]> git.saurik.com Git - apple/icu.git/blame_incremental - icuSources/i18n/astro.cpp
ICU-6.2.14.tar.gz
[apple/icu.git] / icuSources / i18n / astro.cpp
... / ...
CommitLineData
1/************************************************************************
2 * Copyright (C) 1996-2004, International Business Machines Corporation *
3 * and others. All Rights Reserved. *
4 ************************************************************************
5 * 2003-nov-07 srl Port from Java
6 */
7
8#include "astro.h"
9
10#if !UCONFIG_NO_FORMATTING
11
12#include "unicode/calendar.h"
13#include "math.h"
14#include <float.h>
15#include "unicode/putil.h"
16#include "uhash.h"
17#include "umutex.h"
18#include "ucln_in.h"
19#include "putilimp.h"
20#include <stdio.h> // for toString()
21
22#ifdef U_DEBUG_ASTRO
23# include "uresimp.h" // for debugging
24
25static void debug_astro_loc(const char *f, int32_t l)
26{
27 fprintf(stderr, "%s:%d: ", f, l);
28}
29
30static void debug_astro_msg(const char *pat, ...)
31{
32 va_list ap;
33 va_start(ap, pat);
34 vfprintf(stderr, pat, ap);
35 fflush(stderr);
36}
37#include "unicode/datefmt.h"
38#include "unicode/ustring.h"
39static const char * debug_astro_date(UDate d) {
40 static char gStrBuf[1024];
41 static DateFormat *df = NULL;
42 if(df == NULL) {
43 df = DateFormat::createDateTimeInstance(DateFormat::MEDIUM, DateFormat::MEDIUM, Locale::getUS());
44 df->adoptTimeZone(TimeZone::getGMT()->clone());
45 }
46 UnicodeString str;
47 df->format(d,str);
48 u_austrncpy(gStrBuf,str.getTerminatedBuffer(),sizeof(gStrBuf)-1);
49 return gStrBuf;
50}
51
52// must use double parens, i.e.: U_DEBUG_ASTRO_MSG(("four is: %d",4));
53#define U_DEBUG_ASTRO_MSG(x) {debug_astro_loc(__FILE__,__LINE__);debug_astro_msg x;}
54#else
55#define U_DEBUG_ASTRO_MSG(x)
56#endif
57
58static inline UBool isINVALID(double d) {
59 return(uprv_isNaN(d));
60}
61
62static UMTX ccLock = NULL;
63
64U_CDECL_BEGIN
65static UBool calendar_astro_cleanup(void) {
66 umtx_destroy(&ccLock);
67 return TRUE;
68}
69U_CDECL_END
70
71U_NAMESPACE_BEGIN
72
73/**
74 * The number of standard hours in one sidereal day.
75 * Approximately 24.93.
76 * @internal
77 * @deprecated ICU 2.4. This class may be removed or modified.
78 */
79#define SIDEREAL_DAY (23.93446960027)
80
81/**
82 * The number of sidereal hours in one mean solar day.
83 * Approximately 24.07.
84 * @internal
85 * @deprecated ICU 2.4. This class may be removed or modified.
86 */
87#define SOLAR_DAY (24.065709816)
88
89/**
90 * The average number of solar days from one new moon to the next. This is the time
91 * it takes for the moon to return the same ecliptic longitude as the sun.
92 * It is longer than the sidereal month because the sun's longitude increases
93 * during the year due to the revolution of the earth around the sun.
94 * Approximately 29.53.
95 *
96 * @see #SIDEREAL_MONTH
97 * @internal
98 * @deprecated ICU 2.4. This class may be removed or modified.
99 */
100const double CalendarAstronomer::SYNODIC_MONTH = 29.530588853;
101
102/**
103 * The average number of days it takes
104 * for the moon to return to the same ecliptic longitude relative to the
105 * stellar background. This is referred to as the sidereal month.
106 * It is shorter than the synodic month due to
107 * the revolution of the earth around the sun.
108 * Approximately 27.32.
109 *
110 * @see #SYNODIC_MONTH
111 * @internal
112 * @deprecated ICU 2.4. This class may be removed or modified.
113 */
114#define SIDEREAL_MONTH 27.32166
115
116/**
117 * The average number number of days between successive vernal equinoxes.
118 * Due to the precession of the earth's
119 * axis, this is not precisely the same as the sidereal year.
120 * Approximately 365.24
121 *
122 * @see #SIDEREAL_YEAR
123 * @internal
124 * @deprecated ICU 2.4. This class may be removed or modified.
125 */
126#define TROPICAL_YEAR 365.242191
127
128/**
129 * The average number of days it takes
130 * for the sun to return to the same position against the fixed stellar
131 * background. This is the duration of one orbit of the earth about the sun
132 * as it would appear to an outside observer.
133 * Due to the precession of the earth's
134 * axis, this is not precisely the same as the tropical year.
135 * Approximately 365.25.
136 *
137 * @see #TROPICAL_YEAR
138 * @internal
139 * @deprecated ICU 2.4. This class may be removed or modified.
140 */
141#define SIDEREAL_YEAR 365.25636
142
143//-------------------------------------------------------------------------
144// Time-related constants
145//-------------------------------------------------------------------------
146
147/**
148 * The number of milliseconds in one second.
149 * @internal
150 * @deprecated ICU 2.4. This class may be removed or modified.
151 */
152#define SECOND_MS U_MILLIS_PER_SECOND
153
154/**
155 * The number of milliseconds in one minute.
156 * @internal
157 * @deprecated ICU 2.4. This class may be removed or modified.
158 */
159#define MINUTE_MS U_MILLIS_PER_MINUTE
160
161/**
162 * The number of milliseconds in one hour.
163 * @internal
164 * @deprecated ICU 2.4. This class may be removed or modified.
165 */
166#define HOUR_MS U_MILLIS_PER_HOUR
167
168/**
169 * The number of milliseconds in one day.
170 * @internal
171 * @deprecated ICU 2.4. This class may be removed or modified.
172 */
173#define DAY_MS U_MILLIS_PER_DAY
174
175/**
176 * The start of the julian day numbering scheme used by astronomers, which
177 * is 1/1/4713 BC (Julian), 12:00 GMT. This is given as the number of milliseconds
178 * since 1/1/1970 AD (Gregorian), a negative number.
179 * Note that julian day numbers and
180 * the Julian calendar are <em>not</em> the same thing. Also note that
181 * julian days start at <em>noon</em>, not midnight.
182 * @internal
183 * @deprecated ICU 2.4. This class may be removed or modified.
184 */
185#define JULIAN_EPOCH_MS -210866760000000.0
186
187
188/**
189 * Milliseconds value for 0.0 January 2000 AD.
190 */
191#define EPOCH_2000_MS 946598400000.0
192
193//-------------------------------------------------------------------------
194// Assorted private data used for conversions
195//-------------------------------------------------------------------------
196
197// My own copies of these so compilers are more likely to optimize them away
198const double CalendarAstronomer::PI = 3.14159265358979323846;
199
200#define CalendarAstronomer_PI2 (CalendarAstronomer::PI*2.0)
201#define RAD_HOUR ( 12 / CalendarAstronomer::PI ) // radians -> hours
202#define DEG_RAD ( CalendarAstronomer::PI / 180 ) // degrees -> radians
203#define RAD_DEG ( 180 / CalendarAstronomer::PI ) // radians -> degrees
204
205//-------------------------------------------------------------------------
206// Constructors
207//-------------------------------------------------------------------------
208
209/**
210 * Construct a new <code>CalendarAstronomer</code> object that is initialized to
211 * the current date and time.
212 * @internal
213 * @deprecated ICU 2.4. This class may be removed or modified.
214 */
215CalendarAstronomer::CalendarAstronomer():
216 fTime(Calendar::getNow()), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(FALSE) {
217 clearCache();
218}
219
220/**
221 * Construct a new <code>CalendarAstronomer</code> object that is initialized to
222 * the specified date and time.
