]>
Commit | Line | Data |
---|---|---|
1 | // © 2016 and later: Unicode, Inc. and others. | |
2 | // License & terms of use: http://www.unicode.org/copyright.html | |
3 | /* | |
4 | ****************************************************************************** | |
5 | * | |
6 | * Copyright (C) 2008-2015, International Business Machines | |
7 | * Corporation and others. All Rights Reserved. | |
8 | * | |
9 | ****************************************************************************** | |
10 | * file name: uspoof_conf.cpp | |
11 | * encoding: UTF-8 | |
12 | * tab size: 8 (not used) | |
13 | * indentation:4 | |
14 | * | |
15 | * created on: 2009Jan05 (refactoring earlier files) | |
16 | * created by: Andy Heninger | |
17 | * | |
18 | * Internal classes for compililing confusable data into its binary (runtime) form. | |
19 | */ | |
20 | ||
21 | #include "unicode/utypes.h" | |
22 | #include "unicode/uspoof.h" | |
23 | #if !UCONFIG_NO_REGULAR_EXPRESSIONS | |
24 | #if !UCONFIG_NO_NORMALIZATION | |
25 | ||
26 | #include "unicode/unorm.h" | |
27 | #include "unicode/uregex.h" | |
28 | #include "unicode/ustring.h" | |
29 | #include "cmemory.h" | |
30 | #include "uspoof_impl.h" | |
31 | #include "uhash.h" | |
32 | #include "uvector.h" | |
33 | #include "uassert.h" | |
34 | #include "uarrsort.h" | |
35 | #include "uspoof_conf.h" | |
36 | ||
37 | U_NAMESPACE_USE | |
38 | ||
39 | ||
40 | //--------------------------------------------------------------------- | |
41 | // | |
42 | // buildConfusableData Compile the source confusable data, as defined by | |
43 | // the Unicode data file confusables.txt, into the binary | |
44 | // structures used by the confusable detector. | |
45 | // | |
46 | // The binary structures are described in uspoof_impl.h | |
47 | // | |
48 | // 1. Parse the data, making a hash table mapping from a UChar32 to a String. | |
49 | // | |
50 | // 2. Sort all of the strings encountered by length, since they will need to | |
51 | // be stored in that order in the final string table. | |
52 | // TODO: Sorting these strings by length is no longer needed since the removal of | |
53 | // the string lengths table. This logic can be removed to save processing time | |
54 | // when building confusables data. | |
55 | // | |
56 | // 3. Build a list of keys (UChar32s) from the four mapping tables. Sort the | |
57 | // list because that will be the ordering of our runtime table. | |
58 | // | |
59 | // 4. Generate the run time string table. This is generated before the key & value | |
60 | // tables because we need the string indexes when building those tables. | |
61 | // | |
62 | // 5. Build the run-time key and value tables. These are parallel tables, and are built | |
63 | // at the same time | |
64 | // | |
65 | ||
66 | SPUString::SPUString(UnicodeString *s) { | |
67 | fStr = s; | |
68 | fCharOrStrTableIndex = 0; | |
69 | } | |
70 | ||
71 | ||
72 | SPUString::~SPUString() { | |
73 | delete fStr; | |
74 | } | |
75 | ||
76 | ||
77 | SPUStringPool::SPUStringPool(UErrorCode &status) : fVec(NULL), fHash(NULL) { | |
78 | fVec = new UVector(status); | |
79 | if (fVec == NULL) { | |
80 | status = U_MEMORY_ALLOCATION_ERROR; | |
81 | return; | |
82 | } | |
83 | fHash = uhash_open(uhash_hashUnicodeString, // key hash function | |
