]>
Commit | Line | Data |
---|---|---|
1 | // © 2016 and later: Unicode, Inc. and others. | |
2 | // License & terms of use: http://www.unicode.org/copyright.html | |
3 | /******************************************************************** | |
4 | * COPYRIGHT: | |
5 | * Copyright (c) 2005-2016, International Business Machines Corporation and | |
6 | * others. All Rights Reserved. | |
7 | ********************************************************************/ | |
8 | /************************************************************************ | |
9 | * Tests for the UText and UTextIterator text abstraction classses | |
10 | * | |
11 | ************************************************************************/ | |
12 | ||
13 | #include <string.h> | |
14 | #include <stdio.h> | |
15 | #include <stdlib.h> | |
16 | #include "unicode/utypes.h" | |
17 | #include "unicode/utext.h" | |
18 | #include "unicode/utf8.h" | |
19 | #include "unicode/utf16.h" | |
20 | #include "unicode/ustring.h" | |
21 | #include "unicode/uchriter.h" | |
22 | #include "cmemory.h" | |
23 | #include "cstr.h" | |
24 | #include "utxttest.h" | |
25 | ||
26 | static UBool gFailed = FALSE; | |
27 | static int gTestNum = 0; | |
28 | ||
29 | // Forward decl | |
30 | UText *openFragmentedUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status); | |
31 | ||
32 | #define TEST_ASSERT(x) \ | |
33 | { if ((x)==FALSE) {errln("Test #%d failure in file %s at line %d\n", gTestNum, __FILE__, __LINE__);\ | |
34 | gFailed = TRUE;\ | |
35 | }} | |
36 | ||
37 | ||
38 | #define TEST_SUCCESS(status) \ | |
39 | { if (U_FAILURE(status)) {errln("Test #%d failure in file %s at line %d. Error = \"%s\"\n", \ | |
40 | gTestNum, __FILE__, __LINE__, u_errorName(status)); \ | |
41 | gFailed = TRUE;\ | |
42 | }} | |
43 | ||
44 | UTextTest::UTextTest() { | |
45 | } | |
46 | ||
47 | UTextTest::~UTextTest() { | |
48 | } | |
49 | ||
50 | ||
51 | void | |
52 | UTextTest::runIndexedTest(int32_t index, UBool exec, | |
53 | const char* &name, char* /*par*/) { | |
54 | TESTCASE_AUTO_BEGIN; | |
55 | TESTCASE_AUTO(TextTest); | |
56 | TESTCASE_AUTO(ErrorTest); | |
57 | TESTCASE_AUTO(FreezeTest); | |
58 | TESTCASE_AUTO(Ticket5560); | |
59 | TESTCASE_AUTO(Ticket6847); | |
60 | TESTCASE_AUTO(Ticket10562); | |
61 | TESTCASE_AUTO(Ticket10983); | |
62 | TESTCASE_AUTO(Ticket12130); | |
63 | TESTCASE_AUTO(Ticket13344); | |
64 | TESTCASE_AUTO_END; | |
65 | } | |
66 | ||
67 | // | |
68 | // Quick and dirty random number generator. | |
69 | // (don't use library so that results are portable. | |
70 | static uint32_t m_seed = 1; | |
71 | static uint32_t m_rand() | |
72 | { | |
73 | m_seed = m_seed * 1103515245 + 12345; | |
74 | return (uint32_t)(m_seed/65536) % 32768; | |
75 | } | |
76 | ||
77 | ||
78 | // | |
79 | // TextTest() | |
80 | // | |
81 | // Top Level function for UText testing. | |
82 | // Specifies the strings to be tested, with the acutal testing itself | |
83 | // being carried out in another function, TestString(). | |
84 | // | |
85 | void UTextTest::TextTest() { | |
86 | int32_t i, j; | |
87 | ||
88 | TestString("abcd\\U00010001xyz"); | |
89 | TestString(""); | |
90 | ||
91 | // Supplementary chars at start or end | |
92 | TestString("\\U00010001"); | |
93 | TestString("abc\\U00010001"); | |
94 | TestString("\\U00010001abc"); | |
95 | ||
96 | // Test simple strings of lengths 1 to 60, looking for glitches at buffer boundaries | |
97 | UnicodeString s; | |
98 | for (i=1; i<60; i++) { | |
99 | s.truncate(0); | |
100 | for (j=0; j<i; j++) { | |
101 | if (j+0x30 == 0x5c) { | |
102 | // backslash. Needs to be escaped | |
103 | s.append((UChar)0x5c); | |
104 | } | |
105 | s.append(UChar(j+0x30)); | |
106 | } | |
107 | TestString(s); | |
108 | } | |
109 | ||
110 | // Test strings with odd-aligned supplementary chars, | |
111 | // looking for glitches at buffer boundaries | |
112 | for (i=1; i<60; i++) { | |
113 | s.truncate(0); | |
114 | s.append((UChar)0x41); | |
115 | for (j=0; j<i; j++) { | |
116 | s.append(UChar32(j+0x11000)); | |
117 | } | |
118 | TestString(s); | |
119 | } | |
120 | ||
121 | // String of chars of randomly varying size in utf-8 representation. | |
122 | // Exercise the mapping, and the varying sized buffer. | |
123 | // | |
124 | s.truncate(0); | |
125 | UChar32 c1 = 0; | |
126 | UChar32 c2 = 0x100; | |
127 | UChar32 c3 = 0xa000; | |
128 | UChar32 c4 = 0x11000; | |
129 | for (i=0; i<1000; i++) { | |
130 | int len8 = m_rand()%4 + 1; | |
131 | switch (len8) { | |
132 | case 1: | |
133 | c1 = (c1+1)%0x80; | |
134 | // don't put 0 into string (0 terminated strings for some tests) | |
135 | // don't put '\', will cause unescape() to fail. | |
136 | if (c1==0x5c || c1==0) { | |
137 | c1++; | |
138 | } | |
139 | s.append(c1); | |
140 | break; | |
141 | case 2: | |
142 | s.append(c2++); | |
143 | break; | |
144 | case 3: | |
145 | s.append(c3++); | |
146 | break; | |
147 | case 4: | |
148 | s.append(c4++); | |
149 | break; | |
150 | } | |
151 | } | |
152 | TestString(s); | |
153 | } | |
154 | ||
155 | ||
156 | // | |
157 | // TestString() Run a suite of UText tests on a string. | |
158 | // The test string is unescaped before use. | |
159 | // | |
160 | void UTextTest::TestString(const UnicodeString &s) { | |
161 | int32_t i; | |
162 | int32_t j; | |
163 | UChar32 c; | |
164 | int32_t cpCount = 0; | |
165 | UErrorCode status = U_ZERO_ERROR; | |
166 | UText *ut = NULL; | |
167 | int32_t saLen; | |
168 | ||
169 | UnicodeString sa = s.unescape(); | |
170 | saLen = sa.length(); | |
171 | ||
172 | // | |
173 | // Build up a mapping between code points and UTF-16 code unit indexes. | |
174 | // | |
175 | m *cpMap = new m[sa.length() + 1]; | |
176 | j = 0; | |
177 | for (i=0; i<sa.length(); i=sa.moveIndex32(i, 1)) { | |
178 | c = sa.char32At(i); | |
179 | cpMap[j].nativeIdx = i; | |
180 | cpMap[j].cp = c; | |
181 | j++; | |
182 | cpCount++; | |
183 | } | |
184 | cpMap[j].nativeIdx = i; // position following the last char in utf-16 string. | |
185 | ||
186 | ||
187 | // UChar * test, null terminated | |
188 | status = U_ZERO_ERROR; | |
189 | UChar *buf = new UChar[saLen+1]; | |
190 | sa.extract(buf, saLen+1, status); | |
191 | TEST_SUCCESS(status); | |
192 | ut = utext_openUChars(NULL, buf, -1, &status); | |
193 | TEST_SUCCESS(status); | |
194 | TestAccess(sa, ut, cpCount, cpMap); | |
195 | utext_close(ut); | |
196 | delete [] buf; | |
197 | ||
198 | // UChar * test, with length | |
199 | status = U_ZERO_ERROR; | |
200 | buf = new UChar[saLen+1]; | |
201 | sa.extract(buf, saLen+1, status); | |
202 | TEST_SUCCESS(status); | |
203 | ut = utext_openUChars(NULL, buf, saLen, &status); | |
204 | TEST_SUCCESS(status); | |
205 | TestAccess(sa, ut, cpCount, cpMap); | |
206 | utext_close(ut); | |
207 | delete [] buf; | |
208 | ||
209 | ||
210 | // UnicodeString test | |
211 | status = U_ZERO_ERROR; | |
212 | ut = utext_openUnicodeString(NULL, &sa, &status); | |
213 | TEST_SUCCESS(status); | |
214 | TestAccess(sa, ut, cpCount, cpMap); | |
215 | TestCMR(sa, ut, cpCount, cpMap, cpMap); | |
216 | utext_close(ut); | |
217 | ||
218 | ||
219 | // Const UnicodeString test | |
220 | status = U_ZERO_ERROR; | |
221 | ut = utext_openConstUnicodeString(NULL, &sa, &status); | |
222 | TEST_SUCCESS(status); | |
223 | TestAccess(sa, ut, cpCount, cpMap); | |
224 | utext_close(ut); | |
225 | ||
226 | ||
227 | // Replaceable test. (UnicodeString inherits Replaceable) | |
228 | status = U_ZERO_ERROR; | |
229 | ut = utext_openReplaceable(NULL, &sa, &status); | |
230 | TEST_SUCCESS(status); | |
231 | TestAccess(sa, ut, cpCount, cpMap); | |
232 | TestCMR(sa, ut, cpCount, cpMap, cpMap); | |
