]>
Commit | Line | Data |
---|---|---|
1 | // © 2016 and later: Unicode, Inc. and others. | |
2 | // License & terms of use: http://www.unicode.org/copyright.html | |
3 | /* | |
4 | ********************************************************************** | |
5 | * Copyright (C) 1999-2016, International Business Machines | |
6 | * Corporation and others. All Rights Reserved. | |
7 | ********************************************************************** | |
8 | * Date Name Description | |
9 | * 11/17/99 aliu Creation. | |
10 | ********************************************************************** | |
11 | */ | |
12 | ||
13 | #include "unicode/utypes.h" | |
14 | ||
15 | #if !UCONFIG_NO_TRANSLITERATION | |
16 | ||
17 | #include "unicode/uobject.h" | |
18 | #include "unicode/parseerr.h" | |
19 | #include "unicode/parsepos.h" | |
20 | #include "unicode/putil.h" | |
21 | #include "unicode/uchar.h" | |
22 | #include "unicode/ustring.h" | |
23 | #include "unicode/uniset.h" | |
24 | #include "unicode/utf16.h" | |
25 | #include "cstring.h" | |
26 | #include "funcrepl.h" | |
27 | #include "hash.h" | |
28 | #include "quant.h" | |
29 | #include "rbt.h" | |
30 | #include "rbt_data.h" | |
31 | #include "rbt_pars.h" | |
32 | #include "rbt_rule.h" | |
33 | #include "strmatch.h" | |
34 | #include "strrepl.h" | |
35 | #include "unicode/symtable.h" | |
36 | #include "tridpars.h" | |
37 | #include "uvector.h" | |
38 | #include "hash.h" | |
39 | #include "patternprops.h" | |
40 | #include "util.h" | |
41 | #include "cmemory.h" | |
42 | #include "uprops.h" | |
43 | #include "putilimp.h" | |
44 | ||
45 | // Operators | |
46 | #define VARIABLE_DEF_OP ((UChar)0x003D) /*=*/ | |
47 | #define FORWARD_RULE_OP ((UChar)0x003E) /*>*/ | |
48 | #define REVERSE_RULE_OP ((UChar)0x003C) /*<*/ | |
49 | #define FWDREV_RULE_OP ((UChar)0x007E) /*~*/ // internal rep of <> op | |
50 | ||
51 | // Other special characters | |
52 | #define QUOTE ((UChar)0x0027) /*'*/ | |
53 | #define ESCAPE ((UChar)0x005C) /*\*/ | |
54 | #define END_OF_RULE ((UChar)0x003B) /*;*/ | |
55 | #define RULE_COMMENT_CHAR ((UChar)0x0023) /*#*/ | |
56 | ||
57 | #define SEGMENT_OPEN ((UChar)0x0028) /*(*/ | |
58 | #define SEGMENT_CLOSE ((UChar)0x0029) /*)*/ | |
59 | #define CONTEXT_ANTE ((UChar)0x007B) /*{*/ | |
60 | #define CONTEXT_POST ((UChar)0x007D) /*}*/ | |
61 | #define CURSOR_POS ((UChar)0x007C) /*|*/ | |
62 | #define CURSOR_OFFSET ((UChar)0x0040) /*@*/ | |
63 | #define ANCHOR_START ((UChar)0x005E) /*^*/ | |
64 | #define KLEENE_STAR ((UChar)0x002A) /***/ | |
65 | #define ONE_OR_MORE ((UChar)0x002B) /*+*/ | |
66 | #define ZERO_OR_ONE ((UChar)0x003F) /*?*/ | |
67 | ||
68 | #define DOT ((UChar)46) /*.*/ | |
69 | ||
70 | static const UChar DOT_SET[] = { // "[^[:Zp:][:Zl:]\r\n$]"; | |
71 | 91, 94, 91, 58, 90, 112, 58, 93, 91, 58, 90, | |
72 | 108, 58, 93, 92, 114, 92, 110, 36, 93, 0 | |
73 | }; | |
74 | ||
75 | // A function is denoted &Source-Target/Variant(text) | |
76 | #define FUNCTION ((UChar)38) /*&*/ | |
77 | ||
78 | // Aliases for some of the syntax characters. These are provided so | |
79 | // transliteration rules can be expressed in XML without clashing with | |
80 | // XML syntax characters '<', '>', and '&'. | |
81 | #define ALT_REVERSE_RULE_OP ((UChar)0x2190) // Left Arrow | |
82 | #define ALT_FORWARD_RULE_OP ((UChar)0x2192) // Right Arrow | |
83 | #define ALT_FWDREV_RULE_OP ((UChar)0x2194) // Left Right Arrow | |
84 | #define ALT_FUNCTION ((UChar)0x2206) // Increment (~Greek Capital Delta) | |
85 | ||
86 | // Special characters disallowed at the top level | |
87 | static const UChar ILLEGAL_TOP[] = {41,0}; // ")" | |
88 | ||
89 | // Special characters disallowed within a segment | |
90 | static const UChar ILLEGAL_SEG[] = {123,125,124,64,0}; // "{}|@" | |
91 | ||
92 | // Special characters disallowed within a function argument | |
93 | static const UChar ILLEGAL_FUNC[] = {94,40,46,42,43,63,123,125,124,64,0}; // "^(.*+?{}|@" | |
94 | ||
95 | // By definition, the ANCHOR_END special character is a | |
96 | // trailing SymbolTable.SYMBOL_REF character. | |
97 | // private static final char ANCHOR_END = '$'; | |
98 | ||
99 | static const UChar gOPERATORS[] = { // "=><" | |
100 | VARIABLE_DEF_OP, FORWARD_RULE_OP, REVERSE_RULE_OP, | |
101 | ALT_FORWARD_RULE_OP, ALT_REVERSE_RULE_OP, ALT_FWDREV_RULE_OP, | |
102 | 0 | |
103 | }; | |
104 | ||
105 | static const UChar HALF_ENDERS[] = { // "=><;" | |
106 | VARIABLE_DEF_OP, FORWARD_RULE_OP, REVERSE_RULE_OP, | |
107 | ALT_FORWARD_RULE_OP, ALT_REVERSE_RULE_OP, ALT_FWDREV_RULE_OP, | |
108 | END_OF_RULE, | |
109 | 0 | |
110 | }; | |
111 | ||
112 | // These are also used in Transliterator::toRules() | |
113 | static const int32_t ID_TOKEN_LEN = 2; | |
114 | static const UChar ID_TOKEN[] = { 0x3A, 0x3A }; // ':', ':' | |
115 | ||
116 | /* | |
117 | commented out until we do real ::BEGIN/::END functionality | |
118 | static const int32_t BEGIN_TOKEN_LEN = 5; | |
119 | static const UChar BEGIN_TOKEN[] = { 0x42, 0x45, 0x47, 0x49, 0x4e }; // 'BEGIN' | |
120 | ||
121 | static const int32_t END_TOKEN_LEN = 3; | |
122 | static const UChar END_TOKEN[] = { 0x45, 0x4e, 0x44 }; // 'END' | |
123 | */ | |
124 | ||
125 | U_NAMESPACE_BEGIN | |
126 | ||
127 | //---------------------------------------------------------------------- | |
128 | // BEGIN ParseData | |
129 | //---------------------------------------------------------------------- | |
130 | ||
131 | /** | |
132 | * This class implements the SymbolTable interface. It is used | |
133 | * during parsing to give UnicodeSet access to variables that | |
134 | * have been defined so far. Note that it uses variablesVector, | |
135 | * _not_ data.setVariables. | |
136 | */ | |
137 | class ParseData : public UMemory, public SymbolTable { | |
138 | public: | |
139 | const TransliterationRuleData* data; // alias | |
140 | ||
141 | const UVector* variablesVector; // alias | |
142 | ||
143 | const Hashtable* variableNames; // alias | |
144 | ||
145 | ParseData(const TransliterationRuleData* data = 0, | |
146 | const UVector* variablesVector = 0, | |
147 | const Hashtable* variableNames = 0); | |
148 | ||
149 | virtual ~ParseData(); | |
150 | ||
151 | virtual const UnicodeString* lookup(const UnicodeString& s) const; | |
152 | ||
153 | virtual const UnicodeFunctor* lookupMatcher(UChar32 ch) const; | |
154 | ||
155 | virtual UnicodeString parseReference(const UnicodeString& text, | |
156 | ParsePosition& pos, int32_t limit) const; | |
157 | /** | |
158 | * Return true if the given character is a matcher standin or a plain | |
159 | * character (non standin). | |
160 | */ | |
161 | UBool isMatcher(UChar32 ch); | |
162 | ||
163 | /** | |
164 | * Return true if the given character is a replacer standin or a plain | |
165 | * character (non standin). | |
166 | */ | |
167 | UBool isReplacer(UChar32 ch); | |
168 | ||
169 | private: | |
170 | ParseData(const ParseData &other); // forbid copying of this class | |
171 | ParseData &operator=(const ParseData &other); // forbid copying of this class | |
172 | }; | |
173 | ||
174 | ParseData::ParseData(const TransliterationRuleData* d, | |
175 | const UVector* sets, | |
176 | const Hashtable* vNames) : | |
177 | data(d), variablesVector(sets), variableNames(vNames) {} | |
178 | ||
179 | ParseData::~ParseData() {} | |
180 | ||
181 | /** | |
182 | * Implement SymbolTable API. | |
183 | */ | |
184 | const UnicodeString* ParseData::lookup(const UnicodeString& name) const { | |
185 | return (const UnicodeString*) variableNames->get(name); | |
186 | } | |
187 | ||
188 | /** | |
189 | * Implement SymbolTable API. | |
190 | */ | |
191 | const UnicodeFunctor* ParseData::lookupMatcher(UChar32 ch) const { | |
192 | // Note that we cannot use data.lookupSet() because the | |
193 | // set array has not been constructed yet. | |
194 | const UnicodeFunctor* set = NULL; | |
195 | int32_t i = ch - data->variablesBase; | |
196 | if (i >= 0 && i < variablesVector->size()) { | |
197 | int32_t j = ch - data->variablesBase; | |
198 | set = (j < variablesVector->size()) ? | |
199 | (UnicodeFunctor*) variablesVector->elementAt(j) : 0; | |
200 | } | |
201 | return set; | |
202 | } | |
203 | ||
204 | /** | |
205 | * Implement SymbolTable API. Parse out a symbol reference | |
206 | * name. | |
207 | */ | |
208 | UnicodeString ParseData::parseReference(const UnicodeString& text, | |
209 | ParsePosition& pos, int32_t limit) const { | |