84 | uhash_compareUnicodeString, // Key Comparator | |
85 | NULL, // Value Comparator | |
86 | &status); | |
87 | } | |
88 | ||
89 | ||
90 | SPUStringPool::~SPUStringPool() { | |
91 | int i; | |
92 | for (i=fVec->size()-1; i>=0; i--) { | |
93 | SPUString *s = static_cast<SPUString *>(fVec->elementAt(i)); | |
94 | delete s; | |
95 | } | |
96 | delete fVec; | |
97 | uhash_close(fHash); | |
98 | } | |
99 | ||
100 | ||
101 | int32_t SPUStringPool::size() { | |
102 | return fVec->size(); | |
103 | } | |
104 | ||
105 | SPUString *SPUStringPool::getByIndex(int32_t index) { | |
106 | SPUString *retString = (SPUString *)fVec->elementAt(index); | |
107 | return retString; | |
108 | } | |
109 | ||
110 | ||
111 | // Comparison function for ordering strings in the string pool. | |
112 | // Compare by length first, then, within a group of the same length, | |
113 | // by code point order. | |
114 | // Conforms to the type signature for a USortComparator in uvector.h | |
115 | ||
116 | static int8_t U_CALLCONV SPUStringCompare(UHashTok left, UHashTok right) { | |
117 | const SPUString *sL = const_cast<const SPUString *>( | |
118 | static_cast<SPUString *>(left.pointer)); | |
119 | const SPUString *sR = const_cast<const SPUString *>( | |
120 | static_cast<SPUString *>(right.pointer)); | |
121 | int32_t lenL = sL->fStr->length(); | |
122 | int32_t lenR = sR->fStr->length(); | |
123 | if (lenL < lenR) { | |
124 | return -1; | |
125 | } else if (lenL > lenR) { | |
126 | return 1; | |
127 | } else { | |
128 | return sL->fStr->compare(*(sR->fStr)); | |
129 | } | |
130 | } | |
131 | ||
132 | void SPUStringPool::sort(UErrorCode &status) { | |
133 | fVec->sort(SPUStringCompare, status); | |
134 | } | |
135 | ||
136 | ||
137 | SPUString *SPUStringPool::addString(UnicodeString *src, UErrorCode &status) { | |
138 | SPUString *hashedString = static_cast<SPUString *>(uhash_get(fHash, src)); | |
139 | if (hashedString != NULL) { | |
140 | delete src; | |
141 | } else { | |
142 | hashedString = new SPUString(src); | |
143 | if (hashedString == NULL) { | |
144 | status = U_MEMORY_ALLOCATION_ERROR; | |
145 | return NULL; | |
146 | } | |
147 | uhash_put(fHash, src, hashedString, &status); | |
148 | fVec->addElement(hashedString, status); | |
149 | } | |
150 | return hashedString; | |
151 | } | |
152 | ||
153 | ||
154 | ||
155 | ConfusabledataBuilder::ConfusabledataBuilder(SpoofImpl *spImpl, UErrorCode &status) : | |
156 | fSpoofImpl(spImpl), | |
157 | fInput(NULL), | |
158 | fTable(NULL), | |
159 | fKeySet(NULL), | |
160 | fKeyVec(NULL), | |
161 | fValueVec(NULL), | |
162 | fStringTable(NULL), | |
163 | stringPool(NULL), | |
164 | fParseLine(NULL), | |
165 | fParseHexNum(NULL), | |
166 | fLineNum(0) | |
167 | { | |
168 | if (U_FAILURE(status)) { | |
169 | return; | |
170 | } | |
171 | ||
172 | fTable = uhash_open(uhash_hashLong, uhash_compareLong, NULL, &status); | |
173 | ||
174 | fKeySet = new UnicodeSet(); | |
175 | if (fKeySet == NULL) { | |
176 | status = U_MEMORY_ALLOCATION_ERROR; | |
177 | return; | |
178 | } | |
179 | ||
180 | fKeyVec = new UVector(status); | |
181 | if (fKeyVec == NULL) { | |
182 | status = U_MEMORY_ALLOCATION_ERROR; | |
183 | return; | |
184 | } | |
185 | ||
186 | fValueVec = new UVector(status); | |
