalFormat::isDecimalSeparatorAlwaysShown() const | |
2374 | { | |
2375 | return fDecimalSeparatorAlwaysShown; | |
2376 | } | |
2377 | ||
2378 | //------------------------------------------------------------------------------ | |
2379 | // Sets to always show the decimal separator. | |
2380 | ||
2381 | void | |
2382 | DecimalFormat::setDecimalSeparatorAlwaysShown(UBool newValue) | |
2383 | { | |
2384 | fDecimalSeparatorAlwaysShown = newValue; | |
2385 | } | |
2386 | ||
2387 | //------------------------------------------------------------------------------ | |
2388 | // Emits the pattern of this DecimalFormat instance. | |
2389 | ||
2390 | UnicodeString& | |
2391 | DecimalFormat::toPattern(UnicodeString& result) const | |
2392 | { | |
2393 | return toPattern(result, FALSE); | |
2394 | } | |
2395 | ||
2396 | //------------------------------------------------------------------------------ | |
2397 | // Emits the localized pattern this DecimalFormat instance. | |
2398 | ||
2399 | UnicodeString& | |
2400 | DecimalFormat::toLocalizedPattern(UnicodeString& result) const | |
2401 | { | |
2402 | return toPattern(result, TRUE); | |
2403 | } | |
2404 | ||
2405 | //------------------------------------------------------------------------------ | |
2406 | /** | |
2407 | * Expand the affix pattern strings into the expanded affix strings. If any | |
2408 | * affix pattern string is null, do not expand it. This method should be | |
2409 | * called any time the symbols or the affix patterns change in order to keep | |
2410 | * the expanded affix strings up to date. | |
2411 | */ | |
2412 | void DecimalFormat::expandAffixes() { | |
2413 | if (fPosPrefixPattern != 0) { | |
2414 | expandAffix(*fPosPrefixPattern, fPositivePrefix, 0, FALSE); | |
2415 | } | |
2416 | if (fPosSuffixPattern != 0) { | |
2417 | expandAffix(*fPosSuffixPattern, fPositiveSuffix, 0, FALSE); | |
2418 | } | |
2419 | if (fNegPrefixPattern != 0) { | |
2420 | expandAffix(*fNegPrefixPattern, fNegativePrefix, 0, FALSE); | |
2421 | } | |
2422 | if (fNegSuffixPattern != 0) { | |
2423 | expandAffix(*fNegSuffixPattern, fNegativeSuffix, 0, FALSE); | |
2424 | } | |
2425 | #ifdef FMT_DEBUG | |
2426 | UnicodeString s; | |
2427 | s.append("[") | |
2428 | .append(*fPosPrefixPattern).append("|").append(*fPosSuffixPattern) | |
2429 | .append(";") .append(*fNegPrefixPattern).append("|").append(*fNegSuffixPattern) | |
2430 | .append("]->[") | |
2431 | .append(fPositivePrefix).append("|").append(fPositiveSuffix) | |
2432 | .append(";") .append(fNegativePrefix).append("|").append(fNegativeSuffix) | |
2433 | .append("]\n"); | |
2434 | debugout(s); | |
2435 | #endif | |
2436 | } | |
2437 | ||
2438 | /** | |
2439 | * Expand an affix pattern into an affix string. All characters in the | |
2440 | * pattern are literal unless prefixed by kQuote. The following characters | |
2441 | * after kQuote are recognized: PATTERN_PERCENT, PATTERN_PER_MILLE, | |
2442 | * PATTERN_MINUS, and kCurrencySign. If kCurrencySign is doubled (kQuote + | |
2443 | * kCurrencySign + kCurrencySign), it is interpreted as an international | |
2444 | * currency sign. Any other character after a kQuote represents itself. | |
2445 | * kQuote must be followed by another character; kQuote may not occur by | |
2446 | * itself at the end of the pattern. | |
2447 | * | |
2448 | * This method is used in two distinct ways. First, it is used to expand | |
2449 | * the stored affix patterns into actual affixes. For this usage, doFormat | |
2450 | * must be false. Second, it is used to expand the stored affix patterns | |
2451 | * given a specific number (doFormat == true), for those rare cases in | |
2452 | * which a currency format references a ChoiceFormat (e.g., en_IN display | |
2453 | * name for INR). The number itself is taken from digitList. | |
2454 | * | |
2455 | * When used in the first way, this method has a side effect: It sets | |
2456 | * currencyChoice to a ChoiceFormat object, if the currency's display name | |
2457 | * in this locale is a ChoiceFormat pattern (very rare). It only does this | |
2458 | * if currencyChoice is null to start with. | |
2459 | * | |
2460 | * @param pattern the non-null, fPossibly empty pattern | |
2461 | * @param affix string to receive the expanded equivalent of pattern. | |
2462 | * Previous contents are deleted. | |
2463 | * @param doFormat if false, then the pattern will be expanded, and if a | |
2464 | * currency symbol is encountered that expands to a ChoiceFormat, the | |
2465 | * currencyChoice member variable will be initialized if it is null. If | |
2466 | * doFormat is true, then it is assumed that the currencyChoice has been | |
2467 | * created, and it will be used to format the value in digitList. | |
2468 | */ | |
2469 | void DecimalFormat::expandAffix(const UnicodeString& pattern, | |
2470 | UnicodeString& affix, | |
2471 | double number, | |
2472 | UBool doFormat) const { | |
2473 | affix.remove(); | |
2474 | for (int i=0; i<pattern.length(); ) { | |
2475 | UChar32 c = pattern.char32At(i); | |
2476 | i += U16_LENGTH(c); | |
2477 | if (c == kQuote) { | |
2478 | c = pattern.char32At(i); | |
2479 | i += U16_LENGTH(c); | |
2480 | switch (c) { | |
2481 | case kCurrencySign: { | |
2482 | // As of ICU 2.2 we use the currency object, and | |
2483 | // ignore the currency symbols in the DFS, unless | |
2484 | // we have a null currency object. This occurs if | |
2485 | // resurrecting a pre-2.2 object or if the user | |
2486 | // sets a custom DFS. | |
2487 | UBool intl = i<pattern.length() && | |
2488 | pattern.char32At(i) == kCurrencySign; | |
2489 | if (intl) { | |
2490 | ++i; | |
2491 | } | |
2492 | const UChar* currencyUChars = getCurrency(); | |
2493 | if (currencyUChars[0] != 0) { | |
2494 | UErrorCode ec = U_ZERO_ERROR; | |
2495 | if(intl) { | |
2496 | affix += currencyUChars; | |
2497 | } else { | |
2498 | int32_t len; | |
2499 | UBool isChoiceFormat; | |
2500 | const UChar* s = ucurr_getName(currencyUChars, fSymbols->getLocale().getName(), | |
2501 | UCURR_SYMBOL_NAME, &isChoiceFormat, &len, &ec); | |
2502 | if (isChoiceFormat) { | |
2503 | // Two modes here: If doFormat is false, we set up | |
2504 | // currencyChoice. If doFormat is true, we use the | |
2505 | // previously created currencyChoice to format the | |
2506 | // value in digitList. | |
2507 | if (!doFormat) { | |
2508 | // If the currency is handled by a ChoiceFormat, | |
2509 | // then we're not going to use the expanded | |
2510 | // patterns. Instantiate the ChoiceFormat and | |
2511 | // return. | |
2512 | if (fCurrencyChoice == NULL) { | |
2513 | // TODO Replace double-check with proper thread-safe code | |
2514 | ChoiceFormat* fmt = new ChoiceFormat(s, ec); | |
2515 | if (U_SUCCESS(ec)) { | |
2516 | umtx_lock(NULL); | |
2517 | if (fCurrencyChoice == NULL) { | |
2518 | // Cast away const | |
2519 | ((DecimalFormat*)this)->fCurrencyChoice = fmt; | |
2520 | fmt = NULL; | |
2521 | } | |
2522 | umtx_unlock(NULL); | |
2523 | delete fmt; | |
2524 | } | |
2525 | } | |
2526 | // We could almost return null or "" here, since the | |