233 | utext_close(ut); | |
234 | ||
235 | // Character Iterator Tests | |
236 | status = U_ZERO_ERROR; | |
237 | const UChar *cbuf = sa.getBuffer(); | |
238 | CharacterIterator *ci = new UCharCharacterIterator(cbuf, saLen, status); | |
239 | TEST_SUCCESS(status); | |
240 | ut = utext_openCharacterIterator(NULL, ci, &status); | |
241 | TEST_SUCCESS(status); | |
242 | TestAccess(sa, ut, cpCount, cpMap); | |
243 | utext_close(ut); | |
244 | delete ci; | |
245 | ||
246 | ||
247 | // Fragmented UnicodeString (Chunk size of one) | |
248 | // | |
249 | status = U_ZERO_ERROR; | |
250 | ut = openFragmentedUnicodeString(NULL, &sa, &status); | |
251 | TEST_SUCCESS(status); | |
252 | TestAccess(sa, ut, cpCount, cpMap); | |
253 | utext_close(ut); | |
254 | ||
255 | // | |
256 | // UTF-8 test | |
257 | // | |
258 | ||
259 | // Convert the test string from UnicodeString to (char *) in utf-8 format | |
260 | int32_t u8Len = sa.extract(0, sa.length(), NULL, 0, "utf-8"); | |
261 | char *u8String = new char[u8Len + 1]; | |
262 | sa.extract(0, sa.length(), u8String, u8Len+1, "utf-8"); | |
263 | ||
264 | // Build up the map of code point indices in the utf-8 string | |
265 | m * u8Map = new m[sa.length() + 1]; | |
266 | i = 0; // native utf-8 index | |
267 | for (j=0; j<cpCount ; j++) { // code point number | |
268 | u8Map[j].nativeIdx = i; | |
269 | U8_NEXT(u8String, i, u8Len, c) | |
270 | u8Map[j].cp = c; | |
271 | } | |
272 | u8Map[cpCount].nativeIdx = u8Len; // position following the last char in utf-8 string. | |
273 | ||
274 | // Do the test itself | |
275 | status = U_ZERO_ERROR; | |
276 | ut = utext_openUTF8(NULL, u8String, -1, &status); | |
277 | TEST_SUCCESS(status); | |
278 | TestAccess(sa, ut, cpCount, u8Map); | |
279 | utext_close(ut); | |
280 | ||
281 | ||
282 | ||
283 | delete []cpMap; | |
284 | delete []u8Map; | |
285 | delete []u8String; | |
286 | } | |
287 | ||
288 | // TestCMR test Copy, Move and Replace operations. | |
289 | // us UnicodeString containing the test text. | |
290 | // ut UText containing the same test text. | |
291 | // cpCount number of code points in the test text. | |
292 | // nativeMap Mapping from code points to native indexes for the UText. | |
293 | // u16Map Mapping from code points to UTF-16 indexes, for use with the UnicodeString. | |
294 | // | |
295 | // This function runs a whole series of opertions on each incoming UText. | |
296 | // The UText is deep-cloned prior to each operation, so that the original UText remains unchanged. | |
297 | // | |
298 | void UTextTest::TestCMR(const UnicodeString &us, UText *ut, int cpCount, m *nativeMap, m *u16Map) { | |
299 | TEST_ASSERT(utext_isWritable(ut) == TRUE); | |
300 | ||
301 | int srcLengthType; // Loop variables for selecting the postion and length | |
302 | int srcPosType; // of the block to operate on within the source text. | |
303 | int destPosType; | |
304 | ||
305 | int srcIndex = 0; // Code Point indexes of the block to operate on for | |
306 | int srcLength = 0; // a specific test. | |
307 | ||
308 | int destIndex = 0; // Code point index of the destination for a copy/move test. | |
309 | ||
310 | int32_t nativeStart = 0; // Native unit indexes for a test. | |
311 | int32_t nativeLimit = 0; | |
312 | int32_t nativeDest = 0; | |
313 | ||
314 | int32_t u16Start = 0; // UTF-16 indexes for a test. | |
315 | int32_t u16Limit = 0; // used when performing the same operation in a Unicode String | |
316 | int32_t u16Dest = 0; | |
317 | ||
318 | // Iterate over a whole series of source index, length and a target indexes. | |
319 | // This is done with code point indexes; these will be later translated to native | |
320 | // indexes using the cpMap. | |
321 | for (srcLengthType=1; srcLengthType<=3; srcLengthType++) { | |
322 | switch (srcLengthType) { | |
323 | case 1: srcLength = 1; break; | |
324 | case 2: srcLength = 5; break; | |
325 | case 3: srcLength = cpCount / 3; | |
326 | } | |
327 | for (srcPosType=1; srcPosType<=5; srcPosType++) { | |
328 | switch (srcPosType) { | |
329 | case 1: srcIndex = 0; break; | |
330 | case 2: srcIndex = 1; break; | |
331 | case 3: srcIndex = cpCount - srcLength; break; | |
332 | case 4: srcIndex = cpCount - srcLength - 1; break; | |
333 | case 5: srcIndex = cpCount / 2; break; | |
334 | } | |
335 | if (srcIndex < 0 || srcIndex + srcLength > cpCount) { | |
336 | // filter out bogus test cases - | |
337 | // those with a source range that falls of an edge of the string. | |
338 | continue; | |
339 | } | |
340 | ||
341 | // | |
342 | // Copy and move tests. | |
343 | // iterate over a variety of destination positions. | |
344 | // | |
345 | for (destPosType=1; destPosType<=4; destPosType++) { | |
346 | switch (destPosType) { | |
347 | case 1: destIndex = 0; break; | |
348 | case 2: destIndex = 1; break; | |
349 | case 3: destIndex = srcIndex - 1; break; | |
350 | case 4: destIndex = srcIndex + srcLength + 1; break; | |
351 | case 5: destIndex = cpCount-1; break; | |
352 | case 6: destIndex = cpCount; break; | |
353 | } | |
354 | if (destIndex<0 || destIndex>cpCount) { | |
355 | // filter out bogus test cases. | |
356 | continue; | |
357 | } | |
358 | ||
359 | nativeStart = nativeMap[srcIndex].nativeIdx; | |
360 | nativeLimit = nativeMap[srcIndex+srcLength].nativeIdx; | |
361 | nativeDest = nativeMap[destIndex].nativeIdx; | |
362 | ||
363 | u16Start = u16Map[srcIndex].nativeIdx; | |
364 | u16Limit = u16Map[srcIndex+srcLength].nativeIdx; | |
365 | u16Dest = u16Map[destIndex].nativeIdx; | |
366 | ||
367 | gFailed = FALSE; | |
368 | TestCopyMove(us, ut, FALSE, | |
369 | nativeStart, nativeLimit, nativeDest, | |
370 | u16Start, u16Limit, u16Dest); | |
371 | ||
372 | TestCopyMove(us, ut, TRUE, | |
373 | nativeStart, nativeLimit, nativeDest, | |
374 | u16Start, u16Limit, u16Dest); | |
375 | ||
376 | if (gFailed) { | |
377 | return; | |
378 | } | |
379 | } | |
380 | ||
381 | // | |
382 | // Replace tests. | |
383 | // | |
384 | UnicodeString fullRepString("This is an arbitrary string that will be used as replacement text"); | |
385 | for (int32_t replStrLen=0; replStrLen<20; replStrLen++) { | |
386 | UnicodeString repStr(fullRepString, 0, replStrLen); | |
387 | TestReplace(us, ut, | |
388 | nativeStart, nativeLimit, | |
389 | u16Start, u16Limit, | |
390 | repStr); | |
391 | if (gFailed) { | |
392 | return; | |
393 | } | |
394 | } | |
395 | ||
396 | } | |
397 | } | |
398 | ||
399 | } | |
400 | ||
401 | // | |
402 | // TestCopyMove run a single test case for utext_copy. | |
403 | // Test cases are created in TestCMR and dispatched here for execution. | |
404 | // | |
405 | void UTextTest::TestCopyMove(const UnicodeString &us, UText *ut, UBool move, | |
406 | int32_t nativeStart, int32_t nativeLimit, int32_t nativeDest, | |
407 | int32_t u16Start, int32_t u16Limit, int32_t u16Dest) | |
408 | { | |
409 | UErrorCode status = U_ZERO_ERROR; | |
410 | UText *targetUT = NULL; | |
411 | gTestNum++; | |
412 | gFailed = FALSE; | |
413 | ||
414 | // | |
415 | // clone the UText. The test will be run in the cloned copy | |
416 | // so that we don't alter the original. | |
417 | // | |
418 | targetUT = utext_clone(NULL, ut, TRUE, FALSE, &status); | |
419 | TEST_SUCCESS(status); | |
420 | UnicodeString targetUS(us); // And copy the reference string. | |
421 | ||
422 | // do the test operation first in the reference | |
423 | targetUS.copy(u16Start, u16Limit, u16Dest); | |
424 | if (move) { | |
425 | // delete out the source range. | |
426 | if (u16Limit < u16Dest) { | |
427 | targetUS.removeBetween(u16Start, u16Limit); | |
428 | } else { | |
429 | int32_t amtCopied = u16Limit - u16Start; | |