187 | if (fValueVec == NULL) { | |
188 | status = U_MEMORY_ALLOCATION_ERROR; | |
189 | return; | |
190 | } | |
191 | ||
192 | stringPool = new SPUStringPool(status); | |
193 | if (stringPool == NULL) { | |
194 | status = U_MEMORY_ALLOCATION_ERROR; | |
195 | return; | |
196 | } | |
197 | } | |
198 | ||
199 | ||
200 | ConfusabledataBuilder::~ConfusabledataBuilder() { | |
201 | uprv_free(fInput); | |
202 | uregex_close(fParseLine); | |
203 | uregex_close(fParseHexNum); | |
204 | uhash_close(fTable); | |
205 | delete fKeySet; | |
206 | delete fKeyVec; | |
207 | delete fStringTable; | |
208 | delete fValueVec; | |
209 | delete stringPool; | |
210 | } | |
211 | ||
212 | ||
213 | void ConfusabledataBuilder::buildConfusableData(SpoofImpl * spImpl, const char * confusables, | |
214 | int32_t confusablesLen, int32_t *errorType, UParseError *pe, UErrorCode &status) { | |
215 | ||
216 | if (U_FAILURE(status)) { | |
217 | return; | |
218 | } | |
219 | ConfusabledataBuilder builder(spImpl, status); | |
220 | builder.build(confusables, confusablesLen, status); | |
221 | if (U_FAILURE(status) && errorType != NULL) { | |
222 | *errorType = USPOOF_SINGLE_SCRIPT_CONFUSABLE; | |
223 | pe->line = builder.fLineNum; | |
224 | } | |
225 | } | |
226 | ||
227 | ||
228 | void ConfusabledataBuilder::build(const char * confusables, int32_t confusablesLen, | |
229 | UErrorCode &status) { | |
230 | ||
231 | // Convert the user input data from UTF-8 to UChar (UTF-16) | |
232 | int32_t inputLen = 0; | |
233 | if (U_FAILURE(status)) { | |
234 | return; | |
235 | } | |
236 | u_strFromUTF8(NULL, 0, &inputLen, confusables, confusablesLen, &status); | |
237 | if (status != U_BUFFER_OVERFLOW_ERROR) { | |
238 | return; | |
239 | } | |
240 | status = U_ZERO_ERROR; | |
241 | fInput = static_cast<UChar *>(uprv_malloc((inputLen+1) * sizeof(UChar))); | |
242 | if (fInput == NULL) { | |
243 | status = U_MEMORY_ALLOCATION_ERROR; | |
244 | return; | |
245 | } | |
246 | u_strFromUTF8(fInput, inputLen+1, NULL, confusables, confusablesLen, &status); | |
247 | ||
248 | ||
249 | // Regular Expression to parse a line from Confusables.txt. The expression will match | |
250 | // any line. What was matched is determined by examining which capture groups have a match. | |
251 | // Capture Group 1: the source char | |
252 | // Capture Group 2: the replacement chars | |
253 | // Capture Group 3-6 the table type, SL, SA, ML, or MA (deprecated) | |
254 | // Capture Group 7: A blank or comment only line. | |
255 | // Capture Group 8: A syntactically invalid line. Anything that didn't match before. | |
256 | // Example Line from the confusables.txt source file: | |
257 | // "1D702 ; 006E 0329 ; SL # MATHEMATICAL ITALIC SMALL ETA ... " | |
258 | UnicodeString pattern( | |
259 | "(?m)^[ \\t]*([0-9A-Fa-f]+)[ \\t]+;" // Match the source char | |
260 | "[ \\t]*([0-9A-Fa-f]+" // Match the replacement char(s) | |
261 | "(?:[ \\t]+[0-9A-Fa-f]+)*)[ \\t]*;" // (continued) | |
262 | "\\s*(?:(SL)|(SA)|(ML)|(MA))" // Match the table type | |
263 | "[ \\t]*(?:#.*?)?$" // Match any trailing #comment | |
264 | "|^([ \\t]*(?:#.*?)?)$" // OR match empty lines or lines with only a #comment | |
265 | "|^(.*?)$", -1, US_INV); // OR match any line, which catches illegal lines. | |