2527 | // expanded affixes are almost not used at all | |
2528 | // in this situation. However, one method -- | |
2529 | // toPattern() -- still does use the expanded | |
2530 | // affixes, in order to set up a padding | |
2531 | // pattern. We use the CURRENCY_SIGN as a | |
2532 | // placeholder. | |
2533 | affix.append(kCurrencySign); | |
2534 | } else { | |
2535 | if (fCurrencyChoice != NULL) { | |
2536 | FieldPosition pos(0); // ignored | |
2537 | if (number < 0) { | |
2538 | number = -number; | |
2539 | } | |
2540 | fCurrencyChoice->format(number, affix, pos); | |
2541 | } else { | |
2542 | // We only arrive here if the currency choice | |
2543 | // format in the locale data is INVALID. | |
2544 | affix += currencyUChars; | |
2545 | } | |
2546 | } | |
2547 | continue; | |
2548 | } | |
2549 | affix += UnicodeString(s, len); | |
2550 | } | |
2551 | } else { | |
2552 | if(intl) { | |
2553 | affix += getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol); | |
2554 | } else { | |
2555 | affix += getConstSymbol(DecimalFormatSymbols::kCurrencySymbol); | |
2556 | } | |
2557 | } | |
2558 | break; | |
2559 | } | |
2560 | case kPatternPercent: | |
2561 | affix += getConstSymbol(DecimalFormatSymbols::kPercentSymbol); | |
2562 | break; | |
2563 | case kPatternPerMill: | |
2564 | affix += getConstSymbol(DecimalFormatSymbols::kPerMillSymbol); | |
2565 | break; | |
2566 | case kPatternPlus: | |
2567 | affix += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol); | |
2568 | break; | |
2569 | case kPatternMinus: | |
2570 | affix += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol); | |
2571 | break; | |
2572 | default: | |
2573 | affix.append(c); | |
2574 | break; | |
2575 | } | |
2576 | } | |
2577 | else { | |
2578 | affix.append(c); | |
2579 | } | |
2580 | } | |
2581 | } | |
2582 | ||
2583 | /** | |
2584 | * Append an affix to the given StringBuffer. | |
2585 | * @param buf buffer to append to | |
2586 | * @param isNegative | |
2587 | * @param isPrefix | |
2588 | */ | |
2589 | int32_t DecimalFormat::appendAffix(UnicodeString& buf, double number, | |
2590 | UBool isNegative, UBool isPrefix) const { | |
2591 | if (fCurrencyChoice != 0) { | |
2592 | const UnicodeString* affixPat = 0; | |
2593 | if (isPrefix) { | |
2594 | affixPat = isNegative ? fNegPrefixPattern : fPosPrefixPattern; | |
2595 | } else { | |
2596 | affixPat = isNegative ? fNegSuffixPattern : fPosSuffixPattern; | |
2597 | } | |
2598 | UnicodeString affixBuf; | |
2599 | expandAffix(*affixPat, affixBuf, number, TRUE); | |
2600 | buf.append(affixBuf); | |
2601 | return affixBuf.length(); | |
2602 | } | |
2603 | ||
2604 | const UnicodeString* affix = NULL; | |
2605 | if (isPrefix) { | |
2606 | affix = isNegative ? &fNegativePrefix : &fPositivePrefix; | |
2607 | } else { | |
2608 | affix = isNegative ? &fNegativeSuffix : &fPositiveSuffix; | |
2609 | } | |
2610 | buf.append(*affix); | |
2611 | return affix->length(); | |
2612 | } | |
2613 | ||
2614 | /** | |
2615 | * Appends an affix pattern to the given StringBuffer, quoting special | |
2616 | * characters as needed. Uses the internal affix pattern, if that exists, | |
2617 | * or the literal affix, if the internal affix pattern is null. The | |
2618 | * appended string will generate the same affix pattern (or literal affix) | |
2619 | * when passed to toPattern(). | |
2620 | * | |
2621 | * @param appendTo the affix string is appended to this | |
2622 | * @param affixPattern a pattern such as fPosPrefixPattern; may be null | |
2623 | * @param expAffix a corresponding expanded affix, such as fPositivePrefix. | |
2624 | * Ignored unless affixPattern is null. If affixPattern is null, then | |
2625 | * expAffix is appended as a literal affix. | |
2626 | * @param localized true if the appended pattern should contain localized | |
2627 | * pattern characters; otherwise, non-localized pattern chars are appended | |
2628 | */ | |
2629 | void DecimalFormat::appendAffixPattern(UnicodeString& appendTo, | |
2630 | const UnicodeString* affixPattern, | |
2631 | const UnicodeString& expAffix, | |
2632 | UBool localized) const { | |
2633 | if (affixPattern == 0) { | |
2634 | appendAffixPattern(appendTo, expAffix, localized); | |
2635 | } else { | |
2636 | int i; | |
2637 | for (int pos=0; pos<affixPattern->length(); pos=i) { | |
2638 | i = affixPattern->indexOf(kQuote, pos); | |
2639 | if (i < 0) { | |
2640 | UnicodeString s; | |
2641 | affixPattern->extractBetween(pos, affixPattern->length(), s); | |
2642 | appendAffixPattern(appendTo, s, localized); | |
2643 | break; | |
2644 | } | |
2645 | if (i > pos) { | |
2646 | UnicodeString s; | |
2647 | affixPattern->extractBetween(pos, i, s); | |
2648 | appendAffixPattern(appendTo, s, localized); | |
2649 | } | |
2650 | UChar32 c = affixPattern->char32At(++i); | |
2651 | ++i; | |
2652 | if (c == kQuote) { | |
2653 | appendTo.append(c).append(c); | |
2654 | // Fall through and append another kQuote below | |
2655 | } else if (c == kCurrencySign && | |
2656 | i<affixPattern->length() && | |
2657 | affixPattern->char32At(i) == kCurrencySign) { | |
2658 | ++i; | |
2659 | appendTo.append(c).append(c); | |
2660 | } else if (localized) { | |
2661 | switch (c) { | |
2662 | case kPatternPercent: | |
2663 | appendTo += getConstSymbol(DecimalFormatSymbols::kPercentSymbol); | |
2664 | break; | |
2665 | case kPatternPerMill: | |
2666 | appendTo += getConstSymbol(DecimalFormatSymbols::kPerMillSymbol); | |
2667 | break; | |
2668 | case kPatternPlus: | |
2669 | appendTo += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol); | |
2670 | break; | |
2671 | case kPatternMinus: | |
2672 | appendTo += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol); | |
2673 | break; | |
2674 | default: | |
2675 | appendTo.append(c); | |
2676 | } | |
2677 | } else { | |
2678 | appendTo.append(c); | |
2679 | } | |
2680 | } | |
2681 | } | |
2682 | } | |
2683 | ||
2684 | /** | |
2685 | * Append an affix to the given StringBuffer, using quotes if | |
2686 | * there are special characters. Single quotes themselves must be | |
2687 | * escaped in either case. | |
2688 | */ | |
2689 | void | |
2690 | DecimalFormat::appendAffixPattern(UnicodeString& appendTo, | |
2691 | const UnicodeString& affix, | |
2692 | UBool localized) const { | |
2693 | UBool needQuote; | |
2694 | if(localized) { | |
2695 | needQuote = affix.indexOf(getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol)) >= 0 | |
2696 | || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol)) >= 0 | |
2697 | || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol)) >= 0 | |
2698 | || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPercentSymbol)) >= 0 | |
2699 | || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPerMillSymbol)) >= 0 | |
2700 | || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kDigitSymbol)) >= 0 | |
2701 | || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol)) >= 0 | |
2702 | || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol)) >= 0 | |