210 | int32_t start = pos.getIndex(); | |
211 | int32_t i = start; | |
212 | UnicodeString result; | |
213 | while (i < limit) { | |
214 | UChar c = text.charAt(i); | |
215 | if ((i==start && !u_isIDStart(c)) || !u_isIDPart(c)) { | |
216 | break; | |
217 | } | |
218 | ++i; | |
219 | } | |
220 | if (i == start) { // No valid name chars | |
221 | return result; // Indicate failure with empty string | |
222 | } | |
223 | pos.setIndex(i); | |
224 | text.extractBetween(start, i, result); | |
225 | return result; | |
226 | } | |
227 | ||
228 | UBool ParseData::isMatcher(UChar32 ch) { | |
229 | // Note that we cannot use data.lookup() because the | |
230 | // set array has not been constructed yet. | |
231 | int32_t i = ch - data->variablesBase; | |
232 | if (i >= 0 && i < variablesVector->size()) { | |
233 | UnicodeFunctor *f = (UnicodeFunctor*) variablesVector->elementAt(i); | |
234 | return f != NULL && f->toMatcher() != NULL; | |
235 | } | |
236 | return TRUE; | |
237 | } | |
238 | ||
239 | /** | |
240 | * Return true if the given character is a replacer standin or a plain | |
241 | * character (non standin). | |
242 | */ | |
243 | UBool ParseData::isReplacer(UChar32 ch) { | |
244 | // Note that we cannot use data.lookup() because the | |
245 | // set array has not been constructed yet. | |
246 | int i = ch - data->variablesBase; | |
247 | if (i >= 0 && i < variablesVector->size()) { | |
248 | UnicodeFunctor *f = (UnicodeFunctor*) variablesVector->elementAt(i); | |
249 | return f != NULL && f->toReplacer() != NULL; | |
250 | } | |
251 | return TRUE; | |
252 | } | |
253 | ||
254 | //---------------------------------------------------------------------- | |
255 | // BEGIN RuleHalf | |
256 | //---------------------------------------------------------------------- | |
257 | ||
258 | /** | |
259 | * A class representing one side of a rule. This class knows how to | |
260 | * parse half of a rule. It is tightly coupled to the method | |
261 | * RuleBasedTransliterator.Parser.parseRule(). | |
262 | */ | |
263 | class RuleHalf : public UMemory { | |
264 | ||
265 | public: | |
266 | ||
267 | UnicodeString text; | |
268 | ||
269 | int32_t cursor; // position of cursor in text | |
270 | int32_t ante; // position of ante context marker '{' in text | |
271 | int32_t post; // position of post context marker '}' in text | |
272 | ||
273 | // Record the offset to the cursor either to the left or to the | |
274 | // right of the key. This is indicated by characters on the output | |
275 | // side that allow the cursor to be positioned arbitrarily within | |
276 | // the matching text. For example, abc{def} > | @@@ xyz; changes | |
277 | // def to xyz and moves the cursor to before abc. Offset characters | |
278 | // must be at the start or end, and they cannot move the cursor past | |
279 | // the ante- or postcontext text. Placeholders are only valid in | |
280 | // output text. The length of the ante and post context is | |
281 | // determined at runtime, because of supplementals and quantifiers. | |
282 | int32_t cursorOffset; // only nonzero on output side | |
283 | ||
284 | // Position of first CURSOR_OFFSET on _right_. This will be -1 | |
285 | // for |@, -2 for |@@, etc., and 1 for @|, 2 for @@|, etc. | |
286 | int32_t cursorOffsetPos; | |
287 | ||
288 | UBool anchorStart; | |
289 | UBool anchorEnd; | |
290 | ||
291 | /** | |
292 | * The segment number from 1..n of the next '(' we see | |
293 | * during parsing; 1-based. | |
294 | */ | |
295 | int32_t nextSegmentNumber; | |
296 | ||
297 | TransliteratorParser& parser; | |
298 | ||
299 | //-------------------------------------------------- | |
300 | // Methods | |
301 | ||
302 | RuleHalf(TransliteratorParser& parser); | |
303 | ~RuleHalf(); | |
304 | ||
305 | int32_t parse(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status); | |
306 | ||
307 | int32_t parseSection(const UnicodeString& rule, int32_t pos, int32_t limit, | |
308 | UnicodeString& buf, | |
309 | const UnicodeString& illegal, | |
310 | UBool isSegment, | |
311 | UErrorCode& status); | |
312 | ||
313 | /** | |
314 | * Remove context. | |
315 | */ | |
316 | void removeContext(); | |
317 | ||
318 | /** | |
319 | * Return true if this half looks like valid output, that is, does not | |
320 | * contain quantifiers or other special input-only elements. | |
321 | */ | |
322 | UBool isValidOutput(TransliteratorParser& parser); | |
323 | ||
324 | /** | |
325 | * Return true if this half looks like valid input, that is, does not | |
326 | * contain functions or other special output-only elements. | |
327 | */ | |
328 | UBool isValidInput(TransliteratorParser& parser); | |
329 | ||
330 | int syntaxError(UErrorCode code, | |
331 | const UnicodeString& rule, | |
332 | int32_t start, | |
333 | UErrorCode& status) { | |
334 | return parser.syntaxError(code, rule, start, status); | |
335 | } | |
336 | ||
337 | private: | |
338 | // Disallowed methods; no impl. | |
339 | RuleHalf(const RuleHalf&); | |
340 | RuleHalf& operator=(const RuleHalf&); | |
341 | }; | |
342 | ||
343 | RuleHalf::RuleHalf(TransliteratorParser& p) : | |
344 | parser(p) | |
345 | { | |
346 | cursor = -1; | |
347 | ante = -1; | |
348 | post = -1; | |
349 | cursorOffset = 0; | |
350 | cursorOffsetPos = 0; | |
351 | anchorStart = anchorEnd = FALSE; | |
352 | nextSegmentNumber = 1; | |
353 | } | |
354 | ||
355 | RuleHalf::~RuleHalf() { | |
356 | } | |
357 | ||
358 | /** | |
359 | * Parse one side of a rule, stopping at either the limit, | |
360 | * the END_OF_RULE character, or an operator. | |
361 | * @return the index after the terminating character, or | |
362 | * if limit was reached, limit | |
363 | */ | |
364 | int32_t RuleHalf::parse(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status) { | |
365 | int32_t start = pos; | |
366 | text.truncate(0); | |
367 | pos = parseSection(rule, pos, limit, text, UnicodeString(TRUE, ILLEGAL_TOP, -1), FALSE, status); | |
368 | ||
369 | if (cursorOffset > 0 && cursor != cursorOffsetPos) { | |
370 | return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status); | |
371 | } | |
372 | ||
373 | return pos; | |
374 | } | |
375 | ||
376 | /** | |
377 | * Parse a section of one side of a rule, stopping at either | |
378 | * the limit, the END_OF_RULE character, an operator, or a | |
379 | * segment close character. This method parses both a | |
380 | * top-level rule half and a segment within such a rule half. | |
381 | * It calls itself recursively to parse segments and nested | |
382 | * segments. | |
383 | * @param buf buffer into which to accumulate the rule pattern | |
384 | * characters, either literal characters from the rule or | |
385 | * standins for UnicodeMatcher objects including segments. | |
386 | * @param illegal the set of special characters that is illegal during | |
387 | * this parse. | |
388 | * @param isSegment if true, then we've already seen a '(' and | |
389 | * pos on entry points right after it. Accumulate everything | |
390 | * up to the closing ')', put it in a segment matcher object, | |
391 | * generate a standin for it, and add the standin to buf. As | |
392 | * a side effect, update the segments vector with a reference | |
393 | * to the segment matcher. This works recursively for nested | |
394 | * segments. If isSegment is false, just accumulate | |
395 | * characters into buf. | |
396 | * @return the index after the terminating character, or | |
397 | * if limit was reached, limit | |
398 | */ | |
399 | int32_t RuleHalf::parseSection(const UnicodeString& rule, int32_t pos, int32_t limit, | |
400 | UnicodeString& buf, | |
401 | const UnicodeString& illegal, | |
402 | UBool isSegment, UErrorCode& status) { | |
403 | int32_t start = pos; | |
404 | ParsePosition pp; | |
405 | UnicodeString scratch; | |
406 | UBool done = FALSE; | |
407 | int32_t quoteStart = -1; // Most recent 'single quoted string' | |
408 | int32_t quoteLimit = -1; | |
409 | int32_t varStart = -1; // Most recent $variableReference | |
410 | int32_t varLimit = -1; | |
411 | int32_t bufStart = buf.length(); | |
412 | ||
413 | while (pos < limit && !done) { | |
414 | // Since all syntax characters are in the BMP, fetching | |
415 | // 16-bit code units suffices here. | |
416 | UChar c = rule.charAt(pos++); | |
417 | if (PatternProps::isWhiteSpace(c)) { | |
418 | // Ignore whitespace. Note that this is not Unicode | |
419 | // spaces, but Java spaces -- a subset, representing | |