223 * @internal
224 * @deprecated ICU 2.4. This class may be removed or modified.
225 */
226CalendarAstronomer::CalendarAstronomer(UDate d): fTime(d), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(FALSE) {
227 clearCache();
228}
229
230/**
231 * Construct a new <code>CalendarAstronomer</code> object with the given
232 * latitude and longitude. The object's time is set to the current
233 * date and time.
234 * <p>
235 * @param longitude The desired longitude, in <em>degrees</em> east of
236 * the Greenwich meridian.
237 *
238 * @param latitude The desired latitude, in <em>degrees</em>. Positive
239 * values signify North, negative South.
240 *
241 * @see java.util.Date#getTime()
242 * @internal
243 * @deprecated ICU 2.4. This class may be removed or modified.
244 */
245CalendarAstronomer::CalendarAstronomer(double longitude, double latitude) :
246 fTime(Calendar::getNow()), moonPosition(0,0), moonPositionSet(FALSE) {
247 fLongitude = normPI(longitude * (double)DEG_RAD);
248 fLatitude = normPI(latitude * (double)DEG_RAD);
249 fGmtOffset = (double)(fLongitude * 24. * (double)HOUR_MS / (double)CalendarAstronomer_PI2);
250 clearCache();
251}
252
253CalendarAstronomer::~CalendarAstronomer()
254{
255}
256
257//-------------------------------------------------------------------------
258// Time and date getters and setters
259//-------------------------------------------------------------------------
260
261/**
262 * Set the current date and time of this <code>CalendarAstronomer</code> object. All
263 * astronomical calculations are performed based on this time setting.
264 *
265 * @param aTime the date and time, expressed as the number of milliseconds since
266 * 1/1/1970 0:00 GMT (Gregorian).
267 *
268 * @see #setDate
269 * @see #getTime
270 * @internal
271 * @deprecated ICU 2.4. This class may be removed or modified.
272 */
273void CalendarAstronomer::setTime(UDate aTime) {
274 fTime = aTime;
275 U_DEBUG_ASTRO_MSG(("setTime(%.1lf, %sL)\n", aTime, debug_astro_date(aTime+fGmtOffset)));
276 clearCache();
277}
278
279/**
280 * Set the current date and time of this <code>CalendarAstronomer</code> object. All
281 * astronomical calculations are performed based on this time setting.
282 *
283 * @param jdn the desired time, expressed as a "julian day number",
284 * which is the number of elapsed days since
285 * 1/1/4713 BC (Julian), 12:00 GMT. Note that julian day
286 * numbers start at <em>noon</em>. To get the jdn for
287 * the corresponding midnight, subtract 0.5.
288 *
289 * @see #getJulianDay
290 * @see #JULIAN_EPOCH_MS
291 * @internal
292 * @deprecated ICU 2.4. This class may be removed or modified.
293 */
294void CalendarAstronomer::setJulianDay(double jdn) {
295 fTime = (double)(jdn * DAY_MS) + JULIAN_EPOCH_MS;
296 clearCache();
297 julianDay = jdn;
298}
299
300/**
301 * Get the current time of this <code>CalendarAstronomer</code> object,
302 * represented as the number of milliseconds since
303 * 1/1/1970 AD 0:00 GMT (Gregorian).
304 *
305 * @see #setTime
306 * @see #getDate
307 * @internal
308 * @deprecated ICU 2.4. This class may be removed or modified.
309 */
310UDate CalendarAstronomer::getTime() {
311 return fTime;
312}
313
314/**
315 * Get the current time of this <code>CalendarAstronomer</code> object,
316 * expressed as a "julian day number", which is the number of elapsed
317 * days since 1/1/4713 BC (Julian), 12:00 GMT.
318 *
319 * @see #setJulianDay
320 * @see #JULIAN_EPOCH_MS
321 * @internal
322 * @deprecated ICU 2.4. This class may be removed or modified.
323 */
324double CalendarAstronomer::getJulianDay() {
325 if (isINVALID(julianDay)) {
326 julianDay = (fTime - (double)JULIAN_EPOCH_MS) / (double)DAY_MS;
327 }
328 return julianDay;
329}
330
331/**
332 * Return this object's time expressed in julian centuries:
333 * the number of centuries after 1/1/1900 AD, 12:00 GMT
334 *
335 * @see #getJulianDay
336 * @internal
337 * @deprecated ICU 2.4. This class may be removed or modified.
338 */
339double CalendarAstronomer::getJulianCentury() {
340 if (isINVALID(julianCentury)) {
341 julianCentury = (getJulianDay() - 2415020.0) / 36525.0;
342 }
343 return julianCentury;
344}
345
346/**
347 * Returns the current Greenwich sidereal time, measured in hours
348 * @internal
349 * @deprecated ICU 2.4. This class may be removed or modified.
350 */
351double CalendarAstronomer::getGreenwichSidereal() {
352 if (isINVALID(siderealTime)) {
353 // See page 86 of "Practial Astronomy with your Calculator",
354 // by Peter Duffet-Smith, for details on the algorithm.
355
356 double UT = normalize(fTime/(double)HOUR_MS, 24.);
357
358 siderealTime = normalize(getSiderealOffset() + UT*1.002737909, 24.);
359 }
360 return siderealTime;
361}
362
363double CalendarAstronomer::getSiderealOffset() {
364 if (isINVALID(siderealT0)) {
365 double JD = uprv_floor(getJulianDay() - 0.5) + 0.5;
366 double S = JD - 2451545.0;
367 double T = S / 36525.0;
368 siderealT0 = normalize(6.697374558 + 2400.051336*T + 0.000025862*T*T, 24);
369 }
370 return siderealT0;
371}
372
373/**
374 * Returns the current local sidereal time, measured in hours
375 * @internal
376 * @deprecated ICU 2.4. This class may be removed or modified.
377 */
378double CalendarAstronomer::getLocalSidereal() {
379 return normalize(getGreenwichSidereal() + (fGmtOffset/(double)HOUR_MS), 24.);
380}
381
382/**
383 * Converts local sidereal time to Universal Time.
384 *
385 * @param lst The Local Sidereal Time, in hours since sidereal midnight
386 * on this object's current date.
387 *
388 * @return The corresponding Universal Time, in milliseconds since
389 * 1 Jan 1970, GMT.
390 */
391double CalendarAstronomer::lstToUT(double lst) {
392 // Convert to local mean time
393 double lt = normalize((lst - getSiderealOffset()) * 0.9972695663, 24);
394
395 // Then find local midnight on this day
396 double base = (DAY_MS * Math::floorDivide(fTime + fGmtOffset,(double)DAY_MS)) - fGmtOffset;
397
398 //out(" lt =" + lt + " hours");
399 //out(" base=" + new Date(base));
400
401 return base + (long)(lt * HOUR_MS);
402}
403
404
405//-------------------------------------------------------------------------
406// Coordinate transformations, all based on the current time of this object
407//-------------------------------------------------------------------------
408
409/**
410 * Convert from ecliptic to equatorial coordinates.
411 *
412 * @param ecliptic A point in the sky in ecliptic coordinates.
413 * @return The corresponding point in equatorial coordinates.
414 * @internal
415 * @deprecated ICU 2.4. This class may be removed or modified.
416 */
417CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, const CalendarAstronomer::Ecliptic& ecliptic)
418{
419 return eclipticToEquatorial(result, ecliptic.longitude, ecliptic.latitude);
420}
421
422/**
423 * Convert from ecliptic to equatorial coordinates.
424 *
425 * @param eclipLong The ecliptic longitude
426 * @param eclipLat The ecliptic latitude
427 *
428 * @return The corresponding point in equatorial coordinates.
429 * @internal
430 * @deprecated ICU 2.4. This class may be removed or modified.