2703 | || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol)) >= 0 | |
2704 | || affix.indexOf(kCurrencySign) >= 0; | |
2705 | } | |
2706 | else { | |
2707 | needQuote = affix.indexOf(kPatternZeroDigit) >= 0 | |
2708 | || affix.indexOf(kPatternGroupingSeparator) >= 0 | |
2709 | || affix.indexOf(kPatternDecimalSeparator) >= 0 | |
2710 | || affix.indexOf(kPatternPercent) >= 0 | |
2711 | || affix.indexOf(kPatternPerMill) >= 0 | |
2712 | || affix.indexOf(kPatternDigit) >= 0 | |
2713 | || affix.indexOf(kPatternSeparator) >= 0 | |
2714 | || affix.indexOf(kPatternExponent) >= 0 | |
2715 | || affix.indexOf(kPatternPlus) >= 0 | |
2716 | || affix.indexOf(kPatternMinus) >= 0 | |
2717 | || affix.indexOf(kCurrencySign) >= 0; | |
2718 | } | |
2719 | if (needQuote) | |
2720 | appendTo += (UChar)0x0027 /*'\''*/; | |
2721 | if (affix.indexOf((UChar)0x0027 /*'\''*/) < 0) | |
2722 | appendTo += affix; | |
2723 | else { | |
2724 | for (int32_t j = 0; j < affix.length(); ) { | |
2725 | UChar32 c = affix.char32At(j); | |
2726 | j += U16_LENGTH(c); | |
2727 | appendTo += c; | |
2728 | if (c == 0x0027 /*'\''*/) | |
2729 | appendTo += c; | |
2730 | } | |
2731 | } | |
2732 | if (needQuote) | |
2733 | appendTo += (UChar)0x0027 /*'\''*/; | |
2734 | } | |
2735 | ||
2736 | //------------------------------------------------------------------------------ | |
2737 | ||
2738 | UnicodeString& | |
2739 | DecimalFormat::toPattern(UnicodeString& result, UBool localized) const | |
2740 | { | |
2741 | result.remove(); | |
2742 | UChar32 zero, sigDigit = kPatternSignificantDigit; | |
2743 | UnicodeString digit, group; | |
2744 | int32_t i; | |
2745 | int32_t roundingDecimalPos = 0; // Pos of decimal in roundingDigits | |
2746 | UnicodeString roundingDigits; | |
2747 | int32_t padPos = (fFormatWidth > 0) ? fPadPosition : -1; | |
2748 | UnicodeString padSpec; | |
2749 | UBool useSigDig = areSignificantDigitsUsed(); | |
2750 | ||
2751 | if (localized) { | |
2752 | digit.append(getConstSymbol(DecimalFormatSymbols::kDigitSymbol)); | |
2753 | group.append(getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol)); | |
2754 | zero = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0); | |
2755 | if (useSigDig) { | |
2756 | sigDigit = getConstSymbol(DecimalFormatSymbols::kSignificantDigitSymbol).char32At(0); | |
2757 | } | |
2758 | } | |
2759 | else { | |
2760 | digit.append((UChar)kPatternDigit); | |
2761 | group.append((UChar)kPatternGroupingSeparator); | |
2762 | zero = (UChar32)kPatternZeroDigit; | |
2763 | } | |
2764 | if (fFormatWidth > 0) { | |
2765 | if (localized) { | |
2766 | padSpec.append(getConstSymbol(DecimalFormatSymbols::kPadEscapeSymbol)); | |
2767 | } | |
2768 | else { | |
2769 | padSpec.append((UChar)kPatternPadEscape); | |
2770 | } | |
2771 | padSpec.append(fPad); | |
2772 | } | |
2773 | if (fRoundingIncrement != NULL) { | |
2774 | for(i=0; i<fRoundingIncrement->fCount; ++i) { | |
2775 | roundingDigits.append((UChar)fRoundingIncrement->fDigits[i]); | |
2776 | } | |
2777 | roundingDecimalPos = fRoundingIncrement->fDecimalAt; | |
2778 | } | |
2779 | for (int32_t part=0; part<2; ++part) { | |
2780 | if (padPos == kPadBeforePrefix) { | |
2781 | result.append(padSpec); | |
2782 | } | |
2783 | appendAffixPattern(result, | |
2784 | (part==0 ? fPosPrefixPattern : fNegPrefixPattern), | |
2785 | (part==0 ? fPositivePrefix : fNegativePrefix), | |
2786 | localized); | |
2787 | if (padPos == kPadAfterPrefix && ! padSpec.isEmpty()) { | |
2788 | result.append(padSpec); | |
2789 | } | |
2790 | int32_t sub0Start = result.length(); | |
2791 | int32_t g = isGroupingUsed() ? _max(0, fGroupingSize) : 0; | |
2792 | if (g > 0 && fGroupingSize2 > 0 && fGroupingSize2 != fGroupingSize) { | |
2793 | g += fGroupingSize2; | |
2794 | } | |
2795 | int32_t maxDig = 0, minDig = 0, maxSigDig = 0; | |
2796 | if (useSigDig) { | |
2797 | minDig = getMinimumSignificantDigits(); | |
2798 | maxDig = maxSigDig = getMaximumSignificantDigits(); | |
2799 | } else { | |
2800 | minDig = getMinimumIntegerDigits(); | |
2801 | maxDig = getMaximumIntegerDigits(); | |
2802 | } | |
2803 | if (fUseExponentialNotation) { | |
2804 | if (maxDig > kMaxScientificIntegerDigits) { | |
2805 | maxDig = 1; | |
2806 | } | |
2807 | } else if (useSigDig) { | |
2808 | maxDig = _max(maxDig, g+1); | |
2809 | } else { | |
2810 | maxDig = _max(_max(g, getMinimumIntegerDigits()), | |
2811 | roundingDecimalPos) + 1; | |
2812 | } | |
2813 | for (i = maxDig; i > 0; --i) { | |
2814 | if (!fUseExponentialNotation && i<maxDig && | |
2815 | isGroupingPosition(i)) { | |
2816 | result.append(group); | |
2817 | } | |
2818 | if (useSigDig) { | |
2819 | // #@,@### (maxSigDig == 5, minSigDig == 2) | |
2820 | // 65 4321 (1-based pos, count from the right) | |
2821 | // Use # if pos > maxSigDig or 1 <= pos <= (maxSigDig - minSigDig) | |
2822 | // Use @ if (maxSigDig - minSigDig) < pos <= maxSigDig | |
2823 | if (maxSigDig >= i && i > (maxSigDig - minDig)) { | |
2824 | result.append(sigDigit); | |
2825 | } else { | |
2826 | result.append(digit); | |
2827 | } | |
2828 | } else { | |
2829 | if (! roundingDigits.isEmpty()) { | |
2830 | int32_t pos = roundingDecimalPos - i; | |
2831 | if (pos >= 0 && pos < roundingDigits.length()) { | |
2832 | result.append((UChar) (roundingDigits.char32At(pos) - kPatternZeroDigit + zero)); | |
2833 | continue; | |
2834 | } | |
2835 | } | |
2836 | if (i<=minDig) { | |
2837 | result.append(zero); | |
2838 | } else { | |
2839 | result.append(digit); | |
2840 | } | |
2841 | } | |
2842 | } | |
2843 | if (!useSigDig) { | |
2844 | if (getMaximumFractionDigits() > 0 || fDecimalSeparatorAlwaysShown) { | |
2845 | if (localized) { | |
2846 | result += getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol); | |
2847 | } | |
2848 | else { | |
2849 | result.append((UChar)kPatternDecimalSeparator); | |
2850 | } | |
2851 | } | |
2852 | int32_t pos = roundingDecimalPos; | |
2853 | for (i = 0; i < getMaximumFractionDigits(); ++i) { | |
2854 | if (! roundingDigits.isEmpty() && pos < roundingDigits.length()) { | |
2855 | if (pos < 0) { | |
2856 | result.append(zero); | |
2857 | } | |
2858 | else { | |
2859 | result.append((UChar)(roundingDigits.char32At(pos) - kPatternZeroDigit + zero)); | |
2860 | } | |
2861 | ++pos; | |
2862 | continue; | |
2863 | } | |
2864 | if (i<getMinimumFractionDigits()) { | |
2865 | result.append(zero); | |
2866 | } | |
2867 | else { | |
2868 | result.append(digit); | |
2869 | } | |
2870 | } | |
2871 | } | |
2872 | if (fUseExponentialNotation) { | |
2873 | if (localized) { | |
2874 | result += getConstSymbol(DecimalFormatSymbols::kExponentialSymbol); | |
2875 | } | |
2876 | else { | |
2877 | result.append((UChar)kPatternExponent); | |
2878 | } | |
2879 | if (fExponentSignAlwaysShown) { | |
2880 | if (localized) { | |
2881 | result += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol); | |
2882 | } | |
2883 | else { | |
2884 | result.append((UChar)kPatternPlus); | |
2885 | } | |
2886 | } | |
2887 | for (i=0; i<fMinExponentDigits; ++i) { | |
2888 | result.append(zero); | |
2889 | } | |
2890 | } | |