430 | targetUS.removeBetween(u16Start+amtCopied, u16Limit+amtCopied); | |
431 | } | |
432 | } | |
433 | ||
434 | // Do the same operation in the UText under test | |
435 | utext_copy(targetUT, nativeStart, nativeLimit, nativeDest, move, &status); | |
436 | if (nativeDest > nativeStart && nativeDest < nativeLimit) { | |
437 | TEST_ASSERT(status == U_INDEX_OUTOFBOUNDS_ERROR); | |
438 | } else { | |
439 | TEST_SUCCESS(status); | |
440 | ||
441 | // Compare the results of the two parallel tests | |
442 | int32_t usi = 0; // UnicodeString postion, utf-16 index. | |
443 | int64_t uti = 0; // UText position, native index. | |
444 | int32_t cpi; // char32 position (code point index) | |
445 | UChar32 usc; // code point from Unicode String | |
446 | UChar32 utc; // code point from UText | |
447 | utext_setNativeIndex(targetUT, 0); | |
448 | for (cpi=0; ; cpi++) { | |
449 | usc = targetUS.char32At(usi); | |
450 | utc = utext_next32(targetUT); | |
451 | if (utc < 0) { | |
452 | break; | |
453 | } | |
454 | TEST_ASSERT(uti == usi); | |
455 | TEST_ASSERT(utc == usc); | |
456 | usi = targetUS.moveIndex32(usi, 1); | |
457 | uti = utext_getNativeIndex(targetUT); | |
458 | if (gFailed) { | |
459 | goto cleanupAndReturn; | |
460 | } | |
461 | } | |
462 | int64_t expectedNativeLength = utext_nativeLength(ut); | |
463 | if (move == FALSE) { | |
464 | expectedNativeLength += nativeLimit - nativeStart; | |
465 | } | |
466 | uti = utext_getNativeIndex(targetUT); | |
467 | TEST_ASSERT(uti == expectedNativeLength); | |
468 | } | |
469 | ||
470 | cleanupAndReturn: | |
471 | utext_close(targetUT); | |
472 | } | |
473 | ||
474 | ||
475 | // | |
476 | // TestReplace Test a single Replace operation. | |
477 | // | |
478 | void UTextTest::TestReplace( | |
479 | const UnicodeString &us, // reference UnicodeString in which to do the replace | |
480 | UText *ut, // UnicodeText object under test. | |
481 | int32_t nativeStart, // Range to be replaced, in UText native units. | |
482 | int32_t nativeLimit, | |
483 | int32_t u16Start, // Range to be replaced, in UTF-16 units | |
484 | int32_t u16Limit, // for use in the reference UnicodeString. | |
485 | const UnicodeString &repStr) // The replacement string | |
486 | { | |
487 | UErrorCode status = U_ZERO_ERROR; | |
488 | UText *targetUT = NULL; | |
489 | gTestNum++; | |
490 | gFailed = FALSE; | |
491 | ||
492 | // | |
493 | // clone the target UText. The test will be run in the cloned copy | |
494 | // so that we don't alter the original. | |
495 | // | |
496 | targetUT = utext_clone(NULL, ut, TRUE, FALSE, &status); | |
497 | TEST_SUCCESS(status); | |
498 | UnicodeString targetUS(us); // And copy the reference string. | |
499 | ||
500 | // | |
501 | // Do the replace operation in the Unicode String, to | |
502 | // produce a reference result. | |
503 | // | |
504 | targetUS.replace(u16Start, u16Limit-u16Start, repStr); | |
505 | ||
506 | // | |
507 | // Do the replace on the UText under test | |
508 | // | |
509 | const UChar *rs = repStr.getBuffer(); | |
510 | int32_t rsLen = repStr.length(); | |
511 | int32_t actualDelta = utext_replace(targetUT, nativeStart, nativeLimit, rs, rsLen, &status); | |
512 | int32_t expectedDelta = repStr.length() - (nativeLimit - nativeStart); | |
513 | TEST_ASSERT(actualDelta == expectedDelta); | |
514 | ||
515 | // | |
516 | // Compare the results | |
517 | // | |
518 | int32_t usi = 0; // UnicodeString postion, utf-16 index. | |
519 | int64_t uti = 0; // UText position, native index. | |
520 | int32_t cpi; // char32 position (code point index) | |
521 | UChar32 usc; // code point from Unicode String | |
522 | UChar32 utc; // code point from UText | |
523 | int64_t expectedNativeLength = 0; | |
524 | utext_setNativeIndex(targetUT, 0); | |
525 | for (cpi=0; ; cpi++) { | |
526 | usc = targetUS.char32At(usi); | |
527 | utc = utext_next32(targetUT); | |
528 | if (utc < 0) { | |
529 | break; | |
530 | } | |
531 | TEST_ASSERT(uti == usi); | |
532 | TEST_ASSERT(utc == usc); | |
533 | usi = targetUS.moveIndex32(usi, 1); | |
534 | uti = utext_getNativeIndex(targetUT); | |
535 | if (gFailed) { | |
536 | goto cleanupAndReturn; | |
537 | } | |
538 | } | |
539 | expectedNativeLength = utext_nativeLength(ut) + expectedDelta; | |
540 | uti = utext_getNativeIndex(targetUT); | |
541 | TEST_ASSERT(uti == expectedNativeLength); | |
542 | ||
543 | cleanupAndReturn: | |
544 | utext_close(targetUT); | |
545 | } | |
546 | ||
547 | // | |
548 | // TestAccess Test the read only access functions on a UText, including cloning. | |
549 | // The text is accessed in a variety of ways, and compared with | |
550 | // the reference UnicodeString. | |
551 | // | |
552 | void UTextTest::TestAccess(const UnicodeString &us, UText *ut, int cpCount, m *cpMap) { | |
553 | // Run the standard tests on the caller-supplied UText. | |
554 | TestAccessNoClone(us, ut, cpCount, cpMap); | |
555 | ||
556 | // Re-run tests on a shallow clone. | |
557 | utext_setNativeIndex(ut, 0); | |
558 | UErrorCode status = U_ZERO_ERROR; | |
559 | UText *shallowClone = utext_clone(NULL, ut, FALSE /*deep*/, FALSE /*readOnly*/, &status); | |
560 | TEST_SUCCESS(status); | |
561 | TestAccessNoClone(us, shallowClone, cpCount, cpMap); | |
562 | ||
563 | // | |
564 | // Rerun again on a deep clone. | |
565 | // Note that text providers are not required to provide deep cloning, | |
566 | // so unsupported errors are ignored. | |
567 | // | |
568 | status = U_ZERO_ERROR; | |
569 | utext_setNativeIndex(shallowClone, 0); | |
570 | UText *deepClone = utext_clone(NULL, shallowClone, TRUE, FALSE, &status); | |
571 | utext_close(shallowClone); | |
572 | if (status != U_UNSUPPORTED_ERROR) { | |
573 | TEST_SUCCESS(status); | |
574 | TestAccessNoClone(us, deepClone, cpCount, cpMap); | |
575 | } | |
576 | utext_close(deepClone); | |
577 | } | |
578 | ||
579 | ||
580 | // | |
581 | // TestAccessNoClone() Test the read only access functions on a UText. | |
582 | // The text is accessed in a variety of ways, and compared with | |
583 | // the reference UnicodeString. | |
584 | // | |
585 | void UTextTest::TestAccessNoClone(const UnicodeString &us, UText *ut, int cpCount, m *cpMap) { | |
586 | UErrorCode status = U_ZERO_ERROR; | |
587 | gTestNum++; | |
588 | ||
589 | // | |
590 | // Check the length from the UText | |
591 | // | |
592 | int64_t expectedLen = cpMap[cpCount].nativeIdx; | |
593 | int64_t utlen = utext_nativeLength(ut); | |
594 | TEST_ASSERT(expectedLen == utlen); | |
595 | ||
596 | // | |
597 | // Iterate forwards, verify that we get the correct code points | |
598 | // at the correct native offsets. | |
599 | // | |
600 | int i = 0; | |
601 | int64_t index; | |
602 | int64_t expectedIndex = 0; | |
603 | int64_t foundIndex = 0; | |
604 | UChar32 expectedC; | |
605 | UChar32 foundC; | |
606 | int64_t len; | |
607 | ||
608 | for (i=0; i<cpCount; i++) { | |
609 | expectedIndex = cpMap[i].nativeIdx; | |
610 | foundIndex = utext_getNativeIndex(ut); | |
611 | TEST_ASSERT(expectedIndex == foundIndex); | |
612 | expectedC = cpMap[i].cp; | |
613 | foundC = utext_next32(ut); | |
614 | TEST_ASSERT(expectedC == foundC); | |
615 | foundIndex = utext_getPreviousNativeIndex(ut); | |
616 | TEST_ASSERT(expectedIndex == foundIndex); | |
617 | if (gFailed) { | |
618 | return; | |
619 | } | |
620 | } | |
621 | foundC = utext_next32(ut); | |
622 | TEST_ASSERT(foundC == U_SENTINEL); | |
623 | ||
624 | // Repeat above, using macros | |
625 | utext_setNativeIndex(ut, 0); | |
626 | for (i=0; i<cpCount; i++) { | |
627 | expectedIndex = cpMap[i].nativeIdx; | |
628 | foundIndex = UTEXT_GETNATIVEINDEX(ut); | |
629 | TEST_ASSERT(expectedIndex == foundIndex); | |