431 */
432CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong, double eclipLat)
433{
434 // See page 42 of "Practial Astronomy with your Calculator",
435 // by Peter Duffet-Smith, for details on the algorithm.
436
437 double obliq = eclipticObliquity();
438 double sinE = ::sin(obliq);
439 double cosE = cos(obliq);
440
441 double sinL = ::sin(eclipLong);
442 double cosL = cos(eclipLong);
443
444 double sinB = ::sin(eclipLat);
445 double cosB = cos(eclipLat);
446 double tanB = tan(eclipLat);
447
448 result.set(atan2(sinL*cosE - tanB*sinE, cosL),
449 asin(sinB*cosE + cosB*sinE*sinL) );
450 return result;
451}
452
453/**
454 * Convert from ecliptic longitude to equatorial coordinates.
455 *
456 * @param eclipLong The ecliptic longitude
457 *
458 * @return The corresponding point in equatorial coordinates.
459 * @internal
460 * @deprecated ICU 2.4. This class may be removed or modified.
461 */
462CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong)
463{
464 return eclipticToEquatorial(result, eclipLong, 0); // TODO: optimize
465}
466
467/**
468 * @internal
469 * @deprecated ICU 2.4. This class may be removed or modified.
470 */
471CalendarAstronomer::Horizon& CalendarAstronomer::eclipticToHorizon(CalendarAstronomer::Horizon& result, double eclipLong)
472{
473 Equatorial equatorial;
474 eclipticToEquatorial(equatorial, eclipLong);
475
476 double H = getLocalSidereal()*CalendarAstronomer::PI/12 - equatorial.ascension; // Hour-angle
477
478 double sinH = ::sin(H);
479 double cosH = cos(H);
480 double sinD = ::sin(equatorial.declination);
481 double cosD = cos(equatorial.declination);
482 double sinL = ::sin(fLatitude);
483 double cosL = cos(fLatitude);
484
485 double altitude = asin(sinD*sinL + cosD*cosL*cosH);
486 double azimuth = atan2(-cosD*cosL*sinH, sinD - sinL * ::sin(altitude));
487
488 result.set(azimuth, altitude);
489 return result;
490}
491
492
493//-------------------------------------------------------------------------
494// The Sun
495//-------------------------------------------------------------------------
496
497//
498// Parameters of the Sun's orbit as of the epoch Jan 0.0 1990
499// Angles are in radians (after multiplying by CalendarAstronomer::PI/180)
500//
501#define JD_EPOCH 2447891.5 // Julian day of epoch
502
503#define SUN_ETA_G (279.403303 * CalendarAstronomer::PI/180) // Ecliptic longitude at epoch
504#define SUN_OMEGA_G (282.768422 * CalendarAstronomer::PI/180) // Ecliptic longitude of perigee
505#define SUN_E 0.016713 // Eccentricity of orbit
506//double sunR0 1.495585e8 // Semi-major axis in KM
507//double sunTheta0 (0.533128 * CalendarAstronomer::PI/180) // Angular diameter at R0
508
509// The following three methods, which compute the sun parameters
510// given above for an arbitrary epoch (whatever time the object is
511// set to), make only a small difference as compared to using the
512// above constants. E.g., Sunset times might differ by ~12
513// seconds. Furthermore, the eta-g computation is befuddled by
514// Duffet-Smith's incorrect coefficients (p.86). I've corrected
515// the first-order coefficient but the others may be off too - no
516// way of knowing without consulting another source.
517
518// /**
519// * Return the sun's ecliptic longitude at perigee for the current time.
520// * See Duffett-Smith, p. 86.
521// * @return radians
522// */
523// private double getSunOmegaG() {
524// double T = getJulianCentury();
525// return (281.2208444 + (1.719175 + 0.000452778*T)*T) * DEG_RAD;
526// }
527
528// /**
529// * Return the sun's ecliptic longitude for the current time.
530// * See Duffett-Smith, p. 86.
531// * @return radians
532// */
533// private double getSunEtaG() {
534// double T = getJulianCentury();
535// //return (279.6966778 + (36000.76892 + 0.0003025*T)*T) * DEG_RAD;
536// //
537// // The above line is from Duffett-Smith, and yields manifestly wrong
538// // results. The below constant is derived empirically to match the
539// // constant he gives for the 1990 EPOCH.
540// //
541// return (279.6966778 + (-0.3262541582718024 + 0.0003025*T)*T) * DEG_RAD;
542// }
543
544// /**
545// * Return the sun's eccentricity of orbit for the current time.
546// * See Duffett-Smith, p. 86.
547// * @return double
548// */
549// private double getSunE() {
550// double T = getJulianCentury();
551// return 0.01675104 - (0.0000418 + 0.000000126*T)*T;
552// }
553
554/**
555 * The longitude of the sun at the time specified by this object.
556 * The longitude is measured in radians along the ecliptic
557 * from the "first point of Aries," the point at which the ecliptic
558 * crosses the earth's equatorial plane at the vernal equinox.
559 * <p>
560 * Currently, this method uses an approximation of the two-body Kepler's
561 * equation for the earth and the sun. It does not take into account the
562 * perturbations caused by the other planets, the moon, etc.
563 * @internal
564 * @deprecated ICU 2.4. This class may be removed or modified.
565 */
566double CalendarAstronomer::getSunLongitude()
567{
568 // See page 86 of "Practial Astronomy with your Calculator",
569 // by Peter Duffet-Smith, for details on the algorithm.
570
571 if (isINVALID(sunLongitude)) {
572 getSunLongitude(getJulianDay(), sunLongitude, meanAnomalySun);
573 }
574 return sunLongitude;
575}
576
577/**
578 * TODO Make this public when the entire class is package-private.
579 */
580/*public*/ void CalendarAstronomer::getSunLongitude(double jDay, double &longitude, double &meanAnomaly)
581{
582 // See page 86 of "Practial Astronomy with your Calculator",
583 // by Peter Duffet-Smith, for details on the algorithm.
584
585 double day = jDay - JD_EPOCH; // Days since epoch
586
587 // Find the angular distance the sun in a fictitious
588 // circular orbit has travelled since the epoch.
589 double epochAngle = norm2PI(CalendarAstronomer_PI2/TROPICAL_YEAR*day);
590
591 // The epoch wasn't at the sun's perigee; find the angular distance
592 // since perigee, which is called the "mean anomaly"
593 meanAnomaly = norm2PI(epochAngle + SUN_ETA_G - SUN_OMEGA_G);
594
595 // Now find the "true anomaly", e.g. the real solar longitude
596 // by solving Kepler's equation for an elliptical orbit
597 // NOTE: The 3rd ed. of the book lists omega_g and eta_g in different
598 // equations; omega_g is to be correct.
599 longitude = norm2PI(trueAnomaly(meanAnomaly, SUN_E) + SUN_OMEGA_G);
600}
601
602/**
603 * The position of the sun at this object's current date and time,
604 * in equatorial coordinates.
605 * @internal
606 * @deprecated ICU 2.4. This class may be removed or modified.
607 */
608CalendarAstronomer::Equatorial& CalendarAstronomer::getSunPosition(CalendarAstronomer::Equatorial& result) {
609 return eclipticToEquatorial(result, getSunLongitude(), 0);
610}
611
612
613/**
614 * Constant representing the vernal equinox.
615 * For use with {@link #getSunTime getSunTime}.
616 * Note: In this case, "vernal" refers to the northern hemisphere's seasons.
617 * @internal
618 * @deprecated ICU 2.4. This class may be removed or modified.
619 */
620double CalendarAstronomer::VERNAL_EQUINOX() {
621 return 0;
622}
623
624/**
625 * Constant representing the summer solstice.
626 * For use with {@link #getSunTime getSunTime}.
627 * Note: In this case, "summer" refers to the northern hemisphere's seasons.
