]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | ******************************************************************************* | |
3 | * Copyright (C) 1996-2012, International Business Machines | |
4 | * Corporation and others. All Rights Reserved. | |
5 | ******************************************************************************* | |
6 | * file name: ucol.cpp | |
7 | * encoding: US-ASCII | |
8 | * tab size: 8 (not used) | |
9 | * indentation:4 | |
10 | * | |
11 | * Modification history | |
12 | * Date Name Comments | |
13 | * 1996-1999 various members of ICU team maintained C API for collation framework | |
14 | * 02/16/2001 synwee Added internal method getPrevSpecialCE | |
15 | * 03/01/2001 synwee Added maxexpansion functionality. | |
16 | * 03/16/2001 weiv Collation framework is rewritten in C and made UCA compliant | |
17 | */ | |
18 | ||
19 | #include "unicode/utypes.h" | |
20 | ||
21 | #if !UCONFIG_NO_COLLATION | |
22 | ||
23 | #include "unicode/bytestream.h" | |
24 | #include "unicode/coleitr.h" | |
25 | #include "unicode/unorm.h" | |
26 | #include "unicode/udata.h" | |
27 | #include "unicode/ustring.h" | |
28 | ||
29 | #include "ucol_imp.h" | |
30 | #include "bocsu.h" | |
31 | ||
32 | #include "normalizer2impl.h" | |
33 | #include "unorm_it.h" | |
34 | #include "umutex.h" | |
35 | #include "cmemory.h" | |
36 | #include "ucln_in.h" | |
37 | #include "cstring.h" | |
38 | #include "utracimp.h" | |
39 | #include "putilimp.h" | |
40 | #include "uassert.h" | |
41 | #include "unicode/coll.h" | |
42 | ||
43 | #ifdef UCOL_DEBUG | |
44 | #include <stdio.h> | |
45 | #endif | |
46 | ||
47 | U_NAMESPACE_USE | |
48 | ||
49 | #define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0])) | |
50 | ||
51 | #define LAST_BYTE_MASK_ 0xFF | |
52 | #define SECOND_LAST_BYTE_SHIFT_ 8 | |
53 | ||
54 | #define ZERO_CC_LIMIT_ 0xC0 | |
55 | ||
56 | // This is static pointer to the NFC implementation instance. | |
57 | // it is always the same between calls to u_cleanup | |
58 | // and therefore writing to it is not synchronized. | |
59 | // It is cleaned in ucol_cleanup | |
60 | static const Normalizer2Impl *g_nfcImpl = NULL; | |
61 | ||
62 | // These are values from UCA required for | |
63 | // implicit generation and supressing sort key compression | |
64 | // they should regularly be in the UCA, but if one | |
65 | // is running without UCA, it could be a problem | |
66 | static const int32_t maxRegularPrimary = 0x7A; | |
67 | static const int32_t minImplicitPrimary = 0xE0; | |
68 | static const int32_t maxImplicitPrimary = 0xE4; | |
69 | ||
70 | U_CDECL_BEGIN | |
71 | static UBool U_CALLCONV | |
72 | ucol_cleanup(void) | |
73 | { | |
74 | g_nfcImpl = NULL; | |
75 | return TRUE; | |
76 | } | |
77 | ||
78 | static int32_t U_CALLCONV | |
79 | _getFoldingOffset(uint32_t data) { | |
80 | return (int32_t)(data&0xFFFFFF); | |
81 | } | |
82 | ||
83 | U_CDECL_END | |
84 | ||
85 | // init FCD data | |
86 | static inline | |
87 | UBool initializeFCD(UErrorCode *status) { | |
88 | if (g_nfcImpl != NULL) { | |
89 | return TRUE; | |
90 | } else { | |
91 | // The result is constant, until the library is reloaded. | |
92 | g_nfcImpl = Normalizer2Factory::getNFCImpl(*status); | |
93 | // Note: Alternatively, we could also store this pointer in each collIterate struct, | |
94 | // same as Normalizer2Factory::getImpl(collIterate->nfd). | |
95 | ucln_i18n_registerCleanup(UCLN_I18N_UCOL, ucol_cleanup); | |
96 | return U_SUCCESS(*status); | |
97 | } | |
98 | } | |
99 | ||
100 | static | |
101 | inline void IInit_collIterate(const UCollator *collator, const UChar *sourceString, | |
102 | int32_t sourceLen, collIterate *s, | |
103 | UErrorCode *status) | |
104 | { | |
105 | (s)->string = (s)->pos = sourceString; | |
106 | (s)->origFlags = 0; | |
107 | (s)->flags = 0; | |
108 | if (sourceLen >= 0) { | |
109 | s->flags |= UCOL_ITER_HASLEN; | |
110 | (s)->endp = (UChar *)sourceString+sourceLen; | |
111 | } | |
112 | else { | |
113 | /* change to enable easier checking for end of string for fcdpositon */ | |
114 | (s)->endp = NULL; | |
115 | } | |
116 | (s)->extendCEs = NULL; | |
117 | (s)->extendCEsSize = 0; | |
118 | (s)->CEpos = (s)->toReturn = (s)->CEs; | |
119 | (s)->offsetBuffer = NULL; | |
120 | (s)->offsetBufferSize = 0; | |
121 | (s)->offsetReturn = (s)->offsetStore = NULL; | |
122 | (s)->offsetRepeatCount = (s)->offsetRepeatValue = 0; | |
123 | (s)->coll = (collator); | |
124 | (s)->nfd = Normalizer2Factory::getNFDInstance(*status); | |
125 | (s)->fcdPosition = 0; | |
126 | if(collator->normalizationMode == UCOL_ON) { | |
127 | (s)->flags |= UCOL_ITER_NORM; | |
128 | } | |
129 | if(collator->hiraganaQ == UCOL_ON && collator->strength >= UCOL_QUATERNARY) { | |
130 | (s)->flags |= UCOL_HIRAGANA_Q; | |
131 | } | |
132 | (s)->iterator = NULL; | |
133 | //(s)->iteratorIndex = 0; | |
134 | } | |
135 | ||
136 | U_CAPI void U_EXPORT2 | |
137 | uprv_init_collIterate(const UCollator *collator, const UChar *sourceString, | |
138 | int32_t sourceLen, collIterate *s, | |
139 | UErrorCode *status) { | |
140 | /* Out-of-line version for use from other files. */ | |
141 | IInit_collIterate(collator, sourceString, sourceLen, s, status); | |
142 | } | |
143 | ||
144 | U_CAPI collIterate * U_EXPORT2 | |
145 | uprv_new_collIterate(UErrorCode *status) { | |
146 | if(U_FAILURE(*status)) { | |
147 | return NULL; | |
148 | } | |
149 | collIterate *s = new collIterate; | |
150 | if(s == NULL) { | |
151 | *status = U_MEMORY_ALLOCATION_ERROR; | |
152 | return NULL; | |
153 | } | |
154 | return s; | |
155 | } | |
156 | ||
157 | U_CAPI void U_EXPORT2 | |
158 | uprv_delete_collIterate(collIterate *s) { | |
159 | delete s; | |
160 | } | |
161 | ||
162 | U_CAPI UBool U_EXPORT2 | |
163 | uprv_collIterateAtEnd(collIterate *s) { | |
164 | return s == NULL || s->pos == s->endp; | |
165 | } | |
166 | ||
167 | /** | |
168 | * Backup the state of the collIterate struct data | |
169 | * @param data collIterate to backup | |
170 | * @param backup storage | |
171 | */ | |
172 | static | |
173 | inline void backupState(const collIterate *data, collIterateState *backup) | |
174 | { | |
175 | backup->fcdPosition = data->fcdPosition; | |
176 | backup->flags = data->flags; | |
177 | backup->origFlags = data->origFlags; | |
178 | backup->pos = data->pos; | |
179 | backup->bufferaddress = data->writableBuffer.getBuffer(); | |
180 | backup->buffersize = data->writableBuffer.length(); | |
181 | backup->iteratorMove = 0; | |
182 | backup->iteratorIndex = 0; | |
183 | if(data->iterator != NULL) { | |
184 | //backup->iteratorIndex = data->iterator->getIndex(data->iterator, UITER_CURRENT); | |
185 | backup->iteratorIndex = data->iterator->getState(data->iterator); | |
186 | // no we try to fixup if we're using a normalizing iterator and we get UITER_NO_STATE | |
187 | if(backup->iteratorIndex == UITER_NO_STATE) { | |
188 | while((backup->iteratorIndex = data->iterator->getState(data->iterator)) == UITER_NO_STATE) { | |
189 | backup->iteratorMove++; | |
190 | data->iterator->move(data->iterator, -1, UITER_CURRENT); | |
191 | } | |
192 | data->iterator->move(data->iterator, backup->iteratorMove, UITER_CURRENT); | |
193 | } | |
194 | } | |
195 | } | |
196 | ||
197 | /** | |
198 | * Loads the state into the collIterate struct data | |
199 | * @param data collIterate to backup | |
200 | * @param backup storage | |
201 | * @param forwards boolean to indicate if forwards iteration is used, | |
202 | * false indicates backwards iteration | |
203 | */ | |
204 | static | |
205 | inline void loadState(collIterate *data, const collIterateState *backup, | |
206 | UBool forwards) | |
207 | { | |
208 | UErrorCode status = U_ZERO_ERROR; | |
209 | data->flags = backup->flags; | |
210 | data->origFlags = backup->origFlags; | |
211 | if(data->iterator != NULL) { | |
212 | //data->iterator->move(data->iterator, backup->iteratorIndex, UITER_ZERO); | |
213 | data->iterator->setState(data->iterator, backup->iteratorIndex, &status); | |
214 | if(backup->iteratorMove != 0) { | |
215 | data->iterator->move(data->iterator, backup->iteratorMove, UITER_CURRENT); | |
216 | } | |
217 | } | |
218 | data->pos = backup->pos; | |
219 | ||
220 | if ((data->flags & UCOL_ITER_INNORMBUF) && | |
221 | data->writableBuffer.getBuffer() != backup->bufferaddress) { | |
222 | /* | |
223 | this is when a new buffer has been reallocated and we'll have to | |
224 | calculate the new position. | |
225 | note the new buffer has to contain the contents of the old buffer. | |
226 | */ | |
227 | if (forwards) { | |
228 | data->pos = data->writableBuffer.getTerminatedBuffer() + | |
229 | (data->pos - backup->bufferaddress); | |
230 | } | |
231 | else { | |
232 | /* backwards direction */ | |
233 | int32_t temp = backup->buffersize - | |
234 | (int32_t)(data->pos - backup->bufferaddress); | |
235 | data->pos = data->writableBuffer.getTerminatedBuffer() + (data->writableBuffer.length() - temp); | |
236 | } | |
237 | } | |
238 | if ((data->flags & UCOL_ITER_INNORMBUF) == 0) { | |
239 | /* | |
240 | this is alittle tricky. | |
241 | if we are initially not in the normalization buffer, even if we | |
242 | normalize in the later stage, the data in the buffer will be | |
243 | ignored, since we skip back up to the data string. | |
244 | however if we are already in the normalization buffer, any | |
245 | further normalization will pull data into the normalization | |
246 | buffer and modify the fcdPosition. | |
247 | since we are keeping the data in the buffer for use, the | |
248 | fcdPosition can not be reverted back. | |
249 | arrgghh.... | |
250 | */ | |
251 | data->fcdPosition = backup->fcdPosition; | |
252 | } | |
253 | } | |
254 | ||
255 | static UBool | |
256 | reallocCEs(collIterate *data, int32_t newCapacity) { | |
257 | uint32_t *oldCEs = data->extendCEs; | |
258 | if(oldCEs == NULL) { | |
259 | oldCEs = data->CEs; | |
260 | } | |
261 | int32_t length = data->CEpos - oldCEs; | |
262 | uint32_t *newCEs = (uint32_t *)uprv_malloc(newCapacity * 4); | |
263 | if(newCEs == NULL) { | |
264 | return FALSE; | |
265 | } | |
266 | uprv_memcpy(newCEs, oldCEs, length * 4); | |
267 | uprv_free(data->extendCEs); | |
268 | data->extendCEs = newCEs; | |
269 | data->extendCEsSize = newCapacity; | |
270 | data->CEpos = newCEs + length; | |
271 | return TRUE; | |
272 | } | |
273 | ||
274 | static UBool | |
275 | increaseCEsCapacity(collIterate *data) { | |
276 | int32_t oldCapacity; | |
277 | if(data->extendCEs != NULL) { | |
278 | oldCapacity = data->extendCEsSize; | |
279 | } else { | |
280 | oldCapacity = LENGTHOF(data->CEs); | |
281 | } | |
282 | return reallocCEs(data, 2 * oldCapacity); | |
283 | } | |
284 | ||
285 | static UBool | |
286 | ensureCEsCapacity(collIterate *data, int32_t minCapacity) { | |
287 | int32_t oldCapacity; | |
288 | if(data->extendCEs != NULL) { | |
289 | oldCapacity = data->extendCEsSize; | |
290 | } else { | |
291 | oldCapacity = LENGTHOF(data->CEs); | |
292 | } | |
293 | if(minCapacity <= oldCapacity) { | |
294 | return TRUE; | |
295 | } | |
296 | oldCapacity *= 2; | |
297 | return reallocCEs(data, minCapacity > oldCapacity ? minCapacity : oldCapacity); | |
298 | } | |
299 | ||
300 | void collIterate::appendOffset(int32_t offset, UErrorCode &errorCode) { | |
301 | if(U_FAILURE(errorCode)) { | |
302 | return; | |
303 | } | |
304 | int32_t length = offsetStore == NULL ? 0 : (int32_t)(offsetStore - offsetBuffer); | |
305 | U_ASSERT(length >= offsetBufferSize || offsetStore != NULL); | |
306 | if(length >= offsetBufferSize) { | |
307 | int32_t newCapacity = 2 * offsetBufferSize + UCOL_EXPAND_CE_BUFFER_SIZE; | |
308 | int32_t *newBuffer = reinterpret_cast<int32_t *>(uprv_malloc(newCapacity * 4)); | |
309 | if(newBuffer == NULL) { | |
310 | errorCode = U_MEMORY_ALLOCATION_ERROR; | |
311 | return; | |
312 | } | |
313 | if(length > 0) { | |
314 | uprv_memcpy(newBuffer, offsetBuffer, length * 4); | |
315 | } | |
316 | uprv_free(offsetBuffer); | |
317 | offsetBuffer = newBuffer; | |
318 | offsetStore = offsetBuffer + length; | |
319 | offsetBufferSize = newCapacity; | |
320 | } | |
321 | *offsetStore++ = offset; | |
322 | } | |
323 | ||
324 | /* | |
325 | * collIter_eos() | |
326 | * Checks for a collIterate being positioned at the end of | |
327 | * its source string. | |
328 | * | |
329 | */ | |
330 | static | |
331 | inline UBool collIter_eos(collIterate *s) { | |
332 | if(s->flags & UCOL_USE_ITERATOR) { | |
333 | return !(s->iterator->hasNext(s->iterator)); | |
334 | } | |
335 | if ((s->flags & UCOL_ITER_HASLEN) == 0 && *s->pos != 0) { | |
336 | // Null terminated string, but not at null, so not at end. | |
337 | // Whether in main or normalization buffer doesn't matter. | |
338 | return FALSE; | |
339 | } | |
340 | ||
341 | // String with length. Can't be in normalization buffer, which is always | |
342 | // null termintated. | |
343 | if (s->flags & UCOL_ITER_HASLEN) { | |
344 | return (s->pos == s->endp); | |
345 | } | |
346 | ||
347 | // We are at a null termination, could be either normalization buffer or main string. | |
348 | if ((s->flags & UCOL_ITER_INNORMBUF) == 0) { | |
349 | // At null at end of main string. | |
350 | return TRUE; | |
351 | } | |
352 | ||
353 | // At null at end of normalization buffer. Need to check whether there there are | |
354 | // any characters left in the main buffer. | |
355 | if(s->origFlags & UCOL_USE_ITERATOR) { | |
356 | return !(s->iterator->hasNext(s->iterator)); | |
357 | } else if ((s->origFlags & UCOL_ITER_HASLEN) == 0) { | |
358 | // Null terminated main string. fcdPosition is the 'return' position into main buf. | |
359 | return (*s->fcdPosition == 0); | |
360 | } | |
361 | else { | |
362 | // Main string with an end pointer. | |
363 | return s->fcdPosition == s->endp; | |
364 | } | |
365 | } | |
366 | ||
367 | /* | |
368 | * collIter_bos() | |
369 | * Checks for a collIterate being positioned at the start of | |
370 | * its source string. | |
371 | * | |
372 | */ | |
373 | static | |
374 | inline UBool collIter_bos(collIterate *source) { | |
375 | // if we're going backwards, we need to know whether there is more in the | |
376 | // iterator, even if we are in the side buffer | |
377 | if(source->flags & UCOL_USE_ITERATOR || source->origFlags & UCOL_USE_ITERATOR) { | |
378 | return !source->iterator->hasPrevious(source->iterator); | |
379 | } | |
380 | if (source->pos <= source->string || | |
381 | ((source->flags & UCOL_ITER_INNORMBUF) && | |
382 | *(source->pos - 1) == 0 && source->fcdPosition == NULL)) { | |
383 | return TRUE; | |
384 | } | |
385 | return FALSE; | |
386 | } | |
387 | ||
388 | /*static | |
389 | inline UBool collIter_SimpleBos(collIterate *source) { | |
390 | // if we're going backwards, we need to know whether there is more in the | |
391 | // iterator, even if we are in the side buffer | |
392 | if(source->flags & UCOL_USE_ITERATOR || source->origFlags & UCOL_USE_ITERATOR) { | |
393 | return !source->iterator->hasPrevious(source->iterator); | |
394 | } | |
395 | if (source->pos == source->string) { | |
396 | return TRUE; | |
397 | } | |
398 | return FALSE; | |
399 | }*/ | |
400 | //return (data->pos == data->string) || | |
401 | ||
402 | ||
403 | /****************************************************************************/ | |
404 | /* Following are the open/close functions */ | |
405 | /* */ | |
406 | /****************************************************************************/ | |
407 | ||
408 | static UCollator* | |
409 | ucol_initFromBinary(const uint8_t *bin, int32_t length, | |
410 | const UCollator *base, | |
411 | UCollator *fillIn, | |
412 | UErrorCode *status) | |
413 | { | |
414 | UCollator *result = fillIn; | |
415 | if(U_FAILURE(*status)) { | |
416 | return NULL; | |
417 | } | |
418 | /* | |
419 | if(base == NULL) { | |
420 | // we don't support null base yet | |
421 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
422 | return NULL; | |
423 | } | |
424 | */ | |
425 | // We need these and we could be running without UCA | |
426 | uprv_uca_initImplicitConstants(status); | |
427 | UCATableHeader *colData = (UCATableHeader *)bin; | |
428 | // do we want version check here? We're trying to figure out whether collators are compatible | |
429 | if((base && (uprv_memcmp(colData->UCAVersion, base->image->UCAVersion, sizeof(UVersionInfo)) != 0 || | |
430 | uprv_memcmp(colData->UCDVersion, base->image->UCDVersion, sizeof(UVersionInfo)) != 0)) || | |
431 | colData->version[0] != UCOL_BUILDER_VERSION) | |
432 | { | |
433 | *status = U_COLLATOR_VERSION_MISMATCH; | |
434 | return NULL; | |
435 | } | |
436 | else { | |
437 | if((uint32_t)length > (paddedsize(sizeof(UCATableHeader)) + paddedsize(sizeof(UColOptionSet)))) { | |
438 | result = ucol_initCollator((const UCATableHeader *)bin, result, base, status); | |
439 | if(U_FAILURE(*status)){ | |
440 | return NULL; | |
441 | } | |
442 | result->hasRealData = TRUE; | |
443 | } | |
444 | else { | |
445 | if(base) { | |
446 | result = ucol_initCollator(base->image, result, base, status); | |
447 | ucol_setOptionsFromHeader(result, (UColOptionSet *)(bin+((const UCATableHeader *)bin)->options), status); | |
448 | if(U_FAILURE(*status)){ | |
449 | return NULL; | |
450 | } | |
451 | result->hasRealData = FALSE; | |
452 | } | |
453 | else { | |
454 | *status = U_USELESS_COLLATOR_ERROR; | |
455 | return NULL; | |
456 | } | |
457 | } | |
458 | result->freeImageOnClose = FALSE; | |
459 | } | |
460 | result->actualLocale = NULL; | |
461 | result->validLocale = NULL; | |
462 | result->requestedLocale = NULL; | |
463 | result->rules = NULL; | |
464 | result->rulesLength = 0; | |
465 | result->freeRulesOnClose = FALSE; | |
466 | result->ucaRules = NULL; | |
467 | return result; | |
468 | } | |
469 | ||
470 | U_CAPI UCollator* U_EXPORT2 | |
471 | ucol_openBinary(const uint8_t *bin, int32_t length, | |
472 | const UCollator *base, | |
473 | UErrorCode *status) | |
474 | { | |
475 | return ucol_initFromBinary(bin, length, base, NULL, status); | |
476 | } | |
477 | ||
478 | U_CAPI int32_t U_EXPORT2 | |
479 | ucol_cloneBinary(const UCollator *coll, | |
480 | uint8_t *buffer, int32_t capacity, | |
481 | UErrorCode *status) | |
482 | { | |
483 | int32_t length = 0; | |
484 | if(U_FAILURE(*status)) { | |
485 | return length; | |
486 | } | |
487 | if(capacity < 0) { | |
488 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
489 | return length; | |
490 | } | |
491 | if(coll->hasRealData == TRUE) { | |
492 | length = coll->image->size; | |
493 | if(length <= capacity) { | |
494 | uprv_memcpy(buffer, coll->image, length); | |
495 | } else { | |
496 | *status = U_BUFFER_OVERFLOW_ERROR; | |
497 | } | |
498 | } else { | |
499 | length = (int32_t)(paddedsize(sizeof(UCATableHeader))+paddedsize(sizeof(UColOptionSet))); | |
500 | if(length <= capacity) { | |
501 | /* build the UCATableHeader with minimal entries */ | |
502 | /* do not copy the header from the UCA file because its values are wrong! */ | |
503 | /* uprv_memcpy(result, UCA->image, sizeof(UCATableHeader)); */ | |
504 | ||
505 | /* reset everything */ | |
506 | uprv_memset(buffer, 0, length); | |
507 | ||
508 | /* set the tailoring-specific values */ | |
509 | UCATableHeader *myData = (UCATableHeader *)buffer; | |
510 | myData->size = length; | |
511 | ||
512 | /* offset for the options, the only part of the data that is present after the header */ | |
513 | myData->options = sizeof(UCATableHeader); | |
514 | ||
515 | /* need to always set the expansion value for an upper bound of the options */ | |
516 | myData->expansion = myData->options + sizeof(UColOptionSet); | |
517 | ||
518 | myData->magic = UCOL_HEADER_MAGIC; | |
519 | myData->isBigEndian = U_IS_BIG_ENDIAN; | |
520 | myData->charSetFamily = U_CHARSET_FAMILY; | |
521 | ||
522 | /* copy UCA's version; genrb will override all but the builder version with tailoring data */ | |
523 | uprv_memcpy(myData->version, coll->image->version, sizeof(UVersionInfo)); | |
524 | ||
525 | uprv_memcpy(myData->UCAVersion, coll->image->UCAVersion, sizeof(UVersionInfo)); | |
526 | uprv_memcpy(myData->UCDVersion, coll->image->UCDVersion, sizeof(UVersionInfo)); | |
527 | uprv_memcpy(myData->formatVersion, coll->image->formatVersion, sizeof(UVersionInfo)); | |
528 | myData->jamoSpecial = coll->image->jamoSpecial; | |
529 | ||
530 | /* copy the collator options */ | |
531 | uprv_memcpy(buffer+paddedsize(sizeof(UCATableHeader)), coll->options, sizeof(UColOptionSet)); | |
532 | } else { | |
533 | *status = U_BUFFER_OVERFLOW_ERROR; | |
534 | } | |
535 | } | |
536 | return length; | |
537 | } | |
538 | ||
539 | U_CAPI UCollator* U_EXPORT2 | |
540 | ucol_safeClone(const UCollator *coll, void *stackBuffer, int32_t * pBufferSize, UErrorCode *status) | |
541 | { | |
542 | UCollator * localCollator; | |
543 | int32_t bufferSizeNeeded = (int32_t)sizeof(UCollator); | |
544 | char *stackBufferChars = (char *)stackBuffer; | |
545 | int32_t imageSize = 0; | |
546 | int32_t rulesSize = 0; | |
547 | int32_t rulesPadding = 0; | |
548 | int32_t defaultReorderCodesSize = 0; | |
549 | int32_t reorderCodesSize = 0; | |
550 | uint8_t *image; | |
551 | UChar *rules; | |
552 | int32_t* defaultReorderCodes; | |
553 | int32_t* reorderCodes; | |
554 | uint8_t* leadBytePermutationTable; | |
555 | UBool colAllocated = FALSE; | |
556 | UBool imageAllocated = FALSE; | |
557 | ||
558 | if (status == NULL || U_FAILURE(*status)){ | |
559 | return 0; | |
560 | } | |
561 | if ((stackBuffer && !pBufferSize) || !coll){ | |
562 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
563 | return 0; | |
564 | } | |
565 | ||
566 | if (coll->rules && coll->freeRulesOnClose) { | |
567 | rulesSize = (int32_t)(coll->rulesLength + 1)*sizeof(UChar); | |
568 | rulesPadding = (int32_t)(bufferSizeNeeded % sizeof(UChar)); | |
569 | bufferSizeNeeded += rulesSize + rulesPadding; | |
570 | } | |
571 | // no padding for alignment needed from here since the next two are 4 byte quantities | |
572 | if (coll->defaultReorderCodes) { | |
573 | defaultReorderCodesSize = coll->defaultReorderCodesLength * sizeof(int32_t); | |
574 | bufferSizeNeeded += defaultReorderCodesSize; | |
575 | } | |
576 | if (coll->reorderCodes) { | |
