]>
Commit | Line | Data |
---|---|---|
1 | /************************************************************************ | |
2 | * Copyright (C) 1996-2004, International Business Machines Corporation * | |
3 | * and others. All Rights Reserved. * | |
4 | ************************************************************************ | |
5 | * 2003-nov-07 srl Port from Java | |
6 | */ | |
7 | ||
8 | #include "astro.h" | |
9 | ||
10 | #if !UCONFIG_NO_FORMATTING | |
11 | ||
12 | #include "unicode/calendar.h" | |
13 | #include "math.h" | |
14 | #include <float.h> | |
15 | #include "unicode/putil.h" | |
16 | #include "uhash.h" | |
17 | #include "umutex.h" | |
18 | #include "ucln_in.h" | |
19 | #include "putilimp.h" | |
20 | #include <stdio.h> // for toString() | |
21 | ||
22 | #ifdef U_DEBUG_ASTRO | |
23 | # include "uresimp.h" // for debugging | |
24 | ||
25 | static void debug_astro_loc(const char *f, int32_t l) | |
26 | { | |
27 | fprintf(stderr, "%s:%d: ", f, l); | |
28 | } | |
29 | ||
30 | static void debug_astro_msg(const char *pat, ...) | |
31 | { | |
32 | va_list ap; | |
33 | va_start(ap, pat); | |
34 | vfprintf(stderr, pat, ap); | |
35 | fflush(stderr); | |
36 | } | |
37 | #include "unicode/datefmt.h" | |
38 | #include "unicode/ustring.h" | |
39 | static const char * debug_astro_date(UDate d) { | |
40 | static char gStrBuf[1024]; | |
41 | static DateFormat *df = NULL; | |
42 | if(df == NULL) { | |
43 | df = DateFormat::createDateTimeInstance(DateFormat::MEDIUM, DateFormat::MEDIUM, Locale::getUS()); | |
44 | df->adoptTimeZone(TimeZone::getGMT()->clone()); | |
45 | } | |
46 | UnicodeString str; | |
47 | df->format(d,str); | |
48 | u_austrncpy(gStrBuf,str.getTerminatedBuffer(),sizeof(gStrBuf)-1); | |
49 | return gStrBuf; | |
50 | } | |
51 | ||
52 | // must use double parens, i.e.: U_DEBUG_ASTRO_MSG(("four is: %d",4)); | |
53 | #define U_DEBUG_ASTRO_MSG(x) {debug_astro_loc(__FILE__,__LINE__);debug_astro_msg x;} | |
54 | #else | |
55 | #define U_DEBUG_ASTRO_MSG(x) | |
56 | #endif | |
57 | ||
58 | static inline UBool isINVALID(double d) { | |
59 | return(uprv_isNaN(d)); | |
60 | } | |
61 | ||
62 | static UMTX ccLock = NULL; | |
63 | ||
64 | U_CDECL_BEGIN | |
65 | static UBool calendar_astro_cleanup(void) { | |
66 | umtx_destroy(&ccLock); | |
67 | return TRUE; | |
68 | } | |
69 | U_CDECL_END | |
70 | ||
71 | U_NAMESPACE_BEGIN | |
72 | ||
73 | /** | |
74 | * The number of standard hours in one sidereal day. | |
75 | * Approximately 24.93. | |
76 | * @internal | |
77 | * @deprecated ICU 2.4. This class may be removed or modified. | |
78 | */ | |
79 | #define SIDEREAL_DAY (23.93446960027) | |
80 | ||
81 | /** | |
82 | * The number of sidereal hours in one mean solar day. | |
83 | * Approximately 24.07. | |
84 | * @internal | |
85 | * @deprecated ICU 2.4. This class may be removed or modified. | |
86 | */ | |
87 | #define SOLAR_DAY (24.065709816) | |
88 | ||
89 | /** | |
90 | * The average number of solar days from one new moon to the next. This is the time | |
91 | * it takes for the moon to return the same ecliptic longitude as the sun. | |
92 | * It is longer than the sidereal month because the sun's longitude increases | |
93 | * during the year due to the revolution of the earth around the sun. | |
94 | * Approximately 29.53. | |
95 | * | |
96 | * @see #SIDEREAL_MONTH | |
97 | * @internal | |
98 | * @deprecated ICU 2.4. This class may be removed or modified. | |
99 | */ | |
100 | const double CalendarAstronomer::SYNODIC_MONTH = 29.530588853; | |
101 | ||
102 | /** | |
103 | * The average number of days it takes | |
104 | * for the moon to return to the same ecliptic longitude relative to the | |
105 | * stellar background. This is referred to as the sidereal month. | |
106 | * It is shorter than the synodic month due to | |
107 | * the revolution of the earth around the sun. | |
108 | * Approximately 27.32. | |
109 | * | |
110 | * @see #SYNODIC_MONTH | |
111 | * @internal | |
112 | * @deprecated ICU 2.4. This class may be removed or modified. | |
113 | */ | |
114 | #define SIDEREAL_MONTH 27.32166 | |
115 | ||
116 | /** | |
117 | * The average number number of days between successive vernal equinoxes. | |
118 | * Due to the precession of the earth's | |
119 | * axis, this is not precisely the same as the sidereal year. | |
120 | * Approximately 365.24 | |
121 | * | |
122 | * @see #SIDEREAL_YEAR | |
123 | * @internal | |
124 | * @deprecated ICU 2.4. This class may be removed or modified. | |
125 | */ | |
126 | #define TROPICAL_YEAR 365.242191 | |
127 | ||
128 | /** | |
129 | * The average number of days it takes | |
130 | * for the sun to return to the same position against the fixed stellar | |
131 | * background. This is the duration of one orbit of the earth about the sun | |
132 | * as it would appear to an outside observer. | |
133 | * Due to the precession of the earth's | |
134 | * axis, this is not precisely the same as the tropical year. | |
135 | * Approximately 365.25. | |
136 | * | |
137 | * @see #TROPICAL_YEAR | |
138 | * @internal | |
139 | * @deprecated ICU 2.4. This class may be removed or modified. | |
140 | */ | |
141 | #define SIDEREAL_YEAR 365.25636 | |
142 | ||
143 | //------------------------------------------------------------------------- | |
144 | // Time-related constants | |
145 | //------------------------------------------------------------------------- | |
146 | ||
147 | /** | |
148 | * The number of milliseconds in one second. | |
149 | * @internal | |
150 | * @deprecated ICU 2.4. This class may be removed or modified. | |
151 | */ | |
152 | #define SECOND_MS U_MILLIS_PER_SECOND | |
153 | ||
154 | /** | |
155 | * The number of milliseconds in one minute. | |
156 | * @internal | |
157 | * @deprecated ICU 2.4. This class may be removed or modified. | |
158 | */ | |
159 | #define MINUTE_MS U_MILLIS_PER_MINUTE | |
160 | ||
161 | /** | |
162 | * The number of milliseconds in one hour. | |
163 | * @internal | |
164 | * @deprecated ICU 2.4. This class may be removed or modified. | |
165 | */ | |
166 | #define HOUR_MS U_MILLIS_PER_HOUR | |
167 | ||
168 | /** | |
169 | * The number of milliseconds in one day. | |
170 | * @internal | |
171 | * @deprecated ICU 2.4. This class may be removed or modified. | |
172 | */ | |
173 | #define DAY_MS U_MILLIS_PER_DAY | |
174 | ||
175 | /** | |
176 | * The start of the julian day numbering scheme used by astronomers, which | |
177 | * is 1/1/4713 BC (Julian), 12:00 GMT. This is given as the number of milliseconds | |
178 | * since 1/1/1970 AD (Gregorian), a negative number. | |
179 | * Note that julian day numbers and | |
180 | * the Julian calendar are <em>not</em> the same thing. Also note that | |
181 | * julian days start at <em>noon</em>, not midnight. | |
182 | * @internal | |
183 | * @deprecated ICU 2.4. This class may be removed or modified. | |
184 | */ | |
185 | #define JULIAN_EPOCH_MS -210866760000000.0 | |
186 | ||
187 | ||
188 | /** | |
189 | * Milliseconds value for 0.0 January 2000 AD. | |
190 | */ | |
191 | #define EPOCH_2000_MS 946598400000.0 | |
192 | ||
193 | //------------------------------------------------------------------------- | |
194 | // Assorted private data used for conversions | |
195 | //------------------------------------------------------------------------- | |
196 | ||
197 | // My own copies of these so compilers are more likely to optimize them away | |
198 | const double CalendarAstronomer::PI = 3.14159265358979323846; | |
199 | ||
200 | #define CalendarAstronomer_PI2 (CalendarAstronomer::PI*2.0) | |
201 | #define RAD_HOUR ( 12 / CalendarAstronomer::PI ) // radians -> hours | |
202 | #define DEG_RAD ( CalendarAstronomer::PI / 180 ) // degrees -> radians | |
203 | #define RAD_DEG ( 180 / CalendarAstronomer::PI ) // radians -> degrees | |
204 | ||
205 | //------------------------------------------------------------------------- | |
206 | // Constructors | |
207 | //------------------------------------------------------------------------- | |
208 | ||
209 | /** | |
210 | * Construct a new <code>CalendarAstronomer</code> object that is initialized to | |