630 | expectedC = cpMap[i].cp; | |
631 | foundC = UTEXT_NEXT32(ut); | |
632 | TEST_ASSERT(expectedC == foundC); | |
633 | if (gFailed) { | |
634 | return; | |
635 | } | |
636 | } | |
637 | foundC = UTEXT_NEXT32(ut); | |
638 | TEST_ASSERT(foundC == U_SENTINEL); | |
639 | ||
640 | // | |
641 | // Forward iteration (above) should have left index at the | |
642 | // end of the input, which should == length(). | |
643 | // | |
644 | len = utext_nativeLength(ut); | |
645 | foundIndex = utext_getNativeIndex(ut); | |
646 | TEST_ASSERT(len == foundIndex); | |
647 | ||
648 | // | |
649 | // Iterate backwards over entire test string | |
650 | // | |
651 | len = utext_getNativeIndex(ut); | |
652 | utext_setNativeIndex(ut, len); | |
653 | for (i=cpCount-1; i>=0; i--) { | |
654 | expectedC = cpMap[i].cp; | |
655 | expectedIndex = cpMap[i].nativeIdx; | |
656 | int64_t prevIndex = utext_getPreviousNativeIndex(ut); | |
657 | foundC = utext_previous32(ut); | |
658 | foundIndex = utext_getNativeIndex(ut); | |
659 | TEST_ASSERT(expectedIndex == foundIndex); | |
660 | TEST_ASSERT(expectedC == foundC); | |
661 | TEST_ASSERT(prevIndex == foundIndex); | |
662 | if (gFailed) { | |
663 | return; | |
664 | } | |
665 | } | |
666 | ||
667 | // | |
668 | // Backwards iteration, above, should have left our iterator | |
669 | // position at zero, and continued backwards iterationshould fail. | |
670 | // | |
671 | foundIndex = utext_getNativeIndex(ut); | |
672 | TEST_ASSERT(foundIndex == 0); | |
673 | foundIndex = utext_getPreviousNativeIndex(ut); | |
674 | TEST_ASSERT(foundIndex == 0); | |
675 | ||
676 | ||
677 | foundC = utext_previous32(ut); | |
678 | TEST_ASSERT(foundC == U_SENTINEL); | |
679 | foundIndex = utext_getNativeIndex(ut); | |
680 | TEST_ASSERT(foundIndex == 0); | |
681 | foundIndex = utext_getPreviousNativeIndex(ut); | |
682 | TEST_ASSERT(foundIndex == 0); | |
683 | ||
684 | ||
685 | // And again, with the macros | |
686 | utext_setNativeIndex(ut, len); | |
687 | for (i=cpCount-1; i>=0; i--) { | |
688 | expectedC = cpMap[i].cp; | |
689 | expectedIndex = cpMap[i].nativeIdx; | |
690 | foundC = UTEXT_PREVIOUS32(ut); | |
691 | foundIndex = UTEXT_GETNATIVEINDEX(ut); | |
692 | TEST_ASSERT(expectedIndex == foundIndex); | |
693 | TEST_ASSERT(expectedC == foundC); | |
694 | if (gFailed) { | |
695 | return; | |
696 | } | |
697 | } | |
698 | ||
699 | // | |
700 | // Backwards iteration, above, should have left our iterator | |
701 | // position at zero, and continued backwards iterationshould fail. | |
702 | // | |
703 | foundIndex = UTEXT_GETNATIVEINDEX(ut); | |
704 | TEST_ASSERT(foundIndex == 0); | |
705 | ||
706 | foundC = UTEXT_PREVIOUS32(ut); | |
707 | TEST_ASSERT(foundC == U_SENTINEL); | |
708 | foundIndex = UTEXT_GETNATIVEINDEX(ut); | |
709 | TEST_ASSERT(foundIndex == 0); | |
710 | if (gFailed) { | |
711 | return; | |
712 | } | |
713 | ||
714 | // | |
715 | // next32From(), prevous32From(), Iterate in a somewhat random order. | |
716 | // | |
717 | int cpIndex = 0; | |
718 | for (i=0; i<cpCount; i++) { | |
719 | cpIndex = (cpIndex + 9973) % cpCount; | |
720 | index = cpMap[cpIndex].nativeIdx; | |
721 | expectedC = cpMap[cpIndex].cp; | |
722 | foundC = utext_next32From(ut, index); | |
723 | TEST_ASSERT(expectedC == foundC); | |
724 | if (gFailed) { | |
725 | return; | |
726 | } | |
727 | } | |
728 | ||
729 | cpIndex = 0; | |
730 | for (i=0; i<cpCount; i++) { | |
731 | cpIndex = (cpIndex + 9973) % cpCount; | |
732 | index = cpMap[cpIndex+1].nativeIdx; | |
733 | expectedC = cpMap[cpIndex].cp; | |
734 | foundC = utext_previous32From(ut, index); | |
735 | TEST_ASSERT(expectedC == foundC); | |
736 | if (gFailed) { | |
737 | return; | |
738 | } | |
739 | } | |
740 | ||
741 | ||
742 | // | |
743 | // moveIndex(int32_t delta); | |
744 | // | |
745 | ||
746 | // Walk through frontwards, incrementing by one | |
747 | utext_setNativeIndex(ut, 0); | |
748 | for (i=1; i<=cpCount; i++) { | |
749 | utext_moveIndex32(ut, 1); | |
750 | index = utext_getNativeIndex(ut); | |
751 | expectedIndex = cpMap[i].nativeIdx; | |
752 | TEST_ASSERT(expectedIndex == index); | |
753 | index = UTEXT_GETNATIVEINDEX(ut); | |
754 | TEST_ASSERT(expectedIndex == index); | |
755 | } | |
756 | ||
757 | // Walk through frontwards, incrementing by two | |
758 | utext_setNativeIndex(ut, 0); | |
759 | for (i=2; i<cpCount; i+=2) { | |
760 | utext_moveIndex32(ut, 2); | |
761 | index = utext_getNativeIndex(ut); | |
762 | expectedIndex = cpMap[i].nativeIdx; | |
763 | TEST_ASSERT(expectedIndex == index); | |
764 | index = UTEXT_GETNATIVEINDEX(ut); | |
765 | TEST_ASSERT(expectedIndex == index); | |
766 | } | |
767 | ||
768 | // walk through the string backwards, decrementing by one. | |
769 | i = cpMap[cpCount].nativeIdx; | |
770 | utext_setNativeIndex(ut, i); | |
771 | for (i=cpCount; i>=0; i--) { | |
772 | expectedIndex = cpMap[i].nativeIdx; | |
773 | index = utext_getNativeIndex(ut); | |
774 | TEST_ASSERT(expectedIndex == index); | |
775 | index = UTEXT_GETNATIVEINDEX(ut); | |
776 | TEST_ASSERT(expectedIndex == index); | |
777 | utext_moveIndex32(ut, -1); | |
778 | } | |
779 | ||
780 | ||
781 | // walk through backwards, decrementing by three | |
782 | i = cpMap[cpCount].nativeIdx; | |
783 | utext_setNativeIndex(ut, i); | |
784 | for (i=cpCount; i>=0; i-=3) { | |
785 | expectedIndex = cpMap[i].nativeIdx; | |
786 | index = utext_getNativeIndex(ut); | |
787 | TEST_ASSERT(expectedIndex == index); | |
788 | index = UTEXT_GETNATIVEINDEX(ut); | |
789 | TEST_ASSERT(expectedIndex == index); | |
790 | utext_moveIndex32(ut, -3); | |
791 | } | |
792 | ||
793 | ||
794 | // | |
795 | // Extract | |
796 | // | |
797 | int bufSize = us.length() + 10; | |
798 | UChar *buf = new UChar[bufSize]; | |
799 | status = U_ZERO_ERROR; | |
800 | expectedLen = us.length(); | |
801 | len = utext_extract(ut, 0, utlen, buf, bufSize, &status); | |
802 | TEST_SUCCESS(status); | |
803 | TEST_ASSERT(len == expectedLen); | |
804 | int compareResult = us.compare(buf, -1); | |
805 | TEST_ASSERT(compareResult == 0); | |
806 | ||
807 | status = U_ZERO_ERROR; | |
808 | len = utext_extract(ut, 0, utlen, NULL, 0, &status); | |
809 | if (utlen == 0) { | |
810 | TEST_ASSERT(status == U_STRING_NOT_TERMINATED_WARNING); | |
811 | } else { | |
812 | TEST_ASSERT(status == U_BUFFER_OVERFLOW_ERROR); | |
813 | } | |
814 | TEST_ASSERT(len == expectedLen); | |
815 | ||
816 | status = U_ZERO_ERROR; | |
817 | u_memset(buf, 0x5555, bufSize); | |
818 | len = utext_extract(ut, 0, utlen, buf, 1, &status); | |
819 | if (us.length() == 0) { | |
820 | TEST_SUCCESS(status); | |
821 | TEST_ASSERT(buf[0] == 0); | |
822 | } else { | |
823 | // Buf len == 1, extracting a single 16 bit value. | |
824 | // If the data char is supplementary, it doesn't matter whether the buffer remains unchanged, | |
825 | // or whether the lead surrogate of the pair is extracted. | |
826 | // It's a buffer overflow error in either case. | |
827 | TEST_ASSERT(buf[0] == us.charAt(0) || | |
828 | (buf[0] == 0x5555 && U_IS_SUPPLEMENTARY(us.char32At(0)))); | |
829 | TEST_ASSERT(buf[1] == 0x5555); | |
830 | if (us.length() == 1) { | |
831 | TEST_ASSERT(status == U_STRING_NOT_TERMINATED_WARNING); | |
832 | } else { | |
833 | TEST_ASSERT(status == U_BUFFER_OVERFLOW_ERROR); | |
834 | } | |
835 | } | |
836 | ||
837 | delete []buf; | |
838 | } | |
839 | ||
840 | // | |
841 | // ErrorTest() Check various error and edge cases. | |
842 | // | |
843 | void UTextTest::ErrorTest() | |
844 | { | |
845 | // Close of an unitialized UText. Shouldn't blow up. | |
846 | { | |
847 | UText ut; | |
848 | memset(&ut, 0, sizeof(UText)); | |
849 | utext_close(&ut); | |
850 | utext_close(NULL); | |