266 | // TODO: Why are we using the regex C API here? C++ would just take UnicodeString... | |
267 | fParseLine = uregex_open(pattern.getBuffer(), pattern.length(), 0, NULL, &status); | |
268 | ||
269 | // Regular expression for parsing a hex number out of a space-separated list of them. | |
270 | // Capture group 1 gets the number, with spaces removed. | |
271 | pattern = UNICODE_STRING_SIMPLE("\\s*([0-9A-F]+)"); | |
272 | fParseHexNum = uregex_open(pattern.getBuffer(), pattern.length(), 0, NULL, &status); | |
273 | ||
274 | // Zap any Byte Order Mark at the start of input. Changing it to a space is benign | |
275 | // given the syntax of the input. | |
276 | if (*fInput == 0xfeff) { | |
277 | *fInput = 0x20; | |
278 | } | |
279 | ||
280 | // Parse the input, one line per iteration of this loop. | |
281 | uregex_setText(fParseLine, fInput, inputLen, &status); | |
282 | while (uregex_findNext(fParseLine, &status)) { | |
283 | fLineNum++; | |
284 | if (uregex_start(fParseLine, 7, &status) >= 0) { | |
285 | // this was a blank or comment line. | |
286 | continue; | |
287 | } | |
288 | if (uregex_start(fParseLine, 8, &status) >= 0) { | |
289 | // input file syntax error. | |
290 | status = U_PARSE_ERROR; | |
291 | return; | |
292 | } | |
293 | ||
294 | // We have a good input line. Extract the key character and mapping string, and | |
295 | // put them into the appropriate mapping table. | |
296 | UChar32 keyChar = SpoofImpl::ScanHex(fInput, uregex_start(fParseLine, 1, &status), | |
297 | uregex_end(fParseLine, 1, &status), status); | |
298 | ||
299 | int32_t mapStringStart = uregex_start(fParseLine, 2, &status); | |
300 | int32_t mapStringLength = uregex_end(fParseLine, 2, &status) - mapStringStart; | |
301 | uregex_setText(fParseHexNum, &fInput[mapStringStart], mapStringLength, &status); | |
302 | ||
303 | UnicodeString *mapString = new UnicodeString(); | |
304 | if (mapString == NULL) { | |
305 | status = U_MEMORY_ALLOCATION_ERROR; | |
306 | return; | |
307 | } | |
308 | while (uregex_findNext(fParseHexNum, &status)) { | |
309 | UChar32 c = SpoofImpl::ScanHex(&fInput[mapStringStart], uregex_start(fParseHexNum, 1, &status), | |
310 | uregex_end(fParseHexNum, 1, &status), status); | |
311 | mapString->append(c); | |
312 | } | |
313 | U_ASSERT(mapString->length() >= 1); | |
314 | ||
315 | // Put the map (value) string into the string pool | |
316 | // This a little like a Java intern() - any duplicates will be eliminated. | |
317 | SPUString *smapString = stringPool->addString(mapString, status); | |
318 | ||
319 | // Add the UChar32 -> string mapping to the table. | |
320 | // For Unicode 8, the SL, SA and ML tables have been discontinued. | |
321 | // All input data from confusables.txt is tagged MA. | |
322 | uhash_iput(fTable, keyChar, smapString, &status); | |
323 | if (U_FAILURE(status)) { return; } | |
324 | fKeySet->add(keyChar); | |
325 | } | |
326 | ||
327 | // Input data is now all parsed and collected. | |
328 | // Now create the run-time binary form of the data. | |
329 | // | |
330 | // This is done in two steps. First the data is assembled into vectors and strings, | |
331 | // for ease of construction, then the contents of these collections are dumped | |
332 | // into the actual raw-bytes data storage. | |