577 | reorderCodesSize = coll->reorderCodesLength * sizeof(int32_t); | |
578 | bufferSizeNeeded += reorderCodesSize; | |
579 | } | |
580 | if (coll->leadBytePermutationTable) { | |
581 | bufferSizeNeeded += 256 * sizeof(uint8_t); | |
582 | } | |
583 | ||
584 | if (stackBuffer && *pBufferSize <= 0) { /* 'preflighting' request - set needed size into *pBufferSize */ | |
585 | *pBufferSize = bufferSizeNeeded; | |
586 | return 0; | |
587 | } | |
588 | ||
589 | /* Pointers on 64-bit platforms need to be aligned | |
590 | * on a 64-bit boundry in memory. | |
591 | */ | |
592 | if (U_ALIGNMENT_OFFSET(stackBuffer) != 0) { | |
593 | int32_t offsetUp = (int32_t)U_ALIGNMENT_OFFSET_UP(stackBufferChars); | |
594 | if (*pBufferSize > offsetUp) { | |
595 | *pBufferSize -= offsetUp; | |
596 | stackBufferChars += offsetUp; | |
597 | } | |
598 | else { | |
599 | /* prevent using the stack buffer but keep the size > 0 so that we do not just preflight */ | |
600 | *pBufferSize = 1; | |
601 | } | |
602 | } | |
603 | stackBuffer = (void *)stackBufferChars; | |
604 | ||
605 | if (stackBuffer == NULL || *pBufferSize < bufferSizeNeeded) { | |
606 | /* allocate one here...*/ | |
607 | stackBufferChars = (char *)uprv_malloc(bufferSizeNeeded); | |
608 | // Null pointer check. | |
609 | if (stackBufferChars == NULL) { | |
610 | *status = U_MEMORY_ALLOCATION_ERROR; | |
611 | return NULL; | |
612 | } | |
613 | colAllocated = TRUE; | |
614 | if (U_SUCCESS(*status)) { | |
615 | *status = U_SAFECLONE_ALLOCATED_WARNING; | |
616 | } | |
617 | } | |
618 | localCollator = (UCollator *)stackBufferChars; | |
619 | rules = (UChar *)(stackBufferChars + sizeof(UCollator) + rulesPadding); | |
620 | defaultReorderCodes = (int32_t*)((uint8_t*)rules + rulesSize); | |
621 | reorderCodes = (int32_t*)((uint8_t*)defaultReorderCodes + defaultReorderCodesSize); | |
622 | leadBytePermutationTable = (uint8_t*)reorderCodes + reorderCodesSize; | |
623 | ||
624 | { | |
625 | UErrorCode tempStatus = U_ZERO_ERROR; | |
626 | imageSize = ucol_cloneBinary(coll, NULL, 0, &tempStatus); | |
627 | } | |
628 | if (coll->freeImageOnClose) { | |
629 | image = (uint8_t *)uprv_malloc(imageSize); | |
630 | // Null pointer check | |
631 | if (image == NULL) { | |
632 | *status = U_MEMORY_ALLOCATION_ERROR; | |
633 | return NULL; | |
634 | } | |
635 | ucol_cloneBinary(coll, image, imageSize, status); | |
636 | imageAllocated = TRUE; | |
637 | } | |
638 | else { | |
639 | image = (uint8_t *)coll->image; | |
640 | } | |
641 | localCollator = ucol_initFromBinary(image, imageSize, coll->UCA, localCollator, status); | |
642 | if (U_FAILURE(*status)) { | |
643 | return NULL; | |
644 | } | |
645 | ||
646 | if (coll->rules) { | |
647 | if (coll->freeRulesOnClose) { | |
648 | localCollator->rules = u_strcpy(rules, coll->rules); | |
649 | //bufferEnd += rulesSize; | |
650 | } | |
651 | else { | |
652 | localCollator->rules = coll->rules; | |
653 | } | |
654 | localCollator->freeRulesOnClose = FALSE; | |
655 | localCollator->rulesLength = coll->rulesLength; | |
656 | } | |
657 | ||
658 | // collator reordering | |
659 | if (coll->defaultReorderCodes) { | |
660 | localCollator->defaultReorderCodes = | |
661 | (int32_t*) uprv_memcpy(defaultReorderCodes, coll->defaultReorderCodes, coll->defaultReorderCodesLength * sizeof(int32_t)); | |
662 | localCollator->defaultReorderCodesLength = coll->defaultReorderCodesLength; | |
663 | localCollator->freeDefaultReorderCodesOnClose = FALSE; | |
664 | } | |
665 | if (coll->reorderCodes) { | |
666 | localCollator->reorderCodes = | |
667 | (int32_t*)uprv_memcpy(reorderCodes, coll->reorderCodes, coll->reorderCodesLength * sizeof(int32_t)); | |
668 | localCollator->reorderCodesLength = coll->reorderCodesLength; | |
669 | localCollator->freeReorderCodesOnClose = FALSE; | |
670 | } | |
671 | if (coll->leadBytePermutationTable) { | |
672 | localCollator->leadBytePermutationTable = | |
673 | (uint8_t*) uprv_memcpy(leadBytePermutationTable, coll->leadBytePermutationTable, 256); | |
674 | localCollator->freeLeadBytePermutationTableOnClose = FALSE; | |
675 | } | |
676 | ||
677 | int32_t i; | |
678 | for(i = 0; i < UCOL_ATTRIBUTE_COUNT; i++) { | |
679 | ucol_setAttribute(localCollator, (UColAttribute)i, ucol_getAttribute(coll, (UColAttribute)i, status), status); | |
680 | } | |
681 | // zero copies of pointers | |
682 | localCollator->actualLocale = NULL; | |
683 | localCollator->validLocale = NULL; | |
684 | localCollator->requestedLocale = NULL; | |
685 | localCollator->ucaRules = coll->ucaRules; // There should only be one copy here. | |
686 | localCollator->freeOnClose = colAllocated; | |
687 | localCollator->freeImageOnClose = imageAllocated; | |
688 | return localCollator; | |
689 | } | |
690 | ||
691 | U_CAPI void U_EXPORT2 | |
692 | ucol_close(UCollator *coll) | |
693 | { | |
694 | UTRACE_ENTRY_OC(UTRACE_UCOL_CLOSE); | |
695 | UTRACE_DATA1(UTRACE_INFO, "coll = %p", coll); | |
696 | if(coll != NULL) { | |
697 | // these are always owned by each UCollator struct, | |
698 | // so we always free them | |
699 | if(coll->validLocale != NULL) { | |
700 | uprv_free(coll->validLocale); | |
701 | } | |
702 | if(coll->actualLocale != NULL) { | |
703 | uprv_free(coll->actualLocale); | |
704 | } | |
705 | if(coll->requestedLocale != NULL) { | |
706 | uprv_free(coll->requestedLocale); | |
707 | } | |
708 | if(coll->latinOneCEs != NULL) { | |
709 | uprv_free(coll->latinOneCEs); | |
710 | } | |
711 | if(coll->options != NULL && coll->freeOptionsOnClose) { | |
712 | uprv_free(coll->options); | |
713 | } | |
714 | if(coll->rules != NULL && coll->freeRulesOnClose) { | |
715 | uprv_free((UChar *)coll->rules); | |
716 | } | |
717 | if(coll->image != NULL && coll->freeImageOnClose) { | |
718 | uprv_free((UCATableHeader *)coll->image); | |
719 | } | |
720 | ||
721 | if(coll->leadBytePermutationTable != NULL && coll->freeLeadBytePermutationTableOnClose == TRUE) { | |
722 | uprv_free(coll->leadBytePermutationTable); | |
723 | } | |
724 | if(coll->defaultReorderCodes != NULL && coll->freeDefaultReorderCodesOnClose == TRUE) { | |
725 | uprv_free(coll->defaultReorderCodes); | |
726 | } | |
727 | if(coll->reorderCodes != NULL && coll->freeReorderCodesOnClose == TRUE) { | |
728 | uprv_free(coll->reorderCodes); | |
729 | } | |
730 | ||
731 | if(coll->delegate != NULL) { | |
732 | delete (Collator*)coll->delegate; | |
733 | } | |
734 | ||
735 | /* Here, it would be advisable to close: */ | |
736 | /* - UData for UCA (unless we stuff it in the root resb */ | |
737 | /* Again, do we need additional housekeeping... HMMM! */ | |
738 | UTRACE_DATA1(UTRACE_INFO, "coll->freeOnClose: %d", coll->freeOnClose); | |
739 | if(coll->freeOnClose){ | |
740 | /* for safeClone, if freeOnClose is FALSE, | |
741 | don't free the other instance data */ | |
742 | uprv_free(coll); | |
743 | } | |
744 | } | |
745 | UTRACE_EXIT(); | |
746 | } | |
747 | ||
748 | /* This one is currently used by genrb & tests. After constructing from rules (tailoring),*/ | |
749 | /* you should be able to get the binary chunk to write out... Doesn't look very full now */ | |
750 | U_CFUNC uint8_t* U_EXPORT2 | |
751 | ucol_cloneRuleData(const UCollator *coll, int32_t *length, UErrorCode *status) | |
752 | { | |
753 | uint8_t *result = NULL; | |
754 | if(U_FAILURE(*status)) { | |
755 | return NULL; | |
756 | } | |
757 | if(coll->hasRealData == TRUE) { | |
758 | *length = coll->image->size; | |
759 | result = (uint8_t *)uprv_malloc(*length); | |
760 | /* test for NULL */ | |
761 | if (result == NULL) { | |
762 | *status = U_MEMORY_ALLOCATION_ERROR; | |
763 | return NULL; | |
764 | } | |
765 | uprv_memcpy(result, coll->image, *length); | |
766 | } else { | |
767 | *length = (int32_t)(paddedsize(sizeof(UCATableHeader))+paddedsize(sizeof(UColOptionSet))); | |
768 | result = (uint8_t *)uprv_malloc(*length); | |
769 | /* test for NULL */ | |
770 | if (result == NULL) { | |
771 | *status = U_MEMORY_ALLOCATION_ERROR; | |
772 | return NULL; | |
773 | } | |
774 | ||
775 | /* build the UCATableHeader with minimal entries */ | |
776 | /* do not copy the header from the UCA file because its values are wrong! */ | |
777 | /* uprv_memcpy(result, UCA->image, sizeof(UCATableHeader)); */ | |
778 | ||
779 | /* reset everything */ | |
780 | uprv_memset(result, 0, *length); | |
781 | ||
782 | /* set the tailoring-specific values */ | |
783 | UCATableHeader *myData = (UCATableHeader *)result; | |
784 | myData->size = *length; | |
785 | ||
786 | /* offset for the options, the only part of the data that is present after the header */ | |
787 | myData->options = sizeof(UCATableHeader); | |
788 | ||
789 | /* need to always set the expansion value for an upper bound of the options */ | |
790 | myData->expansion = myData->options + sizeof(UColOptionSet); | |
791 | ||
792 | myData->magic = UCOL_HEADER_MAGIC; | |
793 | myData->isBigEndian = U_IS_BIG_ENDIAN; | |
794 | myData->charSetFamily = U_CHARSET_FAMILY; | |
795 | ||
796 | /* copy UCA's version; genrb will override all but the builder version with tailoring data */ | |
797 | uprv_memcpy(myData->version, coll->image->version, sizeof(UVersionInfo)); | |
798 | ||
799 | uprv_memcpy(myData->UCAVersion, coll->image->UCAVersion, sizeof(UVersionInfo)); | |
800 | uprv_memcpy(myData->UCDVersion, coll->image->UCDVersion, sizeof(UVersionInfo)); | |
801 | uprv_memcpy(myData->formatVersion, coll->image->formatVersion, sizeof(UVersionInfo)); | |
802 | myData->jamoSpecial = coll->image->jamoSpecial; | |
803 | ||
804 | /* copy the collator options */ | |
805 | uprv_memcpy(result+paddedsize(sizeof(UCATableHeader)), coll->options, sizeof(UColOptionSet)); | |
806 | } | |
807 | return result; | |
808 | } | |
809 | ||
810 | void ucol_setOptionsFromHeader(UCollator* result, UColOptionSet * opts, UErrorCode *status) { | |
811 | if(U_FAILURE(*status)) { | |
812 | return; | |
813 | } | |
814 | result->caseFirst = (UColAttributeValue)opts->caseFirst; | |
815 | result->caseLevel = (UColAttributeValue)opts->caseLevel; | |
816 | result->frenchCollation = (UColAttributeValue)opts->frenchCollation; | |
817 | result->normalizationMode = (UColAttributeValue)opts->normalizationMode; | |
818 | if(result->normalizationMode == UCOL_ON && !initializeFCD(status)) { | |
819 | return; | |
820 | } | |
821 | result->strength = (UColAttributeValue)opts->strength; | |
822 | result->variableTopValue = opts->variableTopValue; | |
823 | result->alternateHandling = (UColAttributeValue)opts->alternateHandling; | |
824 | result->hiraganaQ = (UColAttributeValue)opts->hiraganaQ; | |
825 | result->numericCollation = (UColAttributeValue)opts->numericCollation; | |
826 | result->caseFirstisDefault = TRUE; | |
827 | result->caseLevelisDefault = TRUE; | |
828 | result->frenchCollationisDefault = TRUE; | |
829 | result->normalizationModeisDefault = TRUE; | |
830 | result->strengthisDefault = TRUE; | |
831 | result->variableTopValueisDefault = TRUE; | |
832 | result->alternateHandlingisDefault = TRUE; | |
833 | result->hiraganaQisDefault = TRUE; | |
834 | result->numericCollationisDefault = TRUE; | |
835 | ||
836 | ucol_updateInternalState(result, status); | |
837 | ||
838 | result->options = opts; | |
839 | } | |
840 | ||
841 | ||
842 | /** | |
843 | * Approximate determination if a character is at a contraction end. | |
844 | * Guaranteed to be TRUE if a character is at the end of a contraction, | |
845 | * otherwise it is not deterministic. | |
846 | * @param c character to be determined | |
847 | * @param coll collator | |
848 | */ | |
849 | static | |
850 | inline UBool ucol_contractionEndCP(UChar c, const UCollator *coll) { | |
851 | if (c < coll->minContrEndCP) { | |
852 | return FALSE; | |
853 | } | |
854 | ||
855 | int32_t hash = c; | |
856 | uint8_t htbyte; | |
857 | if (hash >= UCOL_UNSAFECP_TABLE_SIZE*8) { | |
858 | if (U16_IS_TRAIL(c)) { | |
859 | return TRUE; | |
860 | } | |
861 | hash = (hash & UCOL_UNSAFECP_TABLE_MASK) + 256; | |
862 | } | |
863 | htbyte = coll->contrEndCP[hash>>3]; | |
864 | return (((htbyte >> (hash & 7)) & 1) == 1); | |
865 | } | |
866 | ||
867 | ||
868 | ||
869 | /* | |
870 | * i_getCombiningClass() | |
871 | * A fast, at least partly inline version of u_getCombiningClass() | |
872 | * This is a candidate for further optimization. Used heavily | |
873 | * in contraction processing. | |
874 | */ | |
875 | static | |
876 | inline uint8_t i_getCombiningClass(UChar32 c, const UCollator *coll) { | |
877 | uint8_t sCC = 0; | |
878 | if ((c >= 0x300 && ucol_unsafeCP(c, coll)) || c > 0xFFFF) { | |
879 | sCC = u_getCombiningClass(c); | |
880 | } | |
881 | return sCC; | |
882 | } | |
883 | ||
884 | UCollator* ucol_initCollator(const UCATableHeader *image, UCollator *fillIn, const UCollator *UCA, UErrorCode *status) { | |
885 | UChar c; | |
886 | UCollator *result = fillIn; | |
887 | if(U_FAILURE(*status) || image == NULL) { | |
888 | return NULL; | |
889 | } | |
890 | ||
891 | if(result == NULL) { | |
892 | result = (UCollator *)uprv_malloc(sizeof(UCollator)); | |
893 | if(result == NULL) { | |
894 | *status = U_MEMORY_ALLOCATION_ERROR; | |
895 | return result; | |
896 | } | |
897 | result->freeOnClose = TRUE; | |
898 | } else { | |
899 | result->freeOnClose = FALSE; | |
900 | } | |
901 | ||
902 | result->delegate = NULL; | |
903 | ||
904 | result->image = image; | |
905 | result->mapping.getFoldingOffset = _getFoldingOffset; | |
906 | const uint8_t *mapping = (uint8_t*)result->image+result->image->mappingPosition; | |
907 | utrie_unserialize(&result->mapping, mapping, result->image->endExpansionCE - result->image->mappingPosition, status); | |
908 | if(U_FAILURE(*status)) { | |
909 | if(result->freeOnClose == TRUE) { | |
910 | uprv_free(result); | |
911 | result = NULL; | |
912 | } | |
913 | return result; | |
914 | } | |
915 | ||
916 | result->latinOneMapping = UTRIE_GET32_LATIN1(&result->mapping); | |
917 | result->contractionCEs = (uint32_t*)((uint8_t*)result->image+result->image->contractionCEs); | |
918 | result->contractionIndex = (UChar*)((uint8_t*)result->image+result->image->contractionIndex); | |
919 | result->expansion = (uint32_t*)((uint8_t*)result->image+result->image->expansion); | |
920 | result->rules = NULL; | |
921 | result->rulesLength = 0; | |
922 | result->freeRulesOnClose = FALSE; | |
923 | result->defaultReorderCodes = NULL; | |
924 | result->defaultReorderCodesLength = 0; | |
925 | result->freeDefaultReorderCodesOnClose = FALSE; | |
926 | result->reorderCodes = NULL; | |
927 | result->reorderCodesLength = 0; | |
928 | result->freeReorderCodesOnClose = FALSE; | |
929 | result->leadBytePermutationTable = NULL; | |
930 | result->freeLeadBytePermutationTableOnClose = FALSE; | |
931 | ||
932 | /* get the version info from UCATableHeader and populate the Collator struct*/ | |
933 | result->dataVersion[0] = result->image->version[0]; /* UCA Builder version*/ | |
934 | result->dataVersion[1] = result->image->version[1]; /* UCA Tailoring rules version*/ | |
935 | result->dataVersion[2] = 0; | |
936 | result->dataVersion[3] = 0; | |
937 | ||
938 | result->unsafeCP = (uint8_t *)result->image + result->image->unsafeCP; | |
939 | result->minUnsafeCP = 0; | |
940 | for (c=0; c<0x300; c++) { // Find the smallest unsafe char. | |
941 | if (ucol_unsafeCP(c, result)) break; | |
942 | } | |
943 | result->minUnsafeCP = c; | |
944 | ||
945 | result->contrEndCP = (uint8_t *)result->image + result->image->contrEndCP; | |
946 | result->minContrEndCP = 0; | |
947 | for (c=0; c<0x300; c++) { // Find the Contraction-ending char. | |
948 | if (ucol_contractionEndCP(c, result)) break; | |
949 | } | |
950 | result->minContrEndCP = c; | |
951 | ||
952 | /* max expansion tables */ | |
953 | result->endExpansionCE = (uint32_t*)((uint8_t*)result->image + | |
954 | result->image->endExpansionCE); | |
955 | result->lastEndExpansionCE = result->endExpansionCE + | |
956 | result->image->endExpansionCECount - 1; | |
957 | result->expansionCESize = (uint8_t*)result->image + | |
958 | result->image->expansionCESize; | |
959 | ||
960 | ||
961 | //result->errorCode = *status; | |
962 | ||
963 | result->latinOneCEs = NULL; | |
964 | ||
965 | result->latinOneRegenTable = FALSE; | |
966 | result->latinOneFailed = FALSE; | |
967 | result->UCA = UCA; | |
968 | ||
969 | /* Normally these will be set correctly later. This is the default if you use UCA or the default. */ | |
970 | result->ucaRules = NULL; | |
971 | result->actualLocale = NULL; | |
972 | result->validLocale = NULL; | |
973 | result->requestedLocale = NULL; | |
974 | result->hasRealData = FALSE; // real data lives in .dat file... | |
975 | result->freeImageOnClose = FALSE; | |
976 | ||
977 | /* set attributes */ | |
978 | ucol_setOptionsFromHeader( | |
979 | result, | |
980 | (UColOptionSet*)((uint8_t*)result->image+result->image->options), | |
981 | status); | |
982 | result->freeOptionsOnClose = FALSE; | |
983 | ||
984 | return result; | |
985 | } | |
986 | ||
987 | /* new Mark's code */ | |
988 | ||
989 | /** | |
990 | * For generation of Implicit CEs | |
991 | * @author Davis | |
992 | * | |
993 | * Cleaned up so that changes can be made more easily. | |
994 | * Old values: | |
995 | # First Implicit: E26A792D | |
996 | # Last Implicit: E3DC70C0 | |
997 | # First CJK: E0030300 | |
998 | # Last CJK: E0A9DD00 | |
999 | # First CJK_A: E0A9DF00 | |
1000 | # Last CJK_A: E0DE3100 | |
1001 | */ | |
1002 | /* Following is a port of Mark's code for new treatment of implicits. | |
1003 | * It is positioned here, since ucol_initUCA need to initialize the | |
1004 | * variables below according to the data in the fractional UCA. | |
1005 | */ | |
1006 | ||
1007 | /** | |
1008 | * Function used to: | |
1009 | * a) collapse the 2 different Han ranges from UCA into one (in the right order), and | |
1010 | * b) bump any non-CJK characters by 10FFFF. | |
1011 | * The relevant blocks are: | |
1012 | * A: 4E00..9FFF; CJK Unified Ideographs | |
1013 | * F900..FAFF; CJK Compatibility Ideographs | |
1014 | * B: 3400..4DBF; CJK Unified Ideographs Extension A | |
1015 | * 20000..XX; CJK Unified Ideographs Extension B (and others later on) | |
1016 | * As long as | |
1017 | * no new B characters are allocated between 4E00 and FAFF, and | |
1018 | * no new A characters are outside of this range, | |
1019 | * (very high probability) this simple code will work. | |
1020 | * The reordered blocks are: | |
1021 | * Block1 is CJK | |
1022 | * Block2 is CJK_COMPAT_USED | |
1023 | * Block3 is CJK_A | |
1024 | * (all contiguous) | |
1025 | * Any other CJK gets its normal code point | |
1026 | * Any non-CJK gets +10FFFF | |
1027 | * When we reorder Block1, we make sure that it is at the very start, | |
1028 | * so that it will use a 3-byte form. | |
1029 | * Warning: the we only pick up the compatibility characters that are | |
1030 | * NOT decomposed, so that block is smaller! | |
1031 | */ | |
1032 | ||
1033 | // CONSTANTS | |
1034 | static const UChar32 | |
1035 | NON_CJK_OFFSET = 0x110000, | |
1036 | UCOL_MAX_INPUT = 0x220001; // 2 * Unicode range + 2 | |
1037 | ||
1038 | /** | |
1039 | * Precomputed by initImplicitConstants() | |
1040 | */ | |
1041 | static int32_t | |
1042 | final3Multiplier = 0, | |
1043 | final4Multiplier = 0, | |
1044 | final3Count = 0, | |
1045 | final4Count = 0, | |
1046 | medialCount = 0, | |
1047 | min3Primary = 0, | |
1048 | min4Primary = 0, | |
1049 | max4Primary = 0, | |
1050 | minTrail = 0, | |
1051 | maxTrail = 0, | |
1052 | max3Trail = 0, | |
1053 | max4Trail = 0, | |
1054 | min4Boundary = 0; | |
1055 | ||
1056 | static const UChar32 | |
1057 | // 4E00;<CJK Ideograph, First>;Lo;0;L;;;;;N;;;;; | |
1058 | // 9FCC;<CJK Ideograph, Last>;Lo;0;L;;;;;N;;;;; (Unicode 6.1) | |
1059 | CJK_BASE = 0x4E00, | |
1060 | CJK_LIMIT = 0x9FCC+1, | |
1061 | // Unified CJK ideographs in the compatibility ideographs block. | |
1062 | CJK_COMPAT_USED_BASE = 0xFA0E, | |
1063 | CJK_COMPAT_USED_LIMIT = 0xFA2F+1, | |
1064 | // 3400;<CJK Ideograph Extension A, First>;Lo;0;L;;;;;N;;;;; | |
1065 | // 4DB5;<CJK Ideograph Extension A, Last>;Lo;0;L;;;;;N;;;;; | |
1066 | CJK_A_BASE = 0x3400, | |
1067 | CJK_A_LIMIT = 0x4DB5+1, | |
1068 | // 20000;<CJK Ideograph Extension B, First>;Lo;0;L;;;;;N;;;;; | |
1069 | // 2A6D6;<CJK Ideograph Extension B, Last>;Lo;0;L;;;;;N;;;;; | |
1070 | CJK_B_BASE = 0x20000, | |
1071 | CJK_B_LIMIT = 0x2A6D6+1, | |
1072 | // 2A700;<CJK Ideograph Extension C, First>;Lo;0;L;;;;;N;;;;; | |
1073 | // 2B734;<CJK Ideograph Extension C, Last>;Lo;0;L;;;;;N;;;;; | |
1074 | CJK_C_BASE = 0x2A700, | |
1075 | CJK_C_LIMIT = 0x2B734+1, | |
1076 | // 2B740;<CJK Ideograph Extension D, First>;Lo;0;L;;;;;N;;;;; | |
1077 | // 2B81D;<CJK Ideograph Extension D, Last>;Lo;0;L;;;;;N;;;;; | |
1078 | CJK_D_BASE = 0x2B740, | |
1079 | CJK_D_LIMIT = 0x2B81D+1; | |
1080 | // when adding to this list, look for all occurrences (in project) | |
1081 | // of CJK_C_BASE and CJK_C_LIMIT, etc. to check for code that needs changing!!!! | |
1082 | ||
1083 | static UChar32 swapCJK(UChar32 i) { | |
1084 | if (i < CJK_A_BASE) { | |
1085 | // non-CJK | |
1086 | } else if (i < CJK_A_LIMIT) { | |
1087 | // Extension A has lower code points than the original Unihan+compat | |
1088 | // but sorts higher. | |
1089 | return i - CJK_A_BASE | |
1090 | + (CJK_LIMIT - CJK_BASE) | |
1091 | + (CJK_COMPAT_USED_LIMIT - CJK_COMPAT_USED_BASE); | |
1092 | } else if (i < CJK_BASE) { | |
1093 | // non-CJK | |
1094 | } else if (i < CJK_LIMIT) { | |
1095 | return i - CJK_BASE; | |
1096 | } else if (i < CJK_COMPAT_USED_BASE) { | |
1097 | // non-CJK | |
1098 | } else if (i < CJK_COMPAT_USED_LIMIT) { | |
1099 | return i - CJK_COMPAT_USED_BASE | |
1100 | + (CJK_LIMIT - CJK_BASE); | |
1101 | } else if (i < CJK_B_BASE) { | |
1102 | // non-CJK | |
1103 | } else if (i < CJK_B_LIMIT) { | |
1104 | return i; // non-BMP-CJK | |
1105 | } else if (i < CJK_C_BASE) { | |
1106 | // non-CJK | |
1107 | } else if (i < CJK_C_LIMIT) { | |
1108 | return i; // non-BMP-CJK | |
1109 | } else if (i < CJK_D_BASE) { | |
1110 | // non-CJK | |
1111 | } else if (i < CJK_D_LIMIT) { | |
1112 | return i; // non-BMP-CJK | |
1113 | } | |
1114 | return i + NON_CJK_OFFSET; // non-CJK | |
1115 | } | |
1116 | ||
1117 | U_CAPI UChar32 U_EXPORT2 | |