851 | } | |
852 | ||
853 | // Double-close of a UText. Shouldn't blow up. UText should still be usable. | |
854 | { | |
855 | UErrorCode status = U_ZERO_ERROR; | |
856 | UText ut = UTEXT_INITIALIZER; | |
857 | UnicodeString s("Hello, World"); | |
858 | UText *ut2 = utext_openUnicodeString(&ut, &s, &status); | |
859 | TEST_SUCCESS(status); | |
860 | TEST_ASSERT(ut2 == &ut); | |
861 | ||
862 | UText *ut3 = utext_close(&ut); | |
863 | TEST_ASSERT(ut3 == &ut); | |
864 | ||
865 | UText *ut4 = utext_close(&ut); | |
866 | TEST_ASSERT(ut4 == &ut); | |
867 | ||
868 | utext_openUnicodeString(&ut, &s, &status); | |
869 | TEST_SUCCESS(status); | |
870 | utext_close(&ut); | |
871 | } | |
872 | ||
873 | // Re-use of a UText, chaining through each of the types of UText | |
874 | // (If it doesn't blow up, and doesn't leak, it's probably working fine) | |
875 | { | |
876 | UErrorCode status = U_ZERO_ERROR; | |
877 | UText ut = UTEXT_INITIALIZER; | |
878 | UText *utp; | |
879 | UnicodeString s1("Hello, World"); | |
880 | UChar s2[] = {(UChar)0x41, (UChar)0x42, (UChar)0}; | |
881 | const char *s3 = "\x66\x67\x68"; | |
882 | ||
883 | utp = utext_openUnicodeString(&ut, &s1, &status); | |
884 | TEST_SUCCESS(status); | |
885 | TEST_ASSERT(utp == &ut); | |
886 | ||
887 | utp = utext_openConstUnicodeString(&ut, &s1, &status); | |
888 | TEST_SUCCESS(status); | |
889 | TEST_ASSERT(utp == &ut); | |
890 | ||
891 | utp = utext_openUTF8(&ut, s3, -1, &status); | |
892 | TEST_SUCCESS(status); | |
893 | TEST_ASSERT(utp == &ut); | |
894 | ||
895 | utp = utext_openUChars(&ut, s2, -1, &status); | |
896 | TEST_SUCCESS(status); | |
897 | TEST_ASSERT(utp == &ut); | |
898 | ||
899 | utp = utext_close(&ut); | |
900 | TEST_ASSERT(utp == &ut); | |
901 | ||
902 | utp = utext_openUnicodeString(&ut, &s1, &status); | |
903 | TEST_SUCCESS(status); | |
904 | TEST_ASSERT(utp == &ut); | |
905 | } | |
906 | ||
907 | // Invalid parameters on open | |
908 | // | |
909 | { | |
910 | UErrorCode status = U_ZERO_ERROR; | |
911 | UText ut = UTEXT_INITIALIZER; | |
912 | ||
913 | utext_openUChars(&ut, NULL, 5, &status); | |
914 | TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR); | |
915 | ||
916 | status = U_ZERO_ERROR; | |
917 | utext_openUChars(&ut, NULL, -1, &status); | |
918 | TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR); | |
919 | ||
920 | status = U_ZERO_ERROR; | |
921 | utext_openUTF8(&ut, NULL, 4, &status); | |
922 | TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR); | |
923 | ||
924 | status = U_ZERO_ERROR; | |
925 | utext_openUTF8(&ut, NULL, -1, &status); | |
926 | TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR); | |
927 | } | |
928 | ||
929 | // | |
930 | // UTF-8 with malformed sequences. | |
931 | // These should come through as the Unicode replacement char, \ufffd | |
932 | // | |
933 | { | |
934 | UErrorCode status = U_ZERO_ERROR; | |
935 | UText *ut = NULL; | |
936 | const char *badUTF8 = "\x41\x81\x42\xf0\x81\x81\x43"; | |
937 | UChar32 c; | |
938 | ||
939 | ut = utext_openUTF8(NULL, badUTF8, -1, &status); | |
940 | TEST_SUCCESS(status); | |
941 | c = utext_char32At(ut, 1); | |
942 | TEST_ASSERT(c == 0xfffd); | |
943 | c = utext_char32At(ut, 3); | |
944 | TEST_ASSERT(c == 0xfffd); | |
945 | c = utext_char32At(ut, 5); | |
946 | TEST_ASSERT(c == 0xfffd); | |
947 | c = utext_char32At(ut, 6); | |
948 | TEST_ASSERT(c == 0x43); | |
949 | ||
950 | UChar buf[10]; | |
951 | int n = utext_extract(ut, 0, 9, buf, 10, &status); | |
952 | TEST_SUCCESS(status); | |
953 | TEST_ASSERT(n==7); | |
954 | TEST_ASSERT(buf[0] == 0x41); | |
955 | TEST_ASSERT(buf[1] == 0xfffd); | |
956 | TEST_ASSERT(buf[2] == 0x42); | |
957 | TEST_ASSERT(buf[3] == 0xfffd); | |
958 | TEST_ASSERT(buf[4] == 0xfffd); | |
959 | TEST_ASSERT(buf[5] == 0xfffd); | |
960 | TEST_ASSERT(buf[6] == 0x43); | |
961 | utext_close(ut); | |
962 | } | |
963 | ||
964 | ||
965 | // | |
966 | // isLengthExpensive - does it make the exptected transitions after | |
967 | // getting the length of a nul terminated string? | |
968 | // | |
969 | { | |
970 | UErrorCode status = U_ZERO_ERROR; | |
971 | UnicodeString sa("Hello, this is a string"); | |
972 | UBool isExpensive; | |
973 | ||
974 | UChar sb[100]; | |
975 | memset(sb, 0x20, sizeof(sb)); | |
976 | sb[99] = 0; | |
977 | ||
978 | UText *uta = utext_openUnicodeString(NULL, &sa, &status); | |
979 | TEST_SUCCESS(status); | |
980 | isExpensive = utext_isLengthExpensive(uta); | |
981 | TEST_ASSERT(isExpensive == FALSE); | |
982 | utext_close(uta); | |
983 | ||
984 | UText *utb = utext_openUChars(NULL, sb, -1, &status); | |
985 | TEST_SUCCESS(status); | |
986 | isExpensive = utext_isLengthExpensive(utb); | |
987 | TEST_ASSERT(isExpensive == TRUE); | |
988 | int64_t len = utext_nativeLength(utb); | |
989 | TEST_ASSERT(len == 99); | |
990 | isExpensive = utext_isLengthExpensive(utb); | |
991 | TEST_ASSERT(isExpensive == FALSE); | |
992 | utext_close(utb); | |
993 | } | |
994 | ||
995 | // | |
996 | // Index to positions not on code point boundaries. | |
997 | // | |
998 | { | |
999 | const char *u8str = "\xc8\x81\xe1\x82\x83\xf1\x84\x85\x86"; | |
1000 | int32_t startMap[] = { 0, 0, 2, 2, 2, 5, 5, 5, 5, 9, 9}; | |
1001 | int32_t nextMap[] = { 2, 2, 5, 5, 5, 9, 9, 9, 9, 9, 9}; | |
1002 | int32_t prevMap[] = { 0, 0, 0, 0, 0, 2, 2, 2, 2, 5, 5}; | |
1003 | UChar32 c32Map[] = {0x201, 0x201, 0x1083, 0x1083, 0x1083, 0x044146, 0x044146, 0x044146, 0x044146, -1, -1}; | |
1004 | UChar32 pr32Map[] = { -1, -1, 0x201, 0x201, 0x201, 0x1083, 0x1083, 0x1083, 0x1083, 0x044146, 0x044146}; | |
1005 | ||
1006 | // extractLen is the size, in UChars, of what will be extracted between index and index+1. | |
1007 | // is zero when both index positions lie within the same code point. | |
1008 | int32_t exLen[] = { 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0}; | |
1009 | ||
1010 | ||
1011 | UErrorCode status = U_ZERO_ERROR; | |
1012 | UText *ut = utext_openUTF8(NULL, u8str, -1, &status); | |
1013 | TEST_SUCCESS(status); | |
1014 | ||
1015 | // Check setIndex | |
1016 | int32_t i; | |
1017 | int32_t startMapLimit = UPRV_LENGTHOF(startMap); | |
1018 | for (i=0; i<startMapLimit; i++) { | |
1019 | utext_setNativeIndex(ut, i); | |
1020 | int64_t cpIndex = utext_getNativeIndex(ut); | |
1021 | TEST_ASSERT(cpIndex == startMap[i]); | |
1022 | cpIndex = UTEXT_GETNATIVEINDEX(ut); | |
1023 | TEST_ASSERT(cpIndex == startMap[i]); | |
1024 | } | |
1025 | ||
1026 | // Check char32At | |
1027 | for (i=0; i<startMapLimit; i++) { | |
1028 | UChar32 c32 = utext_char32At(ut, i); | |
1029 | TEST_ASSERT(c32 == c32Map[i]); | |
1030 | int64_t cpIndex = utext_getNativeIndex(ut); | |
1031 | TEST_ASSERT(cpIndex == startMap[i]); | |
1032 | } | |
1033 | ||
1034 | // Check utext_next32From | |
1035 | for (i=0; i<startMapLimit; i++) { | |
1036 | UChar32 c32 = utext_next32From(ut, i); | |
1037 | TEST_ASSERT(c32 == c32Map[i]); | |
1038 | int64_t cpIndex = utext_getNativeIndex(ut); | |
1039 | TEST_ASSERT(cpIndex == nextMap[i]); | |
1040 | } | |
1041 | ||
1042 | // check utext_previous32From | |
1043 | for (i=0; i<startMapLimit; i++) { | |
1044 | gTestNum++; | |
1045 | UChar32 c32 = utext_previous32From(ut, i); | |
1046 | TEST_ASSERT(c32 == pr32Map[i]); | |
1047 | int64_t cpIndex = utext_getNativeIndex(ut); | |
1048 | TEST_ASSERT(cpIndex == prevMap[i]); | |
1049 | } | |
1050 | ||
1051 | // check Extract | |
1052 | // Extract from i to i+1, which may be zero or one code points, | |
1053 | // depending on whether the indices straddle a cp boundary. | |
1054 | for (i=0; i<startMapLimit; i++) { | |
1055 | UChar buf[3]; | |
1056 | status = U_ZERO_ERROR; | |