2891 | if (! padSpec.isEmpty() && !fUseExponentialNotation) { | |
2892 | int32_t add = fFormatWidth - result.length() + sub0Start | |
2893 | - ((part == 0) | |
2894 | ? fPositivePrefix.length() + fPositiveSuffix.length() | |
2895 | : fNegativePrefix.length() + fNegativeSuffix.length()); | |
2896 | while (add > 0) { | |
2897 | result.insert(sub0Start, digit); | |
2898 | ++maxDig; | |
2899 | --add; | |
2900 | // Only add a grouping separator if we have at least | |
2901 | // 2 additional characters to be added, so we don't | |
2902 | // end up with ",###". | |
2903 | if (add>1 && isGroupingPosition(maxDig)) { | |
2904 | result.insert(sub0Start, group); | |
2905 | --add; | |
2906 | } | |
2907 | } | |
2908 | } | |
2909 | if (fPadPosition == kPadBeforeSuffix && ! padSpec.isEmpty()) { | |
2910 | result.append(padSpec); | |
2911 | } | |
2912 | if (part == 0) { | |
2913 | appendAffixPattern(result, fPosSuffixPattern, fPositiveSuffix, localized); | |
2914 | if (fPadPosition == kPadAfterSuffix && ! padSpec.isEmpty()) { | |
2915 | result.append(padSpec); | |
2916 | } | |
2917 | UBool isDefault = FALSE; | |
2918 | if ((fNegSuffixPattern == fPosSuffixPattern && // both null | |
2919 | fNegativeSuffix == fPositiveSuffix) | |
2920 | || (fNegSuffixPattern != 0 && fPosSuffixPattern != 0 && | |
2921 | *fNegSuffixPattern == *fPosSuffixPattern)) | |
2922 | { | |
2923 | if (fNegPrefixPattern != NULL && fPosPrefixPattern != NULL) | |
2924 | { | |
2925 | int32_t length = fPosPrefixPattern->length(); | |
2926 | isDefault = fNegPrefixPattern->length() == (length+2) && | |
2927 | (*fNegPrefixPattern)[(int32_t)0] == kQuote && | |
2928 | (*fNegPrefixPattern)[(int32_t)1] == kPatternMinus && | |
2929 | fNegPrefixPattern->compare(2, length, *fPosPrefixPattern, 0, length) == 0; | |
2930 | } | |
2931 | if (!isDefault && | |
2932 | fNegPrefixPattern == NULL && fPosPrefixPattern == NULL) | |
2933 | { | |
2934 | int32_t length = fPositivePrefix.length(); | |
2935 | isDefault = fNegativePrefix.length() == (length+1) && | |
2936 | fNegativePrefix.compare(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol)) == 0 && | |
2937 | fNegativePrefix.compare(1, length, fPositivePrefix, 0, length) == 0; | |
2938 | } | |
2939 | } | |
2940 | if (isDefault) { | |
2941 | break; // Don't output default negative subpattern | |
2942 | } else { | |
2943 | if (localized) { | |
2944 | result += getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol); | |
2945 | } | |
2946 | else { | |
2947 | result.append((UChar)kPatternSeparator); | |
2948 | } | |
2949 | } | |
2950 | } else { | |
2951 | appendAffixPattern(result, fNegSuffixPattern, fNegativeSuffix, localized); | |
2952 | if (fPadPosition == kPadAfterSuffix && ! padSpec.isEmpty()) { | |
2953 | result.append(padSpec); | |
2954 | } | |
2955 | } | |
2956 | } | |
2957 | ||
2958 | return result; | |
2959 | } | |
2960 | ||
2961 | //------------------------------------------------------------------------------ | |
2962 | ||
2963 | void | |
2964 | DecimalFormat::applyPattern(const UnicodeString& pattern, UErrorCode& status) | |
2965 | { | |
2966 | UParseError parseError; | |
2967 | applyPattern(pattern, FALSE, parseError, status); | |
2968 | } | |
2969 | ||
2970 | //------------------------------------------------------------------------------ | |
2971 | ||
2972 | void | |
2973 | DecimalFormat::applyPattern(const UnicodeString& pattern, | |
2974 | UParseError& parseError, | |
2975 | UErrorCode& status) | |
2976 | { | |
2977 | applyPattern(pattern, FALSE, parseError, status); | |
2978 | } | |
2979 | //------------------------------------------------------------------------------ | |
2980 | ||
2981 | void | |
2982 | DecimalFormat::applyLocalizedPattern(const UnicodeString& pattern, UErrorCode& status) | |
2983 | { | |
2984 | UParseError parseError; | |
2985 | applyPattern(pattern, TRUE,parseError,status); | |
2986 | } | |
2987 | ||
2988 | //------------------------------------------------------------------------------ | |
2989 | ||
2990 | void | |
2991 | DecimalFormat::applyLocalizedPattern(const UnicodeString& pattern, | |
2992 | UParseError& parseError, | |
2993 | UErrorCode& status) | |
2994 | { | |
2995 | applyPattern(pattern, TRUE,parseError,status); | |
2996 | } | |
2997 | ||
2998 | //------------------------------------------------------------------------------ | |
2999 | ||
3000 | void | |
3001 | DecimalFormat::applyPattern(const UnicodeString& pattern, | |
3002 | UBool localized, | |
3003 | UParseError& parseError, | |
3004 | UErrorCode& status) | |
3005 | { | |
3006 | if (U_FAILURE(status)) | |
3007 | { | |
3008 | return; | |
3009 | } | |
3010 | // Clear error struct | |
3011 | parseError.offset = -1; | |
3012 | parseError.preContext[0] = parseError.postContext[0] = (UChar)0; | |
3013 | ||
3014 | // Set the significant pattern symbols | |
3015 | UChar32 zeroDigit = kPatternZeroDigit; // '0' | |
3016 | UChar32 sigDigit = kPatternSignificantDigit; // '@' | |
3017 | UnicodeString groupingSeparator ((UChar)kPatternGroupingSeparator); | |
3018 | UnicodeString decimalSeparator ((UChar)kPatternDecimalSeparator); | |
3019 | UnicodeString percent ((UChar)kPatternPercent); | |
3020 | UnicodeString perMill ((UChar)kPatternPerMill); | |
3021 | UnicodeString digit ((UChar)kPatternDigit); // '#' | |
3022 | UnicodeString separator ((UChar)kPatternSeparator); | |
3023 | UnicodeString exponent ((UChar)kPatternExponent); | |
3024 | UnicodeString plus ((UChar)kPatternPlus); | |
3025 | UnicodeString minus ((UChar)kPatternMinus); | |
3026 | UnicodeString padEscape ((UChar)kPatternPadEscape); | |
3027 | // Substitute with the localized symbols if necessary | |
3028 | if (localized) { | |
3029 | zeroDigit = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0); | |
3030 | sigDigit = getConstSymbol(DecimalFormatSymbols::kSignificantDigitSymbol).char32At(0); | |
3031 | groupingSeparator. remove().append(getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol)); | |
3032 | decimalSeparator. remove().append(getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol)); | |
3033 | percent. remove().append(getConstSymbol(DecimalFormatSymbols::kPercentSymbol)); | |
3034 | perMill. remove().append(getConstSymbol(DecimalFormatSymbols::kPerMillSymbol)); | |
3035 | digit. remove().append(getConstSymbol(DecimalFormatSymbols::kDigitSymbol)); | |
3036 | separator. remove().append(getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol)); | |
3037 | exponent. remove().append(getConstSymbol(DecimalFormatSymbols::kExponentialSymbol)); | |
3038 | plus. remove().append(getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol)); | |
3039 | minus. remove().append(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol)); | |
3040 | padEscape. remove().append(getConstSymbol(DecimalFormatSymbols::kPadEscapeSymbol)); | |
3041 | } | |
3042 | UChar nineDigit = (UChar)(zeroDigit + 9); | |
3043 | int32_t digitLen = digit.length(); | |
3044 | int32_t groupSepLen = groupingSeparator.length(); | |
3045 | int32_t decimalSepLen = decimalSeparator.length(); | |