1118 | uprv_uca_getRawFromCodePoint(UChar32 i) { | |
1119 | return swapCJK(i)+1; | |
1120 | } | |
1121 | ||
1122 | U_CAPI UChar32 U_EXPORT2 | |
1123 | uprv_uca_getCodePointFromRaw(UChar32 i) { | |
1124 | i--; | |
1125 | UChar32 result = 0; | |
1126 | if(i >= NON_CJK_OFFSET) { | |
1127 | result = i - NON_CJK_OFFSET; | |
1128 | } else if(i >= CJK_B_BASE) { | |
1129 | result = i; | |
1130 | } else if(i < CJK_A_LIMIT + (CJK_LIMIT - CJK_BASE) + (CJK_COMPAT_USED_LIMIT - CJK_COMPAT_USED_BASE)) { // rest of CJKs, compacted | |
1131 | if(i < CJK_LIMIT - CJK_BASE) { | |
1132 | result = i + CJK_BASE; | |
1133 | } else if(i < (CJK_LIMIT - CJK_BASE) + (CJK_COMPAT_USED_LIMIT - CJK_COMPAT_USED_BASE)) { | |
1134 | result = i + CJK_COMPAT_USED_BASE - (CJK_LIMIT - CJK_BASE); | |
1135 | } else { | |
1136 | result = i + CJK_A_BASE - (CJK_LIMIT - CJK_BASE) - (CJK_COMPAT_USED_LIMIT - CJK_COMPAT_USED_BASE); | |
1137 | } | |
1138 | } else { | |
1139 | result = -1; | |
1140 | } | |
1141 | return result; | |
1142 | } | |
1143 | ||
1144 | // GET IMPLICIT PRIMARY WEIGHTS | |
1145 | // Return value is left justified primary key | |
1146 | U_CAPI uint32_t U_EXPORT2 | |
1147 | uprv_uca_getImplicitFromRaw(UChar32 cp) { | |
1148 | /* | |
1149 | if (cp < 0 || cp > UCOL_MAX_INPUT) { | |
1150 | throw new IllegalArgumentException("Code point out of range " + Utility.hex(cp)); | |
1151 | } | |
1152 | */ | |
1153 | int32_t last0 = cp - min4Boundary; | |
1154 | if (last0 < 0) { | |
1155 | int32_t last1 = cp / final3Count; | |
1156 | last0 = cp % final3Count; | |
1157 | ||
1158 | int32_t last2 = last1 / medialCount; | |
1159 | last1 %= medialCount; | |
1160 | ||
1161 | last0 = minTrail + last0*final3Multiplier; // spread out, leaving gap at start | |
1162 | last1 = minTrail + last1; // offset | |
1163 | last2 = min3Primary + last2; // offset | |
1164 | /* | |
1165 | if (last2 >= min4Primary) { | |
1166 | throw new IllegalArgumentException("4-byte out of range: " + Utility.hex(cp) + ", " + Utility.hex(last2)); | |
1167 | } | |
1168 | */ | |
1169 | return (last2 << 24) + (last1 << 16) + (last0 << 8); | |
1170 | } else { | |
1171 | int32_t last1 = last0 / final4Count; | |
1172 | last0 %= final4Count; | |
1173 | ||
1174 | int32_t last2 = last1 / medialCount; | |
1175 | last1 %= medialCount; | |
1176 | ||
1177 | int32_t last3 = last2 / medialCount; | |
1178 | last2 %= medialCount; | |
1179 | ||
1180 | last0 = minTrail + last0*final4Multiplier; // spread out, leaving gap at start | |
1181 | last1 = minTrail + last1; // offset | |
1182 | last2 = minTrail + last2; // offset | |
1183 | last3 = min4Primary + last3; // offset | |
1184 | /* | |
1185 | if (last3 > max4Primary) { | |
1186 | throw new IllegalArgumentException("4-byte out of range: " + Utility.hex(cp) + ", " + Utility.hex(last3)); | |
1187 | } | |
1188 | */ | |
1189 | return (last3 << 24) + (last2 << 16) + (last1 << 8) + last0; | |
1190 | } | |
1191 | } | |
1192 | ||
1193 | static uint32_t U_EXPORT2 | |
1194 | uprv_uca_getImplicitPrimary(UChar32 cp) { | |
1195 | //fprintf(stdout, "Incoming: %04x\n", cp); | |
1196 | //if (DEBUG) System.out.println("Incoming: " + Utility.hex(cp)); | |
1197 | ||
1198 | cp = swapCJK(cp); | |
1199 | cp++; | |
1200 | // we now have a range of numbers from 0 to 21FFFF. | |
1201 | ||
1202 | //if (DEBUG) System.out.println("CJK swapped: " + Utility.hex(cp)); | |
1203 | //fprintf(stdout, "CJK swapped: %04x\n", cp); | |
1204 | ||
1205 | return uprv_uca_getImplicitFromRaw(cp); | |
1206 | } | |
1207 | ||
1208 | /** | |
1209 | * Converts implicit CE into raw integer ("code point") | |
1210 | * @param implicit | |
1211 | * @return -1 if illegal format | |
1212 | */ | |
1213 | U_CAPI UChar32 U_EXPORT2 | |
1214 | uprv_uca_getRawFromImplicit(uint32_t implicit) { | |
1215 | UChar32 result; | |
1216 | UChar32 b3 = implicit & 0xFF; | |
1217 | UChar32 b2 = (implicit >> 8) & 0xFF; | |
1218 | UChar32 b1 = (implicit >> 16) & 0xFF; | |
1219 | UChar32 b0 = (implicit >> 24) & 0xFF; | |
1220 | ||
1221 | // simple parameter checks | |
1222 | if (b0 < min3Primary || b0 > max4Primary | |
1223 | || b1 < minTrail || b1 > maxTrail) | |
1224 | return -1; | |
1225 | // normal offsets | |
1226 | b1 -= minTrail; | |
1227 | ||
1228 | // take care of the final values, and compose | |
1229 | if (b0 < min4Primary) { | |
1230 | if (b2 < minTrail || b2 > max3Trail || b3 != 0) | |
1231 | return -1; | |
1232 | b2 -= minTrail; | |
1233 | UChar32 remainder = b2 % final3Multiplier; | |
1234 | if (remainder != 0) | |
1235 | return -1; | |
1236 | b0 -= min3Primary; | |
1237 | b2 /= final3Multiplier; | |
1238 | result = ((b0 * medialCount) + b1) * final3Count + b2; | |
1239 | } else { | |
1240 | if (b2 < minTrail || b2 > maxTrail | |
1241 | || b3 < minTrail || b3 > max4Trail) | |
1242 | return -1; | |
1243 | b2 -= minTrail; | |
1244 | b3 -= minTrail; | |
1245 | UChar32 remainder = b3 % final4Multiplier; | |
1246 | if (remainder != 0) | |
1247 | return -1; | |
1248 | b3 /= final4Multiplier; | |
1249 | b0 -= min4Primary; | |
1250 | result = (((b0 * medialCount) + b1) * medialCount + b2) * final4Count + b3 + min4Boundary; | |
1251 | } | |
1252 | // final check | |
1253 | if (result < 0 || result > UCOL_MAX_INPUT) | |
1254 | return -1; | |
1255 | return result; | |
1256 | } | |
1257 | ||
1258 | ||
1259 | static inline int32_t divideAndRoundUp(int a, int b) { | |
1260 | return 1 + (a-1)/b; | |
1261 | } | |
1262 | ||
1263 | /* this function is either called from initUCA or from genUCA before | |
1264 | * doing canonical closure for the UCA. | |
1265 | */ | |
1266 | ||
1267 | /** | |
1268 | * Set up to generate implicits. | |
1269 | * Maintenance Note: this function may end up being called more than once, due | |
1270 | * to threading races during initialization. Make sure that | |
1271 | * none of the Constants is ever transiently assigned an | |
1272 | * incorrect value. | |
1273 | * @param minPrimary | |
1274 | * @param maxPrimary | |
1275 | * @param minTrail final byte | |
1276 | * @param maxTrail final byte | |
1277 | * @param gap3 the gap we leave for tailoring for 3-byte forms | |
1278 | * @param gap4 the gap we leave for tailoring for 4-byte forms | |
1279 | */ | |
1280 | static void initImplicitConstants(int minPrimary, int maxPrimary, | |
1281 | int minTrailIn, int maxTrailIn, | |
1282 | int gap3, int primaries3count, | |
1283 | UErrorCode *status) { | |
1284 | // some simple parameter checks | |
1285 | if ((minPrimary < 0 || minPrimary >= maxPrimary || maxPrimary > 0xFF) | |
1286 | || (minTrailIn < 0 || minTrailIn >= maxTrailIn || maxTrailIn > 0xFF) | |
1287 | || (primaries3count < 1)) | |
1288 | { | |
1289 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
1290 | return; | |
1291 | }; | |
1292 | ||
1293 | minTrail = minTrailIn; | |
1294 | maxTrail = maxTrailIn; | |
1295 | ||
1296 | min3Primary = minPrimary; | |
1297 | max4Primary = maxPrimary; | |
1298 | // compute constants for use later. | |
1299 | // number of values we can use in trailing bytes | |
1300 | // leave room for empty values between AND above, e.g. if gap = 2 | |
1301 | // range 3..7 => +3 -4 -5 -6 -7: so 1 value | |
1302 | // range 3..8 => +3 -4 -5 +6 -7 -8: so 2 values | |
1303 | // range 3..9 => +3 -4 -5 +6 -7 -8 -9: so 2 values | |
1304 | final3Multiplier = gap3 + 1; | |
1305 | final3Count = (maxTrail - minTrail + 1) / final3Multiplier; | |
1306 | max3Trail = minTrail + (final3Count - 1) * final3Multiplier; | |
1307 | ||
1308 | // medials can use full range | |
1309 | medialCount = (maxTrail - minTrail + 1); | |
1310 | // find out how many values fit in each form | |
1311 | int32_t threeByteCount = medialCount * final3Count; | |
1312 | // now determine where the 3/4 boundary is. | |
1313 | // we use 3 bytes below the boundary, and 4 above | |
1314 | int32_t primariesAvailable = maxPrimary - minPrimary + 1; | |
1315 | int32_t primaries4count = primariesAvailable - primaries3count; | |
1316 | ||
1317 | ||
1318 | int32_t min3ByteCoverage = primaries3count * threeByteCount; | |
1319 | min4Primary = minPrimary + primaries3count; | |
1320 | min4Boundary = min3ByteCoverage; | |
1321 | // Now expand out the multiplier for the 4 bytes, and redo. | |
1322 | ||
1323 | int32_t totalNeeded = UCOL_MAX_INPUT - min4Boundary; | |
1324 | int32_t neededPerPrimaryByte = divideAndRoundUp(totalNeeded, primaries4count); | |
1325 | int32_t neededPerFinalByte = divideAndRoundUp(neededPerPrimaryByte, medialCount * medialCount); | |
1326 | int32_t gap4 = (maxTrail - minTrail - 1) / neededPerFinalByte; | |
1327 | if (gap4 < 1) { | |
1328 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
1329 | return; | |
1330 | } | |
1331 | final4Multiplier = gap4 + 1; | |
1332 | final4Count = neededPerFinalByte; | |
1333 | max4Trail = minTrail + (final4Count - 1) * final4Multiplier; | |
1334 | } | |
1335 | ||
1336 | /** | |
1337 | * Supply parameters for generating implicit CEs | |
1338 | */ | |
1339 | U_CAPI void U_EXPORT2 | |
1340 | uprv_uca_initImplicitConstants(UErrorCode *status) { | |
1341 | // 13 is the largest 4-byte gap we can use without getting 2 four-byte forms. | |
1342 | //initImplicitConstants(minPrimary, maxPrimary, 0x04, 0xFE, 1, 1, status); | |
1343 | initImplicitConstants(minImplicitPrimary, maxImplicitPrimary, 0x04, 0xFE, 1, 1, status); | |
1344 | } | |
1345 | ||
1346 | ||
1347 | /* collIterNormalize Incremental Normalization happens here. */ | |
1348 | /* pick up the range of chars identifed by FCD, */ | |
1349 | /* normalize it into the collIterate's writable buffer, */ | |
1350 | /* switch the collIterate's state to use the writable buffer. */ | |
1351 | /* */ | |
1352 | static | |
1353 | void collIterNormalize(collIterate *collationSource) | |
1354 | { | |
1355 | UErrorCode status = U_ZERO_ERROR; | |
1356 | const UChar *srcP = collationSource->pos - 1; /* Start of chars to normalize */ | |
1357 | const UChar *endP = collationSource->fcdPosition; /* End of region to normalize+1 */ | |
1358 | ||
1359 | collationSource->nfd->normalize(UnicodeString(FALSE, srcP, (int32_t)(endP - srcP)), | |
1360 | collationSource->writableBuffer, | |
1361 | status); | |
1362 | if (U_FAILURE(status)) { | |
1363 | #ifdef UCOL_DEBUG | |
1364 | fprintf(stderr, "collIterNormalize(), NFD failed, status = %s\n", u_errorName(status)); | |
1365 | #endif | |
1366 | return; | |
1367 | } | |
1368 | ||
1369 | collationSource->pos = collationSource->writableBuffer.getTerminatedBuffer(); | |
1370 | collationSource->origFlags = collationSource->flags; | |
1371 | collationSource->flags |= UCOL_ITER_INNORMBUF; | |
1372 | collationSource->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN | UCOL_USE_ITERATOR); | |
1373 | } | |
1374 | ||
1375 | ||
1376 | // This function takes the iterator and extracts normalized stuff up to the next boundary | |
1377 | // It is similar in the end results to the collIterNormalize, but for the cases when we | |
1378 | // use an iterator | |
1379 | /*static | |
1380 | inline void normalizeIterator(collIterate *collationSource) { | |
1381 | UErrorCode status = U_ZERO_ERROR; | |
1382 | UBool wasNormalized = FALSE; | |
1383 | //int32_t iterIndex = collationSource->iterator->getIndex(collationSource->iterator, UITER_CURRENT); | |
1384 | uint32_t iterIndex = collationSource->iterator->getState(collationSource->iterator); | |
1385 | int32_t normLen = unorm_next(collationSource->iterator, collationSource->writableBuffer, | |
1386 | (int32_t)collationSource->writableBufSize, UNORM_FCD, 0, TRUE, &wasNormalized, &status); | |
1387 | if(status == U_BUFFER_OVERFLOW_ERROR || normLen == (int32_t)collationSource->writableBufSize) { | |
1388 | // reallocate and terminate | |
1389 | if(!u_growBufferFromStatic(collationSource->stackWritableBuffer, | |
1390 | &collationSource->writableBuffer, | |
1391 | (int32_t *)&collationSource->writableBufSize, normLen + 1, | |
1392 | 0) | |
1393 | ) { | |
1394 | #ifdef UCOL_DEBUG | |
1395 | fprintf(stderr, "normalizeIterator(), out of memory\n"); | |
1396 | #endif | |
1397 | return; | |
1398 | } | |
1399 | status = U_ZERO_ERROR; | |
1400 | //collationSource->iterator->move(collationSource->iterator, iterIndex, UITER_ZERO); | |
1401 | collationSource->iterator->setState(collationSource->iterator, iterIndex, &status); | |
1402 | normLen = unorm_next(collationSource->iterator, collationSource->writableBuffer, | |
1403 | (int32_t)collationSource->writableBufSize, UNORM_FCD, 0, TRUE, &wasNormalized, &status); | |
1404 | } | |
1405 | // Terminate the buffer - we already checked that it is big enough | |
1406 | collationSource->writableBuffer[normLen] = 0; | |
1407 | if(collationSource->writableBuffer != collationSource->stackWritableBuffer) { | |
1408 | collationSource->flags |= UCOL_ITER_ALLOCATED; | |
1409 | } | |
1410 | collationSource->pos = collationSource->writableBuffer; | |
1411 | collationSource->origFlags = collationSource->flags; | |
1412 | collationSource->flags |= UCOL_ITER_INNORMBUF; | |
1413 | collationSource->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN | UCOL_USE_ITERATOR); | |
1414 | }*/ | |
1415 | ||
1416 | ||
1417 | /* Incremental FCD check and normalize */ | |
1418 | /* Called from getNextCE when normalization state is suspect. */ | |
1419 | /* When entering, the state is known to be this: */ | |
1420 | /* o We are working in the main buffer of the collIterate, not the side */ | |
1421 | /* writable buffer. When in the side buffer, normalization mode is always off, */ | |
1422 | /* so we won't get here. */ | |
1423 | /* o The leading combining class from the current character is 0 or */ | |
1424 | /* the trailing combining class of the previous char was zero. */ | |
1425 | /* True because the previous call to this function will have always exited */ | |
1426 | /* that way, and we get called for every char where cc might be non-zero. */ | |
1427 | static | |
1428 | inline UBool collIterFCD(collIterate *collationSource) { | |
1429 | const UChar *srcP, *endP; | |
1430 | uint8_t leadingCC; | |
1431 | uint8_t prevTrailingCC = 0; | |
1432 | uint16_t fcd; | |
1433 | UBool needNormalize = FALSE; | |
1434 | ||
1435 | srcP = collationSource->pos-1; | |
1436 | ||
1437 | if (collationSource->flags & UCOL_ITER_HASLEN) { | |
1438 | endP = collationSource->endp; | |
1439 | } else { | |
1440 | endP = NULL; | |
1441 | } | |
1442 | ||
1443 | // Get the trailing combining class of the current character. If it's zero, we are OK. | |
1444 | fcd = g_nfcImpl->nextFCD16(srcP, endP); | |
1445 | if (fcd != 0) { | |
1446 | prevTrailingCC = (uint8_t)(fcd & LAST_BYTE_MASK_); | |
1447 | ||
1448 | if (prevTrailingCC != 0) { | |
1449 | // The current char has a non-zero trailing CC. Scan forward until we find | |
1450 | // a char with a leading cc of zero. | |
1451 | while (endP == NULL || srcP != endP) | |
1452 | { | |
1453 | const UChar *savedSrcP = srcP; | |
1454 | ||
1455 | fcd = g_nfcImpl->nextFCD16(srcP, endP); | |
1456 | leadingCC = (uint8_t)(fcd >> SECOND_LAST_BYTE_SHIFT_); | |
1457 | if (leadingCC == 0) { | |
1458 | srcP = savedSrcP; // Hit char that is not part of combining sequence. | |
1459 | // back up over it. (Could be surrogate pair!) | |
1460 | break; | |
1461 | } | |
1462 | ||
1463 | if (leadingCC < prevTrailingCC) { | |
1464 | needNormalize = TRUE; | |
1465 | } | |
1466 | ||
1467 | prevTrailingCC = (uint8_t)(fcd & LAST_BYTE_MASK_); | |
1468 | } | |
1469 | } | |
1470 | } | |
1471 | ||
1472 | collationSource->fcdPosition = (UChar *)srcP; | |
1473 | ||
1474 | return needNormalize; | |
1475 | } | |
1476 | ||
1477 | /****************************************************************************/ | |
1478 | /* Following are the CE retrieval functions */ | |
1479 | /* */ | |
1480 | /****************************************************************************/ | |
1481 | ||
1482 | static uint32_t getImplicit(UChar32 cp, collIterate *collationSource); | |
1483 | static uint32_t getPrevImplicit(UChar32 cp, collIterate *collationSource); | |
1484 | ||
1485 | /* there should be a macro version of this function in the header file */ | |
1486 | /* This is the first function that tries to fetch a collation element */ | |
1487 | /* If it's not succesfull or it encounters a more difficult situation */ | |
1488 | /* some more sofisticated and slower functions are invoked */ | |
1489 | static | |
1490 | inline uint32_t ucol_IGetNextCE(const UCollator *coll, collIterate *collationSource, UErrorCode *status) { | |
1491 | uint32_t order = 0; | |
1492 | if (collationSource->CEpos > collationSource->toReturn) { /* Are there any CEs from previous expansions? */ | |
1493 | order = *(collationSource->toReturn++); /* if so, return them */ | |
1494 | if(collationSource->CEpos == collationSource->toReturn) { | |
1495 | collationSource->CEpos = collationSource->toReturn = collationSource->extendCEs ? collationSource->extendCEs : collationSource->CEs; | |
1496 | } | |
1497 | return order; | |
1498 | } | |
1499 | ||
1500 | UChar ch = 0; | |
1501 | collationSource->offsetReturn = NULL; | |
1502 | ||
1503 | do { | |
1504 | for (;;) /* Loop handles case when incremental normalize switches */ | |
1505 | { /* to or from the side buffer / original string, and we */ | |
1506 | /* need to start again to get the next character. */ | |
1507 | ||
1508 | if ((collationSource->flags & (UCOL_ITER_HASLEN | UCOL_ITER_INNORMBUF | UCOL_ITER_NORM | UCOL_HIRAGANA_Q | UCOL_USE_ITERATOR)) == 0) | |
1509 | { | |
1510 | // The source string is null terminated and we're not working from the side buffer, | |
1511 | // and we're not normalizing. This is the fast path. | |
1512 | // (We can be in the side buffer for Thai pre-vowel reordering even when not normalizing.) | |
1513 | ch = *collationSource->pos++; | |
1514 | if (ch != 0) { | |
1515 | break; | |
1516 | } | |
1517 | else { | |
1518 | return UCOL_NO_MORE_CES; | |
1519 | } | |
1520 | } | |
1521 | ||
1522 | if (collationSource->flags & UCOL_ITER_HASLEN) { | |
1523 | // Normal path for strings when length is specified. | |
1524 | // (We can't be in side buffer because it is always null terminated.) | |
1525 | if (collationSource->pos >= collationSource->endp) { | |
1526 | // Ran off of the end of the main source string. We're done. | |
1527 | return UCOL_NO_MORE_CES; | |
1528 | } | |
1529 | ch = *collationSource->pos++; | |
1530 | } | |
1531 | else if(collationSource->flags & UCOL_USE_ITERATOR) { | |
1532 | UChar32 iterCh = collationSource->iterator->next(collationSource->iterator); | |
1533 | if(iterCh == U_SENTINEL) { | |
1534 | return UCOL_NO_MORE_CES; | |
1535 | } | |
1536 | ch = (UChar)iterCh; | |
1537 | } | |
1538 | else | |
1539 | { | |
1540 | // Null terminated string. | |
1541 | ch = *collationSource->pos++; | |
1542 | if (ch == 0) { | |
1543 | // Ran off end of buffer. | |
1544 | if ((collationSource->flags & UCOL_ITER_INNORMBUF) == 0) { | |
1545 | // Ran off end of main string. backing up one character. | |
1546 | collationSource->pos--; | |
1547 | return UCOL_NO_MORE_CES; | |
1548 | } | |
1549 | else | |
1550 | { | |
1551 | // Hit null in the normalize side buffer. | |
1552 | // Usually this means the end of the normalized data, | |
1553 | // except for one odd case: a null followed by combining chars, | |
1554 | // which is the case if we are at the start of the buffer. | |
1555 | if (collationSource->pos == collationSource->writableBuffer.getBuffer()+1) { | |
1556 | break; | |
1557 | } | |
1558 | ||
1559 | // Null marked end of side buffer. | |
1560 | // Revert to the main string and | |
1561 | // loop back to top to try again to get a character. | |
1562 | collationSource->pos = collationSource->fcdPosition; | |
1563 | collationSource->flags = collationSource->origFlags; | |
1564 | continue; | |
1565 | } | |
1566 | } | |
1567 | } | |
1568 | ||
1569 | if(collationSource->flags&UCOL_HIRAGANA_Q) { | |
1570 | /* Codepoints \u3099-\u309C are both Hiragana and Katakana. Set the flag | |
1571 | * based on whether the previous codepoint was Hiragana or Katakana. | |
1572 | */ | |
1573 | if(((ch>=0x3040 && ch<=0x3096) || (ch >= 0x309d && ch <= 0x309f)) || | |
1574 | ((collationSource->flags & UCOL_WAS_HIRAGANA) && (ch >= 0x3099 && ch <= 0x309C))) { | |
1575 | collationSource->flags |= UCOL_WAS_HIRAGANA; | |
1576 | } else { | |
1577 | collationSource->flags &= ~UCOL_WAS_HIRAGANA; | |
1578 | } | |
1579 | } | |
1580 | ||
1581 | // We've got a character. See if there's any fcd and/or normalization stuff to do. | |
1582 | // Note that UCOL_ITER_NORM flag is always zero when we are in the side buffer. | |
1583 | if ((collationSource->flags & UCOL_ITER_NORM) == 0) { | |
1584 | break; | |
1585 | } | |
1586 | ||
1587 | if (collationSource->fcdPosition >= collationSource->pos) { | |
1588 | // An earlier FCD check has already covered the current character. | |
1589 | // We can go ahead and process this char. | |
1590 | break; | |
1591 | } | |
1592 | ||
1593 | if (ch < ZERO_CC_LIMIT_ ) { | |
1594 | // Fast fcd safe path. Trailing combining class == 0. This char is OK. | |
1595 | break; | |
1596 | } | |
1597 | ||
1598 | if (ch < NFC_ZERO_CC_BLOCK_LIMIT_) { | |
1599 | // We need to peek at the next character in order to tell if we are FCD | |
1600 | if ((collationSource->flags & UCOL_ITER_HASLEN) && collationSource->pos >= collationSource->endp) { | |
1601 | // We are at the last char of source string. | |
1602 | // It is always OK for FCD check. | |
1603 | break; | |
1604 | } | |
1605 | ||
1606 | // Not at last char of source string (or we'll check against terminating null). Do the FCD fast test | |
1607 | if (*collationSource->pos < NFC_ZERO_CC_BLOCK_LIMIT_) { | |
1608 | break; | |
1609 | } | |
1610 | } | |
1611 | ||
1612 | ||
1613 | // Need a more complete FCD check and possible normalization. | |
1614 | if (collIterFCD(collationSource)) { | |
1615 | collIterNormalize(collationSource); | |
1616 | } | |
1617 | if ((collationSource->flags & UCOL_ITER_INNORMBUF) == 0) { | |
1618 | // No normalization was needed. Go ahead and process the char we already had. | |
1619 | break; | |
1620 | } | |
1621 | ||
1622 | // Some normalization happened. Next loop iteration will pick up a char | |
1623 | // from the normalization buffer. | |
1624 | ||
1625 | } // end for (;;) | |
1626 | ||
1627 | ||