420 | // whitespace likely to be seen in code. | |
421 | continue; | |
422 | } | |
423 | if (u_strchr(HALF_ENDERS, c) != NULL) { | |
424 | if (isSegment) { | |
425 | // Unclosed segment | |
426 | return syntaxError(U_UNCLOSED_SEGMENT, rule, start, status); | |
427 | } | |
428 | break; | |
429 | } | |
430 | if (anchorEnd) { | |
431 | // Text after a presumed end anchor is a syntax err | |
432 | return syntaxError(U_MALFORMED_VARIABLE_REFERENCE, rule, start, status); | |
433 | } | |
434 | if (UnicodeSet::resemblesPattern(rule, pos-1)) { | |
435 | pp.setIndex(pos-1); // Backup to opening '[' | |
436 | buf.append(parser.parseSet(rule, pp, status)); | |
437 | if (U_FAILURE(status)) { | |
438 | return syntaxError(U_MALFORMED_SET, rule, start, status); | |
439 | } | |
440 | pos = pp.getIndex(); | |
441 | continue; | |
442 | } | |
443 | // Handle escapes | |
444 | if (c == ESCAPE) { | |
445 | if (pos == limit) { | |
446 | return syntaxError(U_TRAILING_BACKSLASH, rule, start, status); | |
447 | } | |
448 | UChar32 escaped = rule.unescapeAt(pos); // pos is already past '\\' | |
449 | if (escaped == (UChar32) -1) { | |
450 | return syntaxError(U_MALFORMED_UNICODE_ESCAPE, rule, start, status); | |
451 | } | |
452 | if (!parser.checkVariableRange(escaped)) { | |
453 | return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start, status); | |
454 | } | |
455 | buf.append(escaped); | |
456 | continue; | |
457 | } | |
458 | // Handle quoted matter | |
459 | if (c == QUOTE) { | |
460 | int32_t iq = rule.indexOf(QUOTE, pos); | |
461 | if (iq == pos) { | |
462 | buf.append(c); // Parse [''] outside quotes as ['] | |
463 | ++pos; | |
464 | } else { | |
465 | /* This loop picks up a run of quoted text of the | |
466 | * form 'aaaa' each time through. If this run | |
467 | * hasn't really ended ('aaaa''bbbb') then it keeps | |
468 | * looping, each time adding on a new run. When it | |
469 | * reaches the final quote it breaks. | |
470 | */ | |
471 | quoteStart = buf.length(); | |
472 | for (;;) { | |
473 | if (iq < 0) { | |
474 | return syntaxError(U_UNTERMINATED_QUOTE, rule, start, status); | |
475 | } | |
476 | scratch.truncate(0); | |
477 | rule.extractBetween(pos, iq, scratch); | |
478 | buf.append(scratch); | |
479 | pos = iq+1; | |
480 | if (pos < limit && rule.charAt(pos) == QUOTE) { | |
481 | // Parse [''] inside quotes as ['] | |
482 | iq = rule.indexOf(QUOTE, pos+1); | |
483 | // Continue looping | |
484 | } else { | |
485 | break; | |
486 | } | |
487 | } | |
488 | quoteLimit = buf.length(); | |
489 | ||
490 | for (iq=quoteStart; iq<quoteLimit; ++iq) { | |
491 | if (!parser.checkVariableRange(buf.charAt(iq))) { | |
492 | return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start, status); | |
493 | } | |
494 | } | |
495 | } | |
496 | continue; | |
497 | } | |
498 | ||
499 | if (!parser.checkVariableRange(c)) { | |
500 | return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start, status); | |
501 | } | |
502 | ||
503 | if (illegal.indexOf(c) >= 0) { | |
504 | syntaxError(U_ILLEGAL_CHARACTER, rule, start, status); | |
505 | } | |
506 | ||
507 | switch (c) { | |
508 | ||
509 | //------------------------------------------------------ | |
510 | // Elements allowed within and out of segments | |
511 | //------------------------------------------------------ | |
512 | case ANCHOR_START: | |
513 | if (buf.length() == 0 && !anchorStart) { | |
514 | anchorStart = TRUE; | |
515 | } else { | |
516 | return syntaxError(U_MISPLACED_ANCHOR_START, | |
517 | rule, start, status); | |
518 | } | |
519 | break; | |
520 | case SEGMENT_OPEN: | |
521 | { | |
522 | // bufSegStart is the offset in buf to the first | |
523 | // character of the segment we are parsing. | |
524 | int32_t bufSegStart = buf.length(); | |
525 | ||
526 | // Record segment number now, since nextSegmentNumber | |
527 | // will be incremented during the call to parseSection | |
528 | // if there are nested segments. | |
529 | int32_t segmentNumber = nextSegmentNumber++; // 1-based | |
530 | ||
531 | // Parse the segment | |
532 | pos = parseSection(rule, pos, limit, buf, UnicodeString(TRUE, ILLEGAL_SEG, -1), TRUE, status); | |
533 | ||
534 | // After parsing a segment, the relevant characters are | |
535 | // in buf, starting at offset bufSegStart. Extract them | |
536 | // into a string matcher, and replace them with a | |
537 | // standin for that matcher. | |
538 | StringMatcher* m = | |
539 | new StringMatcher(buf, bufSegStart, buf.length(), | |
540 | segmentNumber, *parser.curData); | |
541 | if (m == NULL) { | |
542 | return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); | |
543 | } | |
544 | ||
545 | // Record and associate object and segment number | |
546 | parser.setSegmentObject(segmentNumber, m, status); | |
547 | buf.truncate(bufSegStart); | |
548 | buf.append(parser.getSegmentStandin(segmentNumber, status)); | |
549 | } | |
550 | break; | |
551 | case FUNCTION: | |
552 | case ALT_FUNCTION: | |
553 | { | |
554 | int32_t iref = pos; | |
555 | TransliteratorIDParser::SingleID* single = | |
556 | TransliteratorIDParser::parseFilterID(rule, iref); | |
557 | // The next character MUST be a segment open | |
558 | if (single == NULL || | |
559 | !ICU_Utility::parseChar(rule, iref, SEGMENT_OPEN)) { | |
560 | return syntaxError(U_INVALID_FUNCTION, rule, start, status); | |
561 | } | |
562 | ||
563 | Transliterator *t = single->createInstance(); | |
564 | delete single; | |
565 | if (t == NULL) { | |
566 | return syntaxError(U_INVALID_FUNCTION, rule, start, status); | |
567 | } | |
568 | ||
569 | // bufSegStart is the offset in buf to the first | |
570 | // character of the segment we are parsing. | |
571 | int32_t bufSegStart = buf.length(); | |
572 | ||
573 | // Parse the segment | |
574 | pos = parseSection(rule, iref, limit, buf, UnicodeString(TRUE, ILLEGAL_FUNC, -1), TRUE, status); | |
575 | ||
576 | // After parsing a segment, the relevant characters are | |
577 | // in buf, starting at offset bufSegStart. | |
578 | UnicodeString output; | |
579 | buf.extractBetween(bufSegStart, buf.length(), output); | |
580 | FunctionReplacer *r = | |
581 | new FunctionReplacer(t, new StringReplacer(output, parser.curData)); | |
582 | if (r == NULL) { | |
583 | return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); | |
584 | } | |
585 | ||
586 | // Replace the buffer contents with a stand-in | |
587 | buf.truncate(bufSegStart); | |
588 | buf.append(parser.generateStandInFor(r, status)); | |
589 | } | |
590 | break; | |
591 | case SymbolTable::SYMBOL_REF: | |
592 | // Handle variable references and segment references "$1" .. "$9" | |
593 | { | |
594 | // A variable reference must be followed immediately | |
595 | // by a Unicode identifier start and zero or more | |
596 | // Unicode identifier part characters, or by a digit | |
597 | // 1..9 if it is a segment reference. | |
598 | if (pos == limit) { | |
599 | // A variable ref character at the end acts as | |
600 | // an anchor to the context limit, as in perl. | |
601 | anchorEnd = TRUE; | |
602 | break; | |
603 | } | |
604 | // Parse "$1" "$2" .. "$9" .. (no upper limit) | |
605 | c = rule.charAt(pos); | |
606 | int32_t r = u_digit(c, 10); | |
607 | if (r >= 1 && r <= 9) { | |
608 | r = ICU_Utility::parseNumber(rule, pos, 10); | |
609 | if (r < 0) { | |
610 | return syntaxError(U_UNDEFINED_SEGMENT_REFERENCE, | |
611 | rule, start, status); | |
612 | } | |
613 | buf.append(parser.getSegmentStandin(r, status)); | |
614 | } else { | |
615 | pp.setIndex(pos); | |
616 | UnicodeString name = parser.parseData-> | |
617 | parseReference(rule, pp, limit); | |
618 | if (name.length() == 0) { | |
619 | // This means the '$' was not followed by a | |
620 | // valid name. Try to interpret it as an | |
621 | // end anchor then. If this also doesn't work | |
622 | // (if we see a following character) then signal | |
623 | // an error. | |
624 | anchorEnd = TRUE; | |
625 | break; | |
626 | } | |
627 | pos = pp.getIndex(); | |
628 | // If this is a variable definition statement, | |
629 | // then the LHS variable will be undefined. In | |
630 | // that case appendVariableDef() will append the | |
631 | // special placeholder char variableLimit-1. | |
632 | varStart = buf.length(); | |
633 | parser.appendVariableDef(name, buf, status); | |
634 | varLimit = buf.length(); | |
635 | } | |
636 | } | |
637 | break; | |
638 | case DOT: | |