211 | * the current date and time. | |
212 | * @internal | |
213 | * @deprecated ICU 2.4. This class may be removed or modified. | |
214 | */ | |
215 | CalendarAstronomer::CalendarAstronomer(): | |
216 | fTime(Calendar::getNow()), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(FALSE) { | |
217 | clearCache(); | |
218 | } | |
219 | ||
220 | /** | |
221 | * Construct a new <code>CalendarAstronomer</code> object that is initialized to | |
222 | * the specified date and time. | |
223 | * @internal | |
224 | * @deprecated ICU 2.4. This class may be removed or modified. | |
225 | */ | |
226 | CalendarAstronomer::CalendarAstronomer(UDate d): fTime(d), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(FALSE) { | |
227 | clearCache(); | |
228 | } | |
229 | ||
230 | /** | |
231 | * Construct a new <code>CalendarAstronomer</code> object with the given | |
232 | * latitude and longitude. The object's time is set to the current | |
233 | * date and time. | |
234 | * <p> | |
235 | * @param longitude The desired longitude, in <em>degrees</em> east of | |
236 | * the Greenwich meridian. | |
237 | * | |
238 | * @param latitude The desired latitude, in <em>degrees</em>. Positive | |
239 | * values signify North, negative South. | |
240 | * | |
241 | * @see java.util.Date#getTime() | |
242 | * @internal | |
243 | * @deprecated ICU 2.4. This class may be removed or modified. | |
244 | */ | |
245 | CalendarAstronomer::CalendarAstronomer(double longitude, double latitude) : | |
246 | fTime(Calendar::getNow()), moonPosition(0,0), moonPositionSet(FALSE) { | |
247 | fLongitude = normPI(longitude * (double)DEG_RAD); | |
248 | fLatitude = normPI(latitude * (double)DEG_RAD); | |
249 | fGmtOffset = (double)(fLongitude * 24. * (double)HOUR_MS / (double)CalendarAstronomer_PI2); | |
250 | clearCache(); | |
251 | } | |
252 | ||
253 | CalendarAstronomer::~CalendarAstronomer() | |
254 | { | |
255 | } | |
256 | ||
257 | //------------------------------------------------------------------------- | |
258 | // Time and date getters and setters | |
259 | //------------------------------------------------------------------------- | |
260 | ||
261 | /** | |
262 | * Set the current date and time of this <code>CalendarAstronomer</code> object. All | |
263 | * astronomical calculations are performed based on this time setting. | |
264 | * | |
265 | * @param aTime the date and time, expressed as the number of milliseconds since | |
266 | * 1/1/1970 0:00 GMT (Gregorian). | |
267 | * | |
268 | * @see #setDate | |
269 | * @see #getTime | |
270 | * @internal | |
271 | * @deprecated ICU 2.4. This class may be removed or modified. | |
272 | */ | |
273 | void CalendarAstronomer::setTime(UDate aTime) { | |
274 | fTime = aTime; | |
275 | U_DEBUG_ASTRO_MSG(("setTime(%.1lf, %sL)\n", aTime, debug_astro_date(aTime+fGmtOffset))); | |
276 | clearCache(); | |
277 | } | |
278 | ||
279 | /** | |
280 | * Set the current date and time of this <code>CalendarAstronomer</code> object. All | |
281 | * astronomical calculations are performed based on this time setting. | |
282 | * | |
283 | * @param jdn the desired time, expressed as a "julian day number", | |
284 | * which is the number of elapsed days since | |
285 | * 1/1/4713 BC (Julian), 12:00 GMT. Note that julian day | |
286 | * numbers start at <em>noon</em>. To get the jdn for | |
287 | * the corresponding midnight, subtract 0.5. | |
288 | * | |
289 | * @see #getJulianDay | |
290 | * @see #JULIAN_EPOCH_MS | |
291 | * @internal | |
292 | * @deprecated ICU 2.4. This class may be removed or modified. | |
293 | */ | |
294 | void CalendarAstronomer::setJulianDay(double jdn) { | |
295 | fTime = (double)(jdn * DAY_MS) + JULIAN_EPOCH_MS; | |
296 | clearCache(); | |
297 | julianDay = jdn; | |
298 | } | |
299 | ||
300 | /** | |
301 | * Get the current time of this <code>CalendarAstronomer</code> object, | |
302 | * represented as the number of milliseconds since | |
303 | * 1/1/1970 AD 0:00 GMT (Gregorian). | |
304 | * | |
305 | * @see #setTime | |
306 | * @see #getDate | |
307 | * @internal | |
308 | * @deprecated ICU 2.4. This class may be removed or modified. | |
309 | */ | |
310 | UDate CalendarAstronomer::getTime() { | |
311 | return fTime; | |
312 | } | |
313 | ||
314 | /** | |
315 | * Get the current time of this <code>CalendarAstronomer</code> object, | |
316 | * expressed as a "julian day number", which is the number of elapsed | |
317 | * days since 1/1/4713 BC (Julian), 12:00 GMT. | |
318 | * | |
319 | * @see #setJulianDay | |
320 | * @see #JULIAN_EPOCH_MS | |
321 | * @internal | |
322 | * @deprecated ICU 2.4. This class may be removed or modified. | |
323 | */ | |
324 | double CalendarAstronomer::getJulianDay() { | |
325 | if (isINVALID(julianDay)) { | |
326 | julianDay = (fTime - (double)JULIAN_EPOCH_MS) / (double)DAY_MS; | |
327 | } | |
328 | return julianDay; | |
329 | } | |
330 | ||
331 | /** | |
332 | * Return this object's time expressed in julian centuries: | |
333 | * the number of centuries after 1/1/1900 AD, 12:00 GMT | |
334 | * | |
335 | * @see #getJulianDay | |
336 | * @internal | |
337 | * @deprecated ICU 2.4. This class may be removed or modified. | |
338 | */ | |
339 | double CalendarAstronomer::getJulianCentury() { | |
340 | if (isINVALID(julianCentury)) { | |
341 | julianCentury = (getJulianDay() - 2415020.0) / 36525.0; | |
342 | } | |
343 | return julianCentury; | |
344 | } | |
345 | ||
346 | /** | |
347 | * Returns the current Greenwich sidereal time, measured in hours | |
348 | * @internal | |
349 | * @deprecated ICU 2.4. This class may be removed or modified. | |
350 | */ | |
351 | double CalendarAstronomer::getGreenwichSidereal() { | |
352 | if (isINVALID(siderealTime)) { | |
353 | // See page 86 of "Practial Astronomy with your Calculator", | |
354 | // by Peter Duffet-Smith, for details on the algorithm. | |
355 | ||
356 | double UT = normalize(fTime/(double)HOUR_MS, 24.); | |
357 | ||
358 | siderealTime = normalize(getSiderealOffset() + UT*1.002737909, 24.); | |
359 | } | |
360 | return siderealTime; | |
361 | } | |
362 | ||
363 | double CalendarAstronomer::getSiderealOffset() { | |
364 | if (isINVALID(siderealT0)) { | |
365 | double JD = uprv_floor(getJulianDay() - 0.5) + 0.5; | |
366 | double S = JD - 2451545.0; | |
367 | double T = S / 36525.0; | |
368 | siderealT0 = normalize(6.697374558 + 2400.051336*T + 0.000025862*T*T, 24); | |
369 | } | |
370 | return siderealT0; | |
371 | } | |
372 | ||
373 | /** | |
374 | * Returns the current local sidereal time, measured in hours | |
375 | * @internal | |
376 | * @deprecated ICU 2.4. This class may be removed or modified. | |
377 | */ | |
378 | double CalendarAstronomer::getLocalSidereal() { | |
379 | return normalize(getGreenwichSidereal() + (fGmtOffset/(double)HOUR_MS), 24.); | |
380 | } | |
381 | ||
382 | /** | |
383 | * Converts local sidereal time to Universal Time. | |
384 | * | |
385 | * @param lst The Local Sidereal Time, in hours since sidereal midnight | |
386 | * on this object's current date. | |
387 | * | |
388 | * @return The corresponding Universal Time, in milliseconds since | |
389 | * 1 Jan 1970, GMT. | |
390 | */ | |
391 | double CalendarAstronomer::lstToUT(double lst) { | |
392 | // Convert to local mean time | |
393 | double lt = normalize((lst - getSiderealOffset()) * 0.9972695663, 24); | |
394 | ||
395 | // Then find local midnight on this day | |
396 | double base = (DAY_MS * Math::floorDivide(fTime + fGmtOffset,(double)DAY_MS)) - fGmtOffset; | |
397 | ||
398 | //out(" lt =" + lt + " hours"); | |
399 | //out(" base=" + new Date(base)); | |
400 | ||
401 | return base + (long)(lt * HOUR_MS); | |
402 | } | |
403 | ||
404 | ||
405 | //------------------------------------------------------------------------- | |
406 | // Coordinate transformations, all based on the current time of this object | |
407 | //------------------------------------------------------------------------- | |
408 | ||
409 | /** | |
410 | * Convert from ecliptic to equatorial coordinates. | |
411 | * | |
412 | * @param ecliptic A point in the sky in ecliptic coordinates. | |