628 * @internal
629 * @deprecated ICU 2.4. This class may be removed or modified.
630 */
631double CalendarAstronomer::SUMMER_SOLSTICE() {
632 return (CalendarAstronomer::PI/2);
633}
634
635/**
636 * Constant representing the autumnal equinox.
637 * For use with {@link #getSunTime getSunTime}.
638 * Note: In this case, "autumn" refers to the northern hemisphere's seasons.
639 * @internal
640 * @deprecated ICU 2.4. This class may be removed or modified.
641 */
642double CalendarAstronomer::AUTUMN_EQUINOX() {
643 return (CalendarAstronomer::PI);
644}
645
646/**
647 * Constant representing the winter solstice.
648 * For use with {@link #getSunTime getSunTime}.
649 * Note: In this case, "winter" refers to the northern hemisphere's seasons.
650 * @internal
651 * @deprecated ICU 2.4. This class may be removed or modified.
652 */
653double CalendarAstronomer::WINTER_SOLSTICE() {
654 return ((CalendarAstronomer::PI*3)/2);
655}
656
657/**
658 * Find the next time at which the sun's ecliptic longitude will have
659 * the desired value.
660 * @internal
661 * @deprecated ICU 2.4. This class may be removed or modified.
662 */
663class SunTimeAngleFunc : public CalendarAstronomer::AngleFunc {
664public:
665 virtual double eval(CalendarAstronomer& a) { return a.getSunLongitude(); }
666};
667
668UDate CalendarAstronomer::getSunTime(double desired, UBool next)
669{
670 SunTimeAngleFunc func;
671 return timeOfAngle( func,
672 desired,
673 TROPICAL_YEAR,
674 MINUTE_MS,
675 next);
676}
677
678class RiseSetCoordFunc : public CalendarAstronomer::CoordFunc {
679public:
680 virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer&a) { a.getSunPosition(result); }
681};
682
683UDate CalendarAstronomer::getSunRiseSet(UBool rise)
684{
685 UDate t0 = fTime;
686
687 // Make a rough guess: 6am or 6pm local time on the current day
688 double noon = Math::floorDivide(fTime + fGmtOffset, (double)DAY_MS)*DAY_MS - fGmtOffset + (12*HOUR_MS);
689
690 U_DEBUG_ASTRO_MSG(("Noon=%.2lf, %sL, gmtoff %.2lf\n", noon, debug_astro_date(noon+fGmtOffset), fGmtOffset));
691 setTime(noon + ((rise ? -6 : 6) * HOUR_MS));
692 U_DEBUG_ASTRO_MSG(("added %.2lf ms as a guess,\n", ((rise ? -6. : 6.) * HOUR_MS)));
693
694 RiseSetCoordFunc func;
695 double t = riseOrSet(func,
696 rise,
697 .533 * DEG_RAD, // Angular Diameter
698 34. /60.0 * DEG_RAD, // Refraction correction
699 MINUTE_MS / 12.); // Desired accuracy
700
701 setTime(t0);
702 return t;
703}
704
705// Commented out - currently unused. ICU 2.6, Alan
706// //-------------------------------------------------------------------------
707// // Alternate Sun Rise/Set
708// // See Duffett-Smith p.93
709// //-------------------------------------------------------------------------
710//
711// // This yields worse results (as compared to USNO data) than getSunRiseSet().
712// /**
713// * TODO Make this when the entire class is package-private.
714// */
715// /*public*/ long getSunRiseSet2(boolean rise) {
716// // 1. Calculate coordinates of the sun's center for midnight
717// double jd = uprv_floor(getJulianDay() - 0.5) + 0.5;
718// double[] sl = getSunLongitude(jd);// double lambda1 = sl[0];
719// Equatorial pos1 = eclipticToEquatorial(lambda1, 0);
720//
721// // 2. Add ... to lambda to get position 24 hours later
722// double lambda2 = lambda1 + 0.985647*DEG_RAD;
723// Equatorial pos2 = eclipticToEquatorial(lambda2, 0);
724//
725// // 3. Calculate LSTs of rising and setting for these two positions
726// double tanL = ::tan(fLatitude);
727// double H = ::acos(-tanL * ::tan(pos1.declination));
728// double lst1r = (CalendarAstronomer_PI2 + pos1.ascension - H) * 24 / CalendarAstronomer_PI2;
729// double lst1s = (pos1.ascension + H) * 24 / CalendarAstronomer_PI2;
730// H = ::acos(-tanL * ::tan(pos2.declination));
731// double lst2r = (CalendarAstronomer_PI2-H + pos2.ascension ) * 24 / CalendarAstronomer_PI2;
732// double lst2s = (H + pos2.ascension ) * 24 / CalendarAstronomer_PI2;
733// if (lst1r > 24) lst1r -= 24;
734// if (lst1s > 24) lst1s -= 24;
735// if (lst2r > 24) lst2r -= 24;
736// if (lst2s > 24) lst2s -= 24;
737//
738// // 4. Convert LSTs to GSTs. If GST1 > GST2, add 24 to GST2.
739// double gst1r = lstToGst(lst1r);
740// double gst1s = lstToGst(lst1s);
741// double gst2r = lstToGst(lst2r);
742// double gst2s = lstToGst(lst2s);
743// if (gst1r > gst2r) gst2r += 24;
744// if (gst1s > gst2s) gst2s += 24;
745//
746// // 5. Calculate GST at 0h UT of this date
747// double t00 = utToGst(0);
748//
749// // 6. Calculate GST at 0h on the observer's longitude
750// double offset = ::round(fLongitude*12/PI); // p.95 step 6; he _rounds_ to nearest 15 deg.
751// double t00p = t00 - offset*1.002737909;
752// if (t00p < 0) t00p += 24; // do NOT normalize
753//
754// // 7. Adjust
755// if (gst1r < t00p) {
756// gst1r += 24;
757// gst2r += 24;
758// }
759// if (gst1s < t00p) {
760// gst1s += 24;
761// gst2s += 24;
762// }
763//
764// // 8.
765// double gstr = (24.07*gst1r-t00*(gst2r-gst1r))/(24.07+gst1r-gst2r);
766// double gsts = (24.07*gst1s-t00*(gst2s-gst1s))/(24.07+gst1s-gst2s);
767//
768// // 9. Correct for parallax, refraction, and sun's diameter
769// double dec = (pos1.declination + pos2.declination) / 2;
770// double psi = ::acos(sin(fLatitude) / cos(dec));
771// double x = 0.830725 * DEG_RAD; // parallax+refraction+diameter
772// double y = ::asin(sin(x) / ::sin(psi)) * RAD_DEG;
773// double delta_t = 240 * y / cos(dec) / 3600; // hours
774//
775// // 10. Add correction to GSTs, subtract from GSTr
776// gstr -= delta_t;
777// gsts += delta_t;
778//
779// // 11. Convert GST to UT and then to local civil time
780// double ut = gstToUt(rise ? gstr : gsts);
781// //System.out.println((rise?"rise=":"set=") + ut + ", delta_t=" + delta_t);
782// long midnight = DAY_MS * (time / DAY_MS); // Find UT midnight on this day
783// return midnight + (long) (ut * 3600000);
784// }
785
786// Commented out - currently unused. ICU 2.6, Alan
787// /**
788// * Convert local sidereal time to Greenwich sidereal time.
789// * Section 15. Duffett-Smith p.21
790// * @param lst in hours (0..24)
791// * @return GST in hours (0..24)
792// */
793// double lstToGst(double lst) {
794// double delta = fLongitude * 24 / CalendarAstronomer_PI2;
795// return normalize(lst - delta, 24);
796// }
797
798// Commented out - currently unused. ICU 2.6, Alan
799// /**
800// * Convert UT to GST on this date.