3046 | ||
3047 | int32_t pos = 0; | |
3048 | int32_t patLen = pattern.length(); | |
3049 | // Part 0 is the positive pattern. Part 1, if present, is the negative | |
3050 | // pattern. | |
3051 | for (int32_t part=0; part<2 && pos<patLen; ++part) { | |
3052 | // The subpart ranges from 0 to 4: 0=pattern proper, 1=prefix, | |
3053 | // 2=suffix, 3=prefix in quote, 4=suffix in quote. Subpart 0 is | |
3054 | // between the prefix and suffix, and consists of pattern | |
3055 | // characters. In the prefix and suffix, percent, perMill, and | |
3056 | // currency symbols are recognized and translated. | |
3057 | int32_t subpart = 1, sub0Start = 0, sub0Limit = 0, sub2Limit = 0; | |
3058 | ||
3059 | // It's important that we don't change any fields of this object | |
3060 | // prematurely. We set the following variables for the multiplier, | |
3061 | // grouping, etc., and then only change the actual object fields if | |
3062 | // everything parses correctly. This also lets us register | |
3063 | // the data from part 0 and ignore the part 1, except for the | |
3064 | // prefix and suffix. | |
3065 | UnicodeString prefix; | |
3066 | UnicodeString suffix; | |
3067 | int32_t decimalPos = -1; | |
3068 | int32_t multiplier = 1; | |
3069 | int32_t digitLeftCount = 0, zeroDigitCount = 0, digitRightCount = 0, sigDigitCount = 0; | |
3070 | int8_t groupingCount = -1; | |
3071 | int8_t groupingCount2 = -1; | |
3072 | int32_t padPos = -1; | |
3073 | UChar32 padChar = 0; | |
3074 | int32_t roundingPos = -1; | |
3075 | DigitList roundingInc; | |
3076 | int8_t expDigits = -1; | |
3077 | UBool expSignAlways = FALSE; | |
3078 | UBool isCurrency = FALSE; | |
3079 | ||
3080 | // The affix is either the prefix or the suffix. | |
3081 | UnicodeString* affix = &prefix; | |
3082 | ||
3083 | int32_t start = pos; | |
3084 | UBool isPartDone = FALSE; | |
3085 | UChar32 ch; | |
3086 | ||
3087 | for (; !isPartDone && pos < patLen; ) { | |
3088 | // Todo: account for surrogate pairs | |
3089 | ch = pattern.char32At(pos); | |
3090 | switch (subpart) { | |
3091 | case 0: // Pattern proper subpart (between prefix & suffix) | |
3092 | // Process the digits, decimal, and grouping characters. We | |
3093 | // record five pieces of information. We expect the digits | |
3094 | // to occur in the pattern ####00.00####, and we record the | |
3095 | // number of left digits, zero (central) digits, and right | |
3096 | // digits. The position of the last grouping character is | |
3097 | // recorded (should be somewhere within the first two blocks | |
3098 | // of characters), as is the position of the decimal point, | |
3099 | // if any (should be in the zero digits). If there is no | |
3100 | // decimal point, then there should be no right digits. | |
3101 | if (pattern.compare(pos, digitLen, digit) == 0) { | |
3102 | if (zeroDigitCount > 0 || sigDigitCount > 0) { | |
3103 | ++digitRightCount; | |
3104 | } else { | |
3105 | ++digitLeftCount; | |
3106 | } | |
3107 | if (groupingCount >= 0 && decimalPos < 0) { | |
3108 | ++groupingCount; | |
3109 | } | |
3110 | pos += digitLen; | |
3111 | } else if ((ch >= zeroDigit && ch <= nineDigit) || | |
3112 | ch == sigDigit) { | |
3113 | if (digitRightCount > 0) { | |
3114 | // Unexpected '0' | |
3115 | debug("Unexpected '0'") | |
3116 | status = U_UNEXPECTED_TOKEN; | |
3117 | syntaxError(pattern,pos,parseError); | |
3118 | return; | |
3119 | } | |
3120 | if (ch == sigDigit) { | |
3121 | ++sigDigitCount; | |
3122 | } else { | |
3123 | ++zeroDigitCount; | |
3124 | if (ch != zeroDigit && roundingPos < 0) { | |
3125 | roundingPos = digitLeftCount + zeroDigitCount; | |
3126 | } | |
3127 | if (roundingPos >= 0) { | |
3128 | roundingInc.append((char)(ch - zeroDigit + '0')); | |
3129 | } | |
3130 | } | |
3131 | if (groupingCount >= 0 && decimalPos < 0) { | |
3132 | ++groupingCount; | |
3133 | } | |
3134 | pos += U16_LENGTH(ch); | |
3135 | } else if (pattern.compare(pos, groupSepLen, groupingSeparator) == 0) { | |
3136 | if (decimalPos >= 0) { | |
3137 | // Grouping separator after decimal | |
3138 | debug("Grouping separator after decimal") | |
3139 | status = U_UNEXPECTED_TOKEN; | |
3140 | syntaxError(pattern,pos,parseError); | |
3141 | return; | |
3142 | } | |
3143 | groupingCount2 = groupingCount; | |
3144 | groupingCount = 0; | |
3145 | pos += groupSepLen; | |
3146 | } else if (pattern.compare(pos, decimalSepLen, decimalSeparator) == 0) { | |
3147 | if (decimalPos >= 0) { | |
3148 | // Multiple decimal separators | |
3149 | debug("Multiple decimal separators") | |
3150 | status = U_MULTIPLE_DECIMAL_SEPARATORS; | |
3151 | syntaxError(pattern,pos,parseError); | |
3152 | return; | |
3153 | } | |
3154 | // Intentionally incorporate the digitRightCount, | |
3155 | // even though it is illegal for this to be > 0 | |
3156 | // at this point. We check pattern syntax below. | |
3157 | decimalPos = digitLeftCount + zeroDigitCount + digitRightCount; | |
3158 | pos += decimalSepLen; | |
3159 | } else { | |
3160 | if (pattern.compare(pos, exponent.length(), exponent) == 0) { | |
3161 | if (expDigits >= 0) { | |
3162 | // Multiple exponential symbols | |
3163 | debug("Multiple exponential symbols") | |
3164 | status = U_MULTIPLE_EXPONENTIAL_SYMBOLS; | |
3165 | syntaxError(pattern,pos,parseError); | |
3166 | return; | |
3167 | } | |
3168 | if (groupingCount >= 0) { | |
3169 | // Grouping separator in exponential pattern | |
3170 | debug("Grouping separator in exponential pattern") | |
3171 | status = U_MALFORMED_EXPONENTIAL_PATTERN; | |
3172 | syntaxError(pattern,pos,parseError); | |
3173 | return; | |
3174 | } | |
3175 | pos += exponent.length(); | |
3176 | // Check for positive prefix | |
3177 | if (pos < patLen | |
3178 | && pattern.compare(pos, plus.length(), plus) == 0) { | |
3179 | expSignAlways = TRUE; | |
3180 | pos += plus.length(); | |
3181 | } | |
3182 | // Use lookahead to parse out the exponential part of the | |
3183 | // pattern, then jump into suffix subpart. | |
3184 | expDigits = 0; | |
3185 | while (pos < patLen && | |
3186 | pattern.char32At(pos) == zeroDigit) { | |
3187 | ++expDigits; | |
3188 | pos += U16_LENGTH(zeroDigit); | |
3189 | } | |
3190 | ||
3191 | // 1. Require at least one mantissa pattern digit | |
3192 | // 2. Disallow "#+ @" in mantissa | |
3193 | // 3. Require at least one exponent pattern digit | |
3194 | if (((digitLeftCount + zeroDigitCount) < 1 && | |
3195 | (sigDigitCount + digitRightCount) < 1) || | |
3196 | (sigDigitCount > 0 && digitLeftCount > 0) || | |
3197 | expDigits < 1) { | |
3198 | // Malformed exponential pattern | |
3199 | debug("Malformed exponential pattern") | |
3200 | status = U_MALFORMED_EXPONENTIAL_PATTERN; | |
3201 | syntaxError(pattern,pos,parseError); | |
3202 | return; | |
3203 | } | |
3204 | } | |
3205 | // Transition to suffix subpart | |
3206 | subpart = 2; // suffix subpart | |
3207 | affix = &suffix; | |
3208 | sub0Limit = pos; | |
3209 | continue; | |
3210 | } | |
3211 | break; | |
3212 | case 1: // Prefix subpart | |
3213 | case 2: // Suffix subpart | |