413 | * @return The corresponding point in equatorial coordinates. | |
414 | * @internal | |
415 | * @deprecated ICU 2.4. This class may be removed or modified. | |
416 | */ | |
417 | CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, const CalendarAstronomer::Ecliptic& ecliptic) | |
418 | { | |
419 | return eclipticToEquatorial(result, ecliptic.longitude, ecliptic.latitude); | |
420 | } | |
421 | ||
422 | /** | |
423 | * Convert from ecliptic to equatorial coordinates. | |
424 | * | |
425 | * @param eclipLong The ecliptic longitude | |
426 | * @param eclipLat The ecliptic latitude | |
427 | * | |
428 | * @return The corresponding point in equatorial coordinates. | |
429 | * @internal | |
430 | * @deprecated ICU 2.4. This class may be removed or modified. | |
431 | */ | |
432 | CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong, double eclipLat) | |
433 | { | |
434 | // See page 42 of "Practial Astronomy with your Calculator", | |
435 | // by Peter Duffet-Smith, for details on the algorithm. | |
436 | ||
437 | double obliq = eclipticObliquity(); | |
438 | double sinE = ::sin(obliq); | |
439 | double cosE = cos(obliq); | |
440 | ||
441 | double sinL = ::sin(eclipLong); | |
442 | double cosL = cos(eclipLong); | |
443 | ||
444 | double sinB = ::sin(eclipLat); | |
445 | double cosB = cos(eclipLat); | |
446 | double tanB = tan(eclipLat); | |
447 | ||
448 | result.set(atan2(sinL*cosE - tanB*sinE, cosL), | |
449 | asin(sinB*cosE + cosB*sinE*sinL) ); | |
450 | return result; | |
451 | } | |
452 | ||
453 | /** | |
454 | * Convert from ecliptic longitude to equatorial coordinates. | |
455 | * | |
456 | * @param eclipLong The ecliptic longitude | |
457 | * | |
458 | * @return The corresponding point in equatorial coordinates. | |
459 | * @internal | |
460 | * @deprecated ICU 2.4. This class may be removed or modified. | |
461 | */ | |
462 | CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong) | |
463 | { | |
464 | return eclipticToEquatorial(result, eclipLong, 0); // TODO: optimize | |
465 | } | |
466 | ||
467 | /** | |
468 | * @internal | |
469 | * @deprecated ICU 2.4. This class may be removed or modified. | |
470 | */ | |
471 | CalendarAstronomer::Horizon& CalendarAstronomer::eclipticToHorizon(CalendarAstronomer::Horizon& result, double eclipLong) | |
472 | { | |
473 | Equatorial equatorial; | |
474 | eclipticToEquatorial(equatorial, eclipLong); | |
475 | ||
476 | double H = getLocalSidereal()*CalendarAstronomer::PI/12 - equatorial.ascension; // Hour-angle | |
477 | ||
478 | double sinH = ::sin(H); | |
479 | double cosH = cos(H); | |
480 | double sinD = ::sin(equatorial.declination); | |
481 | double cosD = cos(equatorial.declination); | |
482 | double sinL = ::sin(fLatitude); | |
483 | double cosL = cos(fLatitude); | |
484 | ||
485 | double altitude = asin(sinD*sinL + cosD*cosL*cosH); | |
486 | double azimuth = atan2(-cosD*cosL*sinH, sinD - sinL * ::sin(altitude)); | |
487 | ||
488 | result.set(azimuth, altitude); | |
489 | return result; | |
490 | } | |
491 | ||
492 | ||
493 | //------------------------------------------------------------------------- | |
494 | // The Sun | |
495 | //------------------------------------------------------------------------- | |
496 | ||
497 | // | |
498 | // Parameters of the Sun's orbit as of the epoch Jan 0.0 1990 | |
499 | // Angles are in radians (after multiplying by CalendarAstronomer::PI/180) | |
500 | // | |
501 | #define JD_EPOCH 2447891.5 // Julian day of epoch | |
502 | ||
503 | #define SUN_ETA_G (279.403303 * CalendarAstronomer::PI/180) // Ecliptic longitude at epoch | |
504 | #define SUN_OMEGA_G (282.768422 * CalendarAstronomer::PI/180) // Ecliptic longitude of perigee | |
505 | #define SUN_E 0.016713 // Eccentricity of orbit | |
506 | //double sunR0 1.495585e8 // Semi-major axis in KM | |
507 | //double sunTheta0 (0.533128 * CalendarAstronomer::PI/180) // Angular diameter at R0 | |
508 | ||
509 | // The following three methods, which compute the sun parameters | |
510 | // given above for an arbitrary epoch (whatever time the object is | |
511 | // set to), make only a small difference as compared to using the | |
512 | // above constants. E.g., Sunset times might differ by ~12 | |
513 | // seconds. Furthermore, the eta-g computation is befuddled by | |
514 | // Duffet-Smith's incorrect coefficients (p.86). I've corrected | |
515 | // the first-order coefficient but the others may be off too - no | |
516 | // way of knowing without consulting another source. | |
517 | ||
518 | // /** | |
519 | // * Return the sun's ecliptic longitude at perigee for the current time. | |
520 | // * See Duffett-Smith, p. 86. | |
521 | // * @return radians | |
522 | // */ | |
523 | // private double getSunOmegaG() { | |
524 | // double T = getJulianCentury(); | |
525 | // return (281.2208444 + (1.719175 + 0.000452778*T)*T) * DEG_RAD; | |
526 | // } | |
527 | ||
528 | // /** | |
529 | // * Return the sun's ecliptic longitude for the current time. | |
530 | // * See Duffett-Smith, p. 86. | |
531 | // * @return radians | |
532 | // */ | |
533 | // private double getSunEtaG() { | |
534 | // double T = getJulianCentury(); | |
535 | // //return (279.6966778 + (36000.76892 + 0.0003025*T)*T) * DEG_RAD; | |
536 | // // | |
537 | // // The above line is from Duffett-Smith, and yields manifestly wrong | |
538 | // // results. The below constant is derived empirically to match the | |
539 | // // constant he gives for the 1990 EPOCH. | |
540 | // // | |
541 | // return (279.6966778 + (-0.3262541582718024 + 0.0003025*T)*T) * DEG_RAD; | |
542 | // } | |
543 | ||
544 | // /** | |
545 | // * Return the sun's eccentricity of orbit for the current time. | |
546 | // * See Duffett-Smith, p. 86. | |
547 | // * @return double | |
548 | // */ | |
549 | // private double getSunE() { | |
550 | // double T = getJulianCentury(); | |
551 | // return 0.01675104 - (0.0000418 + 0.000000126*T)*T; | |
552 | // } | |
553 | ||
554 | /** | |
555 | * The longitude of the sun at the time specified by this object. | |
556 | * The longitude is measured in radians along the ecliptic | |
557 | * from the "first point of Aries," the point at which the ecliptic | |
558 | * crosses the earth's equatorial plane at the vernal equinox. | |
559 | * <p> | |
560 | * Currently, this method uses an approximation of the two-body Kepler's | |
561 | * equation for the earth and the sun. It does not take into account the | |
562 | * perturbations caused by the other planets, the moon, etc. | |
563 | * @internal | |
564 | * @deprecated ICU 2.4. This class may be removed or modified. | |
565 | */ | |
566 | double CalendarAstronomer::getSunLongitude() | |
567 | { | |
568 | // See page 86 of "Practial Astronomy with your Calculator", | |
569 | // by Peter Duffet-Smith, for details on the algorithm. | |
570 | ||
571 | if (isINVALID(sunLongitude)) { | |
572 | getSunLongitude(getJulianDay(), sunLongitude, meanAnomalySun); | |
573 | } | |
574 | return sunLongitude; | |
575 | } | |
576 | ||
577 | /** | |
578 | * TODO Make this public when the entire class is package-private. | |
579 | */ | |
580 | /*public*/ void CalendarAstronomer::getSunLongitude(double jDay, double &longitude, double &meanAnomaly) | |
581 | { | |
582 | // See page 86 of "Practial Astronomy with your Calculator", | |
583 | // by Peter Duffet-Smith, for details on the algorithm. | |
584 | ||
585 | double day = jDay - JD_EPOCH; // Days since epoch | |
586 | ||
587 | // Find the angular distance the sun in a fictitious | |
588 | // circular orbit has travelled since the epoch. | |
589 | double epochAngle = norm2PI(CalendarAstronomer_PI2/TROPICAL_YEAR*day); | |
590 | ||
591 | // The epoch wasn't at the sun's perigee; find the angular distance | |
592 | // since perigee, which is called the "mean anomaly" | |
593 | meanAnomaly = norm2PI(epochAngle + SUN_ETA_G - SUN_OMEGA_G); | |
594 | ||
595 | // Now find the "true anomaly", e.g. the real solar longitude | |
596 | // by solving Kepler's equation for an elliptical orbit | |
597 | // NOTE: The 3rd ed. of the book lists omega_g and eta_g in different | |