333 | ||
334 | // Build up the string array, and record the index of each string therein | |
335 | // in the (build time only) string pool. | |
336 | // Strings of length one are not entered into the strings array. | |
337 | // (Strings in the table are sorted by length) | |
338 | stringPool->sort(status); | |
339 | fStringTable = new UnicodeString(); | |
340 | int32_t poolSize = stringPool->size(); | |
341 | int32_t i; | |
342 | for (i=0; i<poolSize; i++) { | |
343 | SPUString *s = stringPool->getByIndex(i); | |
344 | int32_t strLen = s->fStr->length(); | |
345 | int32_t strIndex = fStringTable->length(); | |
346 | if (strLen == 1) { | |
347 | // strings of length one do not get an entry in the string table. | |
348 | // Keep the single string character itself here, which is the same | |
349 | // convention that is used in the final run-time string table index. | |
350 | s->fCharOrStrTableIndex = s->fStr->charAt(0); | |
351 | } else { | |
352 | s->fCharOrStrTableIndex = strIndex; | |
353 | fStringTable->append(*(s->fStr)); | |
354 | } | |
355 | } | |
356 | ||
357 | // Construct the compile-time Key and Value tables | |
358 | // | |
359 | // For each key code point, check which mapping tables it applies to, | |
360 | // and create the final data for the key & value structures. | |
361 | // | |
362 | // The four logical mapping tables are conflated into one combined table. | |
363 | // If multiple logical tables have the same mapping for some key, they | |
364 | // share a single entry in the combined table. | |
365 | // If more than one mapping exists for the same key code point, multiple | |
366 | // entries will be created in the table | |
367 | ||
368 | for (int32_t range=0; range<fKeySet->getRangeCount(); range++) { | |
369 | // It is an oddity of the UnicodeSet API that simply enumerating the contained | |
370 | // code points requires a nested loop. | |
371 | for (UChar32 keyChar=fKeySet->getRangeStart(range); | |
372 | keyChar <= fKeySet->getRangeEnd(range); keyChar++) { | |
373 | SPUString *targetMapping = static_cast<SPUString *>(uhash_iget(fTable, keyChar)); | |
374 | U_ASSERT(targetMapping != NULL); | |
375 | ||
376 | // Set an error code if trying to consume a long string. Otherwise, | |
377 | // codePointAndLengthToKey will abort on a U_ASSERT. | |
378 | if (targetMapping->fStr->length() > 256) { | |
379 | status = U_ILLEGAL_ARGUMENT_ERROR; | |
380 | return; | |
381 | } | |
382 | ||
383 | int32_t key = ConfusableDataUtils::codePointAndLengthToKey(keyChar, | |
384 | targetMapping->fStr->length()); | |
385 | int32_t value = targetMapping->fCharOrStrTableIndex; | |
386 | ||
387 | fKeyVec->addElement(key, status); | |
388 | fValueVec->addElement(value, status); | |
389 | } | |
390 | } | |
391 | ||
392 | // Put the assembled data into the flat runtime array | |
393 | outputData(status); | |
394 | ||
395 | // All of the intermediate allocated data belongs to the ConfusabledataBuilder | |
396 | // object (this), and is deleted in the destructor. | |
397 | return; | |
398 | } | |
399 | ||
400 | // | |
401 | // outputData The confusable data has been compiled and stored in intermediate | |
402 | // collections and strings. Copy it from there to the final flat | |
403 | // binary array. | |