639 | buf.append(parser.getDotStandIn(status)); | |
640 | break; | |
641 | case KLEENE_STAR: | |
642 | case ONE_OR_MORE: | |
643 | case ZERO_OR_ONE: | |
644 | // Quantifiers. We handle single characters, quoted strings, | |
645 | // variable references, and segments. | |
646 | // a+ matches aaa | |
647 | // 'foo'+ matches foofoofoo | |
648 | // $v+ matches xyxyxy if $v == xy | |
649 | // (seg)+ matches segsegseg | |
650 | { | |
651 | if (isSegment && buf.length() == bufStart) { | |
652 | // The */+ immediately follows '(' | |
653 | return syntaxError(U_MISPLACED_QUANTIFIER, rule, start, status); | |
654 | } | |
655 | ||
656 | int32_t qstart, qlimit; | |
657 | // The */+ follows an isolated character or quote | |
658 | // or variable reference | |
659 | if (buf.length() == quoteLimit) { | |
660 | // The */+ follows a 'quoted string' | |
661 | qstart = quoteStart; | |
662 | qlimit = quoteLimit; | |
663 | } else if (buf.length() == varLimit) { | |
664 | // The */+ follows a $variableReference | |
665 | qstart = varStart; | |
666 | qlimit = varLimit; | |
667 | } else { | |
668 | // The */+ follows a single character, possibly | |
669 | // a segment standin | |
670 | qstart = buf.length() - 1; | |
671 | qlimit = qstart + 1; | |
672 | } | |
673 | ||
674 | UnicodeFunctor *m = | |
675 | new StringMatcher(buf, qstart, qlimit, 0, *parser.curData); | |
676 | if (m == NULL) { | |
677 | return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); | |
678 | } | |
679 | int32_t min = 0; | |
680 | int32_t max = Quantifier::MAX; | |
681 | switch (c) { | |
682 | case ONE_OR_MORE: | |
683 | min = 1; | |
684 | break; | |
685 | case ZERO_OR_ONE: | |
686 | min = 0; | |
687 | max = 1; | |
688 | break; | |
689 | // case KLEENE_STAR: | |
690 | // do nothing -- min, max already set | |
691 | } | |
692 | m = new Quantifier(m, min, max); | |
693 | if (m == NULL) { | |
694 | return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); | |
695 | } | |
696 | buf.truncate(qstart); | |
697 | buf.append(parser.generateStandInFor(m, status)); | |
698 | } | |
699 | break; | |
700 | ||
701 | //------------------------------------------------------ | |
702 | // Elements allowed ONLY WITHIN segments | |
703 | //------------------------------------------------------ | |
704 | case SEGMENT_CLOSE: | |
705 | // assert(isSegment); | |
706 | // We're done parsing a segment. | |
707 | done = TRUE; | |
708 | break; | |
709 | ||
710 | //------------------------------------------------------ | |
711 | // Elements allowed ONLY OUTSIDE segments | |
712 | //------------------------------------------------------ | |
713 | case CONTEXT_ANTE: | |
714 | if (ante >= 0) { | |
715 | return syntaxError(U_MULTIPLE_ANTE_CONTEXTS, rule, start, status); | |
716 | } | |
717 | ante = buf.length(); | |
718 | break; | |
719 | case CONTEXT_POST: | |
720 | if (post >= 0) { | |
721 | return syntaxError(U_MULTIPLE_POST_CONTEXTS, rule, start, status); | |
722 | } | |
723 | post = buf.length(); | |
724 | break; | |
725 | case CURSOR_POS: | |
726 | if (cursor >= 0) { | |
727 | return syntaxError(U_MULTIPLE_CURSORS, rule, start, status); | |
728 | } | |
729 | cursor = buf.length(); | |
730 | break; | |
731 | case CURSOR_OFFSET: | |
732 | if (cursorOffset < 0) { | |
733 | if (buf.length() > 0) { | |
734 | return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status); | |
735 | } | |
736 | --cursorOffset; | |
737 | } else if (cursorOffset > 0) { | |
738 | if (buf.length() != cursorOffsetPos || cursor >= 0) { | |
739 | return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status); | |
740 | } | |
741 | ++cursorOffset; | |
742 | } else { | |
743 | if (cursor == 0 && buf.length() == 0) { | |
744 | cursorOffset = -1; | |
745 | } else if (cursor < 0) { | |
746 | cursorOffsetPos = buf.length(); | |
747 | cursorOffset = 1; | |
748 | } else { | |
749 | return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status); | |
750 | } | |
751 | } | |
752 | break; | |
753 | ||
754 | ||
755 | //------------------------------------------------------ | |
756 | // Non-special characters | |
757 | //------------------------------------------------------ | |
758 | default: | |
759 | // Disallow unquoted characters other than [0-9A-Za-z] | |
760 | // in the printable ASCII range. These characters are | |
761 | // reserved for possible future use. | |
762 | if (c >= 0x0021 && c <= 0x007E && | |
763 | !((c >= 0x0030/*'0'*/ && c <= 0x0039/*'9'*/) || | |
764 | (c >= 0x0041/*'A'*/ && c <= 0x005A/*'Z'*/) || | |
765 | (c >= 0x0061/*'a'*/ && c <= 0x007A/*'z'*/))) { | |
766 | return syntaxError(U_UNQUOTED_SPECIAL, rule, start, status); | |
767 | } | |
768 | buf.append(c); | |
769 | break; | |
770 | } | |
771 | } | |
772 | ||
773 | return pos; | |
774 | } | |
775 | ||
776 | /** | |
777 | * Remove context. | |
778 | */ | |
779 | void RuleHalf::removeContext() { | |
780 | //text = text.substring(ante < 0 ? 0 : ante, | |
781 | // post < 0 ? text.length() : post); | |
782 | if (post >= 0) { | |
783 | text.remove(post); | |
784 | } | |
785 | if (ante >= 0) { | |
786 | text.removeBetween(0, ante); | |
787 | } | |
788 | ante = post = -1; | |
789 | anchorStart = anchorEnd = FALSE; | |
790 | } | |
791 | ||
792 | /** | |
793 | * Return true if this half looks like valid output, that is, does not | |
794 | * contain quantifiers or other special input-only elements. | |
795 | */ | |
796 | UBool RuleHalf::isValidOutput(TransliteratorParser& transParser) { | |
797 | for (int32_t i=0; i<text.length(); ) { | |
798 | UChar32 c = text.char32At(i); | |
799 | i += U16_LENGTH(c); | |
800 | if (!transParser.parseData->isReplacer(c)) { | |
801 | return FALSE; | |
802 | } | |
803 | } | |
804 | return TRUE; | |
805 | } | |
806 | ||
807 | /** | |
808 | * Return true if this half looks like valid input, that is, does not | |
809 | * contain functions or other special output-only elements. | |
810 | */ | |
811 | UBool RuleHalf::isValidInput(TransliteratorParser& transParser) { | |
812 | for (int32_t i=0; i<text.length(); ) { | |
813 | UChar32 c = text.char32At(i); | |
814 | i += U16_LENGTH(c); | |
815 | if (!transParser.parseData->isMatcher(c)) { | |
816 | return FALSE; | |
817 | } | |
818 | } | |
819 | return TRUE; | |
820 | } | |
821 | ||
822 | //---------------------------------------------------------------------- | |
823 | // PUBLIC API | |
824 | //---------------------------------------------------------------------- | |
825 | ||
826 | /** | |
827 | * Constructor. | |
828 | */ | |
829 | TransliteratorParser::TransliteratorParser(UErrorCode &statusReturn) : | |
830 | dataVector(statusReturn), | |
831 | idBlockVector(statusReturn), | |
832 | variablesVector(statusReturn), | |
833 | segmentObjects(statusReturn) | |
834 | { | |
835 | idBlockVector.setDeleter(uprv_deleteUObject); | |
836 | curData = NULL; | |
837 | compoundFilter = NULL; | |
838 | parseData = NULL; | |
839 | variableNames.setValueDeleter(uprv_deleteUObject); | |
840 | } | |
841 | ||
842 | /** | |
843 | * Destructor. | |
844 | */ | |
845 | TransliteratorParser::~TransliteratorParser() { | |
846 | while (!dataVector.isEmpty()) | |
847 | delete (TransliterationRuleData*)(dataVector.orphanElementAt(0)); | |
848 | delete compoundFilter; | |
849 | delete parseData; | |
850 | while (!variablesVector.isEmpty()) | |
851 | delete (UnicodeFunctor*)variablesVector.orphanElementAt(0); | |
852 | } | |
853 | ||
854 | void | |
855 | TransliteratorParser::parse(const UnicodeString& rules, | |
856 | UTransDirection transDirection, | |
857 | UParseError& pe, | |
858 | UErrorCode& ec) { | |
859 | if (U_SUCCESS(ec)) { | |
860 | parseRules(rules, transDirection, ec); | |
861 | pe = parseError; | |
862 | } | |
863 | } | |
864 | ||
865 | /** | |
866 | * Return the compound filter parsed by parse(). Caller owns result. | |
867 | */ | |
868 | UnicodeSet* TransliteratorParser::orphanCompoundFilter() { | |
869 | UnicodeSet* f = compoundFilter; | |
870 | compoundFilter = NULL; | |
871 | return f; | |
872 | } | |
873 | ||
874 | //---------------------------------------------------------------------- | |
875 | // Private implementation | |
876 | //---------------------------------------------------------------------- | |
877 | ||
878 | /** | |
879 | * Parse the given string as a sequence of rules, separated by newline | |
880 | * characters ('\n'), and cause this object to implement those rules. Any | |
881 | * previous rules are discarded. Typically this method is called exactly | |