598 | // equations; omega_g is to be correct. | |
599 | longitude = norm2PI(trueAnomaly(meanAnomaly, SUN_E) + SUN_OMEGA_G); | |
600 | } | |
601 | ||
602 | /** | |
603 | * The position of the sun at this object's current date and time, | |
604 | * in equatorial coordinates. | |
605 | * @internal | |
606 | * @deprecated ICU 2.4. This class may be removed or modified. | |
607 | */ | |
608 | CalendarAstronomer::Equatorial& CalendarAstronomer::getSunPosition(CalendarAstronomer::Equatorial& result) { | |
609 | return eclipticToEquatorial(result, getSunLongitude(), 0); | |
610 | } | |
611 | ||
612 | ||
613 | /** | |
614 | * Constant representing the vernal equinox. | |
615 | * For use with {@link #getSunTime getSunTime}. | |
616 | * Note: In this case, "vernal" refers to the northern hemisphere's seasons. | |
617 | * @internal | |
618 | * @deprecated ICU 2.4. This class may be removed or modified. | |
619 | */ | |
620 | double CalendarAstronomer::VERNAL_EQUINOX() { | |
621 | return 0; | |
622 | } | |
623 | ||
624 | /** | |
625 | * Constant representing the summer solstice. | |
626 | * For use with {@link #getSunTime getSunTime}. | |
627 | * Note: In this case, "summer" refers to the northern hemisphere's seasons. | |
628 | * @internal | |
629 | * @deprecated ICU 2.4. This class may be removed or modified. | |
630 | */ | |
631 | double CalendarAstronomer::SUMMER_SOLSTICE() { | |
632 | return (CalendarAstronomer::PI/2); | |
633 | } | |
634 | ||
635 | /** | |
636 | * Constant representing the autumnal equinox. | |
637 | * For use with {@link #getSunTime getSunTime}. | |
638 | * Note: In this case, "autumn" refers to the northern hemisphere's seasons. | |
639 | * @internal | |
640 | * @deprecated ICU 2.4. This class may be removed or modified. | |
641 | */ | |
642 | double CalendarAstronomer::AUTUMN_EQUINOX() { | |
643 | return (CalendarAstronomer::PI); | |
644 | } | |
645 | ||
646 | /** | |
647 | * Constant representing the winter solstice. | |
648 | * For use with {@link #getSunTime getSunTime}. | |
649 | * Note: In this case, "winter" refers to the northern hemisphere's seasons. | |
650 | * @internal | |
651 | * @deprecated ICU 2.4. This class may be removed or modified. | |
652 | */ | |
653 | double CalendarAstronomer::WINTER_SOLSTICE() { | |
654 | return ((CalendarAstronomer::PI*3)/2); | |
655 | } | |
656 | ||
657 | /** | |
658 | * Find the next time at which the sun's ecliptic longitude will have | |
659 | * the desired value. | |
660 | * @internal | |
661 | * @deprecated ICU 2.4. This class may be removed or modified. | |
662 | */ | |
663 | class SunTimeAngleFunc : public CalendarAstronomer::AngleFunc { | |
664 | public: | |
665 | virtual double eval(CalendarAstronomer& a) { return a.getSunLongitude(); } | |
666 | }; | |
667 | ||
668 | UDate CalendarAstronomer::getSunTime(double desired, UBool next) | |
669 | { | |
670 | SunTimeAngleFunc func; | |
671 | return timeOfAngle( func, | |
672 | desired, | |
673 | TROPICAL_YEAR, | |
674 | MINUTE_MS, | |
675 | next); | |
676 | } | |
677 | ||
678 | class RiseSetCoordFunc : public CalendarAstronomer::CoordFunc { | |
679 | public: | |
680 | virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer&a) { a.getSunPosition(result); } | |
681 | }; | |
682 | ||
683 | UDate CalendarAstronomer::getSunRiseSet(UBool rise) | |
684 | { | |
685 | UDate t0 = fTime; | |
686 | ||
687 | // Make a rough guess: 6am or 6pm local time on the current day | |
688 | double noon = Math::floorDivide(fTime + fGmtOffset, (double)DAY_MS)*DAY_MS - fGmtOffset + (12*HOUR_MS); | |
689 | ||
690 | U_DEBUG_ASTRO_MSG(("Noon=%.2lf, %sL, gmtoff %.2lf\n", noon, debug_astro_date(noon+fGmtOffset), fGmtOffset)); | |
691 | setTime(noon + ((rise ? -6 : 6) * HOUR_MS)); | |
692 | U_DEBUG_ASTRO_MSG(("added %.2lf ms as a guess,\n", ((rise ? -6. : 6.) * HOUR_MS))); | |
693 | ||
694 | RiseSetCoordFunc func; | |
695 | double t = riseOrSet(func, | |
696 | rise, | |
697 | .533 * DEG_RAD, // Angular Diameter | |
698 | 34. /60.0 * DEG_RAD, // Refraction correction | |
699 | MINUTE_MS / 12.); // Desired accuracy | |
700 | ||
701 | setTime(t0); | |
702 | return t; | |
703 | } | |
704 | ||
705 | // Commented out - currently unused. ICU 2.6, Alan | |
706 | // //------------------------------------------------------------------------- | |
707 | // // Alternate Sun Rise/Set | |
708 | // // See Duffett-Smith p.93 | |
709 | // //------------------------------------------------------------------------- | |
710 | // | |
711 | // // This yields worse results (as compared to USNO data) than getSunRiseSet(). | |
712 | // /** | |
713 | // * TODO Make this when the entire class is package-private. | |
714 | // */ | |
715 | // /*public*/ long getSunRiseSet2(boolean rise) { | |
716 | // // 1. Calculate coordinates of the sun's center for midnight | |
717 | // double jd = uprv_floor(getJulianDay() - 0.5) + 0.5; | |
718 | // double[] sl = getSunLongitude(jd);// double lambda1 = sl[0]; | |
719 | // Equatorial pos1 = eclipticToEquatorial(lambda1, 0); | |
720 | // | |
721 | // // 2. Add ... to lambda to get position 24 hours later | |
722 | // double lambda2 = lambda1 + 0.985647*DEG_RAD; | |
723 | // Equatorial pos2 = eclipticToEquatorial(lambda2, 0); | |
724 | // | |
725 | // // 3. Calculate LSTs of rising and setting for these two positions | |
726 | // double tanL = ::tan(fLatitude); | |
727 | // double H = ::acos(-tanL * ::tan(pos1.declination)); | |
728 | // double lst1r = (CalendarAstronomer_PI2 + pos1.ascension - H) * 24 / CalendarAstronomer_PI2; | |
729 | // double lst1s = (pos1.ascension + H) * 24 / CalendarAstronomer_PI2; | |
730 | // H = ::acos(-tanL * ::tan(pos2.declination)); | |
731 | // double lst2r = (CalendarAstronomer_PI2-H + pos2.ascension ) * 24 / CalendarAstronomer_PI2; | |
732 | // double lst2s = (H + pos2.ascension ) * 24 / CalendarAstronomer_PI2; | |
733 | // if (lst1r > 24) lst1r -= 24; | |
734 | // if (lst1s > 24) lst1s -= 24; | |
735 | // if (lst2r > 24) lst2r -= 24; | |
736 | // if (lst2s > 24) lst2s -= 24; | |
737 | // | |
738 | // // 4. Convert LSTs to GSTs. If GST1 > GST2, add 24 to GST2. | |
739 | // double gst1r = lstToGst(lst1r); | |
740 | // double gst1s = lstToGst(lst1s); | |
741 | // double gst2r = lstToGst(lst2r); | |
742 | // double gst2s = lstToGst(lst2s); | |
743 | // if (gst1r > gst2r) gst2r += 24; | |
744 | // if (gst1s > gst2s) gst2s += 24; | |
745 | // | |
746 | // // 5. Calculate GST at 0h UT of this date | |
747 | // double t00 = utToGst(0); | |
748 | // | |
749 | // // 6. Calculate GST at 0h on the observer's longitude | |
750 | // double offset = ::round(fLongitude*12/PI); // p.95 step 6; he _rounds_ to nearest 15 deg. | |
751 | // double t00p = t00 - offset*1.002737909; | |
752 | // if (t00p < 0) t00p += 24; // do NOT normalize | |
753 | // | |
754 | // // 7. Adjust | |
755 | // if (gst1r < t00p) { | |
756 | // gst1r += 24; | |
757 | // gst2r += 24; | |
758 | // } | |
759 | // if (gst1s < t00p) { | |
760 | // gst1s += 24; | |
761 | // gst2s += 24; | |
762 | // } | |
763 | // | |
764 | // // 8. | |
765 | // double gstr = (24.07*gst1r-t00*(gst2r-gst1r))/(24.07+gst1r-gst2r); | |
766 | // double gsts = (24.07*gst1s-t00*(gst2s-gst1s))/(24.07+gst1s-gst2s); | |
767 | // | |
768 | // // 9. Correct for parallax, refraction, and sun's diameter | |
769 | // double dec = (pos1.declination + pos2.declination) / 2; | |
770 | // double psi = ::acos(sin(fLatitude) / cos(dec)); | |
771 | // double x = 0.830725 * DEG_RAD; // parallax+refraction+diameter | |
772 | // double y = ::asin(sin(x) / ::sin(psi)) * RAD_DEG; | |
773 | // double delta_t = 240 * y / cos(dec) / 3600; // hours | |
774 | // | |
775 | // // 10. Add correction to GSTs, subtract from GSTr | |
776 | // gstr -= delta_t; | |
777 | // gsts += delta_t; | |
778 | // | |
779 | // // 11. Convert GST to UT and then to local civil time | |
780 | // double ut = gstToUt(rise ? gstr : gsts); | |
781 | // //System.out.println((rise?"rise=":"set=") + ut + ", delta_t=" + delta_t); | |
782 | // long midnight = DAY_MS * (time / DAY_MS); // Find UT midnight on this day | |
783 | // return midnight + (long) (ut * 3600000); | |