404 | // | |
405 | // Note that as each section is added to the output data, the | |
406 | // expand (reserveSpace() function will likely relocate it in memory. | |
407 | // Be careful with pointers. | |
408 | // | |
409 | void ConfusabledataBuilder::outputData(UErrorCode &status) { | |
410 | ||
411 | U_ASSERT(fSpoofImpl->fSpoofData->fDataOwned == TRUE); | |
412 | ||
413 | // The Key Table | |
414 | // While copying the keys to the runtime array, | |
415 | // also sanity check that they are sorted. | |
416 | ||
417 | int32_t numKeys = fKeyVec->size(); | |
418 | int32_t *keys = | |
419 | static_cast<int32_t *>(fSpoofImpl->fSpoofData->reserveSpace(numKeys*sizeof(int32_t), status)); | |
420 | if (U_FAILURE(status)) { | |
421 | return; | |
422 | } | |
423 | int i; | |
424 | UChar32 previousCodePoint = 0; | |
425 | for (i=0; i<numKeys; i++) { | |
426 | int32_t key = fKeyVec->elementAti(i); | |
427 | UChar32 codePoint = ConfusableDataUtils::keyToCodePoint(key); | |
428 | (void)previousCodePoint; // Suppress unused variable warning. | |
429 | // strictly greater because there can be only one entry per code point | |
430 | U_ASSERT(codePoint > previousCodePoint); | |
431 | keys[i] = key; | |
432 | previousCodePoint = codePoint; | |
433 | } | |
434 | SpoofDataHeader *rawData = fSpoofImpl->fSpoofData->fRawData; | |
435 | rawData->fCFUKeys = (int32_t)((char *)keys - (char *)rawData); | |
436 | rawData->fCFUKeysSize = numKeys; | |
437 | fSpoofImpl->fSpoofData->fCFUKeys = keys; | |
438 | ||
439 | ||
440 | // The Value Table, parallels the key table | |
441 | int32_t numValues = fValueVec->size(); | |
442 | U_ASSERT(numKeys == numValues); | |
443 | uint16_t *values = | |
444 | static_cast<uint16_t *>(fSpoofImpl->fSpoofData->reserveSpace(numKeys*sizeof(uint16_t), status)); | |
445 | if (U_FAILURE(status)) { | |
446 | return; | |
447 | } | |
448 | for (i=0; i<numValues; i++) { | |
449 | uint32_t value = static_cast<uint32_t>(fValueVec->elementAti(i)); | |
450 | U_ASSERT(value < 0xffff); | |
451 | values[i] = static_cast<uint16_t>(value); | |
452 | } | |
453 | rawData = fSpoofImpl->fSpoofData->fRawData; | |
454 | rawData->fCFUStringIndex = (int32_t)((char *)values - (char *)rawData); | |
455 | rawData->fCFUStringIndexSize = numValues; | |
456 | fSpoofImpl->fSpoofData->fCFUValues = values; | |
457 | ||
458 | // The Strings Table. | |
459 | ||
460 | uint32_t stringsLength = fStringTable->length(); | |
461 | // Reserve an extra space so the string will be nul-terminated. This is | |
462 | // only a convenience, for when debugging; it is not needed otherwise. | |
463 | UChar *strings = | |
464 | static_cast<UChar *>(fSpoofImpl->fSpoofData->reserveSpace(stringsLength*sizeof(UChar)+2, status)); | |
465 | if (U_FAILURE(status)) { | |
466 | return; | |
467 | } | |
468 | fStringTable->extract(strings, stringsLength+1, status); | |
469 | rawData = fSpoofImpl->fSpoofData->fRawData; | |
470 | U_ASSERT(rawData->fCFUStringTable == 0); | |
471 | rawData->fCFUStringTable = (int32_t)((char *)strings - (char *)rawData); | |
472 | rawData->fCFUStringTableLen = stringsLength; | |
473 | fSpoofImpl->fSpoofData->fCFUStrings = strings; | |
474 | } | |
475 | ||
476 | #endif | |
477 | #endif // !UCONFIG_NO_REGULAR_EXPRESSIONS | |
478 |