3214 | // Process the prefix / suffix characters | |
3215 | // Process unquoted characters seen in prefix or suffix | |
3216 | // subpart. | |
3217 | ||
3218 | // Several syntax characters implicitly begins the | |
3219 | // next subpart if we are in the prefix; otherwise | |
3220 | // they are illegal if unquoted. | |
3221 | if (!pattern.compare(pos, digitLen, digit) || | |
3222 | !pattern.compare(pos, groupSepLen, groupingSeparator) || | |
3223 | !pattern.compare(pos, decimalSepLen, decimalSeparator) || | |
3224 | (ch >= zeroDigit && ch <= nineDigit) || | |
3225 | ch == sigDigit) { | |
3226 | if (subpart == 1) { // prefix subpart | |
3227 | subpart = 0; // pattern proper subpart | |
3228 | sub0Start = pos; // Reprocess this character | |
3229 | continue; | |
3230 | } else { | |
3231 | status = U_UNQUOTED_SPECIAL; | |
3232 | syntaxError(pattern,pos,parseError); | |
3233 | return; | |
3234 | } | |
3235 | } else if (ch == kCurrencySign) { | |
3236 | affix->append(kQuote); // Encode currency | |
3237 | // Use lookahead to determine if the currency sign is | |
3238 | // doubled or not. | |
3239 | U_ASSERT(U16_LENGTH(kCurrencySign) == 1); | |
3240 | if ((pos+1) < pattern.length() && pattern[pos+1] == kCurrencySign) { | |
3241 | affix->append(kCurrencySign); | |
3242 | ++pos; // Skip over the doubled character | |
3243 | } | |
3244 | isCurrency = TRUE; | |
3245 | // Fall through to append(ch) | |
3246 | } else if (ch == kQuote) { | |
3247 | // A quote outside quotes indicates either the opening | |
3248 | // quote or two quotes, which is a quote literal. That is, | |
3249 | // we have the first quote in 'do' or o''clock. | |
3250 | U_ASSERT(U16_LENGTH(kQuote) == 1); | |
3251 | ++pos; | |
3252 | if (pos < pattern.length() && pattern[pos] == kQuote) { | |
3253 | affix->append(kQuote); // Encode quote | |
3254 | // Fall through to append(ch) | |
3255 | } else { | |
3256 | subpart += 2; // open quote | |
3257 | continue; | |
3258 | } | |
3259 | } else if (pattern.compare(pos, separator.length(), separator) == 0) { | |
3260 | // Don't allow separators in the prefix, and don't allow | |
3261 | // separators in the second pattern (part == 1). | |
3262 | if (subpart == 1 || part == 1) { | |
3263 | // Unexpected separator | |
3264 | debug("Unexpected separator") | |
3265 | status = U_UNEXPECTED_TOKEN; | |
3266 | syntaxError(pattern,pos,parseError); | |
3267 | return; | |
3268 | } | |
3269 | sub2Limit = pos; | |
3270 | isPartDone = TRUE; // Go to next part | |
3271 | pos += separator.length(); | |
3272 | break; | |
3273 | } else if (pattern.compare(pos, percent.length(), percent) == 0) { | |
3274 | // Next handle characters which are appended directly. | |
3275 | if (multiplier != 1) { | |
3276 | // Too many percent/perMill characters | |
3277 | debug("Too many percent characters") | |
3278 | status = U_MULTIPLE_PERCENT_SYMBOLS; | |
3279 | syntaxError(pattern,pos,parseError); | |
3280 | return; | |
3281 | } | |
3282 | affix->append(kQuote); // Encode percent/perMill | |
3283 | affix->append(kPatternPercent); // Use unlocalized pattern char | |
3284 | multiplier = 100; | |
3285 | pos += percent.length(); | |
3286 | break; | |
3287 | } else if (pattern.compare(pos, perMill.length(), perMill) == 0) { | |
3288 | // Next handle characters which are appended directly. | |
3289 | if (multiplier != 1) { | |
3290 | // Too many percent/perMill characters | |
3291 | debug("Too many perMill characters") | |
3292 | status = U_MULTIPLE_PERMILL_SYMBOLS; | |
3293 | syntaxError(pattern,pos,parseError); | |
3294 | return; | |
3295 | } | |
3296 | affix->append(kQuote); // Encode percent/perMill | |
3297 | affix->append(kPatternPerMill); // Use unlocalized pattern char | |
3298 | multiplier = 1000; | |
3299 | pos += perMill.length(); | |
3300 | break; | |
3301 | } else if (pattern.compare(pos, padEscape.length(), padEscape) == 0) { | |
3302 | if (padPos >= 0 || // Multiple pad specifiers | |
3303 | (pos+1) == pattern.length()) { // Nothing after padEscape | |
3304 | debug("Multiple pad specifiers") | |
3305 | status = U_MULTIPLE_PAD_SPECIFIERS; | |
3306 | syntaxError(pattern,pos,parseError); | |
3307 | return; | |
3308 | } | |
3309 | padPos = pos; | |
3310 | pos += padEscape.length(); | |
3311 | padChar = pattern.char32At(pos); | |
3312 | pos += U16_LENGTH(padChar); | |
3313 | break; | |
3314 | } else if (pattern.compare(pos, minus.length(), minus) == 0) { | |
3315 | affix->append(kQuote); // Encode minus | |
3316 | affix->append(kPatternMinus); | |
3317 | pos += minus.length(); | |
3318 | break; | |
3319 | } else if (pattern.compare(pos, plus.length(), plus) == 0) { | |
3320 | affix->append(kQuote); // Encode plus | |
3321 | affix->append(kPatternPlus); | |
3322 | pos += plus.length(); | |
3323 | break; | |
3324 | } | |
3325 | // Unquoted, non-special characters fall through to here, as | |
3326 | // well as other code which needs to append something to the | |
3327 | // affix. | |
3328 | affix->append(ch); | |
3329 | pos += U16_LENGTH(ch); | |
3330 | break; | |
3331 | case 3: // Prefix subpart, in quote | |
3332 | case 4: // Suffix subpart, in quote | |
3333 | // A quote within quotes indicates either the closing | |
3334 | // quote or two quotes, which is a quote literal. That is, | |
3335 | // we have the second quote in 'do' or 'don''t'. | |
3336 | if (ch == kQuote) { | |
3337 | ++pos; | |
3338 | if (pos < pattern.length() && pattern[pos] == kQuote) { | |
3339 | affix->append(kQuote); // Encode quote | |
3340 | // Fall through to append(ch) | |
3341 | } else { | |
3342 | subpart -= 2; // close quote | |
3343 | continue; | |
3344 | } | |
3345 | } | |
3346 | affix->append(ch); | |
3347 | pos += U16_LENGTH(ch); | |
3348 | break; | |
3349 | } | |
3350 | } | |
3351 | ||
3352 | if (sub0Limit == 0) { | |
3353 | sub0Limit = pattern.length(); | |
3354 | } | |
3355 | ||
3356 | if (sub2Limit == 0) { | |
3357 | sub2Limit = pattern.length(); | |
3358 | } | |
3359 | ||
3360 | /* Handle patterns with no '0' pattern character. These patterns | |
3361 | * are legal, but must be recodified to make sense. "##.###" -> | |
3362 | * "#0.###". ".###" -> ".0##". | |
3363 | * | |
3364 | * We allow patterns of the form "####" to produce a zeroDigitCount | |
3365 | * of zero (got that?); although this seems like it might make it | |
3366 | * possible for format() to produce empty strings, format() checks | |
3367 | * for this condition and outputs a zero digit in this situation. | |
3368 | * Having a zeroDigitCount of zero yields a minimum integer digits | |
3369 | * of zero, which allows proper round-trip patterns. We don't want | |
3370 | * "#" to become "#0" when toPattern() is called (even though that's | |
3371 | * what it really is, semantically). | |
3372 | */ | |
3373 | if (zeroDigitCount == 0 && sigDigitCount == 0 && | |
3374 | digitLeftCount > 0 && decimalPos >= 0) { | |
3375 | // Handle "###.###" and "###." and ".###" | |
3376 | int n = decimalPos; | |
3377 | if (n == 0) | |
3378 | ++n; // Handle ".###" | |
3379 | digitRightCount = digitLeftCount - n; | |