784 | // } | |
785 | ||
786 | // Commented out - currently unused. ICU 2.6, Alan | |
787 | // /** | |
788 | // * Convert local sidereal time to Greenwich sidereal time. | |
789 | // * Section 15. Duffett-Smith p.21 | |
790 | // * @param lst in hours (0..24) | |
791 | // * @return GST in hours (0..24) | |
792 | // */ | |
793 | // double lstToGst(double lst) { | |
794 | // double delta = fLongitude * 24 / CalendarAstronomer_PI2; | |
795 | // return normalize(lst - delta, 24); | |
796 | // } | |
797 | ||
798 | // Commented out - currently unused. ICU 2.6, Alan | |
799 | // /** | |
800 | // * Convert UT to GST on this date. | |
801 | // * Section 12. Duffett-Smith p.17 | |
802 | // * @param ut in hours | |
803 | // * @return GST in hours | |
804 | // */ | |
805 | // double utToGst(double ut) { | |
806 | // return normalize(getT0() + ut*1.002737909, 24); | |
807 | // } | |
808 | ||
809 | // Commented out - currently unused. ICU 2.6, Alan | |
810 | // /** | |
811 | // * Convert GST to UT on this date. | |
812 | // * Section 13. Duffett-Smith p.18 | |
813 | // * @param gst in hours | |
814 | // * @return UT in hours | |
815 | // */ | |
816 | // double gstToUt(double gst) { | |
817 | // return normalize(gst - getT0(), 24) * 0.9972695663; | |
818 | // } | |
819 | ||
820 | // Commented out - currently unused. ICU 2.6, Alan | |
821 | // double getT0() { | |
822 | // // Common computation for UT <=> GST | |
823 | // | |
824 | // // Find JD for 0h UT | |
825 | // double jd = uprv_floor(getJulianDay() - 0.5) + 0.5; | |
826 | // | |
827 | // double s = jd - 2451545.0; | |
828 | // double t = s / 36525.0; | |
829 | // double t0 = 6.697374558 + (2400.051336 + 0.000025862*t)*t; | |
830 | // return t0; | |
831 | // } | |
832 | ||
833 | // Commented out - currently unused. ICU 2.6, Alan | |
834 | // //------------------------------------------------------------------------- | |
835 | // // Alternate Sun Rise/Set | |
836 | // // See sci.astro FAQ | |
837 | // // http://www.faqs.org/faqs/astronomy/faq/part3/section-5.html | |
838 | // //------------------------------------------------------------------------- | |
839 | // | |
840 | // // Note: This method appears to produce inferior accuracy as | |
841 | // // compared to getSunRiseSet(). | |
842 | // | |
843 | // /** | |
844 | // * TODO Make this when the entire class is package-private. | |
845 | // */ | |
846 | // /*public*/ long getSunRiseSet3(boolean rise) { | |
847 | // | |
848 | // // Compute day number for 0.0 Jan 2000 epoch | |
849 | // double d = (double)(time - EPOCH_2000_MS) / DAY_MS; | |
850 | // | |
851 | // // Now compute the Local Sidereal Time, LST: | |
852 | // // | |
853 | // double LST = 98.9818 + 0.985647352 * d + /*UT*15 + long*/ | |
854 | // fLongitude*RAD_DEG; | |
855 | // // | |
856 | // // (east long. positive). Note that LST is here expressed in degrees, | |
857 | // // where 15 degrees corresponds to one hour. Since LST really is an angle, | |
858 | // // it's convenient to use one unit---degrees---throughout. | |
859 | // | |
860 | // // COMPUTING THE SUN'S POSITION | |
861 | // // ---------------------------- | |
862 | // // | |
863 | // // To be able to compute the Sun's rise/set times, you need to be able to | |
864 | // // compute the Sun's position at any time. First compute the "day | |
865 | // // number" d as outlined above, for the desired moment. Next compute: | |
866 | // // | |
867 | // double oblecl = 23.4393 - 3.563E-7 * d; | |
868 | // // | |
869 | // double w = 282.9404 + 4.70935E-5 * d; | |
870 | // double M = 356.0470 + 0.9856002585 * d; | |
871 | // double e = 0.016709 - 1.151E-9 * d; | |
872 | // // | |
873 | // // This is the obliquity of the ecliptic, plus some of the elements of | |
874 | // // the Sun's apparent orbit (i.e., really the Earth's orbit): w = | |
875 | // // argument of perihelion, M = mean anomaly, e = eccentricity. | |
876 | // // Semi-major axis is here assumed to be exactly 1.0 (while not strictly | |
877 | // // true, this is still an accurate approximation). Next compute E, the | |
878 | // // eccentric anomaly: | |
879 | // // | |
880 | // double E = M + e*(180/PI) * ::sin(M*DEG_RAD) * ( 1.0 + e*cos(M*DEG_RAD) ); | |
881 | // // | |
882 | // // where E and M are in degrees. This is it---no further iterations are | |
883 | // // needed because we know e has a sufficiently small value. Next compute | |
884 | // // the true anomaly, v, and the distance, r: | |
885 | // // | |
886 | // /* r * cos(v) = */ double A = cos(E*DEG_RAD) - e; | |
887 | // /* r * ::sin(v) = */ double B = ::sqrt(1 - e*e) * ::sin(E*DEG_RAD); | |
888 | // // | |
889 | // // and | |
890 | // // | |
891 | // // r = sqrt( A*A + B*B ) | |
892 | // double v = ::atan2( B, A )*RAD_DEG; | |
893 | // // | |
894 | // // The Sun's true longitude, slon, can now be computed: | |
895 | // // | |
896 | // double slon = v + w; | |
897 | // // | |
898 | // // Since the Sun is always at the ecliptic (or at least very very close to | |
899 | // // it), we can use simplified formulae to convert slon (the Sun's ecliptic | |
900 | // // longitude) to sRA and sDec (the Sun's RA and Dec): | |
901 | // // | |
902 | // // ::sin(slon) * cos(oblecl) | |
903 | // // tan(sRA) = ------------------------- | |
904 | // // cos(slon) | |
905 | // // | |
906 | // // ::sin(sDec) = ::sin(oblecl) * ::sin(slon) | |
907 | // // | |
908 | // // As was the case when computing az, the Azimuth, if possible use an | |
909 | // // atan2() function to compute sRA. | |
910 | // | |
911 | // double sRA = ::atan2(sin(slon*DEG_RAD) * cos(oblecl*DEG_RAD), cos(slon*DEG_RAD))*RAD_DEG; | |
912 | // | |
913 | // double sin_sDec = ::sin(oblecl*DEG_RAD) * ::sin(slon*DEG_RAD); | |
914 | // double sDec = ::asin(sin_sDec)*RAD_DEG; | |
915 | // | |
916 | // // COMPUTING RISE AND SET TIMES | |
917 | // // ---------------------------- | |
918 | // // | |
919 | // // To compute when an object rises or sets, you must compute when it | |
920 | // // passes the meridian and the HA of rise/set. Then the rise time is | |
921 | // // the meridian time minus HA for rise/set, and the set time is the | |
922 | // // meridian time plus the HA for rise/set. | |
923 | // // | |
924 | // // To find the meridian time, compute the Local Sidereal Time at 0h local | |
925 | // // time (or 0h UT if you prefer to work in UT) as outlined above---name | |
926 | // // that quantity LST0. The Meridian Time, MT, will now be: | |
927 | // // | |
928 | // // MT = RA - LST0 | |
929 | // double MT = normalize(sRA - LST, 360); | |
930 | // // | |
931 | // // where "RA" is the object's Right Ascension (in degrees!). If negative, | |
932 | // // add 360 deg to MT. If the object is the Sun, leave the time as it is, | |
933 | // // but if it's stellar, multiply MT by 365.2422/366.2422, to convert from | |
934 | // // sidereal to solar time. Now, compute HA for rise/set, name that | |
935 | // // quantity HA0: | |
936 | // // | |
937 | // // ::sin(h0) - ::sin(lat) * ::sin(Dec) | |
938 | // // cos(HA0) = --------------------------------- | |
939 | // // cos(lat) * cos(Dec) | |
940 | // // | |
941 | // // where h0 is the altitude selected to represent rise/set. For a purely | |
942 | // // mathematical horizon, set h0 = 0 and simplify to: | |
943 | // // | |
944 | // // cos(HA0) = - tan(lat) * tan(Dec) | |
945 | // // | |
946 | // // If you want to account for refraction on the atmosphere, set h0 = -35/60 | |
947 | // // degrees (-35 arc minutes), and if you want to compute the rise/set times | |
948 | // // for the Sun's upper limb, set h0 = -50/60 (-50 arc minutes). | |
949 | // // | |
950 | // double h0 = -50/60 * DEG_RAD; | |
951 | // | |
952 | // double HA0 = ::acos( | |
953 | // (sin(h0) - ::sin(fLatitude) * sin_sDec) / | |
954 | // (cos(fLatitude) * cos(sDec*DEG_RAD)))*RAD_DEG; | |
955 | // | |
956 | // // When HA0 has been computed, leave it as it is for the Sun but multiply | |
957 | // // by 365.2422/366.2422 for stellar objects, to convert from sidereal to | |
958 | // // solar time. Finally compute: | |
959 | // // | |
960 | // // Rise time = MT - HA0 | |