882 | * once, during construction. | |
883 | * @exception IllegalArgumentException if there is a syntax error in the | |
884 | * rules | |
885 | */ | |
886 | void TransliteratorParser::parseRules(const UnicodeString& rule, | |
887 | UTransDirection theDirection, | |
888 | UErrorCode& status) | |
889 | { | |
890 | // Clear error struct | |
891 | uprv_memset(&parseError, 0, sizeof(parseError)); | |
892 | parseError.line = parseError.offset = -1; | |
893 | ||
894 | UBool parsingIDs = TRUE; | |
895 | int32_t ruleCount = 0; | |
896 | ||
897 | while (!dataVector.isEmpty()) { | |
898 | delete (TransliterationRuleData*)(dataVector.orphanElementAt(0)); | |
899 | } | |
900 | if (U_FAILURE(status)) { | |
901 | return; | |
902 | } | |
903 | ||
904 | idBlockVector.removeAllElements(); | |
905 | curData = NULL; | |
906 | direction = theDirection; | |
907 | ruleCount = 0; | |
908 | ||
909 | delete compoundFilter; | |
910 | compoundFilter = NULL; | |
911 | ||
912 | while (!variablesVector.isEmpty()) { | |
913 | delete (UnicodeFunctor*)variablesVector.orphanElementAt(0); | |
914 | } | |
915 | variableNames.removeAll(); | |
916 | parseData = new ParseData(0, &variablesVector, &variableNames); | |
917 | if (parseData == NULL) { | |
918 | status = U_MEMORY_ALLOCATION_ERROR; | |
919 | return; | |
920 | } | |
921 | ||
922 | dotStandIn = (UChar) -1; | |
923 | ||
924 | UnicodeString *tempstr = NULL; // used for memory allocation error checking | |
925 | UnicodeString str; // scratch | |
926 | UnicodeString idBlockResult; | |
927 | int32_t pos = 0; | |
928 | int32_t limit = rule.length(); | |
929 | ||
930 | // The compound filter offset is an index into idBlockResult. | |
931 | // If it is 0, then the compound filter occurred at the start, | |
932 | // and it is the offset to the _start_ of the compound filter | |
933 | // pattern. Otherwise it is the offset to the _limit_ of the | |
934 | // compound filter pattern within idBlockResult. | |
935 | compoundFilter = NULL; | |
936 | int32_t compoundFilterOffset = -1; | |
937 | ||
938 | while (pos < limit && U_SUCCESS(status)) { | |
939 | UChar c = rule.charAt(pos++); | |
940 | if (PatternProps::isWhiteSpace(c)) { | |
941 | // Ignore leading whitespace. | |
942 | continue; | |
943 | } | |
944 | // Skip lines starting with the comment character | |
945 | if (c == RULE_COMMENT_CHAR) { | |
946 | pos = rule.indexOf((UChar)0x000A /*\n*/, pos) + 1; | |
947 | if (pos == 0) { | |
948 | break; // No "\n" found; rest of rule is a commnet | |
949 | } | |
950 | continue; // Either fall out or restart with next line | |
951 | } | |
952 | ||
953 | // skip empty rules | |
954 | if (c == END_OF_RULE) | |
955 | continue; | |
956 | ||
957 | // keep track of how many rules we've seen | |
958 | ++ruleCount; | |
959 | ||
960 | // We've found the start of a rule or ID. c is its first | |
961 | // character, and pos points past c. | |
962 | --pos; | |
963 | // Look for an ID token. Must have at least ID_TOKEN_LEN + 1 | |
964 | // chars left. | |
965 | if ((pos + ID_TOKEN_LEN + 1) <= limit && | |
966 | rule.compare(pos, ID_TOKEN_LEN, ID_TOKEN) == 0) { | |
967 | pos += ID_TOKEN_LEN; | |
968 | c = rule.charAt(pos); | |
969 | while (PatternProps::isWhiteSpace(c) && pos < limit) { | |
970 | ++pos; | |
971 | c = rule.charAt(pos); | |
972 | } | |
973 | ||
974 | int32_t p = pos; | |
975 | ||
976 | if (!parsingIDs) { | |
977 | if (curData != NULL) { | |
978 | if (direction == UTRANS_FORWARD) | |
979 | dataVector.addElement(curData, status); | |
980 | else | |
981 | dataVector.insertElementAt(curData, 0, status); | |
982 | curData = NULL; | |
983 | } | |
984 | parsingIDs = TRUE; | |
985 | } | |
986 | ||
987 | TransliteratorIDParser::SingleID* id = | |
988 | TransliteratorIDParser::parseSingleID(rule, p, direction, status); | |
989 | if (p != pos && ICU_Utility::parseChar(rule, p, END_OF_RULE)) { | |
990 | // Successful ::ID parse. | |
991 | ||
992 | if (direction == UTRANS_FORWARD) { | |
993 | idBlockResult.append(id->canonID).append(END_OF_RULE); | |
994 | } else { | |
995 | idBlockResult.insert(0, END_OF_RULE); | |
996 | idBlockResult.insert(0, id->canonID); | |
997 | } | |
998 | ||
999 | } else { | |
1000 | // Couldn't parse an ID. Try to parse a global filter | |
1001 | int32_t withParens = -1; | |
1002 | UnicodeSet* f = TransliteratorIDParser::parseGlobalFilter(rule, p, direction, withParens, NULL); | |
1003 | if (f != NULL) { | |
1004 | if (ICU_Utility::parseChar(rule, p, END_OF_RULE) | |
1005 | && (direction == UTRANS_FORWARD) == (withParens == 0)) | |
1006 | { | |
1007 | if (compoundFilter != NULL) { | |
1008 | // Multiple compound filters | |
1009 | syntaxError(U_MULTIPLE_COMPOUND_FILTERS, rule, pos, status); | |
1010 | delete f; | |
1011 | } else { | |
1012 | compoundFilter = f; | |
1013 | compoundFilterOffset = ruleCount; | |
1014 | } | |
1015 | } else { | |
1016 | delete f; | |
1017 | } | |
1018 | } else { | |
1019 | // Invalid ::id | |
1020 | // Can be parsed as neither an ID nor a global filter | |
1021 | syntaxError(U_INVALID_ID, rule, pos, status); | |
1022 | } | |
1023 | } | |
1024 | delete id; | |
1025 | pos = p; | |
1026 | } else { | |
1027 | if (parsingIDs) { | |
1028 | tempstr = new UnicodeString(idBlockResult); | |
1029 | // NULL pointer check | |
1030 | if (tempstr == NULL) { | |
1031 | status = U_MEMORY_ALLOCATION_ERROR; | |
1032 | return; | |
1033 | } | |
1034 | if (direction == UTRANS_FORWARD) | |
1035 | idBlockVector.addElement(tempstr, status); | |
1036 | else | |
1037 | idBlockVector.insertElementAt(tempstr, 0, status); | |
1038 | idBlockResult.remove(); | |
1039 | parsingIDs = FALSE; | |
1040 | curData = new TransliterationRuleData(status); | |
1041 | // NULL pointer check | |
1042 | if (curData == NULL) { | |
1043 | status = U_MEMORY_ALLOCATION_ERROR; | |
1044 | return; | |
1045 | } | |
1046 | parseData->data = curData; | |
1047 | ||
1048 | // By default, rules use part of the private use area | |
1049 | // E000..F8FF for variables and other stand-ins. Currently | |
1050 | // the range F000..F8FF is typically sufficient. The 'use | |
1051 | // variable range' pragma allows rule sets to modify this. | |
1052 | setVariableRange(0xF000, 0xF8FF, status); | |
1053 | } | |
1054 | ||
1055 | if (resemblesPragma(rule, pos, limit)) { | |
1056 | int32_t ppp = parsePragma(rule, pos, limit, status); | |
1057 | if (ppp < 0) { | |
1058 | syntaxError(U_MALFORMED_PRAGMA, rule, pos, status); | |
1059 | } | |
1060 | pos = ppp; | |
1061 | // Parse a rule | |
1062 | } else { | |
1063 | pos = parseRule(rule, pos, limit, status); | |
1064 | } | |
1065 | } | |
1066 | } | |
1067 | ||
1068 | if (parsingIDs && idBlockResult.length() > 0) { | |
1069 | tempstr = new UnicodeString(idBlockResult); | |
1070 | // NULL pointer check | |
1071 | if (tempstr == NULL) { | |
1072 | status = U_MEMORY_ALLOCATION_ERROR; | |
1073 | return; | |
1074 | } | |
1075 | if (direction == UTRANS_FORWARD) | |
1076 | idBlockVector.addElement(tempstr, status); | |
1077 | else | |
1078 | idBlockVector.insertElementAt(tempstr, 0, status); | |
1079 | } | |
1080 | else if (!parsingIDs && curData != NULL) { | |
1081 | if (direction == UTRANS_FORWARD) | |
1082 | dataVector.addElement(curData, status); | |
1083 | else | |
1084 | dataVector.insertElementAt(curData, 0, status); | |
1085 | } | |
1086 | ||
1087 | if (U_SUCCESS(status)) { | |
1088 | // Convert the set vector to an array | |
1089 | int32_t i, dataVectorSize = dataVector.size(); | |
1090 | for (i = 0; i < dataVectorSize; i++) { | |
1091 | TransliterationRuleData* data = (TransliterationRuleData*)dataVector.elementAt(i); | |
1092 | data->variablesLength = variablesVector.size(); | |
1093 | if (data->variablesLength == 0) { | |
1094 | data->variables = 0; | |
1095 | } else { | |
1096 | data->variables = (UnicodeFunctor**)uprv_malloc(data->variablesLength * sizeof(UnicodeFunctor*)); | |
1097 | // NULL pointer check | |
1098 | if (data->variables == NULL) { | |
1099 | status = U_MEMORY_ALLOCATION_ERROR; | |
1100 | return; | |
1101 | } | |
1102 | data->variablesAreOwned = (i == 0); | |
1103 | } | |
1104 | ||
1105 | for (int32_t j = 0; j < data->variablesLength; j++) { | |
1106 | data->variables[j] = | |
1107 | static_cast<UnicodeFunctor *>(variablesVector.elementAt(j)); | |
1108 | } | |
1109 | ||
1110 | data->variableNames.removeAll(); | |
1111 | int32_t p = UHASH_FIRST; | |
1112 | const UHashElement* he = variableNames.nextElement(p); | |