1628 | if (ch <= 0xFF) { | |
1629 | /* For latin-1 characters we never need to fall back to the UCA table */ | |
1630 | /* because all of the UCA data is replicated in the latinOneMapping array */ | |
1631 | order = coll->latinOneMapping[ch]; | |
1632 | if (order > UCOL_NOT_FOUND) { | |
1633 | order = ucol_prv_getSpecialCE(coll, ch, order, collationSource, status); | |
1634 | } | |
1635 | } | |
1636 | else | |
1637 | { | |
1638 | // Always use UCA for Han, Hangul | |
1639 | // (Han extension A is before main Han block) | |
1640 | // **** Han compatibility chars ?? **** | |
1641 | if ((collationSource->flags & UCOL_FORCE_HAN_IMPLICIT) != 0 && | |
1642 | (ch >= UCOL_FIRST_HAN_A && ch <= UCOL_LAST_HANGUL)) { | |
1643 | if (ch > UCOL_LAST_HAN && ch < UCOL_FIRST_HANGUL) { | |
1644 | // between the two target ranges; do normal lookup | |
1645 | // **** this range is YI, Modifier tone letters, **** | |
1646 | // **** Latin-D, Syloti Nagari, Phagas-pa. **** | |
1647 | // **** Latin-D might be tailored, so we need to **** | |
1648 | // **** do the normal lookup for these guys. **** | |
1649 | order = UTRIE_GET32_FROM_LEAD(&coll->mapping, ch); | |
1650 | } else { | |
1651 | // in one of the target ranges; use UCA | |
1652 | order = UCOL_NOT_FOUND; | |
1653 | } | |
1654 | } else { | |
1655 | order = UTRIE_GET32_FROM_LEAD(&coll->mapping, ch); | |
1656 | } | |
1657 | ||
1658 | if(order > UCOL_NOT_FOUND) { /* if a CE is special */ | |
1659 | order = ucol_prv_getSpecialCE(coll, ch, order, collationSource, status); /* and try to get the special CE */ | |
1660 | } | |
1661 | ||
1662 | if(order == UCOL_NOT_FOUND && coll->UCA) { /* We couldn't find a good CE in the tailoring */ | |
1663 | /* if we got here, the codepoint MUST be over 0xFF - so we look directly in the trie */ | |
1664 | order = UTRIE_GET32_FROM_LEAD(&coll->UCA->mapping, ch); | |
1665 | ||
1666 | if(order > UCOL_NOT_FOUND) { /* UCA also gives us a special CE */ | |
1667 | order = ucol_prv_getSpecialCE(coll->UCA, ch, order, collationSource, status); | |
1668 | } | |
1669 | } | |
1670 | } | |
1671 | } while ( order == UCOL_IGNORABLE && ch >= UCOL_FIRST_HANGUL && ch <= UCOL_LAST_HANGUL ); | |
1672 | ||
1673 | if(order == UCOL_NOT_FOUND) { | |
1674 | order = getImplicit(ch, collationSource); | |
1675 | } | |
1676 | return order; /* return the CE */ | |
1677 | } | |
1678 | ||
1679 | /* ucol_getNextCE, out-of-line version for use from other files. */ | |
1680 | U_CAPI uint32_t U_EXPORT2 | |
1681 | ucol_getNextCE(const UCollator *coll, collIterate *collationSource, UErrorCode *status) { | |
1682 | return ucol_IGetNextCE(coll, collationSource, status); | |
1683 | } | |
1684 | ||
1685 | ||
1686 | /** | |
1687 | * Incremental previous normalization happens here. Pick up the range of chars | |
1688 | * identifed by FCD, normalize it into the collIterate's writable buffer, | |
1689 | * switch the collIterate's state to use the writable buffer. | |
1690 | * @param data collation iterator data | |
1691 | */ | |
1692 | static | |
1693 | void collPrevIterNormalize(collIterate *data) | |
1694 | { | |
1695 | UErrorCode status = U_ZERO_ERROR; | |
1696 | const UChar *pEnd = data->pos; /* End normalize + 1 */ | |
1697 | const UChar *pStart; | |
1698 | ||
1699 | /* Start normalize */ | |
1700 | if (data->fcdPosition == NULL) { | |
1701 | pStart = data->string; | |
1702 | } | |
1703 | else { | |
1704 | pStart = data->fcdPosition + 1; | |
1705 | } | |
1706 | ||
1707 | int32_t normLen = | |
1708 | data->nfd->normalize(UnicodeString(FALSE, pStart, (int32_t)((pEnd - pStart) + 1)), | |
1709 | data->writableBuffer, | |
1710 | status). | |
1711 | length(); | |
1712 | if(U_FAILURE(status)) { | |
1713 | return; | |
1714 | } | |
1715 | /* | |
1716 | this puts the null termination infront of the normalized string instead | |
1717 | of the end | |
1718 | */ | |
1719 | data->writableBuffer.insert(0, (UChar)0); | |
1720 | ||
1721 | /* | |
1722 | * The usual case at this point is that we've got a base | |
1723 | * character followed by marks that were normalized. If | |
1724 | * fcdPosition is NULL, that means that we backed up to | |
1725 | * the beginning of the string and there's no base character. | |
1726 | * | |
1727 | * Forward processing will usually normalize when it sees | |
1728 | * the first mark, so that mark will get it's natural offset | |
1729 | * and the rest will get the offset of the character following | |
1730 | * the marks. The base character will also get its natural offset. | |
1731 | * | |
1732 | * We write the offset of the base character, if there is one, | |
1733 | * followed by the offset of the first mark and then the offsets | |
1734 | * of the rest of the marks. | |
1735 | */ | |
1736 | int32_t firstMarkOffset = 0; | |
1737 | int32_t trailOffset = (int32_t)(data->pos - data->string + 1); | |
1738 | int32_t trailCount = normLen - 1; | |
1739 | ||
1740 | if (data->fcdPosition != NULL) { | |
1741 | int32_t baseOffset = (int32_t)(data->fcdPosition - data->string); | |
1742 | UChar baseChar = *data->fcdPosition; | |
1743 | ||
1744 | firstMarkOffset = baseOffset + 1; | |
1745 | ||
1746 | /* | |
1747 | * If the base character is the start of a contraction, forward processing | |
1748 | * will normalize the marks while checking for the contraction, which means | |
1749 | * that the offset of the first mark will the same as the other marks. | |
1750 | * | |
1751 | * **** THIS IS PROBABLY NOT A COMPLETE TEST **** | |
1752 | */ | |
1753 | if (baseChar >= 0x100) { | |
1754 | uint32_t baseOrder = UTRIE_GET32_FROM_LEAD(&data->coll->mapping, baseChar); | |
1755 | ||
1756 | if (baseOrder == UCOL_NOT_FOUND && data->coll->UCA) { | |
1757 | baseOrder = UTRIE_GET32_FROM_LEAD(&data->coll->UCA->mapping, baseChar); | |
1758 | } | |
1759 | ||
1760 | if (baseOrder > UCOL_NOT_FOUND && getCETag(baseOrder) == CONTRACTION_TAG) { | |
1761 | firstMarkOffset = trailOffset; | |
1762 | } | |
1763 | } | |
1764 | ||
1765 | data->appendOffset(baseOffset, status); | |
1766 | } | |
1767 | ||
1768 | data->appendOffset(firstMarkOffset, status); | |
1769 | ||
1770 | for (int32_t i = 0; i < trailCount; i += 1) { | |
1771 | data->appendOffset(trailOffset, status); | |
1772 | } | |
1773 | ||
1774 | data->offsetRepeatValue = trailOffset; | |
1775 | ||
1776 | data->offsetReturn = data->offsetStore - 1; | |
1777 | if (data->offsetReturn == data->offsetBuffer) { | |
1778 | data->offsetStore = data->offsetBuffer; | |
1779 | } | |
1780 | ||
1781 | data->pos = data->writableBuffer.getTerminatedBuffer() + 1 + normLen; | |
1782 | data->origFlags = data->flags; | |
1783 | data->flags |= UCOL_ITER_INNORMBUF; | |
1784 | data->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN); | |
1785 | } | |
1786 | ||
1787 | ||
1788 | /** | |
1789 | * Incremental FCD check for previous iteration and normalize. Called from | |
1790 | * getPrevCE when normalization state is suspect. | |
1791 | * When entering, the state is known to be this: | |
1792 | * o We are working in the main buffer of the collIterate, not the side | |
1793 | * writable buffer. When in the side buffer, normalization mode is always | |
1794 | * off, so we won't get here. | |
1795 | * o The leading combining class from the current character is 0 or the | |
1796 | * trailing combining class of the previous char was zero. | |
1797 | * True because the previous call to this function will have always exited | |
1798 | * that way, and we get called for every char where cc might be non-zero. | |
1799 | * @param data collation iterate struct | |
1800 | * @return normalization status, TRUE for normalization to be done, FALSE | |
1801 | * otherwise | |
1802 | */ | |
1803 | static | |
1804 | inline UBool collPrevIterFCD(collIterate *data) | |
1805 | { | |
1806 | const UChar *src, *start; | |
1807 | uint8_t leadingCC; | |
1808 | uint8_t trailingCC = 0; | |
1809 | uint16_t fcd; | |
1810 | UBool result = FALSE; | |
1811 | ||
1812 | start = data->string; | |
1813 | src = data->pos + 1; | |
1814 | ||
1815 | /* Get the trailing combining class of the current character. */ | |
1816 | fcd = g_nfcImpl->previousFCD16(start, src); | |
1817 | ||
1818 | leadingCC = (uint8_t)(fcd >> SECOND_LAST_BYTE_SHIFT_); | |
1819 | ||
1820 | if (leadingCC != 0) { | |
1821 | /* | |
1822 | The current char has a non-zero leading combining class. | |
1823 | Scan backward until we find a char with a trailing cc of zero. | |
1824 | */ | |
1825 | for (;;) | |
1826 | { | |
1827 | if (start == src) { | |
1828 | data->fcdPosition = NULL; | |
1829 | return result; | |
1830 | } | |
1831 | ||
1832 | fcd = g_nfcImpl->previousFCD16(start, src); | |
1833 | ||
1834 | trailingCC = (uint8_t)(fcd & LAST_BYTE_MASK_); | |
1835 | ||
1836 | if (trailingCC == 0) { | |
1837 | break; | |
1838 | } | |
1839 | ||
1840 | if (leadingCC < trailingCC) { | |
1841 | result = TRUE; | |
1842 | } | |
1843 | ||
1844 | leadingCC = (uint8_t)(fcd >> SECOND_LAST_BYTE_SHIFT_); | |
1845 | } | |
1846 | } | |
1847 | ||
1848 | data->fcdPosition = (UChar *)src; | |
1849 | ||
1850 | return result; | |
1851 | } | |
1852 | ||
1853 | /** gets a code unit from the string at a given offset | |
1854 | * Handles both normal and iterative cases. | |
1855 | * No error checking - caller beware! | |
1856 | */ | |
1857 | static inline | |
1858 | UChar peekCodeUnit(collIterate *source, int32_t offset) { | |
1859 | if(source->pos != NULL) { | |
1860 | return *(source->pos + offset); | |
1861 | } else if(source->iterator != NULL) { | |
1862 | UChar32 c; | |
1863 | if(offset != 0) { | |
1864 | source->iterator->move(source->iterator, offset, UITER_CURRENT); | |
1865 | c = source->iterator->next(source->iterator); | |
1866 | source->iterator->move(source->iterator, -offset-1, UITER_CURRENT); | |
1867 | } else { | |
1868 | c = source->iterator->current(source->iterator); | |
1869 | } | |
1870 | return c >= 0 ? (UChar)c : 0xfffd; // If the caller works properly, we should never see c<0. | |
1871 | } else { | |
1872 | return 0xfffd; | |
1873 | } | |
1874 | } | |
1875 | ||
1876 | // Code point version. Treats the offset as a _code point_ delta. | |
1877 | // We cannot use U16_FWD_1_UNSAFE and similar because we might not have well-formed UTF-16. | |
1878 | // We cannot use U16_FWD_1 and similar because we do not know the start and limit of the buffer. | |
1879 | static inline | |
1880 | UChar32 peekCodePoint(collIterate *source, int32_t offset) { | |
1881 | UChar32 c; | |
1882 | if(source->pos != NULL) { | |
1883 | const UChar *p = source->pos; | |
1884 | if(offset >= 0) { | |
1885 | // Skip forward over (offset-1) code points. | |
1886 | while(--offset >= 0) { | |
1887 | if(U16_IS_LEAD(*p++) && U16_IS_TRAIL(*p)) { | |
1888 | ++p; | |
1889 | } | |
1890 | } | |
1891 | // Read the code point there. | |
1892 | c = *p++; | |
1893 | UChar trail; | |
1894 | if(U16_IS_LEAD(c) && U16_IS_TRAIL(trail = *p)) { | |
1895 | c = U16_GET_SUPPLEMENTARY(c, trail); | |
1896 | } | |
1897 | } else /* offset<0 */ { | |
1898 | // Skip backward over (offset-1) code points. | |
1899 | while(++offset < 0) { | |
1900 | if(U16_IS_TRAIL(*--p) && U16_IS_LEAD(*(p - 1))) { | |
1901 | --p; | |
1902 | } | |
1903 | } | |
1904 | // Read the code point before that. | |
1905 | c = *--p; | |
1906 | UChar lead; | |
1907 | if(U16_IS_TRAIL(c) && U16_IS_LEAD(lead = *(p - 1))) { | |
1908 | c = U16_GET_SUPPLEMENTARY(lead, c); | |
1909 | } | |
1910 | } | |
1911 | } else if(source->iterator != NULL) { | |
1912 | if(offset >= 0) { | |
1913 | // Skip forward over (offset-1) code points. | |
1914 | int32_t fwd = offset; | |
1915 | while(fwd-- > 0) { | |
1916 | uiter_next32(source->iterator); | |
1917 | } | |
1918 | // Read the code point there. | |
1919 | c = uiter_current32(source->iterator); | |
1920 | // Return to the starting point, skipping backward over (offset-1) code points. | |
1921 | while(offset-- > 0) { | |
1922 | uiter_previous32(source->iterator); | |
1923 | } | |
1924 | } else /* offset<0 */ { | |
1925 | // Read backward, reading offset code points, remember only the last-read one. | |
1926 | int32_t back = offset; | |
1927 | do { | |
1928 | c = uiter_previous32(source->iterator); | |
1929 | } while(++back < 0); | |
1930 | // Return to the starting position, skipping forward over offset code points. | |
1931 | do { | |
1932 | uiter_next32(source->iterator); | |
1933 | } while(++offset < 0); | |
1934 | } | |
1935 | } else { | |
1936 | c = U_SENTINEL; | |
1937 | } | |
1938 | return c; | |
1939 | } | |
1940 | ||
1941 | /** | |
1942 | * Determines if we are at the start of the data string in the backwards | |
1943 | * collation iterator | |
1944 | * @param data collation iterator | |
1945 | * @return TRUE if we are at the start | |
1946 | */ | |
1947 | static | |
1948 | inline UBool isAtStartPrevIterate(collIterate *data) { | |
1949 | if(data->pos == NULL && data->iterator != NULL) { | |
1950 | return !data->iterator->hasPrevious(data->iterator); | |
1951 | } | |
1952 | //return (collIter_bos(data)) || | |
1953 | return (data->pos == data->string) || | |
1954 | ((data->flags & UCOL_ITER_INNORMBUF) && (data->pos != NULL) && | |
1955 | *(data->pos - 1) == 0 && data->fcdPosition == NULL); | |
1956 | } | |
1957 | ||
1958 | static | |
1959 | inline void goBackOne(collIterate *data) { | |
1960 | # if 0 | |
1961 | // somehow, it looks like we need to keep iterator synced up | |
1962 | // at all times, as above. | |
1963 | if(data->pos) { | |
1964 | data->pos--; | |
1965 | } | |
1966 | if(data->iterator) { | |
1967 | data->iterator->previous(data->iterator); | |
1968 | } | |
1969 | #endif | |
1970 | if(data->iterator && (data->flags & UCOL_USE_ITERATOR)) { | |
1971 | data->iterator->previous(data->iterator); | |
1972 | } | |
1973 | if(data->pos) { | |
1974 | data->pos --; | |
1975 | } | |
1976 | } | |
1977 | ||
1978 | /** | |
1979 | * Inline function that gets a simple CE. | |
1980 | * So what it does is that it will first check the expansion buffer. If the | |
1981 | * expansion buffer is not empty, ie the end pointer to the expansion buffer | |
1982 | * is different from the string pointer, we return the collation element at the | |
1983 | * return pointer and decrement it. | |
1984 | * For more complicated CEs it resorts to getComplicatedCE. | |
1985 | * @param coll collator data | |
1986 | * @param data collation iterator struct | |
1987 | * @param status error status | |
1988 | */ | |
1989 | static | |
1990 | inline uint32_t ucol_IGetPrevCE(const UCollator *coll, collIterate *data, | |
1991 | UErrorCode *status) | |
1992 | { | |
1993 | uint32_t result = (uint32_t)UCOL_NULLORDER; | |
1994 | ||
1995 | if (data->offsetReturn != NULL) { | |
1996 | if (data->offsetRepeatCount > 0) { | |
1997 | data->offsetRepeatCount -= 1; | |
1998 | } else { | |
1999 | if (data->offsetReturn == data->offsetBuffer) { | |
2000 | data->offsetReturn = NULL; | |
2001 | data->offsetStore = data->offsetBuffer; | |
2002 | } else { | |
2003 | data->offsetReturn -= 1; | |
2004 | } | |
2005 | } | |
2006 | } | |
2007 | ||
2008 | if ((data->extendCEs && data->toReturn > data->extendCEs) || | |
2009 | (!data->extendCEs && data->toReturn > data->CEs)) | |
2010 | { | |
2011 | data->toReturn -= 1; | |
2012 | result = *(data->toReturn); | |
2013 | if (data->CEs == data->toReturn || data->extendCEs == data->toReturn) { | |
2014 | data->CEpos = data->toReturn; | |
2015 | } | |
2016 | } | |
2017 | else { | |
2018 | UChar ch = 0; | |
2019 | ||
2020 | do { | |
2021 | /* | |
2022 | Loop handles case when incremental normalize switches to or from the | |
2023 | side buffer / original string, and we need to start again to get the | |
2024 | next character. | |
2025 | */ | |
2026 | for (;;) { | |
2027 | if (data->flags & UCOL_ITER_HASLEN) { | |
2028 | /* | |
2029 | Normal path for strings when length is specified. | |
2030 | Not in side buffer because it is always null terminated. | |
2031 | */ | |
2032 | if (data->pos <= data->string) { | |
2033 | /* End of the main source string */ | |
2034 | return UCOL_NO_MORE_CES; | |
2035 | } | |
2036 | data->pos --; | |
2037 | ch = *data->pos; | |
2038 | } | |
2039 | // we are using an iterator to go back. Pray for us! | |
2040 | else if (data->flags & UCOL_USE_ITERATOR) { | |
2041 | UChar32 iterCh = data->iterator->previous(data->iterator); | |
2042 | if(iterCh == U_SENTINEL) { | |
2043 | return UCOL_NO_MORE_CES; | |
2044 | } else { | |
2045 | ch = (UChar)iterCh; | |
2046 | } | |
2047 | } | |
2048 | else { | |
2049 | data->pos --; | |
2050 | ch = *data->pos; | |
2051 | /* we are in the side buffer. */ | |
2052 | if (ch == 0) { | |
2053 | /* | |
2054 | At the start of the normalize side buffer. | |
2055 | Go back to string. | |
2056 | Because pointer points to the last accessed character, | |
2057 | hence we have to increment it by one here. | |
2058 | */ | |
2059 | data->flags = data->origFlags; | |
2060 | data->offsetRepeatValue = 0; | |
2061 | ||
2062 | if (data->fcdPosition == NULL) { | |
2063 | data->pos = data->string; | |
2064 | return UCOL_NO_MORE_CES; | |
2065 | } | |
2066 | else { | |
2067 | data->pos = data->fcdPosition + 1; | |
2068 | } | |
2069 | ||
2070 | continue; | |
2071 | } | |
2072 | } | |
2073 | ||
2074 | if(data->flags&UCOL_HIRAGANA_Q) { | |
2075 | if(ch>=0x3040 && ch<=0x309f) { | |
2076 | data->flags |= UCOL_WAS_HIRAGANA; | |
2077 | } else { | |
2078 | data->flags &= ~UCOL_WAS_HIRAGANA; | |
2079 | } | |
2080 | } | |
2081 | ||
2082 | /* | |
2083 | * got a character to determine if there's fcd and/or normalization | |
2084 | * stuff to do. | |
2085 | * if the current character is not fcd. | |
2086 | * if current character is at the start of the string | |
2087 | * Trailing combining class == 0. | |
2088 | * Note if pos is in the writablebuffer, norm is always 0 | |
2089 | */ | |
2090 | if (ch < ZERO_CC_LIMIT_ || | |
2091 | // this should propel us out of the loop in the iterator case | |
2092 | (data->flags & UCOL_ITER_NORM) == 0 || | |
2093 | (data->fcdPosition != NULL && data->fcdPosition <= data->pos) | |
2094 | || data->string == data->pos) { | |
2095 | break; | |
2096 | } | |
2097 | ||
2098 | if (ch < NFC_ZERO_CC_BLOCK_LIMIT_) { | |
2099 | /* if next character is FCD */ | |
2100 | if (data->pos == data->string) { | |
2101 | /* First char of string is always OK for FCD check */ | |
2102 | break; | |
2103 | } | |
2104 | ||
2105 | /* Not first char of string, do the FCD fast test */ | |
2106 | if (*(data->pos - 1) < NFC_ZERO_CC_BLOCK_LIMIT_) { | |
2107 | break; | |
2108 | } | |
2109 | } | |
2110 | ||
2111 | /* Need a more complete FCD check and possible normalization. */ | |
2112 | if (collPrevIterFCD(data)) { | |
2113 | collPrevIterNormalize(data); | |
2114 | } | |
2115 | ||
2116 | if ((data->flags & UCOL_ITER_INNORMBUF) == 0) { | |
2117 | /* No normalization. Go ahead and process the char. */ | |
2118 | break; | |
2119 | } | |
2120 | ||
2121 | /* | |
2122 | Some normalization happened. | |
2123 | Next loop picks up a char from the normalization buffer. | |
2124 | */ | |
2125 | } | |
2126 | ||
2127 | /* attempt to handle contractions, after removal of the backwards | |
2128 | contraction | |
2129 | */ | |
2130 | if (ucol_contractionEndCP(ch, coll) && !isAtStartPrevIterate(data)) { | |
2131 | result = ucol_prv_getSpecialPrevCE(coll, ch, UCOL_CONTRACTION, data, status); | |
2132 | } else { | |
2133 | if (ch <= 0xFF) { | |
2134 | result = coll->latinOneMapping[ch]; | |
2135 | } | |
2136 | else { | |
2137 | // Always use UCA for [3400..9FFF], [AC00..D7AF] | |
2138 | // **** [FA0E..FA2F] ?? **** | |
2139 | if ((data->flags & UCOL_FORCE_HAN_IMPLICIT) != 0 && | |
2140 | (ch >= 0x3400 && ch <= 0xD7AF)) { | |
2141 | if (ch > 0x9FFF && ch < 0xAC00) { | |
2142 | // between the two target ranges; do normal lookup | |
2143 | // **** this range is YI, Modifier tone letters, **** | |
2144 | // **** Latin-D, Syloti Nagari, Phagas-pa. **** | |
2145 | // **** Latin-D might be tailored, so we need to **** | |
2146 | // **** do the normal lookup for these guys. **** | |
2147 | result = UTRIE_GET32_FROM_LEAD(&coll->mapping, ch); | |
2148 | } else { | |
2149 | result = UCOL_NOT_FOUND; | |
2150 | } | |
2151 | } else { | |
2152 | result = UTRIE_GET32_FROM_LEAD(&coll->mapping, ch); | |
2153 | } | |
2154 | } | |
2155 | if (result > UCOL_NOT_FOUND) { | |
2156 | result = ucol_prv_getSpecialPrevCE(coll, ch, result, data, status); | |
2157 | } | |
2158 | if (result == UCOL_NOT_FOUND) { // Not found in master list | |
2159 | if (!isAtStartPrevIterate(data) && | |
2160 | ucol_contractionEndCP(ch, data->coll)) | |
2161 | { | |
2162 | result = UCOL_CONTRACTION; | |
2163 | } else { | |
2164 | if(coll->UCA) { | |
2165 | result = UTRIE_GET32_FROM_LEAD(&coll->UCA->mapping, ch); | |
2166 | } | |
2167 | } | |
2168 | ||
2169 | if (result > UCOL_NOT_FOUND) { | |
2170 | if(coll->UCA) { | |
2171 | result = ucol_prv_getSpecialPrevCE(coll->UCA, ch, result, data, status); | |
2172 | } | |
2173 | } | |
2174 | } | |
2175 | } | |
2176 | } while ( result == UCOL_IGNORABLE && ch >= UCOL_FIRST_HANGUL && ch <= UCOL_LAST_HANGUL ); | |
2177 | ||
2178 | if(result == UCOL_NOT_FOUND) { | |
2179 | result = getPrevImplicit(ch, data); | |
2180 | } | |
2181 | } | |
2182 | ||
2183 | return result; | |
2184 | } | |
2185 | ||
2186 | ||
2187 | /* ucol_getPrevCE, out-of-line version for use from other files. */ | |
2188 | U_CFUNC uint32_t U_EXPORT2 | |
2189 | ucol_getPrevCE(const UCollator *coll, collIterate *data, | |
2190 | UErrorCode *status) { | |
2191 | return ucol_IGetPrevCE(coll, data, status); | |
2192 | } | |
2193 | ||
2194 | ||
2195 | /* this should be connected to special Jamo handling */ | |
2196 | U_CFUNC uint32_t U_EXPORT2 | |
2197 | ucol_getFirstCE(const UCollator *coll, UChar u, UErrorCode *status) { | |
2198 | collIterate colIt; | |
2199 | IInit_collIterate(coll, &u, 1, &colIt, status); | |
2200 | if(U_FAILURE(*status)) { | |
2201 | return 0; | |
2202 | } | |
2203 | return ucol_IGetNextCE(coll, &colIt, status); | |
2204 | } | |
2205 | ||
2206 | /** | |
2207 | * Inserts the argument character into the end of the buffer pushing back the | |
2208 | * null terminator. | |
2209 | * @param data collIterate struct data | |
2210 | * @param ch character to be appended | |
2211 | * @return the position of the new addition | |