961 | // // Set time = MT + HA0 | |
962 | // // | |
963 | // // convert the times from degrees to hours by dividing by 15. | |
964 | // // | |
965 | // // If you'd like to check that your calculations are accurate or just | |
966 | // // need a quick result, check the USNO's Sun or Moon Rise/Set Table, | |
967 | // // <URL:http://aa.usno.navy.mil/AA/data/docs/RS_OneYear.html>. | |
968 | // | |
969 | // double result = MT + (rise ? -HA0 : HA0); // in degrees | |
970 | // | |
971 | // // Find UT midnight on this day | |
972 | // long midnight = DAY_MS * (time / DAY_MS); | |
973 | // | |
974 | // return midnight + (long) (result * 3600000 / 15); | |
975 | // } | |
976 | ||
977 | //------------------------------------------------------------------------- | |
978 | // The Moon | |
979 | //------------------------------------------------------------------------- | |
980 | ||
981 | #define moonL0 (318.351648 * CalendarAstronomer::PI/180 ) // Mean long. at epoch | |
982 | #define moonP0 ( 36.340410 * CalendarAstronomer::PI/180 ) // Mean long. of perigee | |
983 | #define moonN0 ( 318.510107 * CalendarAstronomer::PI/180 ) // Mean long. of node | |
984 | #define moonI ( 5.145366 * CalendarAstronomer::PI/180 ) // Inclination of orbit | |
985 | #define moonE ( 0.054900 ) // Eccentricity of orbit | |
986 | ||
987 | // These aren't used right now | |
988 | #define moonA ( 3.84401e5 ) // semi-major axis (km) | |
989 | #define moonT0 ( 0.5181 * CalendarAstronomer::PI/180 ) // Angular size at distance A | |
990 | #define moonPi ( 0.9507 * CalendarAstronomer::PI/180 ) // Parallax at distance A | |
991 | ||
992 | /** | |
993 | * The position of the moon at the time set on this | |
994 | * object, in equatorial coordinates. | |
995 | * @internal | |
996 | * @deprecated ICU 2.4. This class may be removed or modified. | |
997 | */ | |
998 | const CalendarAstronomer::Equatorial& CalendarAstronomer::getMoonPosition() | |
999 | { | |
1000 | // | |
1001 | // See page 142 of "Practial Astronomy with your Calculator", | |
1002 | // by Peter Duffet-Smith, for details on the algorithm. | |
1003 | // | |
1004 | if (moonPositionSet == FALSE) { | |
1005 | // Calculate the solar longitude. Has the side effect of | |
1006 | // filling in "meanAnomalySun" as well. | |
1007 | getSunLongitude(); | |
1008 | ||
1009 | // | |
1010 | // Find the # of days since the epoch of our orbital parameters. | |
1011 | // TODO: Convert the time of day portion into ephemeris time | |
1012 | // | |
1013 | double day = getJulianDay() - JD_EPOCH; // Days since epoch | |
1014 | ||
1015 | // Calculate the mean longitude and anomaly of the moon, based on | |
1016 | // a circular orbit. Similar to the corresponding solar calculation. | |
1017 | double meanLongitude = norm2PI(13.1763966*PI/180*day + moonL0); | |
1018 | meanAnomalyMoon = norm2PI(meanLongitude - 0.1114041*PI/180 * day - moonP0); | |
1019 | ||
1020 | // | |
1021 | // Calculate the following corrections: | |
1022 | // Evection: the sun's gravity affects the moon's eccentricity | |
1023 | // Annual Eqn: variation in the effect due to earth-sun distance | |
1024 | // A3: correction factor (for ???) | |
1025 | // | |
1026 | double evection = 1.2739*PI/180 * ::sin(2 * (meanLongitude - sunLongitude) | |
1027 | - meanAnomalyMoon); | |
1028 | double annual = 0.1858*PI/180 * ::sin(meanAnomalySun); | |
1029 | double a3 = 0.3700*PI/180 * ::sin(meanAnomalySun); | |
1030 | ||
1031 | meanAnomalyMoon += evection - annual - a3; | |
1032 | ||
1033 | // | |
1034 | // More correction factors: | |
1035 | // center equation of the center correction | |
1036 | // a4 yet another error correction (???) | |
1037 | // | |
1038 | // TODO: Skip the equation of the center correction and solve Kepler's eqn? | |
1039 | // | |
1040 | double center = 6.2886*PI/180 * ::sin(meanAnomalyMoon); | |
1041 | double a4 = 0.2140*PI/180 * ::sin(2 * meanAnomalyMoon); | |
1042 | ||
1043 | // Now find the moon's corrected longitude | |
1044 | moonLongitude = meanLongitude + evection + center - annual + a4; | |
1045 | ||
1046 | // | |
1047 | // And finally, find the variation, caused by the fact that the sun's | |
1048 | // gravitational pull on the moon varies depending on which side of | |
1049 | // the earth the moon is on | |
1050 | // | |
1051 | double variation = 0.6583*CalendarAstronomer::PI/180 * ::sin(2*(moonLongitude - sunLongitude)); | |
1052 | ||
1053 | moonLongitude += variation; | |
1054 | ||
1055 | // | |
1056 | // What we've calculated so far is the moon's longitude in the plane | |
1057 | // of its own orbit. Now map to the ecliptic to get the latitude | |
1058 | // and longitude. First we need to find the longitude of the ascending | |
1059 | // node, the position on the ecliptic where it is crossed by the moon's | |
1060 | // orbit as it crosses from the southern to the northern hemisphere. | |
1061 | // | |
1062 | double nodeLongitude = norm2PI(moonN0 - 0.0529539*PI/180 * day); | |
1063 | ||
1064 | nodeLongitude -= 0.16*PI/180 * ::sin(meanAnomalySun); | |
1065 | ||
1066 | double y = ::sin(moonLongitude - nodeLongitude); | |
1067 | double x = cos(moonLongitude - nodeLongitude); | |
1068 | ||
1069 | moonEclipLong = ::atan2(y*cos(moonI), x) + nodeLongitude; | |
1070 | double moonEclipLat = ::asin(y * ::sin(moonI)); | |
1071 | ||
1072 | eclipticToEquatorial(moonPosition, moonEclipLong, moonEclipLat); | |
1073 | moonPositionSet = TRUE; | |
1074 | } | |
1075 | return moonPosition; | |
1076 | } | |
1077 | ||
1078 | /** | |
1079 | * The "age" of the moon at the time specified in this object. | |
1080 | * This is really the angle between the | |
1081 | * current ecliptic longitudes of the sun and the moon, | |
1082 | * measured in radians. | |
1083 | * | |
1084 | * @see #getMoonPhase | |
1085 | * @internal | |
1086 | * @deprecated ICU 2.4. This class may be removed or modified. | |
1087 | */ | |
1088 | double CalendarAstronomer::getMoonAge() { | |
1089 | // See page 147 of "Practial Astronomy with your Calculator", | |
1090 | // by Peter Duffet-Smith, for details on the algorithm. | |
1091 | // | |
1092 | // Force the moon's position to be calculated. We're going to use | |
1093 | // some the intermediate results cached during that calculation. | |
1094 | // | |
1095 | getMoonPosition(); | |
1096 | ||
1097 | return norm2PI(moonEclipLong - sunLongitude); | |
1098 | } | |
1099 | ||
1100 | /** | |
1101 | * Calculate the phase of the moon at the time set in this object. | |
1102 | * The returned phase is a <code>double</code> in the range | |
1103 | * <code>0 <= phase < 1</code>, interpreted as follows: | |
1104 | * <ul> | |
1105 | * <li>0.00: New moon | |
1106 | * <li>0.25: First quarter | |
1107 | * <li>0.50: Full moon | |
1108 | * <li>0.75: Last quarter | |
1109 | * </ul> | |
1110 | * | |
1111 | * @see #getMoonAge | |
1112 | * @internal | |
1113 | * @deprecated ICU 2.4. This class may be removed or modified. | |
1114 | */ | |
1115 | double CalendarAstronomer::getMoonPhase() { | |
1116 | // See page 147 of "Practial Astronomy with your Calculator", | |
1117 | // by Peter Duffet-Smith, for details on the algorithm. | |
1118 | return 0.5 * (1 - cos(getMoonAge())); | |
1119 | } | |
1120 | ||
1121 | /** | |
1122 | * Constant representing a new moon. | |
1123 | * For use with {@link #getMoonTime getMoonTime} | |
1124 | * @internal | |
1125 | * @deprecated ICU 2.4. This class may be removed or modified. | |
1126 | */ | |
1127 | const CalendarAstronomer::MoonAge CalendarAstronomer::NEW_MOON() { | |
1128 | return CalendarAstronomer::MoonAge(0); | |
1129 | } | |
1130 | ||
1131 | /** | |
1132 | * Constant representing the moon's first quarter. | |
1133 | * For use with {@link #getMoonTime getMoonTime} | |
1134 | * @internal | |
1135 | * @deprecated ICU 2.4. This class may be removed or modified. | |
1136 | */ | |
1137 | const CalendarAstronomer::MoonAge CalendarAstronomer::FIRST_QUARTER() { | |
1138 | return CalendarAstronomer::MoonAge(CalendarAstronomer::PI/2); | |
1139 | } | |
1140 | ||
1141 | /** | |
1142 | * Constant representing a full moon. | |