1113 | while (he != NULL) { | |
1114 | UnicodeString* tempus = (UnicodeString*)(((UnicodeString*)(he->value.pointer))->clone()); | |
1115 | if (tempus == NULL) { | |
1116 | status = U_MEMORY_ALLOCATION_ERROR; | |
1117 | return; | |
1118 | } | |
1119 | data->variableNames.put(*((UnicodeString*)(he->key.pointer)), | |
1120 | tempus, status); | |
1121 | he = variableNames.nextElement(p); | |
1122 | } | |
1123 | } | |
1124 | variablesVector.removeAllElements(); // keeps them from getting deleted when we succeed | |
1125 | ||
1126 | // Index the rules | |
1127 | if (compoundFilter != NULL) { | |
1128 | if ((direction == UTRANS_FORWARD && compoundFilterOffset != 1) || | |
1129 | (direction == UTRANS_REVERSE && compoundFilterOffset != ruleCount)) { | |
1130 | status = U_MISPLACED_COMPOUND_FILTER; | |
1131 | } | |
1132 | } | |
1133 | ||
1134 | for (i = 0; i < dataVectorSize; i++) { | |
1135 | TransliterationRuleData* data = (TransliterationRuleData*)dataVector.elementAt(i); | |
1136 | data->ruleSet.freeze(parseError, status); | |
1137 | } | |
1138 | if (idBlockVector.size() == 1 && ((UnicodeString*)idBlockVector.elementAt(0))->isEmpty()) { | |
1139 | idBlockVector.removeElementAt(0); | |
1140 | } | |
1141 | } | |
1142 | } | |
1143 | ||
1144 | /** | |
1145 | * Set the variable range to [start, end] (inclusive). | |
1146 | */ | |
1147 | void TransliteratorParser::setVariableRange(int32_t start, int32_t end, UErrorCode& status) { | |
1148 | if (start > end || start < 0 || end > 0xFFFF) { | |
1149 | status = U_MALFORMED_PRAGMA; | |
1150 | return; | |
1151 | } | |
1152 | ||
1153 | curData->variablesBase = (UChar) start; | |
1154 | if (dataVector.size() == 0) { | |
1155 | variableNext = (UChar) start; | |
1156 | variableLimit = (UChar) (end + 1); | |
1157 | } | |
1158 | } | |
1159 | ||
1160 | /** | |
1161 | * Assert that the given character is NOT within the variable range. | |
1162 | * If it is, return FALSE. This is neccesary to ensure that the | |
1163 | * variable range does not overlap characters used in a rule. | |
1164 | */ | |
1165 | UBool TransliteratorParser::checkVariableRange(UChar32 ch) const { | |
1166 | return !(ch >= curData->variablesBase && ch < variableLimit); | |
1167 | } | |
1168 | ||
1169 | /** | |
1170 | * Set the maximum backup to 'backup', in response to a pragma | |
1171 | * statement. | |
1172 | */ | |
1173 | void TransliteratorParser::pragmaMaximumBackup(int32_t /*backup*/) { | |
1174 | //TODO Finish | |
1175 | } | |
1176 | ||
1177 | /** | |
1178 | * Begin normalizing all rules using the given mode, in response | |
1179 | * to a pragma statement. | |
1180 | */ | |
1181 | void TransliteratorParser::pragmaNormalizeRules(UNormalizationMode /*mode*/) { | |
1182 | //TODO Finish | |
1183 | } | |
1184 | ||
1185 | static const UChar PRAGMA_USE[] = {0x75,0x73,0x65,0x20,0}; // "use " | |
1186 | ||
1187 | static const UChar PRAGMA_VARIABLE_RANGE[] = {0x7E,0x76,0x61,0x72,0x69,0x61,0x62,0x6C,0x65,0x20,0x72,0x61,0x6E,0x67,0x65,0x20,0x23,0x20,0x23,0x7E,0x3B,0}; // "~variable range # #~;" | |
1188 | ||
1189 | static const UChar PRAGMA_MAXIMUM_BACKUP[] = {0x7E,0x6D,0x61,0x78,0x69,0x6D,0x75,0x6D,0x20,0x62,0x61,0x63,0x6B,0x75,0x70,0x20,0x23,0x7E,0x3B,0}; // "~maximum backup #~;" | |
1190 | ||
1191 | static const UChar PRAGMA_NFD_RULES[] = {0x7E,0x6E,0x66,0x64,0x20,0x72,0x75,0x6C,0x65,0x73,0x7E,0x3B,0}; // "~nfd rules~;" | |
1192 | ||
1193 | static const UChar PRAGMA_NFC_RULES[] = {0x7E,0x6E,0x66,0x63,0x20,0x72,0x75,0x6C,0x65,0x73,0x7E,0x3B,0}; // "~nfc rules~;" | |
1194 | ||
1195 | /** | |
1196 | * Return true if the given rule looks like a pragma. | |
1197 | * @param pos offset to the first non-whitespace character | |
1198 | * of the rule. | |
1199 | * @param limit pointer past the last character of the rule. | |
1200 | */ | |
1201 | UBool TransliteratorParser::resemblesPragma(const UnicodeString& rule, int32_t pos, int32_t limit) { | |
1202 | // Must start with /use\s/i | |
1203 | return ICU_Utility::parsePattern(rule, pos, limit, UnicodeString(TRUE, PRAGMA_USE, 4), NULL) >= 0; | |
1204 | } | |
1205 | ||
1206 | /** | |
1207 | * Parse a pragma. This method assumes resemblesPragma() has | |
1208 | * already returned true. | |
1209 | * @param pos offset to the first non-whitespace character | |
1210 | * of the rule. | |
1211 | * @param limit pointer past the last character of the rule. | |
1212 | * @return the position index after the final ';' of the pragma, | |
1213 | * or -1 on failure. | |
1214 | */ | |
1215 | int32_t TransliteratorParser::parsePragma(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status) { | |
1216 | int32_t array[2]; | |
1217 | ||
1218 | // resemblesPragma() has already returned true, so we | |
1219 | // know that pos points to /use\s/i; we can skip 4 characters | |
1220 | // immediately | |
1221 | pos += 4; | |
1222 | ||
1223 | // Here are the pragmas we recognize: | |
1224 | // use variable range 0xE000 0xEFFF; | |
1225 | // use maximum backup 16; | |
1226 | // use nfd rules; | |
1227 | // use nfc rules; | |
1228 | int p = ICU_Utility::parsePattern(rule, pos, limit, UnicodeString(TRUE, PRAGMA_VARIABLE_RANGE, -1), array); | |
1229 | if (p >= 0) { | |
1230 | setVariableRange(array[0], array[1], status); | |
1231 | return p; | |
1232 | } | |
1233 | ||
1234 | p = ICU_Utility::parsePattern(rule, pos, limit, UnicodeString(TRUE, PRAGMA_MAXIMUM_BACKUP, -1), array); | |
1235 | if (p >= 0) { | |
1236 | pragmaMaximumBackup(array[0]); | |
1237 | return p; | |
1238 | } | |
1239 | ||
1240 | p = ICU_Utility::parsePattern(rule, pos, limit, UnicodeString(TRUE, PRAGMA_NFD_RULES, -1), NULL); | |
1241 | if (p >= 0) { | |
1242 | pragmaNormalizeRules(UNORM_NFD); | |
1243 | return p; | |
1244 | } | |
1245 | ||
1246 | p = ICU_Utility::parsePattern(rule, pos, limit, UnicodeString(TRUE, PRAGMA_NFC_RULES, -1), NULL); | |
1247 | if (p >= 0) { | |
1248 | pragmaNormalizeRules(UNORM_NFC); | |
1249 | return p; | |
1250 | } | |
1251 | ||
1252 | // Syntax error: unable to parse pragma | |
1253 | return -1; | |
1254 | } | |
1255 | ||
1256 | /** | |
1257 | * MAIN PARSER. Parse the next rule in the given rule string, starting | |
1258 | * at pos. Return the index after the last character parsed. Do not | |
1259 | * parse characters at or after limit. | |
1260 | * | |
1261 | * Important: The character at pos must be a non-whitespace character | |
1262 | * that is not the comment character. | |
1263 | * | |
1264 | * This method handles quoting, escaping, and whitespace removal. It | |
1265 | * parses the end-of-rule character. It recognizes context and cursor | |
1266 | * indicators. Once it does a lexical breakdown of the rule at pos, it | |
1267 | * creates a rule object and adds it to our rule list. | |
1268 | */ | |
1269 | int32_t TransliteratorParser::parseRule(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status) { | |
1270 | // Locate the left side, operator, and right side | |
1271 | int32_t start = pos; | |
1272 | UChar op = 0; | |
1273 | int32_t i; | |
1274 | ||
1275 | // Set up segments data | |
1276 | segmentStandins.truncate(0); | |
1277 | segmentObjects.removeAllElements(); | |
1278 | ||
1279 | // Use pointers to automatics to make swapping possible. | |
1280 | RuleHalf _left(*this), _right(*this); | |
1281 | RuleHalf* left = &_left; | |
1282 | RuleHalf* right = &_right; | |
1283 | ||
1284 | undefinedVariableName.remove(); | |
1285 | pos = left->parse(rule, pos, limit, status); | |
1286 | if (U_FAILURE(status)) { | |
1287 | return start; | |
1288 | } | |
1289 | ||
1290 | if (pos == limit || u_strchr(gOPERATORS, (op = rule.charAt(--pos))) == NULL) { | |
1291 | return syntaxError(U_MISSING_OPERATOR, rule, start, status); | |
1292 | } | |
1293 | ++pos; | |
1294 | ||
1295 | // Found an operator char. Check for forward-reverse operator. | |
1296 | if (op == REVERSE_RULE_OP && | |
1297 | (pos < limit && rule.charAt(pos) == FORWARD_RULE_OP)) { | |
1298 | ++pos; | |
1299 | op = FWDREV_RULE_OP; | |
1300 | } | |
1301 | ||
1302 | // Translate alternate op characters. | |
1303 | switch (op) { | |
1304 | case ALT_FORWARD_RULE_OP: | |
1305 | op = FORWARD_RULE_OP; | |
1306 | break; | |
1307 | case ALT_REVERSE_RULE_OP: | |
1308 | op = REVERSE_RULE_OP; | |
1309 | break; | |
1310 | case ALT_FWDREV_RULE_OP: | |
1311 | op = FWDREV_RULE_OP; | |
1312 | break; | |
1313 | } | |
1314 | ||
1315 | pos = right->parse(rule, pos, limit, status); | |
1316 | if (U_FAILURE(status)) { | |