801// * Section 12. Duffett-Smith p.17
802// * @param ut in hours
803// * @return GST in hours
804// */
805// double utToGst(double ut) {
806// return normalize(getT0() + ut*1.002737909, 24);
807// }
808
809// Commented out - currently unused. ICU 2.6, Alan
810// /**
811// * Convert GST to UT on this date.
812// * Section 13. Duffett-Smith p.18
813// * @param gst in hours
814// * @return UT in hours
815// */
816// double gstToUt(double gst) {
817// return normalize(gst - getT0(), 24) * 0.9972695663;
818// }
819
820// Commented out - currently unused. ICU 2.6, Alan
821// double getT0() {
822// // Common computation for UT <=> GST
823//
824// // Find JD for 0h UT
825// double jd = uprv_floor(getJulianDay() - 0.5) + 0.5;
826//
827// double s = jd - 2451545.0;
828// double t = s / 36525.0;
829// double t0 = 6.697374558 + (2400.051336 + 0.000025862*t)*t;
830// return t0;
831// }
832
833// Commented out - currently unused. ICU 2.6, Alan
834// //-------------------------------------------------------------------------
835// // Alternate Sun Rise/Set
836// // See sci.astro FAQ
837// // http://www.faqs.org/faqs/astronomy/faq/part3/section-5.html
838// //-------------------------------------------------------------------------
839//
840// // Note: This method appears to produce inferior accuracy as
841// // compared to getSunRiseSet().
842//
843// /**
844// * TODO Make this when the entire class is package-private.
845// */
846// /*public*/ long getSunRiseSet3(boolean rise) {
847//
848// // Compute day number for 0.0 Jan 2000 epoch
849// double d = (double)(time - EPOCH_2000_MS) / DAY_MS;
850//
851// // Now compute the Local Sidereal Time, LST:
852// //
853// double LST = 98.9818 + 0.985647352 * d + /*UT*15 + long*/
854// fLongitude*RAD_DEG;
855// //
856// // (east long. positive). Note that LST is here expressed in degrees,
857// // where 15 degrees corresponds to one hour. Since LST really is an angle,
858// // it's convenient to use one unit---degrees---throughout.
859//
860// // COMPUTING THE SUN'S POSITION
861// // ----------------------------
862// //
863// // To be able to compute the Sun's rise/set times, you need to be able to
864// // compute the Sun's position at any time. First compute the "day
865// // number" d as outlined above, for the desired moment. Next compute:
866// //
867// double oblecl = 23.4393 - 3.563E-7 * d;
868// //
869// double w = 282.9404 + 4.70935E-5 * d;
870// double M = 356.0470 + 0.9856002585 * d;
871// double e = 0.016709 - 1.151E-9 * d;
872// //
873// // This is the obliquity of the ecliptic, plus some of the elements of
874// // the Sun's apparent orbit (i.e., really the Earth's orbit): w =
875// // argument of perihelion, M = mean anomaly, e = eccentricity.
876// // Semi-major axis is here assumed to be exactly 1.0 (while not strictly
877// // true, this is still an accurate approximation). Next compute E, the
878// // eccentric anomaly:
879// //
880// double E = M + e*(180/PI) * ::sin(M*DEG_RAD) * ( 1.0 + e*cos(M*DEG_RAD) );
881// //
882// // where E and M are in degrees. This is it---no further iterations are
883// // needed because we know e has a sufficiently small value. Next compute
884// // the true anomaly, v, and the distance, r:
885// //
886// /* r * cos(v) = */ double A = cos(E*DEG_RAD) - e;
887// /* r * ::sin(v) = */ double B = ::sqrt(1 - e*e) * ::sin(E*DEG_RAD);
888// //
889// // and
890// //
891// // r = sqrt( A*A + B*B )
892// double v = ::atan2( B, A )*RAD_DEG;
893// //
894// // The Sun's true longitude, slon, can now be computed:
895// //
896// double slon = v + w;
897// //
898// // Since the Sun is always at the ecliptic (or at least very very close to
899// // it), we can use simplified formulae to convert slon (the Sun's ecliptic
900// // longitude) to sRA and sDec (the Sun's RA and Dec):
901// //
902// // ::sin(slon) * cos(oblecl)
903// // tan(sRA) = -------------------------
904// // cos(slon)
905// //
906// // ::sin(sDec) = ::sin(oblecl) * ::sin(slon)
907// //
908// // As was the case when computing az, the Azimuth, if possible use an
909// // atan2() function to compute sRA.
910//
911// double sRA = ::atan2(sin(slon*DEG_RAD) * cos(oblecl*DEG_RAD), cos(slon*DEG_RAD))*RAD_DEG;
912//
913// double sin_sDec = ::sin(oblecl*DEG_RAD) * ::sin(slon*DEG_RAD);
914// double sDec = ::asin(sin_sDec)*RAD_DEG;
915//
916// // COMPUTING RISE AND SET TIMES
917// // ----------------------------
918// //
919// // To compute when an object rises or sets, you must compute when it
920// // passes the meridian and the HA of rise/set. Then the rise time is
921// // the meridian time minus HA for rise/set, and the set time is the
922// // meridian time plus the HA for rise/set.
923// //
924// // To find the meridian time, compute the Local Sidereal Time at 0h local
925// // time (or 0h UT if you prefer to work in UT) as outlined above---name
926// // that quantity LST0. The Meridian Time, MT, will now be:
927// //
928// // MT = RA - LST0
929// double MT = normalize(sRA - LST, 360);
930// //
931// // where "RA" is the object's Right Ascension (in degrees!). If negative,
932// // add 360 deg to MT. If the object is the Sun, leave the time as it is,
933// // but if it's stellar, multiply MT by 365.2422/366.2422, to convert from
934// // sidereal to solar time. Now, compute HA for rise/set, name that
935// // quantity HA0:
936// //
937// // ::sin(h0) - ::sin(lat) * ::sin(Dec)
938// // cos(HA0) = ---------------------------------
939// // cos(lat) * cos(Dec)
940// //
941// // where h0 is the altitude selected to represent rise/set. For a purely
942// // mathematical horizon, set h0 = 0 and simplify to:
943// //
944// // cos(HA0) = - tan(lat) * tan(Dec)
945// //
946// // If you want to account for refraction on the atmosphere, set h0 = -35/60
947// // degrees (-35 arc minutes), and if you want to compute the rise/set times
948// // for the Sun's upper limb, set h0 = -50/60 (-50 arc minutes).
949// //
950// double h0 = -50/60 * DEG_RAD;
951//
952// double HA0 = ::acos(
953// (sin(h0) - ::sin(fLatitude) * sin_sDec) /
954// (cos(fLatitude) * cos(sDec*DEG_RAD)))*RAD_DEG;
955//
956// // When HA0 has been computed, leave it as it is for the Sun but multiply
957// // by 365.2422/366.2422 for stellar objects, to convert from sidereal to
958// // solar time. Finally compute:
959// //
960// // Rise time = MT - HA0
961// // Set time = MT + HA0
962// //
963// // convert the times from degrees to hours by dividing by 15.
964// //
965// // If you'd like to check that your calculations are accurate or just
966// // need a quick result, check the USNO's Sun or Moon Rise/Set Table,
967// // <URL:http://aa.usno.navy.mil/AA/data/docs/RS_OneYear.html>.