1143 | * For use with {@link #getMoonTime getMoonTime} | |
1144 | * @internal | |
1145 | * @deprecated ICU 2.4. This class may be removed or modified. | |
1146 | */ | |
1147 | const CalendarAstronomer::MoonAge CalendarAstronomer::FULL_MOON() { | |
1148 | return CalendarAstronomer::MoonAge(CalendarAstronomer::PI); | |
1149 | } | |
1150 | /** | |
1151 | * Constant representing the moon's last quarter. | |
1152 | * For use with {@link #getMoonTime getMoonTime} | |
1153 | * @internal | |
1154 | * @deprecated ICU 2.4. This class may be removed or modified. | |
1155 | */ | |
1156 | ||
1157 | class MoonTimeAngleFunc : public CalendarAstronomer::AngleFunc { | |
1158 | public: | |
1159 | virtual double eval(CalendarAstronomer&a) { return a.getMoonAge(); } | |
1160 | }; | |
1161 | ||
1162 | const CalendarAstronomer::MoonAge CalendarAstronomer::LAST_QUARTER() { | |
1163 | return CalendarAstronomer::MoonAge((CalendarAstronomer::PI*3)/2); | |
1164 | } | |
1165 | ||
1166 | /** | |
1167 | * Find the next or previous time at which the Moon's ecliptic | |
1168 | * longitude will have the desired value. | |
1169 | * <p> | |
1170 | * @param desired The desired longitude. | |
1171 | * @param next <tt>true</tt> if the next occurrance of the phase | |
1172 | * is desired, <tt>false</tt> for the previous occurrance. | |
1173 | * @internal | |
1174 | * @deprecated ICU 2.4. This class may be removed or modified. | |
1175 | */ | |
1176 | UDate CalendarAstronomer::getMoonTime(double desired, UBool next) | |
1177 | { | |
1178 | MoonTimeAngleFunc func; | |
1179 | return timeOfAngle( func, | |
1180 | desired, | |
1181 | SYNODIC_MONTH, | |
1182 | MINUTE_MS, | |
1183 | next); | |
1184 | } | |
1185 | ||
1186 | /** | |
1187 | * Find the next or previous time at which the moon will be in the | |
1188 | * desired phase. | |
1189 | * <p> | |
1190 | * @param desired The desired phase of the moon. | |
1191 | * @param next <tt>true</tt> if the next occurrance of the phase | |
1192 | * is desired, <tt>false</tt> for the previous occurrance. | |
1193 | * @internal | |
1194 | * @deprecated ICU 2.4. This class may be removed or modified. | |
1195 | */ | |
1196 | UDate CalendarAstronomer::getMoonTime(const CalendarAstronomer::MoonAge& desired, UBool next) { | |
1197 | return getMoonTime(desired.value, next); | |
1198 | } | |
1199 | ||
1200 | class MoonRiseSetCoordFunc : public CalendarAstronomer::CoordFunc { | |
1201 | public: | |
1202 | virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer&a) { result = a.getMoonPosition(); } | |
1203 | }; | |
1204 | ||
1205 | /** | |
1206 | * Returns the time (GMT) of sunrise or sunset on the local date to which | |
1207 | * this calendar is currently set. | |
1208 | * @internal | |
1209 | * @deprecated ICU 2.4. This class may be removed or modified. | |
1210 | */ | |
1211 | UDate CalendarAstronomer::getMoonRiseSet(UBool rise) | |
1212 | { | |
1213 | MoonRiseSetCoordFunc func; | |
1214 | return riseOrSet(func, | |
1215 | rise, | |
1216 | .533 * DEG_RAD, // Angular Diameter | |
1217 | 34 /60.0 * DEG_RAD, // Refraction correction | |
1218 | MINUTE_MS); // Desired accuracy | |
1219 | } | |
1220 | ||
1221 | //------------------------------------------------------------------------- | |
1222 | // Interpolation methods for finding the time at which a given event occurs | |
1223 | //------------------------------------------------------------------------- | |
1224 | ||
1225 | UDate CalendarAstronomer::timeOfAngle(AngleFunc& func, double desired, | |
1226 | double periodDays, double epsilon, UBool next) | |
1227 | { | |
1228 | // Find the value of the function at the current time | |
1229 | double lastAngle = func.eval(*this); | |
1230 | ||
1231 | // Find out how far we are from the desired angle | |
1232 | double deltaAngle = norm2PI(desired - lastAngle) ; | |
1233 | ||
1234 | // Using the average period, estimate the next (or previous) time at | |
1235 | // which the desired angle occurs. | |
1236 | double deltaT = (deltaAngle + (next ? 0.0 : - CalendarAstronomer_PI2 )) * (periodDays*DAY_MS) / CalendarAstronomer_PI2; | |
1237 | ||
1238 | double lastDeltaT = deltaT; // Liu | |
1239 | UDate startTime = fTime; // Liu | |
1240 | ||
1241 | setTime(fTime + uprv_ceil(deltaT)); | |
1242 | ||
1243 | // Now iterate until we get the error below epsilon. Throughout | |
1244 | // this loop we use normPI to get values in the range -Pi to Pi, | |
1245 | // since we're using them as correction factors rather than absolute angles. | |
1246 | do { | |
1247 | // Evaluate the function at the time we've estimated | |
1248 | double angle = func.eval(*this); | |
1249 | ||
1250 | // Find the # of milliseconds per radian at this point on the curve | |
1251 | double factor = uprv_fabs(deltaT / normPI(angle-lastAngle)); | |
1252 | ||
1253 | // Correct the time estimate based on how far off the angle is | |
1254 | deltaT = normPI(desired - angle) * factor; | |
1255 | ||
1256 | // HACK: | |
1257 | // | |
1258 | // If abs(deltaT) begins to diverge we need to quit this loop. | |
1259 | // This only appears to happen when attempting to locate, for | |
1260 | // example, a new moon on the day of the new moon. E.g.: | |
1261 | // | |
1262 | // This result is correct: | |
1263 | // newMoon(7508(Mon Jul 23 00:00:00 CST 1990,false))= | |
1264 | // Sun Jul 22 10:57:41 CST 1990 | |
1265 | // | |
1266 | // But attempting to make the same call a day earlier causes deltaT | |
1267 | // to diverge: | |
1268 | // CalendarAstronomer.timeOfAngle() diverging: 1.348508727575625E9 -> | |
1269 | // 1.3649828540224032E9 | |
1270 | // newMoon(7507(Sun Jul 22 00:00:00 CST 1990,false))= | |
1271 | // Sun Jul 08 13:56:15 CST 1990 | |
1272 | // | |
1273 | // As a temporary solution, we catch this specific condition and | |
1274 | // adjust our start time by one eighth period days (either forward | |
1275 | // or backward) and try again. | |
1276 | // Liu 11/9/00 | |
1277 | if (uprv_fabs(deltaT) > uprv_fabs(lastDeltaT)) { | |
1278 | double delta = uprv_ceil (periodDays * DAY_MS / 8.0); | |
1279 | setTime(startTime + (next ? delta : -delta)); | |
1280 | return timeOfAngle(func, desired, periodDays, epsilon, next); | |
1281 | } | |
1282 | ||
1283 | lastDeltaT = deltaT; | |
1284 | lastAngle = angle; | |
1285 | ||
1286 | setTime(fTime + uprv_ceil(deltaT)); | |
1287 | } | |
1288 | while (uprv_fabs(deltaT) > epsilon); | |
1289 | ||
1290 | return fTime; | |
1291 | } | |
1292 | ||
1293 | UDate CalendarAstronomer::riseOrSet(CoordFunc& func, UBool rise, | |
1294 | double diameter, double refraction, | |
1295 | double epsilon) | |
1296 | { | |
1297 | Equatorial pos; | |
1298 | double tanL = ::tan(fLatitude); | |
1299 | double deltaT = 0; | |
1300 | int32_t count = 0; | |
1301 | ||
1302 | // | |
1303 | // Calculate the object's position at the current time, then use that | |
1304 | // position to calculate the time of rising or setting. The position | |
1305 | // will be different at that time, so iterate until the error is allowable. | |
1306 | // | |
1307 | U_DEBUG_ASTRO_MSG(("setup rise=%s, dia=%.3lf, ref=%.3lf, eps=%.3lf\n", | |
1308 | rise?"T":"F", diameter, refraction, epsilon)); | |
1309 | do { | |
1310 | // See "Practical Astronomy With Your Calculator, section 33. | |
1311 | func.eval(pos, *this); | |
1312 | double angle = ::acos(-tanL * ::tan(pos.declination)); | |
1313 | double lst = ((rise ? CalendarAstronomer_PI2-angle : angle) + pos.ascension ) * 24 / CalendarAstronomer_PI2; | |
1314 | ||
1315 | // Convert from LST to Universal Time. | |
1316 | UDate newTime = lstToUT( lst ); | |
1317 | ||
1318 | deltaT = newTime - fTime; | |
1319 | setTime(newTime); | |
1320 | U_DEBUG_ASTRO_MSG(("%d] dT=%.3lf, angle=%.3lf, lst=%.3lf, A=%.3lf/D=%.3lf\n", | |
1321 | count, deltaT, angle, lst, pos.ascension, pos.declination)); | |
1322 | } | |
1323 | while (++ count < 5 && uprv_fabs(deltaT) > epsilon); | |
1324 | ||
1325 | // Calculate the correction due to refraction and the object's angular diameter | |
1326 | double cosD = ::cos(pos.declination); | |
1327 | double psi = ::acos(sin(fLatitude) / cosD); | |
1328 | double x = diameter / 2 + refraction; | |