1057 | int32_t extractedLen = utext_extract(ut, i, i+1, buf, 3, &status); | |
1058 | TEST_SUCCESS(status); | |
1059 | TEST_ASSERT(extractedLen == exLen[i]); | |
1060 | if (extractedLen > 0) { | |
1061 | UChar32 c32; | |
1062 | /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */ | |
1063 | U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32); | |
1064 | TEST_ASSERT(c32 == c32Map[i]); | |
1065 | } | |
1066 | } | |
1067 | ||
1068 | utext_close(ut); | |
1069 | } | |
1070 | ||
1071 | ||
1072 | { // Similar test, with utf16 instead of utf8 | |
1073 | // TODO: merge the common parts of these tests. | |
1074 | ||
1075 | UnicodeString u16str("\\u1000\\U00011000\\u2000\\U00022000", -1, US_INV); | |
1076 | int32_t startMap[] ={ 0, 1, 1, 3, 4, 4, 6, 6}; | |
1077 | int32_t nextMap[] = { 1, 3, 3, 4, 6, 6, 6, 6}; | |
1078 | int32_t prevMap[] = { 0, 0, 0, 1, 3, 3, 4, 4}; | |
1079 | UChar32 c32Map[] = {0x1000, 0x11000, 0x11000, 0x2000, 0x22000, 0x22000, -1, -1}; | |
1080 | UChar32 pr32Map[] = { -1, 0x1000, 0x1000, 0x11000, 0x2000, 0x2000, 0x22000, 0x22000}; | |
1081 | int32_t exLen[] = { 1, 0, 2, 1, 0, 2, 0, 0,}; | |
1082 | ||
1083 | u16str = u16str.unescape(); | |
1084 | UErrorCode status = U_ZERO_ERROR; | |
1085 | UText *ut = utext_openUnicodeString(NULL, &u16str, &status); | |
1086 | TEST_SUCCESS(status); | |
1087 | ||
1088 | int32_t startMapLimit = UPRV_LENGTHOF(startMap); | |
1089 | int i; | |
1090 | for (i=0; i<startMapLimit; i++) { | |
1091 | utext_setNativeIndex(ut, i); | |
1092 | int64_t cpIndex = utext_getNativeIndex(ut); | |
1093 | TEST_ASSERT(cpIndex == startMap[i]); | |
1094 | } | |
1095 | ||
1096 | // Check char32At | |
1097 | for (i=0; i<startMapLimit; i++) { | |
1098 | UChar32 c32 = utext_char32At(ut, i); | |
1099 | TEST_ASSERT(c32 == c32Map[i]); | |
1100 | int64_t cpIndex = utext_getNativeIndex(ut); | |
1101 | TEST_ASSERT(cpIndex == startMap[i]); | |
1102 | } | |
1103 | ||
1104 | // Check utext_next32From | |
1105 | for (i=0; i<startMapLimit; i++) { | |
1106 | UChar32 c32 = utext_next32From(ut, i); | |
1107 | TEST_ASSERT(c32 == c32Map[i]); | |
1108 | int64_t cpIndex = utext_getNativeIndex(ut); | |
1109 | TEST_ASSERT(cpIndex == nextMap[i]); | |
1110 | } | |
1111 | ||
1112 | // check utext_previous32From | |
1113 | for (i=0; i<startMapLimit; i++) { | |
1114 | UChar32 c32 = utext_previous32From(ut, i); | |
1115 | TEST_ASSERT(c32 == pr32Map[i]); | |
1116 | int64_t cpIndex = utext_getNativeIndex(ut); | |
1117 | TEST_ASSERT(cpIndex == prevMap[i]); | |
1118 | } | |
1119 | ||
1120 | // check Extract | |
1121 | // Extract from i to i+1, which may be zero or one code points, | |
1122 | // depending on whether the indices straddle a cp boundary. | |
1123 | for (i=0; i<startMapLimit; i++) { | |
1124 | UChar buf[3]; | |
1125 | status = U_ZERO_ERROR; | |
1126 | int32_t extractedLen = utext_extract(ut, i, i+1, buf, 3, &status); | |
1127 | TEST_SUCCESS(status); | |
1128 | TEST_ASSERT(extractedLen == exLen[i]); | |
1129 | if (extractedLen > 0) { | |
1130 | UChar32 c32; | |
1131 | /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */ | |
1132 | U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32); | |
1133 | TEST_ASSERT(c32 == c32Map[i]); | |
1134 | } | |
1135 | } | |
1136 | ||
1137 | utext_close(ut); | |
1138 | } | |
1139 | ||
1140 | { // Similar test, with UText over Replaceable | |
1141 | // TODO: merge the common parts of these tests. | |
1142 | ||
1143 | UnicodeString u16str("\\u1000\\U00011000\\u2000\\U00022000", -1, US_INV); | |
1144 | int32_t startMap[] ={ 0, 1, 1, 3, 4, 4, 6, 6}; | |
1145 | int32_t nextMap[] = { 1, 3, 3, 4, 6, 6, 6, 6}; | |
1146 | int32_t prevMap[] = { 0, 0, 0, 1, 3, 3, 4, 4}; | |
1147 | UChar32 c32Map[] = {0x1000, 0x11000, 0x11000, 0x2000, 0x22000, 0x22000, -1, -1}; | |
1148 | UChar32 pr32Map[] = { -1, 0x1000, 0x1000, 0x11000, 0x2000, 0x2000, 0x22000, 0x22000}; | |
1149 | int32_t exLen[] = { 1, 0, 2, 1, 0, 2, 0, 0,}; | |
1150 | ||
1151 | u16str = u16str.unescape(); | |
1152 | UErrorCode status = U_ZERO_ERROR; | |
1153 | UText *ut = utext_openReplaceable(NULL, &u16str, &status); | |
1154 | TEST_SUCCESS(status); | |
1155 | ||
1156 | int32_t startMapLimit = UPRV_LENGTHOF(startMap); | |
1157 | int i; | |
1158 | for (i=0; i<startMapLimit; i++) { | |
1159 | utext_setNativeIndex(ut, i); | |
1160 | int64_t cpIndex = utext_getNativeIndex(ut); | |
1161 | TEST_ASSERT(cpIndex == startMap[i]); | |
1162 | } | |
1163 | ||
1164 | // Check char32At | |
1165 | for (i=0; i<startMapLimit; i++) { | |
1166 | UChar32 c32 = utext_char32At(ut, i); | |
1167 | TEST_ASSERT(c32 == c32Map[i]); | |
1168 | int64_t cpIndex = utext_getNativeIndex(ut); | |
1169 | TEST_ASSERT(cpIndex == startMap[i]); | |
1170 | } | |
1171 | ||
1172 | // Check utext_next32From | |
1173 | for (i=0; i<startMapLimit; i++) { | |
1174 | UChar32 c32 = utext_next32From(ut, i); | |
1175 | TEST_ASSERT(c32 == c32Map[i]); | |
1176 | int64_t cpIndex = utext_getNativeIndex(ut); | |
1177 | TEST_ASSERT(cpIndex == nextMap[i]); | |
1178 | } | |
1179 | ||
1180 | // check utext_previous32From | |
1181 | for (i=0; i<startMapLimit; i++) { | |
1182 | UChar32 c32 = utext_previous32From(ut, i); | |
1183 | TEST_ASSERT(c32 == pr32Map[i]); | |
1184 | int64_t cpIndex = utext_getNativeIndex(ut); | |
1185 | TEST_ASSERT(cpIndex == prevMap[i]); | |
1186 | } | |
1187 | ||
1188 | // check Extract | |
1189 | // Extract from i to i+1, which may be zero or one code points, | |
1190 | // depending on whether the indices straddle a cp boundary. | |
1191 | for (i=0; i<startMapLimit; i++) { | |
1192 | UChar buf[3]; | |
1193 | status = U_ZERO_ERROR; | |
1194 | int32_t extractedLen = utext_extract(ut, i, i+1, buf, 3, &status); | |
1195 | TEST_SUCCESS(status); | |
1196 | TEST_ASSERT(extractedLen == exLen[i]); | |
1197 | if (extractedLen > 0) { | |
1198 | UChar32 c32; | |
1199 | /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */ | |
1200 | U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32); | |
1201 | TEST_ASSERT(c32 == c32Map[i]); | |
1202 | } | |
1203 | } | |
1204 | ||
1205 | utext_close(ut); | |
1206 | } | |
1207 | } | |
1208 | ||
1209 | ||
1210 | void UTextTest::FreezeTest() { | |
1211 | // Check isWritable() and freeze() behavior. | |
1212 | // | |
1213 | ||
1214 | UnicodeString ustr("Hello, World."); | |
1215 | const char u8str[] = {char(0x31), (char)0x32, (char)0x33, 0}; | |
1216 | const UChar u16str[] = {(UChar)0x31, (UChar)0x32, (UChar)0x44, 0}; | |
1217 | ||
1218 | UErrorCode status = U_ZERO_ERROR; | |
1219 | UText *ut = NULL; | |
1220 | UText *ut2 = NULL; | |
1221 | ||
1222 | ut = utext_openUTF8(ut, u8str, -1, &status); | |
1223 | TEST_SUCCESS(status); | |
1224 | UBool writable = utext_isWritable(ut); | |
1225 | TEST_ASSERT(writable == FALSE); | |
1226 | utext_copy(ut, 1, 2, 0, TRUE, &status); | |
1227 | TEST_ASSERT(status == U_NO_WRITE_PERMISSION); | |
1228 | ||
1229 | status = U_ZERO_ERROR; | |
1230 | ut = utext_openUChars(ut, u16str, -1, &status); | |
1231 | TEST_SUCCESS(status); | |
1232 | writable = utext_isWritable(ut); | |
1233 | TEST_ASSERT(writable == FALSE); | |
1234 | utext_copy(ut, 1, 2, 0, TRUE, &status); | |
1235 | TEST_ASSERT(status == U_NO_WRITE_PERMISSION); | |
1236 | ||
1237 | status = U_ZERO_ERROR; | |
1238 | ut = utext_openUnicodeString(ut, &ustr, &status); | |
1239 | TEST_SUCCESS(status); | |
1240 | writable = utext_isWritable(ut); | |
1241 | TEST_ASSERT(writable == TRUE); | |
1242 | utext_freeze(ut); | |
1243 | writable = utext_isWritable(ut); | |
1244 | TEST_ASSERT(writable == FALSE); | |
1245 | utext_copy(ut, 1, 2, 0, TRUE, &status); | |
1246 | TEST_ASSERT(status == U_NO_WRITE_PERMISSION); | |
1247 | ||
1248 | status = U_ZERO_ERROR; | |