2212 | */ | |
2213 | static | |
2214 | inline const UChar * insertBufferEnd(collIterate *data, UChar ch) | |
2215 | { | |
2216 | int32_t oldLength = data->writableBuffer.length(); | |
2217 | return data->writableBuffer.append(ch).getTerminatedBuffer() + oldLength; | |
2218 | } | |
2219 | ||
2220 | /** | |
2221 | * Inserts the argument string into the end of the buffer pushing back the | |
2222 | * null terminator. | |
2223 | * @param data collIterate struct data | |
2224 | * @param string to be appended | |
2225 | * @param length of the string to be appended | |
2226 | * @return the position of the new addition | |
2227 | */ | |
2228 | static | |
2229 | inline const UChar * insertBufferEnd(collIterate *data, const UChar *str, int32_t length) | |
2230 | { | |
2231 | int32_t oldLength = data->writableBuffer.length(); | |
2232 | return data->writableBuffer.append(str, length).getTerminatedBuffer() + oldLength; | |
2233 | } | |
2234 | ||
2235 | /** | |
2236 | * Special normalization function for contraction in the forwards iterator. | |
2237 | * This normalization sequence will place the current character at source->pos | |
2238 | * and its following normalized sequence into the buffer. | |
2239 | * The fcd position, pos will be changed. | |
2240 | * pos will now point to positions in the buffer. | |
2241 | * Flags will be changed accordingly. | |
2242 | * @param data collation iterator data | |
2243 | */ | |
2244 | static | |
2245 | inline void normalizeNextContraction(collIterate *data) | |
2246 | { | |
2247 | int32_t strsize; | |
2248 | UErrorCode status = U_ZERO_ERROR; | |
2249 | /* because the pointer points to the next character */ | |
2250 | const UChar *pStart = data->pos - 1; | |
2251 | const UChar *pEnd; | |
2252 | ||
2253 | if ((data->flags & UCOL_ITER_INNORMBUF) == 0) { | |
2254 | data->writableBuffer.setTo(*(pStart - 1)); | |
2255 | strsize = 1; | |
2256 | } | |
2257 | else { | |
2258 | strsize = data->writableBuffer.length(); | |
2259 | } | |
2260 | ||
2261 | pEnd = data->fcdPosition; | |
2262 | ||
2263 | data->writableBuffer.append( | |
2264 | data->nfd->normalize(UnicodeString(FALSE, pStart, (int32_t)(pEnd - pStart)), status)); | |
2265 | if(U_FAILURE(status)) { | |
2266 | return; | |
2267 | } | |
2268 | ||
2269 | data->pos = data->writableBuffer.getTerminatedBuffer() + strsize; | |
2270 | data->origFlags = data->flags; | |
2271 | data->flags |= UCOL_ITER_INNORMBUF; | |
2272 | data->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN); | |
2273 | } | |
2274 | ||
2275 | /** | |
2276 | * Contraction character management function that returns the next character | |
2277 | * for the forwards iterator. | |
2278 | * Does nothing if the next character is in buffer and not the first character | |
2279 | * in it. | |
2280 | * Else it checks next character in data string to see if it is normalizable. | |
2281 | * If it is not, the character is simply copied into the buffer, else | |
2282 | * the whole normalized substring is copied into the buffer, including the | |
2283 | * current character. | |
2284 | * @param data collation element iterator data | |
2285 | * @return next character | |
2286 | */ | |
2287 | static | |
2288 | inline UChar getNextNormalizedChar(collIterate *data) | |
2289 | { | |
2290 | UChar nextch; | |
2291 | UChar ch; | |
2292 | // Here we need to add the iterator code. One problem is the way | |
2293 | // end of string is handled. If we just return next char, it could | |
2294 | // be the sentinel. Most of the cases already check for this, but we | |
2295 | // need to be sure. | |
2296 | if ((data->flags & (UCOL_ITER_NORM | UCOL_ITER_INNORMBUF)) == 0 ) { | |
2297 | /* if no normalization and not in buffer. */ | |
2298 | if(data->flags & UCOL_USE_ITERATOR) { | |
2299 | return (UChar)data->iterator->next(data->iterator); | |
2300 | } else { | |
2301 | return *(data->pos ++); | |
2302 | } | |
2303 | } | |
2304 | ||
2305 | //if (data->flags & UCOL_ITER_NORM && data->flags & UCOL_USE_ITERATOR) { | |
2306 | //normalizeIterator(data); | |
2307 | //} | |
2308 | ||
2309 | UBool innormbuf = (UBool)(data->flags & UCOL_ITER_INNORMBUF); | |
2310 | if ((innormbuf && *data->pos != 0) || | |
2311 | (data->fcdPosition != NULL && !innormbuf && | |
2312 | data->pos < data->fcdPosition)) { | |
2313 | /* | |
2314 | if next character is in normalized buffer, no further normalization | |
2315 | is required | |
2316 | */ | |
2317 | return *(data->pos ++); | |
2318 | } | |
2319 | ||
2320 | if (data->flags & UCOL_ITER_HASLEN) { | |
2321 | /* in data string */ | |
2322 | if (data->pos + 1 == data->endp) { | |
2323 | return *(data->pos ++); | |
2324 | } | |
2325 | } | |
2326 | else { | |
2327 | if (innormbuf) { | |
2328 | // inside the normalization buffer, but at the end | |
2329 | // (since we encountered zero). This means, in the | |
2330 | // case we're using char iterator, that we need to | |
2331 | // do another round of normalization. | |
2332 | //if(data->origFlags & UCOL_USE_ITERATOR) { | |
2333 | // we need to restore original flags, | |
2334 | // otherwise, we'll lose them | |
2335 | //data->flags = data->origFlags; | |
2336 | //normalizeIterator(data); | |
2337 | //return *(data->pos++); | |
2338 | //} else { | |
2339 | /* | |
2340 | in writable buffer, at this point fcdPosition can not be | |
2341 | pointing to the end of the data string. see contracting tag. | |
2342 | */ | |
2343 | if(data->fcdPosition) { | |
2344 | if (*(data->fcdPosition + 1) == 0 || | |
2345 | data->fcdPosition + 1 == data->endp) { | |
2346 | /* at the end of the string, dump it into the normalizer */ | |
2347 | data->pos = insertBufferEnd(data, *(data->fcdPosition)) + 1; | |
2348 | // Check if data->pos received a null pointer | |
2349 | if (data->pos == NULL) { | |
2350 | return (UChar)-1; // Return to indicate error. | |
2351 | } | |
2352 | return *(data->fcdPosition ++); | |
2353 | } | |
2354 | data->pos = data->fcdPosition; | |
2355 | } else if(data->origFlags & UCOL_USE_ITERATOR) { | |
2356 | // if we are here, we're using a normalizing iterator. | |
2357 | // we should just continue further. | |
2358 | data->flags = data->origFlags; | |
2359 | data->pos = NULL; | |
2360 | return (UChar)data->iterator->next(data->iterator); | |
2361 | } | |
2362 | //} | |
2363 | } | |
2364 | else { | |
2365 | if (*(data->pos + 1) == 0) { | |
2366 | return *(data->pos ++); | |
2367 | } | |
2368 | } | |
2369 | } | |
2370 | ||
2371 | ch = *data->pos ++; | |
2372 | nextch = *data->pos; | |
2373 | ||
2374 | /* | |
2375 | * if the current character is not fcd. | |
2376 | * Trailing combining class == 0. | |
2377 | */ | |
2378 | if ((data->fcdPosition == NULL || data->fcdPosition < data->pos) && | |
2379 | (nextch >= NFC_ZERO_CC_BLOCK_LIMIT_ || | |
2380 | ch >= NFC_ZERO_CC_BLOCK_LIMIT_)) { | |
2381 | /* | |
2382 | Need a more complete FCD check and possible normalization. | |
2383 | normalize substring will be appended to buffer | |
2384 | */ | |
2385 | if (collIterFCD(data)) { | |
2386 | normalizeNextContraction(data); | |
2387 | return *(data->pos ++); | |
2388 | } | |
2389 | else if (innormbuf) { | |
2390 | /* fcdposition shifted even when there's no normalization, if we | |
2391 | don't input the rest into this, we'll get the wrong position when | |
2392 | we reach the end of the writableBuffer */ | |
2393 | int32_t length = (int32_t)(data->fcdPosition - data->pos + 1); | |
2394 | data->pos = insertBufferEnd(data, data->pos - 1, length); | |
2395 | // Check if data->pos received a null pointer | |
2396 | if (data->pos == NULL) { | |
2397 | return (UChar)-1; // Return to indicate error. | |
2398 | } | |
2399 | return *(data->pos ++); | |
2400 | } | |
2401 | } | |
2402 | ||
2403 | if (innormbuf) { | |
2404 | /* | |
2405 | no normalization is to be done hence only one character will be | |
2406 | appended to the buffer. | |
2407 | */ | |
2408 | data->pos = insertBufferEnd(data, ch) + 1; | |
2409 | // Check if data->pos received a null pointer | |
2410 | if (data->pos == NULL) { | |
2411 | return (UChar)-1; // Return to indicate error. | |
2412 | } | |
2413 | } | |
2414 | ||
2415 | /* points back to the pos in string */ | |
2416 | return ch; | |
2417 | } | |
2418 | ||
2419 | ||
2420 | ||
2421 | /** | |
2422 | * Function to copy the buffer into writableBuffer and sets the fcd position to | |
2423 | * the correct position | |
2424 | * @param source data string source | |
2425 | * @param buffer character buffer | |
2426 | */ | |
2427 | static | |
2428 | inline void setDiscontiguosAttribute(collIterate *source, const UnicodeString &buffer) | |
2429 | { | |
2430 | /* okay confusing part here. to ensure that the skipped characters are | |
2431 | considered later, we need to place it in the appropriate position in the | |
2432 | normalization buffer and reassign the pos pointer. simple case if pos | |
2433 | reside in string, simply copy to normalization buffer and | |
2434 | fcdposition = pos, pos = start of normalization buffer. if pos in | |
2435 | normalization buffer, we'll insert the copy infront of pos and point pos | |
2436 | to the start of the normalization buffer. why am i doing these copies? | |
2437 | well, so that the whole chunk of codes in the getNextCE, ucol_prv_getSpecialCE does | |
2438 | not require any changes, which be really painful. */ | |
2439 | if (source->flags & UCOL_ITER_INNORMBUF) { | |
2440 | int32_t replaceLength = source->pos - source->writableBuffer.getBuffer(); | |
2441 | source->writableBuffer.replace(0, replaceLength, buffer); | |
2442 | } | |
2443 | else { | |
2444 | source->fcdPosition = source->pos; | |
2445 | source->origFlags = source->flags; | |
2446 | source->flags |= UCOL_ITER_INNORMBUF; | |
2447 | source->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN | UCOL_USE_ITERATOR); | |
2448 | source->writableBuffer = buffer; | |
2449 | } | |
2450 | ||
2451 | source->pos = source->writableBuffer.getTerminatedBuffer(); | |
2452 | } | |
2453 | ||
2454 | /** | |
2455 | * Function to get the discontiguos collation element within the source. | |
2456 | * Note this function will set the position to the appropriate places. | |
2457 | * @param coll current collator used | |
2458 | * @param source data string source | |
2459 | * @param constart index to the start character in the contraction table | |
2460 | * @return discontiguos collation element offset | |
2461 | */ | |
2462 | static | |
2463 | uint32_t getDiscontiguous(const UCollator *coll, collIterate *source, | |
2464 | const UChar *constart) | |
2465 | { | |
2466 | /* source->pos currently points to the second combining character after | |
2467 | the start character */ | |
2468 | const UChar *temppos = source->pos; | |
2469 | UnicodeString buffer; | |
2470 | const UChar *tempconstart = constart; | |
2471 | uint8_t tempflags = source->flags; | |
2472 | UBool multicontraction = FALSE; | |
2473 | collIterateState discState; | |
2474 | ||
2475 | backupState(source, &discState); | |
2476 | ||
2477 | buffer.setTo(peekCodePoint(source, -1)); | |
2478 | for (;;) { | |
2479 | UChar *UCharOffset; | |
2480 | UChar schar, | |
2481 | tchar; | |
2482 | uint32_t result; | |
2483 | ||
2484 | if (((source->flags & UCOL_ITER_HASLEN) && source->pos >= source->endp) | |
2485 | || (peekCodeUnit(source, 0) == 0 && | |
2486 | //|| (*source->pos == 0 && | |
2487 | ((source->flags & UCOL_ITER_INNORMBUF) == 0 || | |
2488 | source->fcdPosition == NULL || | |
2489 | source->fcdPosition == source->endp || | |
2490 | *(source->fcdPosition) == 0 || | |
2491 | u_getCombiningClass(*(source->fcdPosition)) == 0)) || | |
2492 | /* end of string in null terminated string or stopped by a | |
2493 | null character, note fcd does not always point to a base | |
2494 | character after the discontiguos change */ | |
2495 | u_getCombiningClass(peekCodePoint(source, 0)) == 0) { | |
2496 | //u_getCombiningClass(*(source->pos)) == 0) { | |
2497 | //constart = (UChar *)coll->image + getContractOffset(CE); | |
2498 | if (multicontraction) { | |
2499 | source->pos = temppos - 1; | |
2500 | setDiscontiguosAttribute(source, buffer); | |
2501 | return *(coll->contractionCEs + | |
2502 | (tempconstart - coll->contractionIndex)); | |
2503 | } | |
2504 | constart = tempconstart; | |
2505 | break; | |
2506 | } | |
2507 | ||
2508 | UCharOffset = (UChar *)(tempconstart + 1); /* skip the backward offset*/ | |
2509 | schar = getNextNormalizedChar(source); | |
2510 | ||
2511 | while (schar > (tchar = *UCharOffset)) { | |
2512 | UCharOffset++; | |
2513 | } | |
2514 | ||
2515 | if (schar != tchar) { | |
2516 | /* not the correct codepoint. we stuff the current codepoint into | |
2517 | the discontiguos buffer and try the next character */ | |
2518 | buffer.append(schar); | |
2519 | continue; | |
2520 | } | |
2521 | else { | |
2522 | if (u_getCombiningClass(schar) == | |
2523 | u_getCombiningClass(peekCodePoint(source, -2))) { | |
2524 | buffer.append(schar); | |
2525 | continue; | |
2526 | } | |
2527 | result = *(coll->contractionCEs + | |
2528 | (UCharOffset - coll->contractionIndex)); | |
2529 | } | |
2530 | ||
2531 | if (result == UCOL_NOT_FOUND) { | |
2532 | break; | |
2533 | } else if (isContraction(result)) { | |
2534 | /* this is a multi-contraction*/ | |
2535 | tempconstart = (UChar *)coll->image + getContractOffset(result); | |
2536 | if (*(coll->contractionCEs + (constart - coll->contractionIndex)) | |
2537 | != UCOL_NOT_FOUND) { | |
2538 | multicontraction = TRUE; | |
2539 | temppos = source->pos + 1; | |
2540 | } | |
2541 | } else { | |
2542 | setDiscontiguosAttribute(source, buffer); | |
2543 | return result; | |
2544 | } | |
2545 | } | |
2546 | ||
2547 | /* no problems simply reverting just like that, | |
2548 | if we are in string before getting into this function, points back to | |
2549 | string hence no problem. | |
2550 | if we are in normalization buffer before getting into this function, | |
2551 | since we'll never use another normalization within this function, we | |
2552 | know that fcdposition points to a base character. the normalization buffer | |
2553 | never change, hence this revert works. */ | |
2554 | loadState(source, &discState, TRUE); | |
2555 | goBackOne(source); | |
2556 | ||
2557 | //source->pos = temppos - 1; | |
2558 | source->flags = tempflags; | |
2559 | return *(coll->contractionCEs + (constart - coll->contractionIndex)); | |
2560 | } | |
2561 | ||
2562 | /* now uses Mark's getImplicitPrimary code */ | |
2563 | static | |
2564 | inline uint32_t getImplicit(UChar32 cp, collIterate *collationSource) { | |
2565 | uint32_t r = uprv_uca_getImplicitPrimary(cp); | |
2566 | *(collationSource->CEpos++) = ((r & 0x0000FFFF)<<16) | 0x000000C0; | |
2567 | collationSource->offsetRepeatCount += 1; | |
2568 | return (r & UCOL_PRIMARYMASK) | 0x00000505; // This was 'order' | |
2569 | } | |
2570 | ||
2571 | /** | |
2572 | * Inserts the argument character into the front of the buffer replacing the | |
2573 | * front null terminator. | |
2574 | * @param data collation element iterator data | |
2575 | * @param ch character to be appended | |
2576 | */ | |
2577 | static | |
2578 | inline void insertBufferFront(collIterate *data, UChar ch) | |
2579 | { | |
2580 | data->pos = data->writableBuffer.setCharAt(0, ch).insert(0, (UChar)0).getTerminatedBuffer() + 2; | |
2581 | } | |
2582 | ||
2583 | /** | |
2584 | * Special normalization function for contraction in the previous iterator. | |
2585 | * This normalization sequence will place the current character at source->pos | |
2586 | * and its following normalized sequence into the buffer. | |
2587 | * The fcd position, pos will be changed. | |
2588 | * pos will now point to positions in the buffer. | |
2589 | * Flags will be changed accordingly. | |
2590 | * @param data collation iterator data | |
2591 | */ | |
2592 | static | |
2593 | inline void normalizePrevContraction(collIterate *data, UErrorCode *status) | |
2594 | { | |
2595 | const UChar *pEnd = data->pos + 1; /* End normalize + 1 */ | |
2596 | const UChar *pStart; | |
2597 | ||
2598 | UnicodeString endOfBuffer; | |
2599 | if (data->flags & UCOL_ITER_HASLEN) { | |
2600 | /* | |
2601 | normalization buffer not used yet, we'll pull down the next | |
2602 | character into the end of the buffer | |
2603 | */ | |
2604 | endOfBuffer.setTo(*pEnd); | |
2605 | } | |
2606 | else { | |
2607 | endOfBuffer.setTo(data->writableBuffer, 1); // after the leading NUL | |
2608 | } | |
2609 | ||
2610 | if (data->fcdPosition == NULL) { | |
2611 | pStart = data->string; | |
2612 | } | |
2613 | else { | |
2614 | pStart = data->fcdPosition + 1; | |
2615 | } | |
2616 | int32_t normLen = | |
2617 | data->nfd->normalize(UnicodeString(FALSE, pStart, (int32_t)(pEnd - pStart)), | |
2618 | data->writableBuffer, | |
2619 | *status). | |
2620 | length(); | |
2621 | if(U_FAILURE(*status)) { | |
2622 | return; | |
2623 | } | |
2624 | /* | |
2625 | this puts the null termination infront of the normalized string instead | |
2626 | of the end | |
2627 | */ | |
2628 | data->pos = | |
2629 | data->writableBuffer.insert(0, (UChar)0).append(endOfBuffer).getTerminatedBuffer() + | |
2630 | 1 + normLen; | |
2631 | data->origFlags = data->flags; | |
2632 | data->flags |= UCOL_ITER_INNORMBUF; | |
2633 | data->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN); | |
2634 | } | |
2635 | ||
2636 | /** | |
2637 | * Contraction character management function that returns the previous character | |
2638 | * for the backwards iterator. | |
2639 | * Does nothing if the previous character is in buffer and not the first | |
2640 | * character in it. | |
2641 | * Else it checks previous character in data string to see if it is | |
2642 | * normalizable. | |
2643 | * If it is not, the character is simply copied into the buffer, else | |
2644 | * the whole normalized substring is copied into the buffer, including the | |
2645 | * current character. | |
2646 | * @param data collation element iterator data | |
2647 | * @return previous character | |
2648 | */ | |
2649 | static | |
2650 | inline UChar getPrevNormalizedChar(collIterate *data, UErrorCode *status) | |
2651 | { | |
2652 | UChar prevch; | |
2653 | UChar ch; | |
2654 | const UChar *start; | |
2655 | UBool innormbuf = (UBool)(data->flags & UCOL_ITER_INNORMBUF); | |
2656 | if ((data->flags & (UCOL_ITER_NORM | UCOL_ITER_INNORMBUF)) == 0 || | |
2657 | (innormbuf && *(data->pos - 1) != 0)) { | |
2658 | /* | |
2659 | if no normalization. | |
2660 | if previous character is in normalized buffer, no further normalization | |
2661 | is required | |
2662 | */ | |
2663 | if(data->flags & UCOL_USE_ITERATOR) { | |
2664 | data->iterator->move(data->iterator, -1, UITER_CURRENT); | |
2665 | return (UChar)data->iterator->next(data->iterator); | |
2666 | } else { | |
2667 | return *(data->pos - 1); | |
2668 | } | |
2669 | } | |
2670 | ||
2671 | start = data->pos; | |
2672 | if ((data->fcdPosition==NULL)||(data->flags & UCOL_ITER_HASLEN)) { | |
2673 | /* in data string */ | |
2674 | if ((start - 1) == data->string) { | |
2675 | return *(start - 1); | |
2676 | } | |
2677 | start --; | |
2678 | ch = *start; | |
2679 | prevch = *(start - 1); | |
2680 | } | |
2681 | else { | |
2682 | /* | |
2683 | in writable buffer, at this point fcdPosition can not be NULL. | |
2684 | see contracting tag. | |
2685 | */ | |
2686 | if (data->fcdPosition == data->string) { | |
2687 | /* at the start of the string, just dump it into the normalizer */ | |
2688 | insertBufferFront(data, *(data->fcdPosition)); | |
2689 | data->fcdPosition = NULL; | |
2690 | return *(data->pos - 1); | |
2691 | } | |
2692 | start = data->fcdPosition; | |
2693 | ch = *start; | |
2694 | prevch = *(start - 1); | |
2695 | } | |
2696 | /* | |
2697 | * if the current character is not fcd. | |
2698 | * Trailing combining class == 0. | |
2699 | */ | |
2700 | if (data->fcdPosition > start && | |
2701 | (ch >= NFC_ZERO_CC_BLOCK_LIMIT_ || prevch >= NFC_ZERO_CC_BLOCK_LIMIT_)) | |
2702 | { | |
2703 | /* | |
2704 | Need a more complete FCD check and possible normalization. | |
2705 | normalize substring will be appended to buffer | |
2706 | */ | |
2707 | const UChar *backuppos = data->pos; | |
2708 | data->pos = start; | |
2709 | if (collPrevIterFCD(data)) { | |
2710 | normalizePrevContraction(data, status); | |
2711 | return *(data->pos - 1); | |
2712 | } | |
2713 | data->pos = backuppos; | |
2714 | data->fcdPosition ++; | |
2715 | } | |
2716 | ||
2717 | if (innormbuf) { | |
2718 | /* | |
2719 | no normalization is to be done hence only one character will be | |
2720 | appended to the buffer. | |
2721 | */ | |
2722 | insertBufferFront(data, ch); | |
2723 | data->fcdPosition --; | |
2724 | } | |
2725 | ||
2726 | return ch; | |
2727 | } | |
2728 | ||
2729 | /* This function handles the special CEs like contractions, expansions, surrogates, Thai */ | |
2730 | /* It is called by getNextCE */ | |
2731 | ||
2732 | /* The following should be even */ | |
2733 | #define UCOL_MAX_DIGITS_FOR_NUMBER 254 | |
2734 | ||
2735 | uint32_t ucol_prv_getSpecialCE(const UCollator *coll, UChar ch, uint32_t CE, collIterate *source, UErrorCode *status) { | |
2736 | collIterateState entryState; | |
2737 | backupState(source, &entryState); | |
2738 | UChar32 cp = ch; | |
2739 | ||
2740 | for (;;) { | |
2741 | // This loop will repeat only in the case of contractions, and only when a contraction | |
2742 | // is found and the first CE resulting from that contraction is itself a special | |
2743 | // (an expansion, for example.) All other special CE types are fully handled the | |
2744 | // first time through, and the loop exits. | |
2745 | ||
2746 | const uint32_t *CEOffset = NULL; | |
2747 | switch(getCETag(CE)) { | |
2748 | case NOT_FOUND_TAG: | |
2749 | /* This one is not found, and we'll let somebody else bother about it... no more games */ | |
2750 | return CE; | |
2751 | case SPEC_PROC_TAG: | |
2752 | { | |
2753 | // Special processing is getting a CE that is preceded by a certain prefix | |
2754 | // Currently this is only needed for optimizing Japanese length and iteration marks. | |
2755 | // When we encouter a special processing tag, we go backwards and try to see if | |
2756 | // we have a match. | |