1317 | return start; | |
1318 | } | |
1319 | ||
1320 | if (pos < limit) { | |
1321 | if (rule.charAt(--pos) == END_OF_RULE) { | |
1322 | ++pos; | |
1323 | } else { | |
1324 | // RuleHalf parser must have terminated at an operator | |
1325 | return syntaxError(U_UNQUOTED_SPECIAL, rule, start, status); | |
1326 | } | |
1327 | } | |
1328 | ||
1329 | if (op == VARIABLE_DEF_OP) { | |
1330 | // LHS is the name. RHS is a single character, either a literal | |
1331 | // or a set (already parsed). If RHS is longer than one | |
1332 | // character, it is either a multi-character string, or multiple | |
1333 | // sets, or a mixture of chars and sets -- syntax error. | |
1334 | ||
1335 | // We expect to see a single undefined variable (the one being | |
1336 | // defined). | |
1337 | if (undefinedVariableName.length() == 0) { | |
1338 | // "Missing '$' or duplicate definition" | |
1339 | return syntaxError(U_BAD_VARIABLE_DEFINITION, rule, start, status); | |
1340 | } | |
1341 | if (left->text.length() != 1 || left->text.charAt(0) != variableLimit) { | |
1342 | // "Malformed LHS" | |
1343 | return syntaxError(U_MALFORMED_VARIABLE_DEFINITION, rule, start, status); | |
1344 | } | |
1345 | if (left->anchorStart || left->anchorEnd || | |
1346 | right->anchorStart || right->anchorEnd) { | |
1347 | return syntaxError(U_MALFORMED_VARIABLE_DEFINITION, rule, start, status); | |
1348 | } | |
1349 | // We allow anything on the right, including an empty string. | |
1350 | UnicodeString* value = new UnicodeString(right->text); | |
1351 | // NULL pointer check | |
1352 | if (value == NULL) { | |
1353 | return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); | |
1354 | } | |
1355 | variableNames.put(undefinedVariableName, value, status); | |
1356 | ++variableLimit; | |
1357 | return pos; | |
1358 | } | |
1359 | ||
1360 | // If this is not a variable definition rule, we shouldn't have | |
1361 | // any undefined variable names. | |
1362 | if (undefinedVariableName.length() != 0) { | |
1363 | return syntaxError(// "Undefined variable $" + undefinedVariableName, | |
1364 | U_UNDEFINED_VARIABLE, | |
1365 | rule, start, status); | |
1366 | } | |
1367 | ||
1368 | // Verify segments | |
1369 | if (segmentStandins.length() > segmentObjects.size()) { | |
1370 | syntaxError(U_UNDEFINED_SEGMENT_REFERENCE, rule, start, status); | |
1371 | } | |
1372 | for (i=0; i<segmentStandins.length(); ++i) { | |
1373 | if (segmentStandins.charAt(i) == 0) { | |
1374 | syntaxError(U_INTERNAL_TRANSLITERATOR_ERROR, rule, start, status); // will never happen | |
1375 | } | |
1376 | } | |
1377 | for (i=0; i<segmentObjects.size(); ++i) { | |
1378 | if (segmentObjects.elementAt(i) == NULL) { | |
1379 | syntaxError(U_INTERNAL_TRANSLITERATOR_ERROR, rule, start, status); // will never happen | |
1380 | } | |
1381 | } | |
1382 | ||
1383 | // If the direction we want doesn't match the rule | |
1384 | // direction, do nothing. | |
1385 | if (op != FWDREV_RULE_OP && | |
1386 | ((direction == UTRANS_FORWARD) != (op == FORWARD_RULE_OP))) { | |
1387 | return pos; | |
1388 | } | |
1389 | ||
1390 | // Transform the rule into a forward rule by swapping the | |
1391 | // sides if necessary. | |
1392 | if (direction == UTRANS_REVERSE) { | |
1393 | left = &_right; | |
1394 | right = &_left; | |
1395 | } | |
1396 | ||
1397 | // Remove non-applicable elements in forward-reverse | |
1398 | // rules. Bidirectional rules ignore elements that do not | |
1399 | // apply. | |
1400 | if (op == FWDREV_RULE_OP) { | |
1401 | right->removeContext(); | |
1402 | left->cursor = -1; | |
1403 | left->cursorOffset = 0; | |
1404 | } | |
1405 | ||
1406 | // Normalize context | |
1407 | if (left->ante < 0) { | |
1408 | left->ante = 0; | |
1409 | } | |
1410 | if (left->post < 0) { | |
1411 | left->post = left->text.length(); | |
1412 | } | |
1413 | ||
1414 | // Context is only allowed on the input side. Cursors are only | |
1415 | // allowed on the output side. Segment delimiters can only appear | |
1416 | // on the left, and references on the right. Cursor offset | |
1417 | // cannot appear without an explicit cursor. Cursor offset | |
1418 | // cannot place the cursor outside the limits of the context. | |
1419 | // Anchors are only allowed on the input side. | |
1420 | if (right->ante >= 0 || right->post >= 0 || left->cursor >= 0 || | |
1421 | (right->cursorOffset != 0 && right->cursor < 0) || | |
1422 | // - The following two checks were used to ensure that the | |
1423 | // - the cursor offset stayed within the ante- or postcontext. | |
1424 | // - However, with the addition of quantifiers, we have to | |
1425 | // - allow arbitrary cursor offsets and do runtime checking. | |
1426 | //(right->cursorOffset > (left->text.length() - left->post)) || | |
1427 | //(-right->cursorOffset > left->ante) || | |
1428 | right->anchorStart || right->anchorEnd || | |
1429 | !left->isValidInput(*this) || !right->isValidOutput(*this) || | |
1430 | left->ante > left->post) { | |
1431 | ||
1432 | return syntaxError(U_MALFORMED_RULE, rule, start, status); | |
1433 | } | |
1434 | ||
1435 | // Flatten segment objects vector to an array | |
1436 | UnicodeFunctor** segmentsArray = NULL; | |
1437 | if (segmentObjects.size() > 0) { | |
1438 | segmentsArray = (UnicodeFunctor **)uprv_malloc(segmentObjects.size() * sizeof(UnicodeFunctor *)); | |
1439 | // Null pointer check | |
1440 | if (segmentsArray == NULL) { | |
1441 | return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); | |
1442 | } | |
1443 | segmentObjects.toArray((void**) segmentsArray); | |
1444 | } | |
1445 | TransliterationRule* temptr = new TransliterationRule( | |
1446 | left->text, left->ante, left->post, | |
1447 | right->text, right->cursor, right->cursorOffset, | |
1448 | segmentsArray, | |
1449 | segmentObjects.size(), | |
1450 | left->anchorStart, left->anchorEnd, | |
1451 | curData, | |
1452 | status); | |
1453 | //Null pointer check | |
1454 | if (temptr == NULL) { | |
1455 | uprv_free(segmentsArray); | |
1456 | return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); | |
1457 | } | |
1458 | ||
1459 | curData->ruleSet.addRule(temptr, status); | |
1460 | ||
1461 | return pos; | |
1462 | } | |
1463 | ||
1464 | /** | |
1465 | * Called by main parser upon syntax error. Search the rule string | |
1466 | * for the probable end of the rule. Of course, if the error is that | |
1467 | * the end of rule marker is missing, then the rule end will not be found. | |
1468 | * In any case the rule start will be correctly reported. | |
1469 | * @param msg error description | |
1470 | * @param rule pattern string | |
1471 | * @param start position of first character of current rule | |
1472 | */ | |
1473 | int32_t TransliteratorParser::syntaxError(UErrorCode parseErrorCode, | |
1474 | const UnicodeString& rule, | |
1475 | int32_t pos, | |
1476 | UErrorCode& status) | |
1477 | { | |
1478 | parseError.offset = pos; | |
1479 | parseError.line = 0 ; /* we are not using line numbers */ | |
1480 | ||
1481 | // for pre-context | |
1482 | const int32_t LEN = U_PARSE_CONTEXT_LEN - 1; | |
1483 | int32_t start = uprv_max(pos - LEN, 0); | |
1484 | int32_t stop = pos; | |
1485 | ||
1486 | rule.extract(start,stop-start,parseError.preContext); | |
1487 | //null terminate the buffer | |
1488 | parseError.preContext[stop-start] = 0; | |
1489 | ||
1490 | //for post-context | |
1491 | start = pos; | |
1492 | stop = uprv_min(pos + LEN, rule.length()); | |
1493 | ||
1494 | rule.extract(start,stop-start,parseError.postContext); | |
1495 | //null terminate the buffer | |
1496 | parseError.postContext[stop-start]= 0; | |
1497 | ||
1498 | status = (UErrorCode)parseErrorCode; | |
1499 | return pos; | |
1500 | ||
1501 | } | |
1502 | ||
1503 | /** | |
1504 | * Parse a UnicodeSet out, store it, and return the stand-in character | |
1505 | * used to represent it. | |
1506 | */ | |
1507 | UChar TransliteratorParser::parseSet(const UnicodeString& rule, | |
1508 | ParsePosition& pos, | |
1509 | UErrorCode& status) { | |
1510 | UnicodeSet* set = new UnicodeSet(rule, pos, USET_IGNORE_SPACE, parseData, status); | |
1511 | // Null pointer check | |
1512 | if (set == NULL) { | |
1513 | status = U_MEMORY_ALLOCATION_ERROR; | |
1514 | return (UChar)0x0000; // Return empty character with error. | |
1515 | } | |
1516 | set->compact(); | |
1517 | return generateStandInFor(set, status); | |
1518 | } | |
1519 | ||
1520 | /** | |