1249 | ut = utext_openUnicodeString(ut, &ustr, &status); | |
1250 | TEST_SUCCESS(status); | |
1251 | ut2 = utext_clone(ut2, ut, FALSE, FALSE, &status); // clone with readonly = false | |
1252 | TEST_SUCCESS(status); | |
1253 | writable = utext_isWritable(ut2); | |
1254 | TEST_ASSERT(writable == TRUE); | |
1255 | ut2 = utext_clone(ut2, ut, FALSE, TRUE, &status); // clone with readonly = true | |
1256 | TEST_SUCCESS(status); | |
1257 | writable = utext_isWritable(ut2); | |
1258 | TEST_ASSERT(writable == FALSE); | |
1259 | utext_copy(ut2, 1, 2, 0, TRUE, &status); | |
1260 | TEST_ASSERT(status == U_NO_WRITE_PERMISSION); | |
1261 | ||
1262 | status = U_ZERO_ERROR; | |
1263 | ut = utext_openConstUnicodeString(ut, (const UnicodeString *)&ustr, &status); | |
1264 | TEST_SUCCESS(status); | |
1265 | writable = utext_isWritable(ut); | |
1266 | TEST_ASSERT(writable == FALSE); | |
1267 | utext_copy(ut, 1, 2, 0, TRUE, &status); | |
1268 | TEST_ASSERT(status == U_NO_WRITE_PERMISSION); | |
1269 | ||
1270 | // Deep Clone of a frozen UText should re-enable writing in the copy. | |
1271 | status = U_ZERO_ERROR; | |
1272 | ut = utext_openUnicodeString(ut, &ustr, &status); | |
1273 | TEST_SUCCESS(status); | |
1274 | utext_freeze(ut); | |
1275 | ut2 = utext_clone(ut2, ut, TRUE, FALSE, &status); // deep clone | |
1276 | TEST_SUCCESS(status); | |
1277 | writable = utext_isWritable(ut2); | |
1278 | TEST_ASSERT(writable == TRUE); | |
1279 | ||
1280 | ||
1281 | // Deep clone of a frozen UText, where the base type is intrinsically non-writable, | |
1282 | // should NOT enable writing in the copy. | |
1283 | status = U_ZERO_ERROR; | |
1284 | ut = utext_openUChars(ut, u16str, -1, &status); | |
1285 | TEST_SUCCESS(status); | |
1286 | utext_freeze(ut); | |
1287 | ut2 = utext_clone(ut2, ut, TRUE, FALSE, &status); // deep clone | |
1288 | TEST_SUCCESS(status); | |
1289 | writable = utext_isWritable(ut2); | |
1290 | TEST_ASSERT(writable == FALSE); | |
1291 | ||
1292 | // cleanup | |
1293 | utext_close(ut); | |
1294 | utext_close(ut2); | |
1295 | } | |
1296 | ||
1297 | ||
1298 | // | |
1299 | // Fragmented UText | |
1300 | // A UText type that works with a chunk size of 1. | |
1301 | // Intended to test for edge cases. | |
1302 | // Input comes from a UnicodeString. | |
1303 | // | |
1304 | // ut.b the character. Put into both halves. | |
1305 | // | |
1306 | ||
1307 | U_CDECL_BEGIN | |
1308 | static UBool U_CALLCONV | |
1309 | fragTextAccess(UText *ut, int64_t index, UBool forward) { | |
1310 | const UnicodeString *us = (const UnicodeString *)ut->context; | |
1311 | UChar c; | |
1312 | int32_t length = us->length(); | |
1313 | if (forward && index>=0 && index<length) { | |
1314 | c = us->charAt((int32_t)index); | |
1315 | ut->b = c | c<<16; | |
1316 | ut->chunkOffset = 0; | |
1317 | ut->chunkLength = 1; | |
1318 | ut->chunkNativeStart = index; | |
1319 | ut->chunkNativeLimit = index+1; | |
1320 | return true; | |
1321 | } | |
1322 | if (!forward && index>0 && index <=length) { | |
1323 | c = us->charAt((int32_t)index-1); | |
1324 | ut->b = c | c<<16; | |
1325 | ut->chunkOffset = 1; | |
1326 | ut->chunkLength = 1; | |
1327 | ut->chunkNativeStart = index-1; | |
1328 | ut->chunkNativeLimit = index; | |
1329 | return true; | |
1330 | } | |
1331 | ut->b = 0; | |
1332 | ut->chunkOffset = 0; | |
1333 | ut->chunkLength = 0; | |
1334 | if (index <= 0) { | |
1335 | ut->chunkNativeStart = 0; | |
1336 | ut->chunkNativeLimit = 0; | |
1337 | } else { | |
1338 | ut->chunkNativeStart = length; | |
1339 | ut->chunkNativeLimit = length; | |
1340 | } | |
1341 | return false; | |
1342 | } | |
1343 | ||
1344 | // Function table to be used with this fragmented text provider. | |
1345 | // Initialized in the open function. | |
1346 | static UTextFuncs fragmentFuncs; | |
1347 | ||
1348 | // Clone function for fragmented text provider. | |
1349 | // Didn't really want to provide this, but it's easier to provide it than to keep it | |
1350 | // out of the tests. | |
1351 | // | |
1352 | UText * | |
1353 | cloneFragmentedUnicodeString(UText *dest, const UText *src, UBool deep, UErrorCode *status) { | |
1354 | if (U_FAILURE(*status)) { | |
1355 | return NULL; | |
1356 | } | |
1357 | if (deep) { | |
1358 | *status = U_UNSUPPORTED_ERROR; | |
1359 | return NULL; | |
1360 | } | |
1361 | dest = utext_openUnicodeString(dest, (UnicodeString *)src->context, status); | |
1362 | utext_setNativeIndex(dest, utext_getNativeIndex(src)); | |
1363 | return dest; | |
1364 | } | |
1365 | ||
1366 | U_CDECL_END | |
1367 | ||
1368 | // Open function for the fragmented text provider. | |
1369 | UText * | |
1370 | openFragmentedUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status) { | |
1371 | ut = utext_openUnicodeString(ut, s, status); | |
1372 | if (U_FAILURE(*status)) { | |
1373 | return ut; | |
1374 | } | |
1375 | ||
1376 | // Copy of the function table from the stock UnicodeString UText, | |
1377 | // and replace the entry for the access function. | |
1378 | memcpy(&fragmentFuncs, ut->pFuncs, sizeof(fragmentFuncs)); | |
1379 | fragmentFuncs.access = fragTextAccess; | |
1380 | fragmentFuncs.clone = cloneFragmentedUnicodeString; | |
1381 | ut->pFuncs = &fragmentFuncs; | |
1382 | ||
1383 | ut->chunkContents = (UChar *)&ut->b; | |
1384 | ut->pFuncs->access(ut, 0, TRUE); | |
1385 | return ut; | |
1386 | } | |
1387 | ||
1388 | // Regression test for Ticket 5560 | |
1389 | // Clone fails to update chunkContentPointer in the cloned copy. | |
1390 | // This is only an issue for UText types that work in a local buffer, | |
1391 | // (UTF-8 wrapper, for example) | |
1392 | // | |
1393 | // The test: | |
1394 | // 1. Create an inital UText | |
1395 | // 2. Deep clone it. Contents should match original. | |
1396 | // 3. Reset original to something different. | |
1397 | // 4. Check that clone contents did not change. | |
1398 | // | |
1399 | void UTextTest::Ticket5560() { | |
1400 | /* The following two strings are in UTF-8 even on EBCDIC platforms. */ | |
1401 | static const char s1[] = {0x41,0x42,0x43,0x44,0x45,0x46,0}; /* "ABCDEF" */ | |
1402 | static const char s2[] = {0x31,0x32,0x33,0x34,0x35,0x36,0}; /* "123456" */ | |
1403 | UErrorCode status = U_ZERO_ERROR; | |
1404 | ||
1405 | UText ut1 = UTEXT_INITIALIZER; | |
1406 | UText ut2 = UTEXT_INITIALIZER; | |
1407 | ||
1408 | utext_openUTF8(&ut1, s1, -1, &status); | |
1409 | UChar c = utext_next32(&ut1); | |
1410 | TEST_ASSERT(c == 0x41); // c == 'A' | |
1411 | ||
1412 | utext_clone(&ut2, &ut1, TRUE, FALSE, &status); | |
1413 | TEST_SUCCESS(status); | |
1414 | c = utext_next32(&ut2); | |
1415 | TEST_ASSERT(c == 0x42); // c == 'B' | |
1416 | c = utext_next32(&ut1); | |
1417 | TEST_ASSERT(c == 0x42); // c == 'B' | |
1418 | ||
1419 | utext_openUTF8(&ut1, s2, -1, &status); | |
1420 | c = utext_next32(&ut1); | |
1421 | TEST_ASSERT(c == 0x31); // c == '1' | |
1422 | c = utext_next32(&ut2); | |
1423 | TEST_ASSERT(c == 0x43); // c == 'C' | |
1424 | ||
1425 | utext_close(&ut1); | |
1426 | utext_close(&ut2); | |
1427 | } | |
1428 | ||
1429 | ||
1430 | // Test for Ticket 6847 | |
1431 | // | |
1432 | void UTextTest::Ticket6847() { | |
1433 | const int STRLEN = 90; | |
1434 | UChar s[STRLEN+1]; | |
1435 | u_memset(s, 0x41, STRLEN); | |
1436 | s[STRLEN] = 0; | |
1437 | ||
1438 | UErrorCode status = U_ZERO_ERROR; | |
1439 | UText *ut = utext_openUChars(NULL, s, -1, &status); | |
1440 | ||
1441 | utext_setNativeIndex(ut, 0); | |
1442 | int32_t count = 0; | |
1443 | UChar32 c = 0; | |
1444 | int64_t nativeIndex = UTEXT_GETNATIVEINDEX(ut); | |
1445 | TEST_ASSERT(nativeIndex == 0); | |
1446 | while ((c = utext_next32(ut)) != U_SENTINEL) { | |