2757 | // Contraction tables are used - so the whole process is not unlike contraction. | |
2758 | // prefix data is stored backwards in the table. | |
2759 | const UChar *UCharOffset; | |
2760 | UChar schar, tchar; | |
2761 | collIterateState prefixState; | |
2762 | backupState(source, &prefixState); | |
2763 | loadState(source, &entryState, TRUE); | |
2764 | goBackOne(source); // We want to look at the point where we entered - actually one | |
2765 | // before that... | |
2766 | ||
2767 | for(;;) { | |
2768 | // This loop will run once per source string character, for as long as we | |
2769 | // are matching a potential contraction sequence | |
2770 | ||
2771 | // First we position ourselves at the begining of contraction sequence | |
2772 | const UChar *ContractionStart = UCharOffset = (UChar *)coll->image+getContractOffset(CE); | |
2773 | if (collIter_bos(source)) { | |
2774 | CE = *(coll->contractionCEs + (UCharOffset - coll->contractionIndex)); | |
2775 | break; | |
2776 | } | |
2777 | schar = getPrevNormalizedChar(source, status); | |
2778 | goBackOne(source); | |
2779 | ||
2780 | while(schar > (tchar = *UCharOffset)) { /* since the contraction codepoints should be ordered, we skip all that are smaller */ | |
2781 | UCharOffset++; | |
2782 | } | |
2783 | ||
2784 | if (schar == tchar) { | |
2785 | // Found the source string char in the table. | |
2786 | // Pick up the corresponding CE from the table. | |
2787 | CE = *(coll->contractionCEs + | |
2788 | (UCharOffset - coll->contractionIndex)); | |
2789 | } | |
2790 | else | |
2791 | { | |
2792 | // Source string char was not in the table. | |
2793 | // We have not found the prefix. | |
2794 | CE = *(coll->contractionCEs + | |
2795 | (ContractionStart - coll->contractionIndex)); | |
2796 | } | |
2797 | ||
2798 | if(!isPrefix(CE)) { | |
2799 | // The source string char was in the contraction table, and the corresponding | |
2800 | // CE is not a prefix CE. We found the prefix, break | |
2801 | // out of loop, this CE will end up being returned. This is the normal | |
2802 | // way out of prefix handling when the source actually contained | |
2803 | // the prefix. | |
2804 | break; | |
2805 | } | |
2806 | } | |
2807 | if(CE != UCOL_NOT_FOUND) { // we found something and we can merilly continue | |
2808 | loadState(source, &prefixState, TRUE); | |
2809 | if(source->origFlags & UCOL_USE_ITERATOR) { | |
2810 | source->flags = source->origFlags; | |
2811 | } | |
2812 | } else { // prefix search was a failure, we have to backup all the way to the start | |
2813 | loadState(source, &entryState, TRUE); | |
2814 | } | |
2815 | break; | |
2816 | } | |
2817 | case CONTRACTION_TAG: | |
2818 | { | |
2819 | /* This should handle contractions */ | |
2820 | collIterateState state; | |
2821 | backupState(source, &state); | |
2822 | uint32_t firstCE = *(coll->contractionCEs + ((UChar *)coll->image+getContractOffset(CE) - coll->contractionIndex)); //UCOL_NOT_FOUND; | |
2823 | const UChar *UCharOffset; | |
2824 | UChar schar, tchar; | |
2825 | ||
2826 | for (;;) { | |
2827 | /* This loop will run once per source string character, for as long as we */ | |
2828 | /* are matching a potential contraction sequence */ | |
2829 | ||
2830 | /* First we position ourselves at the begining of contraction sequence */ | |
2831 | const UChar *ContractionStart = UCharOffset = (UChar *)coll->image+getContractOffset(CE); | |
2832 | ||
2833 | if (collIter_eos(source)) { | |
2834 | // Ran off the end of the source string. | |
2835 | CE = *(coll->contractionCEs + (UCharOffset - coll->contractionIndex)); | |
2836 | // So we'll pick whatever we have at the point... | |
2837 | if (CE == UCOL_NOT_FOUND) { | |
2838 | // back up the source over all the chars we scanned going into this contraction. | |
2839 | CE = firstCE; | |
2840 | loadState(source, &state, TRUE); | |
2841 | if(source->origFlags & UCOL_USE_ITERATOR) { | |
2842 | source->flags = source->origFlags; | |
2843 | } | |
2844 | } | |
2845 | break; | |
2846 | } | |
2847 | ||
2848 | uint8_t maxCC = (uint8_t)(*(UCharOffset)&0xFF); /*get the discontiguos stuff */ /* skip the backward offset, see above */ | |
2849 | uint8_t allSame = (uint8_t)(*(UCharOffset++)>>8); | |
2850 | ||
2851 | schar = getNextNormalizedChar(source); | |
2852 | while(schar > (tchar = *UCharOffset)) { /* since the contraction codepoints should be ordered, we skip all that are smaller */ | |
2853 | UCharOffset++; | |
2854 | } | |
2855 | ||
2856 | if (schar == tchar) { | |
2857 | // Found the source string char in the contraction table. | |
2858 | // Pick up the corresponding CE from the table. | |
2859 | CE = *(coll->contractionCEs + | |
2860 | (UCharOffset - coll->contractionIndex)); | |
2861 | } | |
2862 | else | |
2863 | { | |
2864 | // Source string char was not in contraction table. | |
2865 | // Unless we have a discontiguous contraction, we have finished | |
2866 | // with this contraction. | |
2867 | // in order to do the proper detection, we | |
2868 | // need to see if we're dealing with a supplementary | |
2869 | /* We test whether the next two char are surrogate pairs. | |
2870 | * This test is done if the iterator is not NULL. | |
2871 | * If there is no surrogate pair, the iterator | |
2872 | * goes back one if needed. */ | |
2873 | UChar32 miss = schar; | |
2874 | if (source->iterator) { | |
2875 | UChar32 surrNextChar; /* the next char in the iteration to test */ | |
2876 | int32_t prevPos; /* holds the previous position before move forward of the source iterator */ | |
2877 | if(U16_IS_LEAD(schar) && source->iterator->hasNext(source->iterator)) { | |
2878 | prevPos = source->iterator->index; | |
2879 | surrNextChar = getNextNormalizedChar(source); | |
2880 | if (U16_IS_TRAIL(surrNextChar)) { | |
2881 | miss = U16_GET_SUPPLEMENTARY(schar, surrNextChar); | |
2882 | } else if (prevPos < source->iterator->index){ | |
2883 | goBackOne(source); | |
2884 | } | |
2885 | } | |
2886 | } else if (U16_IS_LEAD(schar)) { | |
2887 | miss = U16_GET_SUPPLEMENTARY(schar, getNextNormalizedChar(source)); | |
2888 | } | |
2889 | ||
2890 | uint8_t sCC; | |
2891 | if (miss < 0x300 || | |
2892 | maxCC == 0 || | |
2893 | (sCC = i_getCombiningClass(miss, coll)) == 0 || | |
2894 | sCC>maxCC || | |
2895 | (allSame != 0 && sCC == maxCC) || | |
2896 | collIter_eos(source)) | |
2897 | { | |
2898 | // Contraction can not be discontiguous. | |
2899 | goBackOne(source); // back up the source string by one, | |
2900 | // because the character we just looked at was | |
2901 | // not part of the contraction. */ | |
2902 | if(U_IS_SUPPLEMENTARY(miss)) { | |
2903 | goBackOne(source); | |
2904 | } | |
2905 | CE = *(coll->contractionCEs + | |
2906 | (ContractionStart - coll->contractionIndex)); | |
2907 | } else { | |
2908 | // | |
2909 | // Contraction is possibly discontiguous. | |
2910 | // Scan more of source string looking for a match | |
2911 | // | |
2912 | UChar tempchar; | |
2913 | /* find the next character if schar is not a base character | |
2914 | and we are not yet at the end of the string */ | |
2915 | tempchar = getNextNormalizedChar(source); | |
2916 | // probably need another supplementary thingie here | |
2917 | goBackOne(source); | |
2918 | if (i_getCombiningClass(tempchar, coll) == 0) { | |
2919 | goBackOne(source); | |
2920 | if(U_IS_SUPPLEMENTARY(miss)) { | |
2921 | goBackOne(source); | |
2922 | } | |
2923 | /* Spit out the last char of the string, wasn't tasty enough */ | |
2924 | CE = *(coll->contractionCEs + | |
2925 | (ContractionStart - coll->contractionIndex)); | |
2926 | } else { | |
2927 | CE = getDiscontiguous(coll, source, ContractionStart); | |
2928 | } | |
2929 | } | |
2930 | } // else after if(schar == tchar) | |
2931 | ||
2932 | if(CE == UCOL_NOT_FOUND) { | |
2933 | /* The Source string did not match the contraction that we were checking. */ | |
2934 | /* Back up the source position to undo the effects of having partially */ | |
2935 | /* scanned through what ultimately proved to not be a contraction. */ | |
2936 | loadState(source, &state, TRUE); | |
2937 | CE = firstCE; | |
2938 | break; | |
2939 | } | |
2940 | ||
2941 | if(!isContraction(CE)) { | |
2942 | // The source string char was in the contraction table, and the corresponding | |
2943 | // CE is not a contraction CE. We completed the contraction, break | |
2944 | // out of loop, this CE will end up being returned. This is the normal | |
2945 | // way out of contraction handling when the source actually contained | |
2946 | // the contraction. | |
2947 | break; | |
2948 | } | |
2949 | ||
2950 | ||
2951 | // The source string char was in the contraction table, and the corresponding | |
2952 | // CE is IS a contraction CE. We will continue looping to check the source | |
2953 | // string for the remaining chars in the contraction. | |
2954 | uint32_t tempCE = *(coll->contractionCEs + (ContractionStart - coll->contractionIndex)); | |
2955 | if(tempCE != UCOL_NOT_FOUND) { | |
2956 | // We have scanned a a section of source string for which there is a | |
2957 | // CE from the contraction table. Remember the CE and scan position, so | |
2958 | // that we can return to this point if further scanning fails to | |
2959 | // match a longer contraction sequence. | |
2960 | firstCE = tempCE; | |
2961 | ||
2962 | goBackOne(source); | |
2963 | backupState(source, &state); | |
2964 | getNextNormalizedChar(source); | |
2965 | ||
2966 | // Another way to do this is: | |
2967 | //collIterateState tempState; | |
2968 | //backupState(source, &tempState); | |
2969 | //goBackOne(source); | |
2970 | //backupState(source, &state); | |
2971 | //loadState(source, &tempState, TRUE); | |
2972 | ||
2973 | // The problem is that for incomplete contractions we have to remember the previous | |
2974 | // position. Before, the only thing I needed to do was state.pos--; | |
2975 | // After iterator introduction and especially after introduction of normalizing | |
2976 | // iterators, it became much more difficult to decrease the saved state. | |
2977 | // I'm not yet sure which of the two methods above is faster. | |
2978 | } | |
2979 | } // for(;;) | |
2980 | break; | |
2981 | } // case CONTRACTION_TAG: | |
2982 | case LONG_PRIMARY_TAG: | |
2983 | { | |
2984 | *(source->CEpos++) = ((CE & 0xFF)<<24)|UCOL_CONTINUATION_MARKER; | |
2985 | CE = ((CE & 0xFFFF00) << 8) | (UCOL_BYTE_COMMON << 8) | UCOL_BYTE_COMMON; | |
2986 | source->offsetRepeatCount += 1; | |
2987 | return CE; | |
2988 | } | |
2989 | case EXPANSION_TAG: | |
2990 | { | |
2991 | /* This should handle expansion. */ | |
2992 | /* NOTE: we can encounter both continuations and expansions in an expansion! */ | |
2993 | /* I have to decide where continuations are going to be dealt with */ | |
2994 | uint32_t size; | |
2995 | uint32_t i; /* general counter */ | |
2996 | ||
2997 | CEOffset = (uint32_t *)coll->image+getExpansionOffset(CE); /* find the offset to expansion table */ | |
2998 | size = getExpansionCount(CE); | |
2999 | CE = *CEOffset++; | |
3000 | //source->offsetRepeatCount = -1; | |
3001 | ||
3002 | if(size != 0) { /* if there are less than 16 elements in expansion, we don't terminate */ | |
3003 | for(i = 1; i<size; i++) { | |
3004 | *(source->CEpos++) = *CEOffset++; | |
3005 | source->offsetRepeatCount += 1; | |
3006 | } | |
3007 | } else { /* else, we do */ | |
3008 | while(*CEOffset != 0) { | |
3009 | *(source->CEpos++) = *CEOffset++; | |
3010 | source->offsetRepeatCount += 1; | |
3011 | } | |
3012 | } | |
3013 | ||
3014 | return CE; | |
3015 | } | |
3016 | case DIGIT_TAG: | |
3017 | { | |
3018 | /* | |
3019 | We do a check to see if we want to collate digits as numbers; if so we generate | |
3020 | a custom collation key. Otherwise we pull out the value stored in the expansion table. | |
3021 | */ | |
3022 | //uint32_t size; | |
3023 | uint32_t i; /* general counter */ | |
3024 | ||
3025 | if (source->coll->numericCollation == UCOL_ON){ | |
3026 | collIterateState digitState = {0,0,0,0,0,0,0,0,0}; | |
3027 | UChar32 char32 = 0; | |
3028 | int32_t digVal = 0; | |
3029 | ||
3030 | uint32_t digIndx = 0; | |
3031 | uint32_t endIndex = 0; | |
3032 | uint32_t trailingZeroIndex = 0; | |
3033 | ||
3034 | uint8_t collateVal = 0; | |
3035 | ||
3036 | UBool nonZeroValReached = FALSE; | |
3037 | ||
3038 | uint8_t numTempBuf[UCOL_MAX_DIGITS_FOR_NUMBER/2 + 3]; // I just need a temporary place to store my generated CEs. | |
3039 | /* | |
3040 | We parse the source string until we hit a char that's NOT a digit. | |
3041 | Use this u_charDigitValue. This might be slow because we have to | |
3042 | handle surrogates... | |
3043 | */ | |
3044 | /* | |
3045 | if (U16_IS_LEAD(ch)){ | |
3046 | if (!collIter_eos(source)) { | |
3047 | backupState(source, &digitState); | |
3048 | UChar trail = getNextNormalizedChar(source); | |
3049 | if(U16_IS_TRAIL(trail)) { | |
3050 | char32 = U16_GET_SUPPLEMENTARY(ch, trail); | |
3051 | } else { | |
3052 | loadState(source, &digitState, TRUE); | |
3053 | char32 = ch; | |
3054 | } | |
3055 | } else { | |
3056 | char32 = ch; | |
3057 | } | |
3058 | } else { | |
3059 | char32 = ch; | |
3060 | } | |
3061 | digVal = u_charDigitValue(char32); | |
3062 | */ | |
3063 | digVal = u_charDigitValue(cp); // if we have arrived here, we have | |
3064 | // already processed possible supplementaries that trigered the digit tag - | |
3065 | // all supplementaries are marked in the UCA. | |
3066 | /* | |
3067 | We pad a zero in front of the first element anyways. This takes | |
3068 | care of the (probably) most common case where people are sorting things followed | |
3069 | by a single digit | |
3070 | */ | |
3071 | digIndx++; | |
3072 | for(;;){ | |
3073 | // Make sure we have enough space. No longer needed; | |
3074 | // at this point digIndx now has a max value of UCOL_MAX_DIGITS_FOR_NUMBER | |
3075 | // (it has been pre-incremented) so we just ensure that numTempBuf is big enough | |
3076 | // (UCOL_MAX_DIGITS_FOR_NUMBER/2 + 3). | |
3077 | ||
3078 | // Skipping over leading zeroes. | |
3079 | if (digVal != 0) { | |
3080 | nonZeroValReached = TRUE; | |
3081 | } | |
3082 | if (nonZeroValReached) { | |
3083 | /* | |
3084 | We parse the digit string into base 100 numbers (this fits into a byte). | |
3085 | We only add to the buffer in twos, thus if we are parsing an odd character, | |
3086 | that serves as the 'tens' digit while the if we are parsing an even one, that | |
3087 | is the 'ones' digit. We dumped the parsed base 100 value (collateVal) into | |
3088 | a buffer. We multiply each collateVal by 2 (to give us room) and add 5 (to avoid | |
3089 | overlapping magic CE byte values). The last byte we subtract 1 to ensure it is less | |
3090 | than all the other bytes. | |
3091 | */ | |
3092 | ||
3093 | if (digIndx % 2 == 1){ | |
3094 | collateVal += (uint8_t)digVal; | |
3095 | ||
3096 | // We don't enter the low-order-digit case unless we've already seen | |
3097 | // the high order, or for the first digit, which is always non-zero. | |
3098 | if (collateVal != 0) | |
3099 | trailingZeroIndex = 0; | |
3100 | ||
3101 | numTempBuf[(digIndx/2) + 2] = collateVal*2 + 6; | |
3102 | collateVal = 0; | |
3103 | } | |
3104 | else{ | |
3105 | // We drop the collation value into the buffer so if we need to do | |
3106 | // a "front patch" we don't have to check to see if we're hitting the | |
3107 | // last element. | |
3108 | collateVal = (uint8_t)(digVal * 10); | |
3109 | ||
3110 | // Check for trailing zeroes. | |
3111 | if (collateVal == 0) | |
3112 | { | |
3113 | if (!trailingZeroIndex) | |
3114 | trailingZeroIndex = (digIndx/2) + 2; | |
3115 | } | |
3116 | else | |
3117 | trailingZeroIndex = 0; | |
3118 | ||
3119 | numTempBuf[(digIndx/2) + 2] = collateVal*2 + 6; | |
3120 | } | |
3121 | digIndx++; | |
3122 | } | |
3123 | ||
3124 | // Get next character. | |
3125 | if (!collIter_eos(source)){ | |
3126 | ch = getNextNormalizedChar(source); | |
3127 | if (U16_IS_LEAD(ch)){ | |
3128 | if (!collIter_eos(source)) { | |
3129 | backupState(source, &digitState); | |
3130 | UChar trail = getNextNormalizedChar(source); | |
3131 | if(U16_IS_TRAIL(trail)) { | |
3132 | char32 = U16_GET_SUPPLEMENTARY(ch, trail); | |
3133 | } else { | |
3134 | loadState(source, &digitState, TRUE); | |
3135 | char32 = ch; | |
3136 | } | |
3137 | } | |
3138 | } else { | |
3139 | char32 = ch; | |
3140 | } | |
3141 | ||
3142 | if ((digVal = u_charDigitValue(char32)) == -1 || digIndx > UCOL_MAX_DIGITS_FOR_NUMBER){ | |
3143 | // Resetting position to point to the next unprocessed char. We | |
3144 | // overshot it when doing our test/set for numbers. | |
3145 | if (char32 > 0xFFFF) { // For surrogates. | |
3146 | loadState(source, &digitState, TRUE); | |
3147 | //goBackOne(source); | |
3148 | } | |
3149 | goBackOne(source); | |
3150 | break; | |
3151 | } | |
3152 | } else { | |
3153 | break; | |
3154 | } | |
3155 | } | |
3156 | ||
3157 | if (nonZeroValReached == FALSE){ | |
3158 | digIndx = 2; | |
3159 | numTempBuf[2] = 6; | |
3160 | } | |
3161 | ||
3162 | endIndex = trailingZeroIndex ? trailingZeroIndex : ((digIndx/2) + 2) ; | |
3163 | if (digIndx % 2 != 0){ | |
3164 | /* | |
3165 | We missed a value. Since digIndx isn't even, stuck too many values into the buffer (this is what | |
3166 | we get for padding the first byte with a zero). "Front-patch" now by pushing all nybbles forward. | |
3167 | Doing it this way ensures that at least 50% of the time (statistically speaking) we'll only be doing a | |
3168 | single pass and optimizes for strings with single digits. I'm just assuming that's the more common case. | |
3169 | */ | |
3170 | ||
3171 | for(i = 2; i < endIndex; i++){ | |
3172 | numTempBuf[i] = (((((numTempBuf[i] - 6)/2) % 10) * 10) + | |
3173 | (((numTempBuf[i+1])-6)/2) / 10) * 2 + 6; | |
3174 | } | |
3175 | --digIndx; | |
3176 | } | |
3177 | ||
3178 | // Subtract one off of the last byte. | |
3179 | numTempBuf[endIndex-1] -= 1; | |
3180 | ||
3181 | /* | |
3182 | We want to skip over the first two slots in the buffer. The first slot | |
3183 | is reserved for the header byte UCOL_CODAN_PLACEHOLDER. The second slot is for the | |
3184 | sign/exponent byte: 0x80 + (decimalPos/2) & 7f. | |
3185 | */ | |
3186 | numTempBuf[0] = UCOL_CODAN_PLACEHOLDER; | |
3187 | numTempBuf[1] = (uint8_t)(0x80 + ((digIndx/2) & 0x7F)); | |
3188 | ||
3189 | // Now transfer the collation key to our collIterate struct. | |
3190 | // The total size for our collation key is endIndx bumped up to the next largest even value divided by two. | |
3191 | //size = ((endIndex+1) & ~1)/2; | |
3192 | CE = (((numTempBuf[0] << 8) | numTempBuf[1]) << UCOL_PRIMARYORDERSHIFT) | //Primary weight | |
3193 | (UCOL_BYTE_COMMON << UCOL_SECONDARYORDERSHIFT) | // Secondary weight | |
3194 | UCOL_BYTE_COMMON; // Tertiary weight. | |
3195 | i = 2; // Reset the index into the buffer. | |
3196 | while(i < endIndex) | |
3197 | { | |
3198 | uint32_t primWeight = numTempBuf[i++] << 8; | |
3199 | if ( i < endIndex) | |
3200 | primWeight |= numTempBuf[i++]; | |
3201 | *(source->CEpos++) = (primWeight << UCOL_PRIMARYORDERSHIFT) | UCOL_CONTINUATION_MARKER; | |
3202 | } | |
3203 | ||
3204 | } else { | |
3205 | // no numeric mode, we'll just switch to whatever we stashed and continue | |
3206 | CEOffset = (uint32_t *)coll->image+getExpansionOffset(CE); /* find the offset to expansion table */ | |
3207 | CE = *CEOffset++; | |
3208 | break; | |
3209 | } | |
3210 | return CE; | |
3211 | } | |
3212 | /* various implicits optimization */ | |
3213 | case IMPLICIT_TAG: /* everything that is not defined otherwise */ | |
3214 | /* UCA is filled with these. Tailorings are NOT_FOUND */ | |
3215 | return getImplicit(cp, source); | |
3216 | case CJK_IMPLICIT_TAG: /* 0x3400-0x4DB5, 0x4E00-0x9FA5, 0xF900-0xFA2D*/ | |
3217 | // TODO: remove CJK_IMPLICIT_TAG completely - handled by the getImplicit | |
3218 | return getImplicit(cp, source); | |
3219 | case HANGUL_SYLLABLE_TAG: /* AC00-D7AF*/ | |
3220 | { | |
3221 | static const uint32_t | |
3222 | SBase = 0xAC00, LBase = 0x1100, VBase = 0x1161, TBase = 0x11A7; | |
3223 | //const uint32_t LCount = 19; | |
3224 | static const uint32_t VCount = 21; | |
3225 | static const uint32_t TCount = 28; | |
3226 | //const uint32_t NCount = VCount * TCount; // 588 | |
3227 | //const uint32_t SCount = LCount * NCount; // 11172 | |
3228 | uint32_t L = ch - SBase; | |
3229 | ||
3230 | // divide into pieces | |
3231 | ||
3232 | uint32_t T = L % TCount; // we do it in this order since some compilers can do % and / in one operation | |
3233 | L /= TCount; | |
3234 | uint32_t V = L % VCount; | |
3235 | L /= VCount; | |
3236 | ||
3237 | // offset them | |
3238 | ||
3239 | L += LBase; | |
3240 | V += VBase; | |
3241 | T += TBase; | |
3242 | ||
3243 | // return the first CE, but first put the rest into the expansion buffer | |
3244 | if (!source->coll->image->jamoSpecial) { // FAST PATH | |
3245 | ||
3246 | *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(&coll->mapping, V); | |
3247 | if (T != TBase) { | |
3248 | *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(&coll->mapping, T); | |
3249 | } | |
3250 | ||
3251 | return UTRIE_GET32_FROM_LEAD(&coll->mapping, L); | |
3252 | ||
3253 | } else { // Jamo is Special | |
3254 | // Since Hanguls pass the FCD check, it is | |
3255 | // guaranteed that we won't be in | |
3256 | // the normalization buffer if something like this happens | |
3257 | ||
3258 | // However, if we are using a uchar iterator and normalization | |
3259 | // is ON, the Hangul that lead us here is going to be in that | |
3260 | // normalization buffer. Here we want to restore the uchar | |
3261 | // iterator state and pull out of the normalization buffer | |
3262 | if(source->iterator != NULL && source->flags & UCOL_ITER_INNORMBUF) { | |
3263 | source->flags = source->origFlags; // restore the iterator | |
3264 | source->pos = NULL; | |
3265 | } | |
3266 | ||
3267 | // Move Jamos into normalization buffer | |
3268 | UChar *buffer = source->writableBuffer.getBuffer(4); | |
3269 | int32_t bufferLength; | |
3270 | buffer[0] = (UChar)L; | |
3271 | buffer[1] = (UChar)V; | |
3272 | if (T != TBase) { | |
3273 | buffer[2] = (UChar)T; | |
3274 | bufferLength = 3; | |
3275 | } else { | |