3380 | digitLeftCount = n - 1; | |
3381 | zeroDigitCount = 1; | |
3382 | } | |
3383 | ||
3384 | // Do syntax checking on the digits, decimal points, and quotes. | |
3385 | if ((decimalPos < 0 && digitRightCount > 0 && sigDigitCount == 0) || | |
3386 | (decimalPos >= 0 && | |
3387 | (sigDigitCount > 0 || | |
3388 | decimalPos < digitLeftCount || | |
3389 | decimalPos > (digitLeftCount + zeroDigitCount))) || | |
3390 | groupingCount == 0 || groupingCount2 == 0 || | |
3391 | (sigDigitCount > 0 && zeroDigitCount > 0) || | |
3392 | subpart > 2) | |
3393 | { // subpart > 2 == unmatched quote | |
3394 | debug("Syntax error") | |
3395 | status = U_PATTERN_SYNTAX_ERROR; | |
3396 | syntaxError(pattern,pos,parseError); | |
3397 | return; | |
3398 | } | |
3399 | ||
3400 | // Make sure pad is at legal position before or after affix. | |
3401 | if (padPos >= 0) { | |
3402 | if (padPos == start) { | |
3403 | padPos = kPadBeforePrefix; | |
3404 | } else if (padPos+2 == sub0Start) { | |
3405 | padPos = kPadAfterPrefix; | |
3406 | } else if (padPos == sub0Limit) { | |
3407 | padPos = kPadBeforeSuffix; | |
3408 | } else if (padPos+2 == sub2Limit) { | |
3409 | padPos = kPadAfterSuffix; | |
3410 | } else { | |
3411 | // Illegal pad position | |
3412 | debug("Illegal pad position") | |
3413 | status = U_ILLEGAL_PAD_POSITION; | |
3414 | syntaxError(pattern,pos,parseError); | |
3415 | return; | |
3416 | } | |
3417 | } | |
3418 | ||
3419 | if (part == 0) { | |
3420 | delete fPosPrefixPattern; | |
3421 | delete fPosSuffixPattern; | |
3422 | delete fNegPrefixPattern; | |
3423 | delete fNegSuffixPattern; | |
3424 | fPosPrefixPattern = new UnicodeString(prefix); | |
3425 | /* test for NULL */ | |
3426 | if (fPosPrefixPattern == 0) { | |
3427 | status = U_MEMORY_ALLOCATION_ERROR; | |
3428 | return; | |
3429 | } | |
3430 | fPosSuffixPattern = new UnicodeString(suffix); | |
3431 | /* test for NULL */ | |
3432 | if (fPosSuffixPattern == 0) { | |
3433 | status = U_MEMORY_ALLOCATION_ERROR; | |
3434 | delete fPosPrefixPattern; | |
3435 | return; | |
3436 | } | |
3437 | fNegPrefixPattern = 0; | |
3438 | fNegSuffixPattern = 0; | |
3439 | ||
3440 | fUseExponentialNotation = (expDigits >= 0); | |
3441 | if (fUseExponentialNotation) { | |
3442 | fMinExponentDigits = expDigits; | |
3443 | } | |
3444 | fExponentSignAlwaysShown = expSignAlways; | |
3445 | fIsCurrencyFormat = isCurrency; | |
3446 | int32_t digitTotalCount = digitLeftCount + zeroDigitCount + digitRightCount; | |
3447 | // The effectiveDecimalPos is the position the decimal is at or | |
3448 | // would be at if there is no decimal. Note that if | |
3449 | // decimalPos<0, then digitTotalCount == digitLeftCount + | |
3450 | // zeroDigitCount. | |
3451 | int32_t effectiveDecimalPos = decimalPos >= 0 ? decimalPos : digitTotalCount; | |
3452 | UBool isSigDig = (sigDigitCount > 0); | |
3453 | setSignificantDigitsUsed(isSigDig); | |
3454 | if (isSigDig) { | |
3455 | setMinimumSignificantDigits(sigDigitCount); | |
3456 | setMaximumSignificantDigits(sigDigitCount + digitRightCount); | |
3457 | } else { | |
3458 | int32_t minInt = effectiveDecimalPos - digitLeftCount; | |
3459 | setMinimumIntegerDigits(minInt); | |
3460 | setMaximumIntegerDigits(fUseExponentialNotation | |
3461 | ? digitLeftCount + getMinimumIntegerDigits() | |
3462 | : kDoubleIntegerDigits); | |
3463 | setMaximumFractionDigits(decimalPos >= 0 | |
3464 | ? (digitTotalCount - decimalPos) : 0); | |
3465 | setMinimumFractionDigits(decimalPos >= 0 | |
3466 | ? (digitLeftCount + zeroDigitCount - decimalPos) : 0); | |
3467 | } | |
3468 | setGroupingUsed(groupingCount > 0); | |
3469 | fGroupingSize = (groupingCount > 0) ? groupingCount : 0; | |
3470 | fGroupingSize2 = (groupingCount2 > 0 && groupingCount2 != groupingCount) | |
3471 | ? groupingCount2 : 0; | |
3472 | fMultiplier = multiplier; | |
3473 | setDecimalSeparatorAlwaysShown(decimalPos == 0 | |
3474 | || decimalPos == digitTotalCount); | |
3475 | if (padPos >= 0) { | |
3476 | fPadPosition = (EPadPosition) padPos; | |
3477 | // To compute the format width, first set up sub0Limit - | |
3478 | // sub0Start. Add in prefix/suffix length later. | |
3479 | ||
3480 | // fFormatWidth = prefix.length() + suffix.length() + | |
3481 | // sub0Limit - sub0Start; | |
3482 | fFormatWidth = sub0Limit - sub0Start; | |
3483 | fPad = padChar; | |
3484 | } else { | |
3485 | fFormatWidth = 0; | |
3486 | } | |
3487 | if (roundingPos >= 0) { | |
3488 | roundingInc.fDecimalAt = effectiveDecimalPos - roundingPos; | |
3489 | if (fRoundingIncrement != NULL) { | |
3490 | *fRoundingIncrement = roundingInc; | |
3491 | } else { | |
3492 | fRoundingIncrement = new DigitList(roundingInc); | |
3493 | /* test for NULL */ | |
3494 | if (fRoundingIncrement == 0) { | |
3495 | status = U_MEMORY_ALLOCATION_ERROR; | |
3496 | delete fPosPrefixPattern; | |
3497 | delete fPosSuffixPattern; | |
3498 | return; | |
3499 | } | |
3500 | } | |
3501 | fRoundingDouble = fRoundingIncrement->getDouble(); | |
3502 | fRoundingMode = kRoundHalfEven; | |
3503 | } else { | |
3504 | setRoundingIncrement(0.0); | |
3505 | } | |
3506 | } else { | |
3507 | fNegPrefixPattern = new UnicodeString(prefix); | |
3508 | /* test for NULL */ | |
3509 | if (fNegPrefixPattern == 0) { | |
3510 | status = U_MEMORY_ALLOCATION_ERROR; | |
3511 | return; | |
3512 | } | |
3513 | fNegSuffixPattern = new UnicodeString(suffix); | |
3514 | /* test for NULL */ | |
3515 | if (fNegSuffixPattern == 0) { | |
3516 | delete fNegPrefixPattern; | |
3517 | status = U_MEMORY_ALLOCATION_ERROR; | |
3518 | return; | |
3519 | } | |
3520 | } | |
3521 | } | |
3522 | ||
3523 | if (pattern.length() == 0) { | |
3524 | delete fNegPrefixPattern; | |
3525 | delete fNegSuffixPattern; | |
3526 | fNegPrefixPattern = NULL; | |
3527 | fNegSuffixPattern = NULL; | |
3528 | if (fPosPrefixPattern != NULL) { | |
3529 | fPosPrefixPattern->remove(); | |
3530 | } else { | |
3531 | fPosPrefixPattern = new UnicodeString(); | |
3532 | /* test for NULL */ | |
3533 | if (fPosPrefixPattern == 0) { | |
3534 | status = U_MEMORY_ALLOCATION_ERROR; | |
3535 | return; | |
3536 | } | |
3537 | } | |
3538 | if (fPosSuffixPattern != NULL) { | |
3539 | fPosSuffixPattern->remove(); | |
3540 | } else { | |
3541 | fPosSuffixPattern = new UnicodeString(); | |
3542 | /* test for NULL */ | |
3543 | if (fPosSuffixPattern == 0) { | |
3544 | delete fPosPrefixPattern; | |
3545 | status = U_MEMORY_ALLOCATION_ERROR; | |
3546 | return; | |
3547 | } | |
3548 | } | |
3549 | ||
3550 | setMinimumIntegerDigits(0); | |
3551 | setMaximumIntegerDigits(kDoubleIntegerDigits); | |
3552 | setMinimumFractionDigits(0); | |
3553 | setMaximumFractionDigits(kDoubleFractionDigits); | |
3554 | ||
3555 | fUseExponentialNotation = FALSE; | |
3556 | fIsCurrencyFormat = FALSE; | |
3557 | setGroupingUsed(FALSE); | |
3558 | fGroupingSize = 0; | |
3559 | fGroupingSize2 = 0; | |
3560 | fMultiplier = 1; | |
3561 | setDecimalSeparatorAlwaysShown(FALSE); | |
3562 | fFormatWidth = 0; | |
3563 | setRoundingIncrement(0.0); | |
3564 | } | |
3565 | ||