968//
969// double result = MT + (rise ? -HA0 : HA0); // in degrees
970//
971// // Find UT midnight on this day
972// long midnight = DAY_MS * (time / DAY_MS);
973//
974// return midnight + (long) (result * 3600000 / 15);
975// }
976
977//-------------------------------------------------------------------------
978// The Moon
979//-------------------------------------------------------------------------
980
981#define moonL0 (318.351648 * CalendarAstronomer::PI/180 ) // Mean long. at epoch
982#define moonP0 ( 36.340410 * CalendarAstronomer::PI/180 ) // Mean long. of perigee
983#define moonN0 ( 318.510107 * CalendarAstronomer::PI/180 ) // Mean long. of node
984#define moonI ( 5.145366 * CalendarAstronomer::PI/180 ) // Inclination of orbit
985#define moonE ( 0.054900 ) // Eccentricity of orbit
986
987// These aren't used right now
988#define moonA ( 3.84401e5 ) // semi-major axis (km)
989#define moonT0 ( 0.5181 * CalendarAstronomer::PI/180 ) // Angular size at distance A
990#define moonPi ( 0.9507 * CalendarAstronomer::PI/180 ) // Parallax at distance A
991
992/**
993 * The position of the moon at the time set on this
994 * object, in equatorial coordinates.
995 * @internal
996 * @deprecated ICU 2.4. This class may be removed or modified.
997 */
998const CalendarAstronomer::Equatorial& CalendarAstronomer::getMoonPosition()
999{
1000 //
1001 // See page 142 of "Practial Astronomy with your Calculator",
1002 // by Peter Duffet-Smith, for details on the algorithm.
1003 //
1004 if (moonPositionSet == FALSE) {
1005 // Calculate the solar longitude. Has the side effect of
1006 // filling in "meanAnomalySun" as well.
1007 getSunLongitude();
1008
1009 //
1010 // Find the # of days since the epoch of our orbital parameters.
1011 // TODO: Convert the time of day portion into ephemeris time
1012 //
1013 double day = getJulianDay() - JD_EPOCH; // Days since epoch
1014
1015 // Calculate the mean longitude and anomaly of the moon, based on
1016 // a circular orbit. Similar to the corresponding solar calculation.
1017 double meanLongitude = norm2PI(13.1763966*PI/180*day + moonL0);
1018 meanAnomalyMoon = norm2PI(meanLongitude - 0.1114041*PI/180 * day - moonP0);
1019
1020 //
1021 // Calculate the following corrections:
1022 // Evection: the sun's gravity affects the moon's eccentricity
1023 // Annual Eqn: variation in the effect due to earth-sun distance
1024 // A3: correction factor (for ???)
1025 //
1026 double evection = 1.2739*PI/180 * ::sin(2 * (meanLongitude - sunLongitude)
1027 - meanAnomalyMoon);
1028 double annual = 0.1858*PI/180 * ::sin(meanAnomalySun);
1029 double a3 = 0.3700*PI/180 * ::sin(meanAnomalySun);
1030
1031 meanAnomalyMoon += evection - annual - a3;
1032
1033 //
1034 // More correction factors:
1035 // center equation of the center correction
1036 // a4 yet another error correction (???)
1037 //
1038 // TODO: Skip the equation of the center correction and solve Kepler's eqn?
1039 //
1040 double center = 6.2886*PI/180 * ::sin(meanAnomalyMoon);
1041 double a4 = 0.2140*PI/180 * ::sin(2 * meanAnomalyMoon);
1042
1043 // Now find the moon's corrected longitude
1044 moonLongitude = meanLongitude + evection + center - annual + a4;
1045
1046 //
1047 // And finally, find the variation, caused by the fact that the sun's
1048 // gravitational pull on the moon varies depending on which side of
1049 // the earth the moon is on
1050 //
1051 double variation = 0.6583*CalendarAstronomer::PI/180 * ::sin(2*(moonLongitude - sunLongitude));
1052
1053 moonLongitude += variation;
1054
1055 //
1056 // What we've calculated so far is the moon's longitude in the plane
1057 // of its own orbit. Now map to the ecliptic to get the latitude
1058 // and longitude. First we need to find the longitude of the ascending
1059 // node, the position on the ecliptic where it is crossed by the moon's
1060 // orbit as it crosses from the southern to the northern hemisphere.
1061 //
1062 double nodeLongitude = norm2PI(moonN0 - 0.0529539*PI/180 * day);
1063
1064 nodeLongitude -= 0.16*PI/180 * ::sin(meanAnomalySun);
1065
1066 double y = ::sin(moonLongitude - nodeLongitude);
1067 double x = cos(moonLongitude - nodeLongitude);
1068
1069 moonEclipLong = ::atan2(y*cos(moonI), x) + nodeLongitude;
1070 double moonEclipLat = ::asin(y * ::sin(moonI));
1071
1072 eclipticToEquatorial(moonPosition, moonEclipLong, moonEclipLat);
1073 moonPositionSet = TRUE;
1074 }
1075 return moonPosition;
1076}
1077
1078/**
1079 * The "age" of the moon at the time specified in this object.
1080 * This is really the angle between the
1081 * current ecliptic longitudes of the sun and the moon,
1082 * measured in radians.
1083 *
1084 * @see #getMoonPhase
1085 * @internal
1086 * @deprecated ICU 2.4. This class may be removed or modified.
1087 */
1088double CalendarAstronomer::getMoonAge() {
1089 // See page 147 of "Practial Astronomy with your Calculator",
1090 // by Peter Duffet-Smith, for details on the algorithm.
1091 //
1092 // Force the moon's position to be calculated. We're going to use
1093 // some the intermediate results cached during that calculation.
1094 //
1095 getMoonPosition();
1096
1097 return norm2PI(moonEclipLong - sunLongitude);
1098}
1099
1100/**
1101 * Calculate the phase of the moon at the time set in this object.
1102 * The returned phase is a <code>double</code> in the range
1103 * <code>0 <= phase < 1</code>, interpreted as follows:
1104 * <ul>
1105 * <li>0.00: New moon
1106 * <li>0.25: First quarter
1107 * <li>0.50: Full moon
1108 * <li>0.75: Last quarter
1109 * </ul>
1110 *
1111 * @see #getMoonAge
1112 * @internal
1113 * @deprecated ICU 2.4. This class may be removed or modified.
1114 */
1115double CalendarAstronomer::getMoonPhase() {
1116 // See page 147 of "Practial Astronomy with your Calculator",
1117 // by Peter Duffet-Smith, for details on the algorithm.
1118 return 0.5 * (1 - cos(getMoonAge()));
1119}
1120
1121/**
1122 * Constant representing a new moon.
1123 * For use with {@link #getMoonTime getMoonTime}
1124 * @internal
1125 * @deprecated ICU 2.4. This class may be removed or modified.
1126 */
1127const CalendarAstronomer::MoonAge CalendarAstronomer::NEW_MOON() {
1128 return CalendarAstronomer::MoonAge(0);
1129}
1130
1131/**
1132 * Constant representing the moon's first quarter.
1133 * For use with {@link #getMoonTime getMoonTime}
1134 * @internal
1135 * @deprecated ICU 2.4. This class may be removed or modified.
1136 */
1137const CalendarAstronomer::MoonAge CalendarAstronomer::FIRST_QUARTER() {
1138 return CalendarAstronomer::MoonAge(CalendarAstronomer::PI/2);
1139}
1140
1141/**
1142 * Constant representing a full moon.
1143 * For use with {@link #getMoonTime getMoonTime}
1144 * @internal
1145 * @deprecated ICU 2.4. This class may be removed or modified.
1146 */
1147const CalendarAstronomer::MoonAge CalendarAstronomer::FULL_MOON() {
1148 return CalendarAstronomer::MoonAge(CalendarAstronomer::PI);
1149}
1150/**
1151 * Constant representing the moon's last quarter.
1152 * For use with {@link #getMoonTime getMoonTime}
1153 * @internal
1154 * @deprecated ICU 2.4. This class may be removed or modified.
1155 */
1156
1157class MoonTimeAngleFunc : public CalendarAstronomer::AngleFunc {
1158public:
1159 virtual double eval(CalendarAstronomer&a) { return a.getMoonAge(); }
1160};
1161
1162const CalendarAstronomer::MoonAge CalendarAstronomer::LAST_QUARTER() {
1163 return CalendarAstronomer::MoonAge((CalendarAstronomer::PI*3)/2);
1164}
1165
1166/**
1167 * Find the next or previous time at which the Moon's ecliptic
1168 * longitude will have the desired value.