3276 | bufferLength = 2; | |
3277 | } | |
3278 | source->writableBuffer.releaseBuffer(bufferLength); | |
3279 | ||
3280 | // Indicate where to continue in main input string after exhausting the writableBuffer | |
3281 | source->fcdPosition = source->pos; | |
3282 | ||
3283 | source->pos = source->writableBuffer.getTerminatedBuffer(); | |
3284 | source->origFlags = source->flags; | |
3285 | source->flags |= UCOL_ITER_INNORMBUF; | |
3286 | source->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN); | |
3287 | ||
3288 | return(UCOL_IGNORABLE); | |
3289 | } | |
3290 | } | |
3291 | case SURROGATE_TAG: | |
3292 | /* we encountered a leading surrogate. We shall get the CE by using the following code unit */ | |
3293 | /* two things can happen here: next code point can be a trailing surrogate - we will use it */ | |
3294 | /* to retrieve the CE, or it is not a trailing surrogate (or the string is done). In that case */ | |
3295 | /* we treat it like an unassigned code point. */ | |
3296 | { | |
3297 | UChar trail; | |
3298 | collIterateState state; | |
3299 | backupState(source, &state); | |
3300 | if (collIter_eos(source) || !(U16_IS_TRAIL((trail = getNextNormalizedChar(source))))) { | |
3301 | // we chould have stepped one char forward and it might have turned that it | |
3302 | // was not a trail surrogate. In that case, we have to backup. | |
3303 | loadState(source, &state, TRUE); | |
3304 | return UCOL_NOT_FOUND; | |
3305 | } else { | |
3306 | /* TODO: CE contain the data from the previous CE + the mask. It should at least be unmasked */ | |
3307 | CE = UTRIE_GET32_FROM_OFFSET_TRAIL(&coll->mapping, CE&0xFFFFFF, trail); | |
3308 | if(CE == UCOL_NOT_FOUND) { // there are tailored surrogates in this block, but not this one. | |
3309 | // We need to backup | |
3310 | loadState(source, &state, TRUE); | |
3311 | return CE; | |
3312 | } | |
3313 | // calculate the supplementary code point value, if surrogate was not tailored | |
3314 | cp = ((((uint32_t)ch)<<10UL)+(trail)-(((uint32_t)0xd800<<10UL)+0xdc00-0x10000)); | |
3315 | } | |
3316 | } | |
3317 | break; | |
3318 | case LEAD_SURROGATE_TAG: /* D800-DBFF*/ | |
3319 | UChar nextChar; | |
3320 | if( source->flags & UCOL_USE_ITERATOR) { | |
3321 | if(U_IS_TRAIL(nextChar = (UChar)source->iterator->current(source->iterator))) { | |
3322 | cp = U16_GET_SUPPLEMENTARY(ch, nextChar); | |
3323 | source->iterator->next(source->iterator); | |
3324 | return getImplicit(cp, source); | |
3325 | } | |
3326 | } else if((((source->flags & UCOL_ITER_HASLEN) == 0 ) || (source->pos<source->endp)) && | |
3327 | U_IS_TRAIL((nextChar=*source->pos))) { | |
3328 | cp = U16_GET_SUPPLEMENTARY(ch, nextChar); | |
3329 | source->pos++; | |
3330 | return getImplicit(cp, source); | |
3331 | } | |
3332 | return UCOL_NOT_FOUND; | |
3333 | case TRAIL_SURROGATE_TAG: /* DC00-DFFF*/ | |
3334 | return UCOL_NOT_FOUND; /* broken surrogate sequence */ | |
3335 | case CHARSET_TAG: | |
3336 | /* not yet implemented */ | |
3337 | /* probably after 1.8 */ | |
3338 | return UCOL_NOT_FOUND; | |
3339 | default: | |
3340 | *status = U_INTERNAL_PROGRAM_ERROR; | |
3341 | CE=0; | |
3342 | break; | |
3343 | } | |
3344 | if (CE <= UCOL_NOT_FOUND) break; | |
3345 | } | |
3346 | return CE; | |
3347 | } | |
3348 | ||
3349 | ||
3350 | /* now uses Mark's getImplicitPrimary code */ | |
3351 | static | |
3352 | inline uint32_t getPrevImplicit(UChar32 cp, collIterate *collationSource) { | |
3353 | uint32_t r = uprv_uca_getImplicitPrimary(cp); | |
3354 | ||
3355 | *(collationSource->CEpos++) = (r & UCOL_PRIMARYMASK) | 0x00000505; | |
3356 | collationSource->toReturn = collationSource->CEpos; | |
3357 | ||
3358 | // **** doesn't work if using iterator **** | |
3359 | if (collationSource->flags & UCOL_ITER_INNORMBUF) { | |
3360 | collationSource->offsetRepeatCount = 1; | |
3361 | } else { | |
3362 | int32_t firstOffset = (int32_t)(collationSource->pos - collationSource->string); | |
3363 | ||
3364 | UErrorCode errorCode = U_ZERO_ERROR; | |
3365 | collationSource->appendOffset(firstOffset, errorCode); | |
3366 | collationSource->appendOffset(firstOffset + 1, errorCode); | |
3367 | ||
3368 | collationSource->offsetReturn = collationSource->offsetStore - 1; | |
3369 | *(collationSource->offsetBuffer) = firstOffset; | |
3370 | if (collationSource->offsetReturn == collationSource->offsetBuffer) { | |
3371 | collationSource->offsetStore = collationSource->offsetBuffer; | |
3372 | } | |
3373 | } | |
3374 | ||
3375 | return ((r & 0x0000FFFF)<<16) | 0x000000C0; | |
3376 | } | |
3377 | ||
3378 | /** | |
3379 | * This function handles the special CEs like contractions, expansions, | |
3380 | * surrogates, Thai. | |
3381 | * It is called by both getPrevCE | |
3382 | */ | |
3383 | uint32_t ucol_prv_getSpecialPrevCE(const UCollator *coll, UChar ch, uint32_t CE, | |
3384 | collIterate *source, | |
3385 | UErrorCode *status) | |
3386 | { | |
3387 | const uint32_t *CEOffset = NULL; | |
3388 | UChar *UCharOffset = NULL; | |
3389 | UChar schar; | |
3390 | const UChar *constart = NULL; | |
3391 | uint32_t size; | |
3392 | UChar buffer[UCOL_MAX_BUFFER]; | |
3393 | uint32_t *endCEBuffer; | |
3394 | UChar *strbuffer; | |
3395 | int32_t noChars = 0; | |
3396 | int32_t CECount = 0; | |
3397 | ||
3398 | for(;;) | |
3399 | { | |
3400 | /* the only ces that loops are thai and contractions */ | |
3401 | switch (getCETag(CE)) | |
3402 | { | |
3403 | case NOT_FOUND_TAG: /* this tag always returns */ | |
3404 | return CE; | |
3405 | ||
3406 | case SPEC_PROC_TAG: | |
3407 | { | |
3408 | // Special processing is getting a CE that is preceded by a certain prefix | |
3409 | // Currently this is only needed for optimizing Japanese length and iteration marks. | |
3410 | // When we encouter a special processing tag, we go backwards and try to see if | |
3411 | // we have a match. | |
3412 | // Contraction tables are used - so the whole process is not unlike contraction. | |
3413 | // prefix data is stored backwards in the table. | |
3414 | const UChar *UCharOffset; | |
3415 | UChar schar, tchar; | |
3416 | collIterateState prefixState; | |
3417 | backupState(source, &prefixState); | |
3418 | for(;;) { | |
3419 | // This loop will run once per source string character, for as long as we | |
3420 | // are matching a potential contraction sequence | |
3421 | ||
3422 | // First we position ourselves at the begining of contraction sequence | |
3423 | const UChar *ContractionStart = UCharOffset = (UChar *)coll->image+getContractOffset(CE); | |
3424 | ||
3425 | if (collIter_bos(source)) { | |
3426 | CE = *(coll->contractionCEs + (UCharOffset - coll->contractionIndex)); | |
3427 | break; | |
3428 | } | |
3429 | schar = getPrevNormalizedChar(source, status); | |
3430 | goBackOne(source); | |
3431 | ||
3432 | while(schar > (tchar = *UCharOffset)) { /* since the contraction codepoints should be ordered, we skip all that are smaller */ | |
3433 | UCharOffset++; | |
3434 | } | |
3435 | ||
3436 | if (schar == tchar) { | |
3437 | // Found the source string char in the table. | |
3438 | // Pick up the corresponding CE from the table. | |
3439 | CE = *(coll->contractionCEs + | |
3440 | (UCharOffset - coll->contractionIndex)); | |
3441 | } | |
3442 | else | |
3443 | { | |
3444 | // if there is a completely ignorable code point in the middle of | |
3445 | // a prefix, we need to act as if it's not there | |
3446 | // assumption: 'real' noncharacters (*fffe, *ffff, fdd0-fdef are set to zero) | |
3447 | // lone surrogates cannot be set to zero as it would break other processing | |
3448 | uint32_t isZeroCE = UTRIE_GET32_FROM_LEAD(&coll->mapping, schar); | |
3449 | // it's easy for BMP code points | |
3450 | if(isZeroCE == 0) { | |
3451 | continue; | |
3452 | } else if(U16_IS_SURROGATE(schar)) { | |
3453 | // for supplementary code points, we have to check the next one | |
3454 | // situations where we are going to ignore | |
3455 | // 1. beginning of the string: schar is a lone surrogate | |
3456 | // 2. schar is a lone surrogate | |
3457 | // 3. schar is a trail surrogate in a valid surrogate sequence | |
3458 | // that is explicitly set to zero. | |
3459 | if (!collIter_bos(source)) { | |
3460 | UChar lead; | |
3461 | if(!U16_IS_SURROGATE_LEAD(schar) && U16_IS_LEAD(lead = getPrevNormalizedChar(source, status))) { | |
3462 | isZeroCE = UTRIE_GET32_FROM_LEAD(&coll->mapping, lead); | |
3463 | if(isSpecial(isZeroCE) && getCETag(isZeroCE) == SURROGATE_TAG) { | |
3464 | uint32_t finalCE = UTRIE_GET32_FROM_OFFSET_TRAIL(&coll->mapping, isZeroCE&0xFFFFFF, schar); | |
3465 | if(finalCE == 0) { | |
3466 | // this is a real, assigned completely ignorable code point | |
3467 | goBackOne(source); | |
3468 | continue; | |
3469 | } | |
3470 | } | |
3471 | } else { | |
3472 | // lone surrogate, treat like unassigned | |
3473 | return UCOL_NOT_FOUND; | |
3474 | } | |
3475 | } else { | |
3476 | // lone surrogate at the beggining, treat like unassigned | |
3477 | return UCOL_NOT_FOUND; | |
3478 | } | |
3479 | } | |
3480 | // Source string char was not in the table. | |
3481 | // We have not found the prefix. | |
3482 | CE = *(coll->contractionCEs + | |
3483 | (ContractionStart - coll->contractionIndex)); | |
3484 | } | |
3485 | ||
3486 | if(!isPrefix(CE)) { | |
3487 | // The source string char was in the contraction table, and the corresponding | |
3488 | // CE is not a prefix CE. We found the prefix, break | |
3489 | // out of loop, this CE will end up being returned. This is the normal | |
3490 | // way out of prefix handling when the source actually contained | |
3491 | // the prefix. | |
3492 | break; | |
3493 | } | |
3494 | } | |
3495 | loadState(source, &prefixState, TRUE); | |
3496 | break; | |
3497 | } | |
3498 | ||
3499 | case CONTRACTION_TAG: { | |
3500 | /* to ensure that the backwards and forwards iteration matches, we | |
3501 | take the current region of most possible match and pass it through | |
3502 | the forward iteration. this will ensure that the obstinate problem of | |
3503 | overlapping contractions will not occur. | |
3504 | */ | |
3505 | schar = peekCodeUnit(source, 0); | |
3506 | constart = (UChar *)coll->image + getContractOffset(CE); | |
3507 | if (isAtStartPrevIterate(source) | |
3508 | /* commented away contraction end checks after adding the checks | |
3509 | in getPrevCE */) { | |
3510 | /* start of string or this is not the end of any contraction */ | |
3511 | CE = *(coll->contractionCEs + | |
3512 | (constart - coll->contractionIndex)); | |
3513 | break; | |
3514 | } | |
3515 | strbuffer = buffer; | |
3516 | UCharOffset = strbuffer + (UCOL_MAX_BUFFER - 1); | |
3517 | *(UCharOffset --) = 0; | |
3518 | noChars = 0; | |
3519 | // have to swap thai characters | |
3520 | while (ucol_unsafeCP(schar, coll)) { | |
3521 | *(UCharOffset) = schar; | |
3522 | noChars++; | |
3523 | UCharOffset --; | |
3524 | schar = getPrevNormalizedChar(source, status); | |
3525 | goBackOne(source); | |
3526 | // TODO: when we exhaust the contraction buffer, | |
3527 | // it needs to get reallocated. The problem is | |
3528 | // that the size depends on the string which is | |
3529 | // not iterated over. However, since we're travelling | |
3530 | // backwards, we already had to set the iterator at | |
3531 | // the end - so we might as well know where we are? | |
3532 | if (UCharOffset + 1 == buffer) { | |
3533 | /* we have exhausted the buffer */ | |
3534 | int32_t newsize = 0; | |
3535 | if(source->pos) { // actually dealing with a position | |
3536 | newsize = (int32_t)(source->pos - source->string + 1); | |
3537 | } else { // iterator | |
3538 | newsize = 4 * UCOL_MAX_BUFFER; | |
3539 | } | |
3540 | strbuffer = (UChar *)uprv_malloc(sizeof(UChar) * | |
3541 | (newsize + UCOL_MAX_BUFFER)); | |
3542 | /* test for NULL */ | |
3543 | if (strbuffer == NULL) { | |
3544 | *status = U_MEMORY_ALLOCATION_ERROR; | |
3545 | return UCOL_NO_MORE_CES; | |
3546 | } | |
3547 | UCharOffset = strbuffer + newsize; | |
3548 | uprv_memcpy(UCharOffset, buffer, | |
3549 | UCOL_MAX_BUFFER * sizeof(UChar)); | |
3550 | UCharOffset --; | |
3551 | } | |
3552 | if ((source->pos && (source->pos == source->string || | |
3553 | ((source->flags & UCOL_ITER_INNORMBUF) && | |
3554 | *(source->pos - 1) == 0 && source->fcdPosition == NULL))) | |
3555 | || (source->iterator && !source->iterator->hasPrevious(source->iterator))) { | |
3556 | break; | |
3557 | } | |
3558 | } | |
3559 | /* adds the initial base character to the string */ | |
3560 | *(UCharOffset) = schar; | |
3561 | noChars++; | |
3562 | ||
3563 | int32_t offsetBias; | |
3564 | ||
3565 | // **** doesn't work if using iterator **** | |
3566 | if (source->flags & UCOL_ITER_INNORMBUF) { | |
3567 | offsetBias = -1; | |
3568 | } else { | |
3569 | offsetBias = (int32_t)(source->pos - source->string); | |
3570 | } | |
3571 | ||
3572 | /* a new collIterate is used to simplify things, since using the current | |
3573 | collIterate will mean that the forward and backwards iteration will | |
3574 | share and change the same buffers. we don't want to get into that. */ | |
3575 | collIterate temp; | |
3576 | int32_t rawOffset; | |
3577 | ||
3578 | IInit_collIterate(coll, UCharOffset, noChars, &temp, status); | |
3579 | if(U_FAILURE(*status)) { | |
3580 | return UCOL_NULLORDER; | |
3581 | } | |
3582 | temp.flags &= ~UCOL_ITER_NORM; | |
3583 | temp.flags |= source->flags & UCOL_FORCE_HAN_IMPLICIT; | |
3584 | ||
3585 | rawOffset = (int32_t)(temp.pos - temp.string); // should always be zero? | |
3586 | CE = ucol_IGetNextCE(coll, &temp, status); | |
3587 | ||
3588 | if (source->extendCEs) { | |
3589 | endCEBuffer = source->extendCEs + source->extendCEsSize; | |
3590 | CECount = (int32_t)((source->CEpos - source->extendCEs)/sizeof(uint32_t)); | |
3591 | } else { | |
3592 | endCEBuffer = source->CEs + UCOL_EXPAND_CE_BUFFER_SIZE; | |
3593 | CECount = (int32_t)((source->CEpos - source->CEs)/sizeof(uint32_t)); | |
3594 | } | |
3595 | ||
3596 | while (CE != UCOL_NO_MORE_CES) { | |
3597 | *(source->CEpos ++) = CE; | |
3598 | ||
3599 | if (offsetBias >= 0) { | |
3600 | source->appendOffset(rawOffset + offsetBias, *status); | |
3601 | } | |
3602 | ||
3603 | CECount++; | |
3604 | if (source->CEpos == endCEBuffer) { | |
3605 | /* ran out of CE space, reallocate to new buffer. | |
3606 | If reallocation fails, reset pointers and bail out, | |
3607 | there's no guarantee of the right character position after | |
3608 | this bail*/ | |
3609 | if (!increaseCEsCapacity(source)) { | |
3610 | *status = U_MEMORY_ALLOCATION_ERROR; | |
3611 | break; | |
3612 | } | |
3613 | ||
3614 | endCEBuffer = source->extendCEs + source->extendCEsSize; | |
3615 | } | |
3616 | ||
3617 | if ((temp.flags & UCOL_ITER_INNORMBUF) != 0) { | |
3618 | rawOffset = (int32_t)(temp.fcdPosition - temp.string); | |
3619 | } else { | |
3620 | rawOffset = (int32_t)(temp.pos - temp.string); | |
3621 | } | |
3622 | ||
3623 | CE = ucol_IGetNextCE(coll, &temp, status); | |
3624 | } | |
3625 | ||
3626 | if (strbuffer != buffer) { | |
3627 | uprv_free(strbuffer); | |
3628 | } | |
3629 | if (U_FAILURE(*status)) { | |
3630 | return (uint32_t)UCOL_NULLORDER; | |
3631 | } | |
3632 | ||
3633 | if (source->offsetRepeatValue != 0) { | |
3634 | if (CECount > noChars) { | |
3635 | source->offsetRepeatCount += temp.offsetRepeatCount; | |
3636 | } else { | |
3637 | // **** does this really skip the right offsets? **** | |
3638 | source->offsetReturn -= (noChars - CECount); | |
3639 | } | |
3640 | } | |
3641 | ||
3642 | if (offsetBias >= 0) { | |
3643 | source->offsetReturn = source->offsetStore - 1; | |
3644 | if (source->offsetReturn == source->offsetBuffer) { | |
3645 | source->offsetStore = source->offsetBuffer; | |
3646 | } | |
3647 | } | |
3648 | ||
3649 | source->toReturn = source->CEpos - 1; | |
3650 | if (source->toReturn == source->CEs) { | |
3651 | source->CEpos = source->CEs; | |
3652 | } | |
3653 | ||
3654 | return *(source->toReturn); | |
3655 | } | |
3656 | case LONG_PRIMARY_TAG: | |
3657 | { | |
3658 | *(source->CEpos++) = ((CE & 0xFFFF00) << 8) | (UCOL_BYTE_COMMON << 8) | UCOL_BYTE_COMMON; | |
3659 | *(source->CEpos++) = ((CE & 0xFF)<<24)|UCOL_CONTINUATION_MARKER; | |
3660 | source->toReturn = source->CEpos - 1; | |
3661 | ||
3662 | if (source->flags & UCOL_ITER_INNORMBUF) { | |
3663 | source->offsetRepeatCount = 1; | |
3664 | } else { | |
3665 | int32_t firstOffset = (int32_t)(source->pos - source->string); | |
3666 | ||
3667 | source->appendOffset(firstOffset, *status); | |
3668 | source->appendOffset(firstOffset + 1, *status); | |
3669 | ||
3670 | source->offsetReturn = source->offsetStore - 1; | |
3671 | *(source->offsetBuffer) = firstOffset; | |
3672 | if (source->offsetReturn == source->offsetBuffer) { | |
3673 | source->offsetStore = source->offsetBuffer; | |
3674 | } | |
3675 | } | |
3676 | ||
3677 | ||
3678 | return *(source->toReturn); | |
3679 | } | |
3680 | ||
3681 | case EXPANSION_TAG: /* this tag always returns */ | |
3682 | { | |
3683 | /* | |
3684 | This should handle expansion. | |
3685 | NOTE: we can encounter both continuations and expansions in an expansion! | |
3686 | I have to decide where continuations are going to be dealt with | |
3687 | */ | |
3688 | int32_t firstOffset = (int32_t)(source->pos - source->string); | |
3689 | ||
3690 | // **** doesn't work if using iterator **** | |
3691 | if (source->offsetReturn != NULL) { | |
3692 | if (! (source->flags & UCOL_ITER_INNORMBUF) && source->offsetReturn == source->offsetBuffer) { | |
3693 | source->offsetStore = source->offsetBuffer; | |
3694 | }else { | |
3695 | firstOffset = -1; | |
3696 | } | |
3697 | } | |
3698 | ||
3699 | /* find the offset to expansion table */ | |
3700 | CEOffset = (uint32_t *)coll->image + getExpansionOffset(CE); | |
3701 | size = getExpansionCount(CE); | |
3702 | if (size != 0) { | |
3703 | /* | |
3704 | if there are less than 16 elements in expansion, we don't terminate | |
3705 | */ | |
3706 | uint32_t count; | |
3707 | ||
3708 | for (count = 0; count < size; count++) { | |
3709 | *(source->CEpos ++) = *CEOffset++; | |
3710 | ||
3711 | if (firstOffset >= 0) { | |
3712 | source->appendOffset(firstOffset + 1, *status); | |
3713 | } | |
3714 | } | |
3715 | } else { | |
3716 | /* else, we do */ | |
3717 | while (*CEOffset != 0) { | |
3718 | *(source->CEpos ++) = *CEOffset ++; | |
3719 | ||
3720 | if (firstOffset >= 0) { | |
3721 | source->appendOffset(firstOffset + 1, *status); | |
3722 | } | |
3723 | } | |
3724 | } | |
3725 | ||
3726 | if (firstOffset >= 0) { | |
3727 | source->offsetReturn = source->offsetStore - 1; | |
3728 | *(source->offsetBuffer) = firstOffset; | |
3729 | if (source->offsetReturn == source->offsetBuffer) { | |
3730 | source->offsetStore = source->offsetBuffer; | |
3731 | } | |
3732 | } else { | |
3733 | source->offsetRepeatCount += size - 1; | |
3734 | } | |
3735 | ||
3736 | source->toReturn = source->CEpos - 1; | |
3737 | // in case of one element expansion, we | |
3738 | // want to immediately return CEpos | |
3739 | if(source->toReturn == source->CEs) { | |
3740 | source->CEpos = source->CEs; | |
3741 | } | |
3742 | ||
3743 | return *(source->toReturn); | |
3744 | } | |
3745 | ||
3746 | case DIGIT_TAG: | |
3747 | { | |
3748 | /* | |
3749 | We do a check to see if we want to collate digits as numbers; if so we generate | |
3750 | a custom collation key. Otherwise we pull out the value stored in the expansion table. | |
3751 | */ | |
3752 | uint32_t i; /* general counter */ | |
3753 | ||
3754 | if (source->coll->numericCollation == UCOL_ON){ | |
3755 | uint32_t digIndx = 0; | |
3756 | uint32_t endIndex = 0; | |
3757 | uint32_t leadingZeroIndex = 0; | |
3758 | uint32_t trailingZeroCount = 0; | |
3759 | ||
3760 | uint8_t collateVal = 0; | |
3761 | ||
3762 | UBool nonZeroValReached = FALSE; | |
3763 | ||
3764 | uint8_t numTempBuf[UCOL_MAX_DIGITS_FOR_NUMBER/2 + 2]; // I just need a temporary place to store my generated CEs. | |
3765 | /* | |
3766 | We parse the source string until we hit a char that's NOT a digit. | |
3767 | Use this u_charDigitValue. This might be slow because we have to | |
3768 | handle surrogates... | |
3769 | */ | |
3770 | /* | |
3771 | We need to break up the digit string into collection elements of UCOL_MAX_DIGITS_FOR_NUMBER or less, | |
3772 | with any chunks smaller than that being on the right end of the digit string - i.e. the first collation | |
3773 | element we process when going backward. To determine how long that chunk might be, we may need to make | |
3774 | two passes through the loop that collects digits - one to see how long the string is (and how much is | |
3775 | leading zeros) to determine the length of that right-hand chunk, and a second (if the whole string has | |
3776 | more than UCOL_MAX_DIGITS_FOR_NUMBER non-leading-zero digits) to actually process that collation | |
3777 | element chunk after resetting the state to the initialState at the right side of the digit string. | |
3778 | */ | |
3779 | uint32_t ceLimit = 0; | |
3780 | UChar initial_ch = ch; | |
3781 | collIterateState initialState = {0,0,0,0,0,0,0,0,0}; | |
3782 | backupState(source, &initialState); | |
3783 | ||
3784 | for(;;) { | |
3785 | collIterateState state = {0,0,0,0,0,0,0,0,0}; | |
3786 | UChar32 char32 = 0; | |
3787 | int32_t digVal = 0; | |
3788 | ||
3789 | if (U16_IS_TRAIL (ch)) { | |
3790 | if (!collIter_bos(source)){ | |
3791 | UChar lead = getPrevNormalizedChar(source, status); | |
3792 | if(U16_IS_LEAD(lead)) { | |
3793 | char32 = U16_GET_SUPPLEMENTARY(lead,ch); | |
3794 | goBackOne(source); | |
3795 | } else { | |
3796 | char32 = ch; | |
3797 | } | |
3798 | } else { | |
3799 | char32 = ch; | |
3800 | } | |
3801 | } else { | |
3802 | char32 = ch; | |
3803 | } | |
3804 | digVal = u_charDigitValue(char32); | |
3805 | ||
3806 | for(;;) { | |
3807 | // Make sure we have enough space. No longer needed; | |
3808 | // at this point the largest value of digIndx when we need to save data in numTempBuf | |
3809 | // is UCOL_MAX_DIGITS_FOR_NUMBER-1 (digIndx is post-incremented) so we just ensure | |
3810 | // that numTempBuf is big enough (UCOL_MAX_DIGITS_FOR_NUMBER/2 + 2). | |
3811 | ||
3812 | // Skip over trailing zeroes, and keep a count of them. | |