1329 | double y = ::asin(sin(x) / ::sin(psi)); | |
1330 | long delta = (long)((240 * y * RAD_DEG / cosD)*SECOND_MS); | |
1331 | ||
1332 | return fTime + (rise ? -delta : delta); | |
1333 | } | |
1334 | ||
1335 | /** | |
1336 | * Find the "true anomaly" (longitude) of an object from | |
1337 | * its mean anomaly and the eccentricity of its orbit. This uses | |
1338 | * an iterative solution to Kepler's equation. | |
1339 | * | |
1340 | * @param meanAnomaly The object's longitude calculated as if it were in | |
1341 | * a regular, circular orbit, measured in radians | |
1342 | * from the point of perigee. | |
1343 | * | |
1344 | * @param eccentricity The eccentricity of the orbit | |
1345 | * | |
1346 | * @return The true anomaly (longitude) measured in radians | |
1347 | */ | |
1348 | double CalendarAstronomer::trueAnomaly(double meanAnomaly, double eccentricity) | |
1349 | { | |
1350 | // First, solve Kepler's equation iteratively | |
1351 | // Duffett-Smith, p.90 | |
1352 | double delta; | |
1353 | double E = meanAnomaly; | |
1354 | do { | |
1355 | delta = E - eccentricity * ::sin(E) - meanAnomaly; | |
1356 | E = E - delta / (1 - eccentricity * ::cos(E)); | |
1357 | } | |
1358 | while (uprv_fabs(delta) > 1e-5); // epsilon = 1e-5 rad | |
1359 | ||
1360 | return 2.0 * ::atan( ::tan(E/2) * ::sqrt( (1+eccentricity) | |
1361 | /(1-eccentricity) ) ); | |
1362 | } | |
1363 | ||
1364 | /** | |
1365 | * Return the obliquity of the ecliptic (the angle between the ecliptic | |
1366 | * and the earth's equator) at the current time. This varies due to | |
1367 | * the precession of the earth's axis. | |
1368 | * | |
1369 | * @return the obliquity of the ecliptic relative to the equator, | |
1370 | * measured in radians. | |
1371 | */ | |
1372 | double CalendarAstronomer::eclipticObliquity() { | |
1373 | if (isINVALID(eclipObliquity)) { | |
1374 | const double epoch = 2451545.0; // 2000 AD, January 1.5 | |
1375 | ||
1376 | double T = (getJulianDay() - epoch) / 36525; | |
1377 | ||
1378 | eclipObliquity = 23.439292 | |
1379 | - 46.815/3600 * T | |
1380 | - 0.0006/3600 * T*T | |
1381 | + 0.00181/3600 * T*T*T; | |
1382 | ||
1383 | eclipObliquity *= DEG_RAD; | |
1384 | } | |
1385 | return eclipObliquity; | |
1386 | } | |
1387 | ||
1388 | ||
1389 | //------------------------------------------------------------------------- | |
1390 | // Private data | |
1391 | //------------------------------------------------------------------------- | |
1392 | void CalendarAstronomer::clearCache() { | |
1393 | const double INVALID = uprv_getNaN(); | |
1394 | ||
1395 | julianDay = INVALID; | |
1396 | julianCentury = INVALID; | |
1397 | sunLongitude = INVALID; | |
1398 | meanAnomalySun = INVALID; | |
1399 | moonLongitude = INVALID; | |
1400 | moonEclipLong = INVALID; | |
1401 | meanAnomalyMoon = INVALID; | |
1402 | eclipObliquity = INVALID; | |
1403 | siderealTime = INVALID; | |
1404 | siderealT0 = INVALID; | |
1405 | moonPositionSet = FALSE; | |
1406 | } | |
1407 | ||
1408 | //private static void out(String s) { | |
1409 | // System.out.println(s); | |
1410 | //} | |
1411 | ||
1412 | //private static String deg(double rad) { | |
1413 | // return Double.toString(rad * RAD_DEG); | |
1414 | //} | |
1415 | ||
1416 | //private static String hours(long ms) { | |
1417 | // return Double.toString((double)ms / HOUR_MS) + " hours"; | |
1418 | //} | |
1419 | ||
1420 | /** | |
1421 | * @internal | |
1422 | * @deprecated ICU 2.4. This class may be removed or modified. | |
1423 | */ | |
1424 | UDate CalendarAstronomer::local(UDate localMillis) { | |
1425 | // TODO - srl ? | |
1426 | TimeZone *tz = TimeZone::createDefault(); | |
1427 | int32_t rawOffset; | |
1428 | int32_t dstOffset; | |
1429 | UErrorCode status = U_ZERO_ERROR; | |
1430 | tz->getOffset(localMillis, TRUE, rawOffset, dstOffset, status); | |
1431 | delete tz; | |
1432 | return localMillis - rawOffset; | |
1433 | } | |
1434 | ||
1435 | // Debugging functions | |
1436 | UnicodeString CalendarAstronomer::Ecliptic::toString() const | |
1437 | { | |
1438 | #ifdef U_DEBUG_ASTRO | |
1439 | char tmp[800]; | |
1440 | sprintf(tmp, "[%.5f,%.5f]", longitude*RAD_DEG, latitude*RAD_DEG); | |
1441 | return UnicodeString(tmp, ""); | |
1442 | #else | |
1443 | return UnicodeString(); | |
1444 | #endif | |
1445 | } | |
1446 | ||
1447 | UnicodeString CalendarAstronomer::Equatorial::toString() const | |
1448 | { | |
1449 | #ifdef U_DEBUG_ASTRO | |
1450 | char tmp[400]; | |
1451 | sprintf(tmp, "%f,%f", | |
1452 | (ascension*RAD_DEG), (declination*RAD_DEG)); | |
1453 | return UnicodeString(tmp, ""); | |
1454 | #else | |
1455 | return UnicodeString(); | |
1456 | #endif | |
1457 | } | |
1458 | ||
1459 | UnicodeString CalendarAstronomer::Horizon::toString() const | |
1460 | { | |
1461 | #ifdef U_DEBUG_ASTRO | |
1462 | char tmp[800]; | |
1463 | sprintf(tmp, "[%.5f,%.5f]", altitude*RAD_DEG, azimuth*RAD_DEG); | |
1464 | return UnicodeString(tmp, ""); | |
1465 | #else | |
1466 | return UnicodeString(); | |
1467 | #endif | |
1468 | } | |
1469 | ||
1470 | ||
1471 | // static private String radToHms(double angle) { | |
1472 | // int hrs = (int) (angle*RAD_HOUR); | |
1473 | // int min = (int)((angle*RAD_HOUR - hrs) * 60); | |
1474 | // int sec = (int)((angle*RAD_HOUR - hrs - min/60.0) * 3600); | |
1475 | ||
1476 | // return Integer.toString(hrs) + "h" + min + "m" + sec + "s"; | |
1477 | // } | |
1478 | ||
1479 | // static private String radToDms(double angle) { | |
1480 | // int deg = (int) (angle*RAD_DEG); | |
1481 | // int min = (int)((angle*RAD_DEG - deg) * 60); | |
1482 | // int sec = (int)((angle*RAD_DEG - deg - min/60.0) * 3600); | |
1483 | ||
1484 | // return Integer.toString(deg) + "\u00b0" + min + "'" + sec + "\""; | |
1485 | // } | |
1486 | ||
1487 | // =============== Calendar Cache ================ | |
1488 | ||
1489 | void CalendarCache::createCache(CalendarCache** cache, UErrorCode& status) { | |
1490 | ucln_i18n_registerCleanup(UCLN_I18N_ASTRO_CALENDAR, calendar_astro_cleanup); | |
1491 | *cache = new CalendarCache(32, status); | |
1492 | if(cache == NULL) { | |
1493 | status = U_MEMORY_ALLOCATION_ERROR; | |
1494 | } | |
1495 | if(U_FAILURE(status)) { | |
1496 | delete *cache; | |
1497 | *cache = NULL; | |
1498 | } | |
1499 | } | |
1500 | ||
1501 | int32_t CalendarCache::get(CalendarCache** cache, int32_t key, UErrorCode &status) { | |
1502 | int32_t res; | |
1503 | ||
1504 | if(U_FAILURE(status)) { | |
1505 | return 0; | |
1506 | } | |
1507 | umtx_lock(&ccLock); | |
1508 | ||
1509 | if(*cache == NULL) { | |
1510 | createCache(cache, status); | |
1511 | if(U_FAILURE(status)) { | |
1512 | umtx_unlock(&ccLock); | |
1513 | return 0; | |
1514 | } | |
1515 | } | |
1516 | ||
1517 | res = uhash_igeti((*cache)->fTable, key); | |
1518 | U_DEBUG_ASTRO_MSG(("%p: GET: [%d] == %d\n", (*cache)->fTable, key, res)); | |
1519 | ||
1520 | umtx_unlock(&ccLock); | |
1521 | return res; | |
1522 | } | |
1523 | ||
1524 | void CalendarCache::put(CalendarCache** cache, int32_t key, int32_t value, UErrorCode &status) { | |
1525 | ||
1526 | if(U_FAILURE(status)) { | |
1527 | return; | |
1528 | } | |
1529 | umtx_lock(&ccLock); | |
1530 | ||
1531 | if(*cache == NULL) { | |
1532 | createCache(cache, status); | |
1533 | if(U_FAILURE(status)) { | |
1534 | umtx_unlock(&ccLock); | |
1535 | return; | |
1536 | } | |
1537 | } | |
1538 | ||
1539 | uhash_iputi((*cache)->fTable, key, value, &status); | |
1540 | U_DEBUG_ASTRO_MSG(("%p: PUT: [%d] := %d\n", (*cache)->fTable, key, value)); | |
1541 | ||
1542 | umtx_unlock(&ccLock); | |
1543 | } | |
1544 | ||
1545 | CalendarCache::CalendarCache(int32_t size, UErrorCode &status) { | |
1546 | fTable = uhash_openSize(uhash_hashLong, uhash_compareLong, size, &status); | |
1547 | U_DEBUG_ASTRO_MSG(("%p: Opening.\n", fTable)); | |
1548 | } | |
1549 | ||
1550 | CalendarCache::~CalendarCache() { | |
1551 | if(fTable != NULL) { | |
1552 | U_DEBUG_ASTRO_MSG(("%p: Closing.\n", fTable)); | |
1553 | uhash_close(fTable); | |
1554 | } | |
1555 | } | |
1556 | ||
1557 | U_NAMESPACE_END | |
1558 | ||
1559 | #endif // !UCONFIG_NO_FORMATTING |