1169 * <p>
1170 * @param desired The desired longitude.
1171 * @param next <tt>true</tt> if the next occurrance of the phase
1172 * is desired, <tt>false</tt> for the previous occurrance.
1173 * @internal
1174 * @deprecated ICU 2.4. This class may be removed or modified.
1175 */
1176UDate CalendarAstronomer::getMoonTime(double desired, UBool next)
1177{
1178 MoonTimeAngleFunc func;
1179 return timeOfAngle( func,
1180 desired,
1181 SYNODIC_MONTH,
1182 MINUTE_MS,
1183 next);
1184}
1185
1186/**
1187 * Find the next or previous time at which the moon will be in the
1188 * desired phase.
1189 * <p>
1190 * @param desired The desired phase of the moon.
1191 * @param next <tt>true</tt> if the next occurrance of the phase
1192 * is desired, <tt>false</tt> for the previous occurrance.
1193 * @internal
1194 * @deprecated ICU 2.4. This class may be removed or modified.
1195 */
1196UDate CalendarAstronomer::getMoonTime(const CalendarAstronomer::MoonAge& desired, UBool next) {
1197 return getMoonTime(desired.value, next);
1198}
1199
1200class MoonRiseSetCoordFunc : public CalendarAstronomer::CoordFunc {
1201public:
1202 virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer&a) { result = a.getMoonPosition(); }
1203};
1204
1205/**
1206 * Returns the time (GMT) of sunrise or sunset on the local date to which
1207 * this calendar is currently set.
1208 * @internal
1209 * @deprecated ICU 2.4. This class may be removed or modified.
1210 */
1211UDate CalendarAstronomer::getMoonRiseSet(UBool rise)
1212{
1213 MoonRiseSetCoordFunc func;
1214 return riseOrSet(func,
1215 rise,
1216 .533 * DEG_RAD, // Angular Diameter
1217 34 /60.0 * DEG_RAD, // Refraction correction
1218 MINUTE_MS); // Desired accuracy
1219}
1220
1221//-------------------------------------------------------------------------
1222// Interpolation methods for finding the time at which a given event occurs
1223//-------------------------------------------------------------------------
1224
1225UDate CalendarAstronomer::timeOfAngle(AngleFunc& func, double desired,
1226 double periodDays, double epsilon, UBool next)
1227{
1228 // Find the value of the function at the current time
1229 double lastAngle = func.eval(*this);
1230
1231 // Find out how far we are from the desired angle
1232 double deltaAngle = norm2PI(desired - lastAngle) ;
1233
1234 // Using the average period, estimate the next (or previous) time at
1235 // which the desired angle occurs.
1236 double deltaT = (deltaAngle + (next ? 0.0 : - CalendarAstronomer_PI2 )) * (periodDays*DAY_MS) / CalendarAstronomer_PI2;
1237
1238 double lastDeltaT = deltaT; // Liu
1239 UDate startTime = fTime; // Liu
1240
1241 setTime(fTime + uprv_ceil(deltaT));
1242
1243 // Now iterate until we get the error below epsilon. Throughout
1244 // this loop we use normPI to get values in the range -Pi to Pi,
1245 // since we're using them as correction factors rather than absolute angles.
1246 do {
1247 // Evaluate the function at the time we've estimated
1248 double angle = func.eval(*this);
1249
1250 // Find the # of milliseconds per radian at this point on the curve
1251 double factor = uprv_fabs(deltaT / normPI(angle-lastAngle));
1252
1253 // Correct the time estimate based on how far off the angle is
1254 deltaT = normPI(desired - angle) * factor;
1255
1256 // HACK:
1257 //
1258 // If abs(deltaT) begins to diverge we need to quit this loop.
1259 // This only appears to happen when attempting to locate, for
1260 // example, a new moon on the day of the new moon. E.g.:
1261 //
1262 // This result is correct:
1263 // newMoon(7508(Mon Jul 23 00:00:00 CST 1990,false))=
1264 // Sun Jul 22 10:57:41 CST 1990
1265 //
1266 // But attempting to make the same call a day earlier causes deltaT
1267 // to diverge:
1268 // CalendarAstronomer.timeOfAngle() diverging: 1.348508727575625E9 ->
1269 // 1.3649828540224032E9
1270 // newMoon(7507(Sun Jul 22 00:00:00 CST 1990,false))=
1271 // Sun Jul 08 13:56:15 CST 1990
1272 //
1273 // As a temporary solution, we catch this specific condition and
1274 // adjust our start time by one eighth period days (either forward
1275 // or backward) and try again.
1276 // Liu 11/9/00
1277 if (uprv_fabs(deltaT) > uprv_fabs(lastDeltaT)) {
1278 double delta = uprv_ceil (periodDays * DAY_MS / 8.0);
1279 setTime(startTime + (next ? delta : -delta));
1280 return timeOfAngle(func, desired, periodDays, epsilon, next);
1281 }
1282
1283 lastDeltaT = deltaT;
1284 lastAngle = angle;
1285
1286 setTime(fTime + uprv_ceil(deltaT));
1287 }
1288 while (uprv_fabs(deltaT) > epsilon);
1289
1290 return fTime;
1291}
1292
1293UDate CalendarAstronomer::riseOrSet(CoordFunc& func, UBool rise,
1294 double diameter, double refraction,
1295 double epsilon)
1296{
1297 Equatorial pos;
1298 double tanL = ::tan(fLatitude);
1299 double deltaT = 0;
1300 int32_t count = 0;
1301
1302 //
1303 // Calculate the object's position at the current time, then use that
1304 // position to calculate the time of rising or setting. The position
1305 // will be different at that time, so iterate until the error is allowable.
1306 //
1307 U_DEBUG_ASTRO_MSG(("setup rise=%s, dia=%.3lf, ref=%.3lf, eps=%.3lf\n",
1308 rise?"T":"F", diameter, refraction, epsilon));
1309 do {
1310 // See "Practical Astronomy With Your Calculator, section 33.
1311 func.eval(pos, *this);
1312 double angle = ::acos(-tanL * ::tan(pos.declination));
1313 double lst = ((rise ? CalendarAstronomer_PI2-angle : angle) + pos.ascension ) * 24 / CalendarAstronomer_PI2;
1314
1315 // Convert from LST to Universal Time.
1316 UDate newTime = lstToUT( lst );
1317
1318 deltaT = newTime - fTime;
1319 setTime(newTime);
1320 U_DEBUG_ASTRO_MSG(("%d] dT=%.3lf, angle=%.3lf, lst=%.3lf, A=%.3lf/D=%.3lf\n",
1321 count, deltaT, angle, lst, pos.ascension, pos.declination));
1322 }
1323 while (++ count < 5 && uprv_fabs(deltaT) > epsilon);
1324
1325 // Calculate the correction due to refraction and the object's angular diameter
1326 double cosD = ::cos(pos.declination);
1327 double psi = ::acos(sin(fLatitude) / cosD);
1328 double x = diameter / 2 + refraction;
1329 double y = ::asin(sin(x) / ::sin(psi));
1330 long delta = (long)((240 * y * RAD_DEG / cosD)*SECOND_MS);
1331
1332 return fTime + (rise ? -delta : delta);
1333}
1334
1335/**
1336 * Find the "true anomaly" (longitude) of an object from
1337 * its mean anomaly and the eccentricity of its orbit. This uses
1338 * an iterative solution to Kepler's equation.
1339 *
1340 * @param meanAnomaly The object's longitude calculated as if it were in
1341 * a regular, circular orbit, measured in radians
1342 * from the point of perigee.