3566 | // If there was no negative pattern, or if the negative pattern is | |
3567 | // identical to the positive pattern, then prepend the minus sign to the | |
3568 | // positive pattern to form the negative pattern. | |
3569 | if (fNegPrefixPattern == NULL || | |
3570 | (*fNegPrefixPattern == *fPosPrefixPattern | |
3571 | && *fNegSuffixPattern == *fPosSuffixPattern)) { | |
3572 | _copy_us_ptr(&fNegSuffixPattern, fPosSuffixPattern); | |
3573 | if (fNegPrefixPattern == NULL) { | |
3574 | fNegPrefixPattern = new UnicodeString(); | |
3575 | /* test for NULL */ | |
3576 | if (fNegPrefixPattern == 0) { | |
3577 | status = U_MEMORY_ALLOCATION_ERROR; | |
3578 | return; | |
3579 | } | |
3580 | } else { | |
3581 | fNegPrefixPattern->remove(); | |
3582 | } | |
3583 | fNegPrefixPattern->append(kQuote).append(kPatternMinus) | |
3584 | .append(*fPosPrefixPattern); | |
3585 | } | |
3586 | #ifdef FMT_DEBUG | |
3587 | UnicodeString s; | |
3588 | s.append("\"").append(pattern).append("\"->"); | |
3589 | debugout(s); | |
3590 | #endif | |
3591 | expandAffixes(); | |
3592 | if (fFormatWidth > 0) { | |
3593 | // Finish computing format width (see above) | |
3594 | fFormatWidth += fPositivePrefix.length() + fPositiveSuffix.length(); | |
3595 | } | |
3596 | } | |
3597 | ||
3598 | /** | |
3599 | * Sets the maximum number of digits allowed in the integer portion of a | |
3600 | * number. This override limits the integer digit count to 309. | |
3601 | * @see NumberFormat#setMaximumIntegerDigits | |
3602 | */ | |
3603 | void DecimalFormat::setMaximumIntegerDigits(int32_t newValue) { | |
3604 | NumberFormat::setMaximumIntegerDigits(_min(newValue, kDoubleIntegerDigits)); | |
3605 | } | |
3606 | ||
3607 | /** | |
3608 | * Sets the minimum number of digits allowed in the integer portion of a | |
3609 | * number. This override limits the integer digit count to 309. | |
3610 | * @see NumberFormat#setMinimumIntegerDigits | |
3611 | */ | |
3612 | void DecimalFormat::setMinimumIntegerDigits(int32_t newValue) { | |
3613 | NumberFormat::setMinimumIntegerDigits(_min(newValue, kDoubleIntegerDigits)); | |
3614 | } | |
3615 | ||
3616 | /** | |
3617 | * Sets the maximum number of digits allowed in the fraction portion of a | |
3618 | * number. This override limits the fraction digit count to 340. | |
3619 | * @see NumberFormat#setMaximumFractionDigits | |
3620 | */ | |
3621 | void DecimalFormat::setMaximumFractionDigits(int32_t newValue) { | |
3622 | NumberFormat::setMaximumFractionDigits(_min(newValue, kDoubleFractionDigits)); | |
3623 | } | |
3624 | ||
3625 | /** | |
3626 | * Sets the minimum number of digits allowed in the fraction portion of a | |
3627 | * number. This override limits the fraction digit count to 340. | |
3628 | * @see NumberFormat#setMinimumFractionDigits | |
3629 | */ | |
3630 | void DecimalFormat::setMinimumFractionDigits(int32_t newValue) { | |
3631 | NumberFormat::setMinimumFractionDigits(_min(newValue, kDoubleFractionDigits)); | |
3632 | } | |
3633 | ||
3634 | int32_t DecimalFormat::getMinimumSignificantDigits() const { | |
3635 | return fMinSignificantDigits; | |
3636 | } | |
3637 | ||
3638 | int32_t DecimalFormat::getMaximumSignificantDigits() const { | |
3639 | return fMaxSignificantDigits; | |
3640 | } | |
3641 | ||
3642 | void DecimalFormat::setMinimumSignificantDigits(int32_t min) { | |
3643 | if (min < 1) { | |
3644 | min = 1; | |
3645 | } | |
3646 | // pin max sig dig to >= min | |
3647 | int32_t max = _max(fMaxSignificantDigits, min); | |
3648 | fMinSignificantDigits = min; | |
3649 | fMaxSignificantDigits = max; | |
3650 | } | |
3651 | ||
3652 | void DecimalFormat::setMaximumSignificantDigits(int32_t max) { | |
3653 | if (max < 1) { | |
3654 | max = 1; | |
3655 | } | |
3656 | // pin min sig dig to 1..max | |
3657 | U_ASSERT(fMinSignificantDigits >= 1); | |
3658 | int32_t min = _min(fMinSignificantDigits, max); | |
3659 | fMinSignificantDigits = min; | |
3660 | fMaxSignificantDigits = max; | |
3661 | } | |
3662 | ||
3663 | UBool DecimalFormat::areSignificantDigitsUsed() const { | |
3664 | return fUseSignificantDigits; | |
3665 | } | |
3666 | ||
3667 | void DecimalFormat::setSignificantDigitsUsed(UBool useSignificantDigits) { | |
3668 | fUseSignificantDigits = useSignificantDigits; | |
3669 | } | |
3670 | ||
3671 | void DecimalFormat::setCurrency(const UChar* theCurrency, UErrorCode& ec) { | |
3672 | // If we are a currency format, then modify our affixes to | |
3673 | // encode the currency symbol for the given currency in our | |
3674 | // locale, and adjust the decimal digits and rounding for the | |
3675 | // given currency. | |
3676 | ||
3677 | // Note: The code is ordered so that this object is *not changed* | |
3678 | // until we are sure we are going to succeed. | |
3679 | ||
3680 | // NULL or empty currency is *legal* and indicates no currency. | |
3681 | UBool isCurr = (theCurrency && *theCurrency); | |
3682 | ||
3683 | double rounding = 0.0; | |
3684 | int32_t frac = 0; | |
3685 | if (fIsCurrencyFormat && isCurr) { | |
3686 | rounding = ucurr_getRoundingIncrement(theCurrency, &ec); | |
3687 | frac = ucurr_getDefaultFractionDigits(theCurrency, &ec); | |
3688 | } | |
3689 | ||
3690 | NumberFormat::setCurrency(theCurrency, ec); | |
3691 | if (U_FAILURE(ec)) return; | |
3692 | ||
3693 | if (fIsCurrencyFormat) { | |
3694 | // NULL or empty currency is *legal* and indicates no currency. | |
3695 | if (isCurr) { | |
3696 | setRoundingIncrement(rounding); | |
3697 | setMinimumFractionDigits(frac); | |
3698 | setMaximumFractionDigits(frac); | |
3699 | } | |
3700 | expandAffixes(); | |
3701 | } | |
3702 | } | |
3703 | ||
3704 | // Deprecated variant with no UErrorCode parameter | |
3705 | void DecimalFormat::setCurrency(const UChar* theCurrency) { | |
3706 | UErrorCode ec = U_ZERO_ERROR; | |
3707 | setCurrency(theCurrency, ec); | |
3708 | } | |
3709 | ||
3710 | void DecimalFormat::getEffectiveCurrency(UChar* result, UErrorCode& /*ec*/) const { | |
3711 | const UChar* c = getCurrency(); | |
3712 | if (*c == 0) { | |
3713 | const UnicodeString &intl = | |
3714 | fSymbols->getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol); | |
3715 | c = intl.getBuffer(); // ok for intl to go out of scope | |
3716 | } | |
3717 | u_strncpy(result, c, 3); | |
3718 | result[3] = 0; | |
3719 | } | |
3720 | ||
3721 | /** | |
3722 | * Return the number of fraction digits to display, or the total | |
3723 | * number of digits for significant digit formats and exponential | |
3724 | * formats. | |
3725 | */ | |
3726 | int32_t | |
3727 | DecimalFormat::precision(UBool isIntegral) const { | |
3728 | if (areSignificantDigitsUsed()) { | |
3729 | return getMaximumSignificantDigits(); | |
3730 | } else if (fUseExponentialNotation) { | |
3731 | return getMinimumIntegerDigits() + getMaximumFractionDigits(); | |
3732 | } else { | |
3733 | return isIntegral ? 0 : getMaximumFractionDigits(); | |
3734 | } | |
3735 | } | |
3736 | ||
3737 | U_NAMESPACE_END | |
3738 | ||
3739 | #endif /* #if !UCONFIG_NO_FORMATTING */ | |
3740 | ||
3741 | //eof |