1521 | * Generate and return a stand-in for a new UnicodeFunctor. Store | |
1522 | * the matcher (adopt it). | |
1523 | */ | |
1524 | UChar TransliteratorParser::generateStandInFor(UnicodeFunctor* adopted, UErrorCode& status) { | |
1525 | // assert(obj != null); | |
1526 | ||
1527 | // Look up previous stand-in, if any. This is a short list | |
1528 | // (typical n is 0, 1, or 2); linear search is optimal. | |
1529 | for (int32_t i=0; i<variablesVector.size(); ++i) { | |
1530 | if (variablesVector.elementAt(i) == adopted) { // [sic] pointer comparison | |
1531 | return (UChar) (curData->variablesBase + i); | |
1532 | } | |
1533 | } | |
1534 | ||
1535 | if (variableNext >= variableLimit) { | |
1536 | delete adopted; | |
1537 | status = U_VARIABLE_RANGE_EXHAUSTED; | |
1538 | return 0; | |
1539 | } | |
1540 | variablesVector.addElement(adopted, status); | |
1541 | return variableNext++; | |
1542 | } | |
1543 | ||
1544 | /** | |
1545 | * Return the standin for segment seg (1-based). | |
1546 | */ | |
1547 | UChar TransliteratorParser::getSegmentStandin(int32_t seg, UErrorCode& status) { | |
1548 | // Special character used to indicate an empty spot | |
1549 | UChar empty = curData->variablesBase - 1; | |
1550 | while (segmentStandins.length() < seg) { | |
1551 | segmentStandins.append(empty); | |
1552 | } | |
1553 | UChar c = segmentStandins.charAt(seg-1); | |
1554 | if (c == empty) { | |
1555 | if (variableNext >= variableLimit) { | |
1556 | status = U_VARIABLE_RANGE_EXHAUSTED; | |
1557 | return 0; | |
1558 | } | |
1559 | c = variableNext++; | |
1560 | // Set a placeholder in the master variables vector that will be | |
1561 | // filled in later by setSegmentObject(). We know that we will get | |
1562 | // called first because setSegmentObject() will call us. | |
1563 | variablesVector.addElement((void*) NULL, status); | |
1564 | segmentStandins.setCharAt(seg-1, c); | |
1565 | } | |
1566 | return c; | |
1567 | } | |
1568 | ||
1569 | /** | |
1570 | * Set the object for segment seg (1-based). | |
1571 | */ | |
1572 | void TransliteratorParser::setSegmentObject(int32_t seg, StringMatcher* adopted, UErrorCode& status) { | |
1573 | // Since we call parseSection() recursively, nested | |
1574 | // segments will result in segment i+1 getting parsed | |
1575 | // and stored before segment i; be careful with the | |
1576 | // vector handling here. | |
1577 | if (segmentObjects.size() < seg) { | |
1578 | segmentObjects.setSize(seg, status); | |
1579 | } | |
1580 | int32_t index = getSegmentStandin(seg, status) - curData->variablesBase; | |
1581 | if (segmentObjects.elementAt(seg-1) != NULL || | |
1582 | variablesVector.elementAt(index) != NULL) { | |
1583 | // should never happen | |
1584 | status = U_INTERNAL_TRANSLITERATOR_ERROR; | |
1585 | return; | |
1586 | } | |
1587 | segmentObjects.setElementAt(adopted, seg-1); | |
1588 | variablesVector.setElementAt(adopted, index); | |
1589 | } | |
1590 | ||
1591 | /** | |
1592 | * Return the stand-in for the dot set. It is allocated the first | |
1593 | * time and reused thereafter. | |
1594 | */ | |
1595 | UChar TransliteratorParser::getDotStandIn(UErrorCode& status) { | |
1596 | if (dotStandIn == (UChar) -1) { | |
1597 | UnicodeSet* tempus = new UnicodeSet(UnicodeString(TRUE, DOT_SET, -1), status); | |
1598 | // Null pointer check. | |
1599 | if (tempus == NULL) { | |
1600 | status = U_MEMORY_ALLOCATION_ERROR; | |
1601 | return (UChar)0x0000; | |
1602 | } | |
1603 | dotStandIn = generateStandInFor(tempus, status); | |
1604 | } | |
1605 | return dotStandIn; | |
1606 | } | |
1607 | ||
1608 | /** | |
1609 | * Append the value of the given variable name to the given | |
1610 | * UnicodeString. | |
1611 | */ | |
1612 | void TransliteratorParser::appendVariableDef(const UnicodeString& name, | |
1613 | UnicodeString& buf, | |
1614 | UErrorCode& status) { | |
1615 | const UnicodeString* s = (const UnicodeString*) variableNames.get(name); | |
1616 | if (s == NULL) { | |
1617 | // We allow one undefined variable so that variable definition | |
1618 | // statements work. For the first undefined variable we return | |
1619 | // the special placeholder variableLimit-1, and save the variable | |
1620 | // name. | |
1621 | if (undefinedVariableName.length() == 0) { | |
1622 | undefinedVariableName = name; | |
1623 | if (variableNext >= variableLimit) { | |
1624 | // throw new RuntimeException("Private use variables exhausted"); | |
1625 | status = U_ILLEGAL_ARGUMENT_ERROR; | |
1626 | return; | |
1627 | } | |
1628 | buf.append((UChar) --variableLimit); | |
1629 | } else { | |
1630 | //throw new IllegalArgumentException("Undefined variable $" | |
1631 | // + name); | |
1632 | status = U_ILLEGAL_ARGUMENT_ERROR; | |
1633 | return; | |
1634 | } | |
1635 | } else { | |
1636 | buf.append(*s); | |
1637 | } | |
1638 | } | |
1639 | ||
1640 | /** | |
1641 | * Glue method to get around access restrictions in C++. | |
1642 | */ | |
1643 | /*Transliterator* TransliteratorParser::createBasicInstance(const UnicodeString& id, const UnicodeString* canonID) { | |
1644 | return Transliterator::createBasicInstance(id, canonID); | |
1645 | }*/ | |
1646 | ||
1647 | U_NAMESPACE_END | |
1648 | ||
1649 | U_CAPI int32_t | |
1650 | utrans_stripRules(const UChar *source, int32_t sourceLen, UChar *target, UErrorCode *status) { | |
1651 | U_NAMESPACE_USE | |
1652 | ||
1653 | //const UChar *sourceStart = source; | |
1654 | const UChar *targetStart = target; | |
1655 | const UChar *sourceLimit = source+sourceLen; | |
1656 | UChar *targetLimit = target+sourceLen; | |
1657 | UChar32 c = 0; | |
1658 | UBool quoted = FALSE; | |
1659 | int32_t index; | |
1660 | ||
1661 | uprv_memset(target, 0, sourceLen*U_SIZEOF_UCHAR); | |
1662 | ||
1663 | /* read the rules into the buffer */ | |
1664 | while (source < sourceLimit) | |
1665 | { | |
1666 | index=0; | |
1667 | U16_NEXT_UNSAFE(source, index, c); | |
1668 | source+=index; | |
1669 | if(c == QUOTE) { | |
1670 | quoted = (UBool)!quoted; | |
1671 | } | |
1672 | else if (!quoted) { | |
1673 | if (c == RULE_COMMENT_CHAR) { | |
1674 | /* skip comments and all preceding spaces */ | |
1675 | while (targetStart < target && *(target - 1) == 0x0020) { | |
1676 | target--; | |
1677 | } | |
1678 | do { | |
1679 | if (source == sourceLimit) { | |
1680 | c = U_SENTINEL; | |
1681 | break; | |
1682 | } | |
1683 | c = *(source++); | |
1684 | } | |
1685 | while (c != CR && c != LF); | |
1686 | if (c < 0) { | |
1687 | break; | |
1688 | } | |
1689 | } | |
1690 | else if (c == ESCAPE && source < sourceLimit) { | |
1691 | UChar32 c2 = *source; | |
1692 | if (c2 == CR || c2 == LF) { | |
1693 | /* A backslash at the end of a line. */ | |
1694 | /* Since we're stripping lines, ignore the backslash. */ | |
1695 | source++; | |
1696 | continue; | |
1697 | } | |
1698 | if (c2 == 0x0075 && source+5 < sourceLimit) { /* \u seen. \U isn't unescaped. */ | |
1699 | int32_t escapeOffset = 0; | |
1700 | UnicodeString escapedStr(source, 5); | |
1701 | c2 = escapedStr.unescapeAt(escapeOffset); | |
1702 | ||
1703 | if (c2 == (UChar32)0xFFFFFFFF || escapeOffset == 0) | |
1704 | { | |
1705 | *status = U_PARSE_ERROR; | |
1706 | return 0; | |
1707 | } | |
1708 | if (!PatternProps::isWhiteSpace(c2) && !u_iscntrl(c2) && !u_ispunct(c2)) { | |
1709 | /* It was escaped for a reason. Write what it was suppose to be. */ | |
1710 | source+=5; | |
1711 | c = c2; | |
1712 | } | |
1713 | } | |
1714 | else if (c2 == QUOTE) { | |
1715 | /* \' seen. Make sure we don't do anything when we see it again. */ | |
1716 | quoted = (UBool)!quoted; | |
1717 | } | |
1718 | } | |
1719 | } | |
1720 | if (c == CR || c == LF) | |
1721 | { | |
1722 | /* ignore spaces carriage returns, and all leading spaces on the next line. | |
1723 | * and line feed unless in the form \uXXXX | |
1724 | */ | |
1725 | quoted = FALSE; | |
1726 | while (source < sourceLimit) { | |
1727 | c = *(source); | |
1728 | if (c != CR && c != LF && c != 0x0020) { | |
1729 | break; | |
1730 | } | |
1731 | source++; | |
1732 | } | |
1733 | continue; | |
1734 | } | |
1735 | ||
1736 | /* Append UChar * after dissembling if c > 0xffff*/ | |
1737 | index=0; | |
1738 | U16_APPEND_UNSAFE(target, index, c); | |
1739 | target+=index; | |
1740 | } | |
1741 | if (target < targetLimit) { | |
1742 | *target = 0; | |
1743 | } | |
1744 | return (int32_t)(target-targetStart); | |
1745 | } | |
1746 | ||
1747 | #endif /* #if !UCONFIG_NO_TRANSLITERATION */ |