1343 *
1344 * @param eccentricity The eccentricity of the orbit
1345 *
1346 * @return The true anomaly (longitude) measured in radians
1347 */
1348double CalendarAstronomer::trueAnomaly(double meanAnomaly, double eccentricity)
1349{
1350 // First, solve Kepler's equation iteratively
1351 // Duffett-Smith, p.90
1352 double delta;
1353 double E = meanAnomaly;
1354 do {
1355 delta = E - eccentricity * ::sin(E) - meanAnomaly;
1356 E = E - delta / (1 - eccentricity * ::cos(E));
1357 }
1358 while (uprv_fabs(delta) > 1e-5); // epsilon = 1e-5 rad
1359
1360 return 2.0 * ::atan( ::tan(E/2) * ::sqrt( (1+eccentricity)
1361 /(1-eccentricity) ) );
1362}
1363
1364/**
1365 * Return the obliquity of the ecliptic (the angle between the ecliptic
1366 * and the earth's equator) at the current time. This varies due to
1367 * the precession of the earth's axis.
1368 *
1369 * @return the obliquity of the ecliptic relative to the equator,
1370 * measured in radians.
1371 */
1372double CalendarAstronomer::eclipticObliquity() {
1373 if (isINVALID(eclipObliquity)) {
1374 const double epoch = 2451545.0; // 2000 AD, January 1.5
1375
1376 double T = (getJulianDay() - epoch) / 36525;
1377
1378 eclipObliquity = 23.439292
1379 - 46.815/3600 * T
1380 - 0.0006/3600 * T*T
1381 + 0.00181/3600 * T*T*T;
1382
1383 eclipObliquity *= DEG_RAD;
1384 }
1385 return eclipObliquity;
1386}
1387
1388
1389//-------------------------------------------------------------------------
1390// Private data
1391//-------------------------------------------------------------------------
1392void CalendarAstronomer::clearCache() {
1393 const double INVALID = uprv_getNaN();
1394
1395 julianDay = INVALID;
1396 julianCentury = INVALID;
1397 sunLongitude = INVALID;
1398 meanAnomalySun = INVALID;
1399 moonLongitude = INVALID;
1400 moonEclipLong = INVALID;
1401 meanAnomalyMoon = INVALID;
1402 eclipObliquity = INVALID;
1403 siderealTime = INVALID;
1404 siderealT0 = INVALID;
1405 moonPositionSet = FALSE;
1406}
1407
1408//private static void out(String s) {
1409// System.out.println(s);
1410//}
1411
1412//private static String deg(double rad) {
1413// return Double.toString(rad * RAD_DEG);
1414//}
1415
1416//private static String hours(long ms) {
1417// return Double.toString((double)ms / HOUR_MS) + " hours";
1418//}
1419
1420/**
1421 * @internal
1422 * @deprecated ICU 2.4. This class may be removed or modified.
1423 */
1424UDate CalendarAstronomer::local(UDate localMillis) {
1425 // TODO - srl ?
1426 TimeZone *tz = TimeZone::createDefault();
1427 int32_t rawOffset;
1428 int32_t dstOffset;
1429 UErrorCode status = U_ZERO_ERROR;
1430 tz->getOffset(localMillis, TRUE, rawOffset, dstOffset, status);
1431 delete tz;
1432 return localMillis - rawOffset;
1433}
1434
1435// Debugging functions
1436UnicodeString CalendarAstronomer::Ecliptic::toString() const
1437{
1438#ifdef U_DEBUG_ASTRO
1439 char tmp[800];
1440 sprintf(tmp, "[%.5f,%.5f]", longitude*RAD_DEG, latitude*RAD_DEG);
1441 return UnicodeString(tmp, "");
1442#else
1443 return UnicodeString();
1444#endif
1445}
1446
1447UnicodeString CalendarAstronomer::Equatorial::toString() const
1448{
1449#ifdef U_DEBUG_ASTRO
1450 char tmp[400];
1451 sprintf(tmp, "%f,%f",
1452 (ascension*RAD_DEG), (declination*RAD_DEG));
1453 return UnicodeString(tmp, "");
1454#else
1455 return UnicodeString();
1456#endif
1457}
1458
1459UnicodeString CalendarAstronomer::Horizon::toString() const
1460{
1461#ifdef U_DEBUG_ASTRO
1462 char tmp[800];
1463 sprintf(tmp, "[%.5f,%.5f]", altitude*RAD_DEG, azimuth*RAD_DEG);
1464 return UnicodeString(tmp, "");
1465#else
1466 return UnicodeString();
1467#endif
1468}
1469
1470
1471// static private String radToHms(double angle) {
1472// int hrs = (int) (angle*RAD_HOUR);
1473// int min = (int)((angle*RAD_HOUR - hrs) * 60);
1474// int sec = (int)((angle*RAD_HOUR - hrs - min/60.0) * 3600);
1475
1476// return Integer.toString(hrs) + "h" + min + "m" + sec + "s";
1477// }
1478
1479// static private String radToDms(double angle) {
1480// int deg = (int) (angle*RAD_DEG);
1481// int min = (int)((angle*RAD_DEG - deg) * 60);
1482// int sec = (int)((angle*RAD_DEG - deg - min/60.0) * 3600);
1483
1484// return Integer.toString(deg) + "\u00b0" + min + "'" + sec + "\"";
1485// }
1486
1487// =============== Calendar Cache ================
1488
1489void CalendarCache::createCache(CalendarCache** cache, UErrorCode& status) {
1490 ucln_i18n_registerCleanup(UCLN_I18N_ASTRO_CALENDAR, calendar_astro_cleanup);
1491 *cache = new CalendarCache(32, status);
1492 if(cache == NULL) {
1493 status = U_MEMORY_ALLOCATION_ERROR;
1494 }
1495 if(U_FAILURE(status)) {
1496 delete *cache;
1497 *cache = NULL;
1498 }
1499}
1500
1501int32_t CalendarCache::get(CalendarCache** cache, int32_t key, UErrorCode &status) {
1502 int32_t res;
1503
1504 if(U_FAILURE(status)) {
1505 return 0;
1506 }
1507 umtx_lock(&ccLock);
1508
1509 if(*cache == NULL) {
1510 createCache(cache, status);
1511 if(U_FAILURE(status)) {
1512 umtx_unlock(&ccLock);
1513 return 0;
1514 }
1515 }
1516
1517 res = uhash_igeti((*cache)->fTable, key);
1518 U_DEBUG_ASTRO_MSG(("%p: GET: [%d] == %d\n", (*cache)->fTable, key, res));
1519
1520 umtx_unlock(&ccLock);
1521 return res;
1522}
1523
1524void CalendarCache::put(CalendarCache** cache, int32_t key, int32_t value, UErrorCode &status) {
1525
1526 if(U_FAILURE(status)) {
1527 return;
1528 }
1529 umtx_lock(&ccLock);
1530
1531 if(*cache == NULL) {
1532 createCache(cache, status);
1533 if(U_FAILURE(status)) {
1534 umtx_unlock(&ccLock);
1535 return;
1536 }
1537 }
1538
1539 uhash_iputi((*cache)->fTable, key, value, &status);
1540 U_DEBUG_ASTRO_MSG(("%p: PUT: [%d] := %d\n", (*cache)->fTable, key, value));
1541
1542 umtx_unlock(&ccLock);
1543}
1544
1545CalendarCache::CalendarCache(int32_t size, UErrorCode &status) {
1546 fTable = uhash_openSize(uhash_hashLong, uhash_compareLong, size, &status);
1547 U_DEBUG_ASTRO_MSG(("%p: Opening.\n", fTable));
1548}
1549
1550CalendarCache::~CalendarCache() {
1551 if(fTable != NULL) {
1552 U_DEBUG_ASTRO_MSG(("%p: Closing.\n", fTable));
1553 uhash_close(fTable);
1554 }
1555}
1556
1557U_NAMESPACE_END
1558
1559#endif // !UCONFIG_NO_FORMATTING