1447 | TEST_ASSERT(c == 0x41); | |
1448 | TEST_ASSERT(count < STRLEN); | |
1449 | if (count >= STRLEN) { | |
1450 | break; | |
1451 | } | |
1452 | count++; | |
1453 | nativeIndex = UTEXT_GETNATIVEINDEX(ut); | |
1454 | TEST_ASSERT(nativeIndex == count); | |
1455 | } | |
1456 | TEST_ASSERT(count == STRLEN); | |
1457 | nativeIndex = UTEXT_GETNATIVEINDEX(ut); | |
1458 | TEST_ASSERT(nativeIndex == STRLEN); | |
1459 | utext_close(ut); | |
1460 | } | |
1461 | ||
1462 | ||
1463 | void UTextTest::Ticket10562() { | |
1464 | // Note: failures show as a heap error when the test is run under valgrind. | |
1465 | UErrorCode status = U_ZERO_ERROR; | |
1466 | ||
1467 | const char *utf8_string = "\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41"; | |
1468 | UText *utf8Text = utext_openUTF8(NULL, utf8_string, -1, &status); | |
1469 | TEST_SUCCESS(status); | |
1470 | UText *deepClone = utext_clone(NULL, utf8Text, TRUE, FALSE, &status); | |
1471 | TEST_SUCCESS(status); | |
1472 | UText *shallowClone = utext_clone(NULL, deepClone, FALSE, FALSE, &status); | |
1473 | TEST_SUCCESS(status); | |
1474 | utext_close(shallowClone); | |
1475 | utext_close(deepClone); | |
1476 | utext_close(utf8Text); | |
1477 | ||
1478 | status = U_ZERO_ERROR; | |
1479 | UnicodeString usString("Hello, World."); | |
1480 | UText *usText = utext_openUnicodeString(NULL, &usString, &status); | |
1481 | TEST_SUCCESS(status); | |
1482 | UText *usDeepClone = utext_clone(NULL, usText, TRUE, FALSE, &status); | |
1483 | TEST_SUCCESS(status); | |
1484 | UText *usShallowClone = utext_clone(NULL, usDeepClone, FALSE, FALSE, &status); | |
1485 | TEST_SUCCESS(status); | |
1486 | utext_close(usShallowClone); | |
1487 | utext_close(usDeepClone); | |
1488 | utext_close(usText); | |
1489 | } | |
1490 | ||
1491 | ||
1492 | void UTextTest::Ticket10983() { | |
1493 | // Note: failure shows as a seg fault when the defect is present. | |
1494 | ||
1495 | UErrorCode status = U_ZERO_ERROR; | |
1496 | UnicodeString s("Hello, World"); | |
1497 | UText *ut = utext_openConstUnicodeString(NULL, &s, &status); | |
1498 | TEST_SUCCESS(status); | |
1499 | ||
1500 | status = U_INVALID_STATE_ERROR; | |
1501 | UText *cloned = utext_clone(NULL, ut, TRUE, TRUE, &status); | |
1502 | TEST_ASSERT(cloned == NULL); | |
1503 | TEST_ASSERT(status == U_INVALID_STATE_ERROR); | |
1504 | ||
1505 | utext_close(ut); | |
1506 | } | |
1507 | ||
1508 | // Ticket 12130 - extract on a UText wrapping a null terminated UChar * string | |
1509 | // leaves the iteration position set incorrectly when the | |
1510 | // actual string length is not yet known. | |
1511 | // | |
1512 | // The test text needs to be long enough that UText defers getting the length. | |
1513 | ||
1514 | void UTextTest::Ticket12130() { | |
1515 | UErrorCode status = U_ZERO_ERROR; | |
1516 | ||
1517 | const char *text8 = | |
1518 | "Fundamentally, computers just deal with numbers. They store letters and other characters " | |
1519 | "by assigning a number for each one. Before Unicode was invented, there were hundreds " | |
1520 | "of different encoding systems for assigning these numbers. No single encoding could " | |
1521 | "contain enough characters: for example, the European Union alone requires several " | |
1522 | "different encodings to cover all its languages. Even for a single language like " | |
1523 | "English no single encoding was adequate for all the letters, punctuation, and technical " | |
1524 | "symbols in common use."; | |
1525 | ||
1526 | UnicodeString str(text8); | |
1527 | const UChar *ustr = str.getTerminatedBuffer(); | |
1528 | UText ut = UTEXT_INITIALIZER; | |
1529 | utext_openUChars(&ut, ustr, -1, &status); | |
1530 | UChar extractBuffer[50]; | |
1531 | ||
1532 | for (int32_t startIdx = 0; startIdx<str.length(); ++startIdx) { | |
1533 | int32_t endIdx = startIdx + 20; | |
1534 | ||
1535 | u_memset(extractBuffer, 0, UPRV_LENGTHOF(extractBuffer)); | |
1536 | utext_extract(&ut, startIdx, endIdx, extractBuffer, UPRV_LENGTHOF(extractBuffer), &status); | |
1537 | if (U_FAILURE(status)) { | |
1538 | errln("%s:%d %s", __FILE__, __LINE__, u_errorName(status)); | |
1539 | return; | |
1540 | } | |
1541 | int64_t ni = utext_getNativeIndex(&ut); | |
1542 | int64_t expectedni = startIdx + 20; | |
1543 | if (expectedni > str.length()) { | |
1544 | expectedni = str.length(); | |
1545 | } | |
1546 | if (expectedni != ni) { | |
1547 | errln("%s:%d utext_getNativeIndex() expected %d, got %d", __FILE__, __LINE__, expectedni, ni); | |
1548 | } | |
1549 | if (0 != str.tempSubString(startIdx, 20).compare(extractBuffer)) { | |
1550 | errln("%s:%d utext_extract() failed. expected \"%s\", got \"%s\"", | |
1551 | __FILE__, __LINE__, CStr(str.tempSubString(startIdx, 20))(), CStr(UnicodeString(extractBuffer))()); | |
1552 | } | |
1553 | } | |
1554 | utext_close(&ut); | |
1555 | ||
1556 | // Similar utext extract, this time with the string length provided to the UText in advance, | |
1557 | // and a buffer of larger than required capacity. | |
1558 | ||
1559 | utext_openUChars(&ut, ustr, str.length(), &status); | |
1560 | for (int32_t startIdx = 0; startIdx<str.length(); ++startIdx) { | |
1561 | int32_t endIdx = startIdx + 20; | |
1562 | u_memset(extractBuffer, 0, UPRV_LENGTHOF(extractBuffer)); | |
1563 | utext_extract(&ut, startIdx, endIdx, extractBuffer, UPRV_LENGTHOF(extractBuffer), &status); | |
1564 | if (U_FAILURE(status)) { | |
1565 | errln("%s:%d %s", __FILE__, __LINE__, u_errorName(status)); | |
1566 | return; | |
1567 | } | |
1568 | int64_t ni = utext_getNativeIndex(&ut); | |
1569 | int64_t expectedni = startIdx + 20; | |
1570 | if (expectedni > str.length()) { | |
1571 | expectedni = str.length(); | |
1572 | } | |
1573 | if (expectedni != ni) { | |
1574 | errln("%s:%d utext_getNativeIndex() expected %d, got %d", __FILE__, __LINE__, expectedni, ni); | |
1575 | } | |
1576 | if (0 != str.tempSubString(startIdx, 20).compare(extractBuffer)) { | |
1577 | errln("%s:%d utext_extract() failed. expected \"%s\", got \"%s\"", | |
1578 | __FILE__, __LINE__, CStr(str.tempSubString(startIdx, 20))(), CStr(UnicodeString(extractBuffer))()); | |
1579 | } | |
1580 | } | |
1581 | utext_close(&ut); | |
1582 | } | |
1583 | ||
1584 | // Ticket 13344 The macro form of UTEXT_SETNATIVEINDEX failed when target was a trail surrogate | |
1585 | // of a supplementary character. | |
1586 | ||
1587 | void UTextTest::Ticket13344() { | |
1588 | UErrorCode status = U_ZERO_ERROR; | |
1589 | const char16_t *str = u"abc\U0010abcd xyz"; | |
1590 | LocalUTextPointer ut(utext_openUChars(NULL, str, -1, &status)); | |
1591 | ||
1592 | assertSuccess("UTextTest::Ticket13344-status", status); | |
1593 | UTEXT_SETNATIVEINDEX(ut.getAlias(), 3); | |
1594 | assertEquals("UTextTest::Ticket13344-lead", (int64_t)3, utext_getNativeIndex(ut.getAlias())); | |
1595 | UTEXT_SETNATIVEINDEX(ut.getAlias(), 4); | |
1596 | assertEquals("UTextTest::Ticket13344-trail", (int64_t)3, utext_getNativeIndex(ut.getAlias())); | |
1597 | UTEXT_SETNATIVEINDEX(ut.getAlias(), 5); | |
1598 | assertEquals("UTextTest::Ticket13344-bmp", (int64_t)5, utext_getNativeIndex(ut.getAlias())); | |
1599 | ||
1600 | utext_setNativeIndex(ut.getAlias(), 3); | |
1601 | assertEquals("UTextTest::Ticket13344-lead-2", (int64_t)3, utext_getNativeIndex(ut.getAlias())); | |
1602 | utext_setNativeIndex(ut.getAlias(), 4); | |
1603 | assertEquals("UTextTest::Ticket13344-trail-2", (int64_t)3, utext_getNativeIndex(ut.getAlias())); | |
1604 | utext_setNativeIndex(ut.getAlias(), 5); | |
1605 | assertEquals("UTextTest::Ticket13344-bmp-2", (int64_t)5, utext_getNativeIndex(ut.getAlias())); | |
1606 | } | |
1607 |