3813 | if (digVal != 0) | |
3814 | nonZeroValReached = TRUE; | |
3815 | ||
3816 | if (nonZeroValReached) { | |
3817 | /* | |
3818 | We parse the digit string into base 100 numbers (this fits into a byte). | |
3819 | We only add to the buffer in twos, thus if we are parsing an odd character, | |
3820 | that serves as the 'tens' digit while the if we are parsing an even one, that | |
3821 | is the 'ones' digit. We dumped the parsed base 100 value (collateVal) into | |
3822 | a buffer. We multiply each collateVal by 2 (to give us room) and add 5 (to avoid | |
3823 | overlapping magic CE byte values). The last byte we subtract 1 to ensure it is less | |
3824 | than all the other bytes. | |
3825 | ||
3826 | Since we're doing in this reverse we want to put the first digit encountered into the | |
3827 | ones place and the second digit encountered into the tens place. | |
3828 | */ | |
3829 | ||
3830 | if ((digIndx + trailingZeroCount) % 2 == 1) { | |
3831 | // High-order digit case (tens place) | |
3832 | collateVal += (uint8_t)(digVal * 10); | |
3833 | ||
3834 | // We cannot set leadingZeroIndex unless it has been set for the | |
3835 | // low-order digit. Therefore, all we can do for the high-order | |
3836 | // digit is turn it off, never on. | |
3837 | // The only time we will have a high digit without a low is for | |
3838 | // the very first non-zero digit, so no zero check is necessary. | |
3839 | if (collateVal != 0) | |
3840 | leadingZeroIndex = 0; | |
3841 | ||
3842 | // The first pass through, digIndx may exceed the limit, but in that case | |
3843 | // we no longer care about numTempBuf contents since they will be discarded | |
3844 | if ( digIndx < UCOL_MAX_DIGITS_FOR_NUMBER ) { | |
3845 | numTempBuf[(digIndx/2) + 2] = collateVal*2 + 6; | |
3846 | } | |
3847 | collateVal = 0; | |
3848 | } else { | |
3849 | // Low-order digit case (ones place) | |
3850 | collateVal = (uint8_t)digVal; | |
3851 | ||
3852 | // Check for leading zeroes. | |
3853 | if (collateVal == 0) { | |
3854 | if (!leadingZeroIndex) | |
3855 | leadingZeroIndex = (digIndx/2) + 2; | |
3856 | } else | |
3857 | leadingZeroIndex = 0; | |
3858 | ||
3859 | // No need to write to buffer; the case of a last odd digit | |
3860 | // is handled below. | |
3861 | } | |
3862 | ++digIndx; | |
3863 | } else | |
3864 | ++trailingZeroCount; | |
3865 | ||
3866 | if (!collIter_bos(source)) { | |
3867 | ch = getPrevNormalizedChar(source, status); | |
3868 | //goBackOne(source); | |
3869 | if (U16_IS_TRAIL(ch)) { | |
3870 | backupState(source, &state); | |
3871 | if (!collIter_bos(source)) { | |
3872 | goBackOne(source); | |
3873 | UChar lead = getPrevNormalizedChar(source, status); | |
3874 | ||
3875 | if(U16_IS_LEAD(lead)) { | |
3876 | char32 = U16_GET_SUPPLEMENTARY(lead,ch); | |
3877 | } else { | |
3878 | loadState(source, &state, FALSE); | |
3879 | char32 = ch; | |
3880 | } | |
3881 | } | |
3882 | } else | |
3883 | char32 = ch; | |
3884 | ||
3885 | if ((digVal = u_charDigitValue(char32)) == -1 || (ceLimit > 0 && (digIndx + trailingZeroCount) >= ceLimit)) { | |
3886 | if (char32 > 0xFFFF) {// For surrogates. | |
3887 | loadState(source, &state, FALSE); | |
3888 | } | |
3889 | // Don't need to "reverse" the goBackOne call, | |
3890 | // as this points to the next position to process.. | |
3891 | //if (char32 > 0xFFFF) // For surrogates. | |
3892 | //getNextNormalizedChar(source); | |
3893 | break; | |
3894 | } | |
3895 | ||
3896 | goBackOne(source); | |
3897 | }else | |
3898 | break; | |
3899 | } | |
3900 | ||
3901 | if (digIndx + trailingZeroCount <= UCOL_MAX_DIGITS_FOR_NUMBER) { | |
3902 | // our collation element is not too big, go ahead and finish with it | |
3903 | break; | |
3904 | } | |
3905 | // our digit string is too long for a collation element; | |
3906 | // set the limit for it, reset the state and begin again | |
3907 | ceLimit = (digIndx + trailingZeroCount) % UCOL_MAX_DIGITS_FOR_NUMBER; | |
3908 | if ( ceLimit == 0 ) { | |
3909 | ceLimit = UCOL_MAX_DIGITS_FOR_NUMBER; | |
3910 | } | |
3911 | ch = initial_ch; | |
3912 | loadState(source, &initialState, FALSE); | |
3913 | digIndx = endIndex = leadingZeroIndex = trailingZeroCount = 0; | |
3914 | collateVal = 0; | |
3915 | nonZeroValReached = FALSE; | |
3916 | } | |
3917 | ||
3918 | if (! nonZeroValReached) { | |
3919 | digIndx = 2; | |
3920 | trailingZeroCount = 0; | |
3921 | numTempBuf[2] = 6; | |
3922 | } | |
3923 | ||
3924 | if ((digIndx + trailingZeroCount) % 2 != 0) { | |
3925 | numTempBuf[((digIndx)/2) + 2] = collateVal*2 + 6; | |
3926 | digIndx += 1; // The implicit leading zero | |
3927 | } | |
3928 | if (trailingZeroCount % 2 != 0) { | |
3929 | // We had to consume one trailing zero for the low digit | |
3930 | // of the least significant byte | |
3931 | digIndx += 1; // The trailing zero not in the exponent | |
3932 | trailingZeroCount -= 1; | |
3933 | } | |
3934 | ||
3935 | endIndex = leadingZeroIndex ? leadingZeroIndex : ((digIndx/2) + 2) ; | |
3936 | ||
3937 | // Subtract one off of the last byte. Really the first byte here, but it's reversed... | |
3938 | numTempBuf[2] -= 1; | |
3939 | ||
3940 | /* | |
3941 | We want to skip over the first two slots in the buffer. The first slot | |
3942 | is reserved for the header byte UCOL_CODAN_PLACEHOLDER. The second slot is for the | |
3943 | sign/exponent byte: 0x80 + (decimalPos/2) & 7f. | |
3944 | The exponent must be adjusted by the number of leading zeroes, and the number of | |
3945 | trailing zeroes. | |
3946 | */ | |
3947 | numTempBuf[0] = UCOL_CODAN_PLACEHOLDER; | |
3948 | uint32_t exponent = (digIndx+trailingZeroCount)/2; | |
3949 | if (leadingZeroIndex) | |
3950 | exponent -= ((digIndx/2) + 2 - leadingZeroIndex); | |
3951 | numTempBuf[1] = (uint8_t)(0x80 + (exponent & 0x7F)); | |
3952 | ||
3953 | // Now transfer the collation key to our collIterate struct. | |
3954 | // The total size for our collation key is half of endIndex, rounded up. | |
3955 | int32_t size = (endIndex+1)/2; | |
3956 | if(!ensureCEsCapacity(source, size)) { | |
3957 | return UCOL_NULLORDER; | |
3958 | } | |
3959 | *(source->CEpos++) = (((numTempBuf[0] << 8) | numTempBuf[1]) << UCOL_PRIMARYORDERSHIFT) | //Primary weight | |
3960 | (UCOL_BYTE_COMMON << UCOL_SECONDARYORDERSHIFT) | // Secondary weight | |
3961 | UCOL_BYTE_COMMON; // Tertiary weight. | |
3962 | i = endIndex - 1; // Reset the index into the buffer. | |
3963 | while(i >= 2) { | |
3964 | uint32_t primWeight = numTempBuf[i--] << 8; | |
3965 | if ( i >= 2) | |
3966 | primWeight |= numTempBuf[i--]; | |
3967 | *(source->CEpos++) = (primWeight << UCOL_PRIMARYORDERSHIFT) | UCOL_CONTINUATION_MARKER; | |
3968 | } | |
3969 | ||
3970 | source->toReturn = source->CEpos -1; | |
3971 | return *(source->toReturn); | |
3972 | } else { | |
3973 | CEOffset = (uint32_t *)coll->image + getExpansionOffset(CE); | |
3974 | CE = *(CEOffset++); | |
3975 | break; | |
3976 | } | |
3977 | } | |
3978 | ||
3979 | case HANGUL_SYLLABLE_TAG: /* AC00-D7AF*/ | |
3980 | { | |
3981 | static const uint32_t | |
3982 | SBase = 0xAC00, LBase = 0x1100, VBase = 0x1161, TBase = 0x11A7; | |
3983 | //const uint32_t LCount = 19; | |
3984 | static const uint32_t VCount = 21; | |
3985 | static const uint32_t TCount = 28; | |
3986 | //const uint32_t NCount = VCount * TCount; /* 588 */ | |
3987 | //const uint32_t SCount = LCount * NCount; /* 11172 */ | |
3988 | ||
3989 | uint32_t L = ch - SBase; | |
3990 | /* | |
3991 | divide into pieces. | |
3992 | we do it in this order since some compilers can do % and / in one | |
3993 | operation | |
3994 | */ | |
3995 | uint32_t T = L % TCount; | |
3996 | L /= TCount; | |
3997 | uint32_t V = L % VCount; | |
3998 | L /= VCount; | |
3999 | ||
4000 | /* offset them */ | |
4001 | L += LBase; | |
4002 | V += VBase; | |
4003 | T += TBase; | |
4004 | ||
4005 | int32_t firstOffset = (int32_t)(source->pos - source->string); | |
4006 | source->appendOffset(firstOffset, *status); | |
4007 | ||
4008 | /* | |
4009 | * return the first CE, but first put the rest into the expansion buffer | |
4010 | */ | |
4011 | if (!source->coll->image->jamoSpecial) { | |
4012 | *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(&coll->mapping, L); | |
4013 | *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(&coll->mapping, V); | |
4014 | source->appendOffset(firstOffset + 1, *status); | |
4015 | ||
4016 | if (T != TBase) { | |
4017 | *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(&coll->mapping, T); | |
4018 | source->appendOffset(firstOffset + 1, *status); | |
4019 | } | |
4020 | ||
4021 | source->toReturn = source->CEpos - 1; | |
4022 | ||
4023 | source->offsetReturn = source->offsetStore - 1; | |
4024 | if (source->offsetReturn == source->offsetBuffer) { | |
4025 | source->offsetStore = source->offsetBuffer; | |
4026 | } | |
4027 | ||
4028 | return *(source->toReturn); | |
4029 | } else { | |
4030 | // Since Hanguls pass the FCD check, it is | |
4031 | // guaranteed that we won't be in | |
4032 | // the normalization buffer if something like this happens | |
4033 | ||
4034 | // Move Jamos into normalization buffer | |
4035 | UChar *tempbuffer = source->writableBuffer.getBuffer(5); | |
4036 | int32_t tempbufferLength, jamoOffset; | |
4037 | tempbuffer[0] = 0; | |
4038 | tempbuffer[1] = (UChar)L; | |
4039 | tempbuffer[2] = (UChar)V; | |
4040 | if (T != TBase) { | |
4041 | tempbuffer[3] = (UChar)T; | |
4042 | tempbufferLength = 4; | |
4043 | } else { | |
4044 | tempbufferLength = 3; | |
4045 | } | |
4046 | source->writableBuffer.releaseBuffer(tempbufferLength); | |
4047 | ||
4048 | // Indicate where to continue in main input string after exhausting the writableBuffer | |
4049 | if (source->pos == source->string) { | |
4050 | jamoOffset = 0; | |
4051 | source->fcdPosition = NULL; | |
4052 | } else { | |
4053 | jamoOffset = source->pos - source->string; | |
4054 | source->fcdPosition = source->pos-1; | |
4055 | } | |
4056 | ||
4057 | // Append offsets for the additional chars | |
4058 | // (not the 0, and not the L whose offsets match the original Hangul) | |
4059 | int32_t jamoRemaining = tempbufferLength - 2; | |
4060 | jamoOffset++; // appended offsets should match end of original Hangul | |
4061 | while (jamoRemaining-- > 0) { | |
4062 | source->appendOffset(jamoOffset, *status); | |
4063 | } | |
4064 | ||
4065 | source->offsetRepeatValue = jamoOffset; | |
4066 | ||
4067 | source->offsetReturn = source->offsetStore - 1; | |
4068 | if (source->offsetReturn == source->offsetBuffer) { | |
4069 | source->offsetStore = source->offsetBuffer; | |
4070 | } | |
4071 | ||
4072 | source->pos = source->writableBuffer.getTerminatedBuffer() + tempbufferLength; | |
4073 | source->origFlags = source->flags; | |
4074 | source->flags |= UCOL_ITER_INNORMBUF; | |
4075 | source->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN); | |
4076 | ||
4077 | return(UCOL_IGNORABLE); | |
4078 | } | |
4079 | } | |
4080 | ||
4081 | case IMPLICIT_TAG: /* everything that is not defined otherwise */ | |
4082 | return getPrevImplicit(ch, source); | |
4083 | ||
4084 | // TODO: Remove CJK implicits as they are handled by the getImplicitPrimary function | |
4085 | case CJK_IMPLICIT_TAG: /* 0x3400-0x4DB5, 0x4E00-0x9FA5, 0xF900-0xFA2D*/ | |
4086 | return getPrevImplicit(ch, source); | |
4087 | ||
4088 | case SURROGATE_TAG: /* This is a surrogate pair */ | |
4089 | /* essentially an engaged lead surrogate. */ | |
4090 | /* if you have encountered it here, it means that a */ | |
4091 | /* broken sequence was encountered and this is an error */ | |
4092 | return UCOL_NOT_FOUND; | |
4093 | ||
4094 | case LEAD_SURROGATE_TAG: /* D800-DBFF*/ | |
4095 | return UCOL_NOT_FOUND; /* broken surrogate sequence */ | |
4096 | ||
4097 | case TRAIL_SURROGATE_TAG: /* DC00-DFFF*/ | |
4098 | { | |
4099 | UChar32 cp = 0; | |
4100 | UChar prevChar; | |
4101 | const UChar *prev; | |
4102 | if (isAtStartPrevIterate(source)) { | |
4103 | /* we are at the start of the string, wrong place to be at */ | |
4104 | return UCOL_NOT_FOUND; | |
4105 | } | |
4106 | if (source->pos != source->writableBuffer.getBuffer()) { | |
4107 | prev = source->pos - 1; | |
4108 | } else { | |
4109 | prev = source->fcdPosition; | |
4110 | } | |
4111 | prevChar = *prev; | |
4112 | ||
4113 | /* Handles Han and Supplementary characters here.*/ | |
4114 | if (U16_IS_LEAD(prevChar)) { | |
4115 | cp = ((((uint32_t)prevChar)<<10UL)+(ch)-(((uint32_t)0xd800<<10UL)+0xdc00-0x10000)); | |
4116 | source->pos = prev; | |
4117 | } else { | |
4118 | return UCOL_NOT_FOUND; /* like unassigned */ | |
4119 | } | |
4120 | ||
4121 | return getPrevImplicit(cp, source); | |
4122 | } | |
4123 | ||
4124 | /* UCA is filled with these. Tailorings are NOT_FOUND */ | |
4125 | /* not yet implemented */ | |
4126 | case CHARSET_TAG: /* this tag always returns */ | |
4127 | /* probably after 1.8 */ | |
4128 | return UCOL_NOT_FOUND; | |
4129 | ||
4130 | default: /* this tag always returns */ | |
4131 | *status = U_INTERNAL_PROGRAM_ERROR; | |
4132 | CE=0; | |
4133 | break; | |
4134 | } | |
4135 | ||
4136 | if (CE <= UCOL_NOT_FOUND) { | |
4137 | break; | |
4138 | } | |
4139 | } | |
4140 | ||
4141 | return CE; | |
4142 | } | |
4143 | ||
4144 | /* This should really be a macro */ | |
4145 | /* This function is used to reverse parts of a buffer. We need this operation when doing continuation */ | |
4146 | /* secondaries in French */ | |
4147 | /* | |
4148 | void uprv_ucol_reverse_buffer(uint8_t *start, uint8_t *end) { | |
4149 | uint8_t temp; | |
4150 | while(start<end) { | |
4151 | temp = *start; | |
4152 | *start++ = *end; | |
4153 | *end-- = temp; | |
4154 | } | |
4155 | } | |
4156 | */ | |
4157 | ||
4158 | #define uprv_ucol_reverse_buffer(TYPE, start, end) { \ | |
4159 | TYPE tempA; \ | |
4160 | while((start)<(end)) { \ | |
4161 | tempA = *(start); \ | |
4162 | *(start)++ = *(end); \ | |
4163 | *(end)-- = tempA; \ | |
4164 | } \ | |
4165 | } | |
4166 | ||
4167 | /****************************************************************************/ | |
4168 | /* Following are the sortkey generation functions */ | |
4169 | /* */ | |
4170 | /****************************************************************************/ | |
4171 | ||
4172 | /** | |
4173 | * Merge two sort keys. | |
4174 | * This is useful, for example, to combine sort keys from first and last names | |
4175 | * to sort such pairs. | |
4176 | * Merged sort keys consider on each collation level the first part first entirely, | |
4177 | * then the second one. | |
4178 | * It is possible to merge multiple sort keys by consecutively merging | |
4179 | * another one with the intermediate result. | |
4180 | * | |
4181 | * The length of the merge result is the sum of the lengths of the input sort keys | |
4182 | * minus 1. | |
4183 | * | |
4184 | * @param src1 the first sort key | |
4185 | * @param src1Length the length of the first sort key, including the zero byte at the end; | |
4186 | * can be -1 if the function is to find the length | |
4187 | * @param src2 the second sort key | |
4188 | * @param src2Length the length of the second sort key, including the zero byte at the end; | |
4189 | * can be -1 if the function is to find the length | |
4190 | * @param dest the buffer where the merged sort key is written, | |
4191 | * can be NULL if destCapacity==0 | |
4192 | * @param destCapacity the number of bytes in the dest buffer | |
4193 | * @return the length of the merged sort key, src1Length+src2Length-1; | |
4194 | * can be larger than destCapacity, or 0 if an error occurs (only for illegal arguments), | |
4195 | * in which cases the contents of dest is undefined | |
4196 | * | |
4197 | * @draft | |
4198 | */ | |
4199 | U_CAPI int32_t U_EXPORT2 | |
4200 | ucol_mergeSortkeys(const uint8_t *src1, int32_t src1Length, | |
4201 | const uint8_t *src2, int32_t src2Length, | |
4202 | uint8_t *dest, int32_t destCapacity) { | |
4203 | int32_t destLength; | |
4204 | uint8_t b; | |
4205 | ||
4206 | /* check arguments */ | |
4207 | if( src1==NULL || src1Length<-2 || src1Length==0 || (src1Length>0 && src1[src1Length-1]!=0) || | |
4208 | src2==NULL || src2Length<-2 || src2Length==0 || (src2Length>0 && src2[src2Length-1]!=0) || | |
4209 | destCapacity<0 || (destCapacity>0 && dest==NULL) | |
4210 | ) { | |
4211 | /* error, attempt to write a zero byte and return 0 */ | |
4212 | if(dest!=NULL && destCapacity>0) { | |
4213 | *dest=0; | |
4214 | } | |
4215 | return 0; | |
4216 | } | |
4217 | ||
4218 | /* check lengths and capacity */ | |
4219 | if(src1Length<0) { | |
4220 | src1Length=(int32_t)uprv_strlen((const char *)src1)+1; | |
4221 | } | |
4222 | if(src2Length<0) { | |
4223 | src2Length=(int32_t)uprv_strlen((const char *)src2)+1; | |
4224 | } | |
4225 | ||
4226 | destLength=src1Length+src2Length-1; | |
4227 | if(destLength>destCapacity) { | |
4228 | /* the merged sort key does not fit into the destination */ | |
4229 | return destLength; | |
4230 | } | |
4231 | ||
4232 | /* merge the sort keys with the same number of levels */ | |
4233 | while(*src1!=0 && *src2!=0) { /* while both have another level */ | |
4234 | /* copy level from src1 not including 00 or 01 */ | |
4235 | while((b=*src1)>=2) { | |
4236 | ++src1; | |
4237 | *dest++=b; | |
4238 | } | |
4239 | ||
4240 | /* add a 02 merge separator */ | |
4241 | *dest++=2; | |
4242 | ||
4243 | /* copy level from src2 not including 00 or 01 */ | |
4244 | while((b=*src2)>=2) { | |
4245 | ++src2; | |
4246 | *dest++=b; | |
4247 | } | |
4248 | ||
4249 | /* if both sort keys have another level, then add a 01 level separator and continue */ | |
4250 | if(*src1==1 && *src2==1) { | |
4251 | ++src1; | |
4252 | ++src2; | |
4253 | *dest++=1; | |
4254 | } | |
4255 | } | |
4256 | ||
4257 | /* | |
4258 | * here, at least one sort key is finished now, but the other one | |
4259 | * might have some contents left from containing more levels; | |
4260 | * that contents is just appended to the result | |
4261 | */ | |
4262 | if(*src1!=0) { | |
4263 | /* src1 is not finished, therefore *src2==0, and src1 is appended */ | |
4264 | src2=src1; | |
4265 | } | |
4266 | /* append src2, "the other, unfinished sort key" */ | |
4267 | uprv_strcpy((char *)dest, (const char *)src2); | |
4268 | ||
4269 | /* trust that neither sort key contained illegally embedded zero bytes */ | |
4270 | return destLength; | |
4271 | } | |
4272 | ||
4273 | U_NAMESPACE_BEGIN | |
4274 | ||
4275 | class SortKeyByteSink : public ByteSink { | |
4276 | public: | |
4277 | static const uint32_t FILL_ORIGINAL_BUFFER = 1; | |
4278 | static const uint32_t DONT_GROW = 2; | |
4279 | SortKeyByteSink(char *dest, int32_t destCapacity, uint32_t flags=0) | |
4280 | : ownedBuffer_(NULL), buffer_(dest), capacity_(destCapacity), | |
4281 | appended_(0), | |
4282 | fill_(flags & FILL_ORIGINAL_BUFFER), | |
4283 | grow_((flags & DONT_GROW) == 0) { | |
4284 | if (buffer_ == NULL || capacity_ < 0) { | |
4285 | buffer_ = reinterpret_cast<char *>(&lastResortByte_); | |
4286 | capacity_ = 0; | |
4287 | } | |
4288 | } | |
4289 | virtual ~SortKeyByteSink(); | |
4290 | ||
4291 | virtual void Append(const char *bytes, int32_t n); | |
4292 | void Append(const uint8_t *bytes, int32_t n) { Append(reinterpret_cast<const char *>(bytes), n); } | |
4293 | void Append(uint8_t b) { | |
4294 | if (appended_ < capacity_) { | |
4295 | buffer_[appended_++] = (char)b; | |
4296 | } else { | |
4297 | Append(&b, 1); | |
4298 | } | |
4299 | } | |
4300 | void Append(uint8_t b1, uint8_t b2) { | |
4301 | int32_t a2 = appended_ + 2; | |
4302 | if (a2 <= capacity_) { | |
4303 | buffer_[appended_] = (char)b1; | |
4304 | buffer_[appended_ + 1] = (char)b2; | |
4305 | appended_ = a2; | |
4306 | } else { | |
4307 | char bytes[2] = { (char)b1, (char)b2 }; | |
4308 | Append(bytes, 2); | |
4309 | } | |
4310 | } | |
4311 | void Append(const SortKeyByteSink &other) { Append(other.buffer_, other.appended_); } | |
4312 | virtual char *GetAppendBuffer(int32_t min_capacity, | |
4313 | int32_t desired_capacity_hint, | |
4314 | char *scratch, int32_t scratch_capacity, | |
4315 | int32_t *result_capacity); | |
4316 | int32_t NumberOfBytesAppended() const { return appended_; } | |
4317 | uint8_t &LastByte() { | |
4318 | if (buffer_ != NULL && appended_ > 0) { | |
4319 | return reinterpret_cast<uint8_t *>(buffer_)[appended_ - 1]; | |
4320 | } else { | |
4321 | return lastResortByte_; | |
4322 | } | |
4323 | } | |
4324 | uint8_t *GetLastFewBytes(int32_t n) { | |
4325 | if (buffer_ != NULL && appended_ >= n) { | |
4326 | return reinterpret_cast<uint8_t *>(buffer_) + appended_ - n; | |
4327 | } else { | |
4328 | return NULL; | |
4329 | } | |
4330 | } | |
4331 | char *GetBuffer() { return buffer_; } | |
4332 | uint8_t *GetUnsignedBuffer() { return reinterpret_cast<uint8_t *>(buffer_); } | |
4333 | uint8_t *OrphanUnsignedBuffer(int32_t &orphanedCapacity); | |
4334 | UBool IsOk() const { return buffer_ != NULL; } // otherwise out-of-memory | |
4335 | ||
4336 | private: | |
4337 | SortKeyByteSink(const SortKeyByteSink &); // copy constructor not implemented | |
4338 | SortKeyByteSink &operator=(const SortKeyByteSink &); // assignment operator not implemented | |
4339 | ||
4340 | UBool Resize(int32_t appendCapacity, int32_t length); | |
4341 | void SetNotOk() { | |
4342 | buffer_ = NULL; | |
4343 | capacity_ = 0; | |
4344 | } | |
4345 | ||
4346 | static uint8_t lastResortByte_; // last-resort return value from LastByte() | |
4347 | ||
4348 | char *ownedBuffer_; | |
4349 | char *buffer_; | |
4350 | int32_t capacity_; | |
4351 | int32_t appended_; | |
4352 | UBool fill_; | |
4353 | UBool grow_; | |
4354 | }; | |
4355 | ||
4356 | uint8_t SortKeyByteSink::lastResortByte_ = 0; | |
4357 | ||
4358 | SortKeyByteSink::~SortKeyByteSink() { | |
4359 | uprv_free(ownedBuffer_); | |
4360 | } | |
4361 | ||
4362 | void | |
4363 | SortKeyByteSink::Append(const char *bytes, int32_t n) { | |
4364 | if (n <= 0) { | |
4365 | return; | |
4366 | } | |
4367 | int32_t length = appended_; | |
4368 | appended_ += n; | |
4369 | if ((buffer_ + length) == bytes) { | |
4370 | return; // the caller used GetAppendBuffer() and wrote the bytes already | |
4371 | } | |
4372 | if (buffer_ == NULL) { | |
4373 | return; // allocation failed before already | |
4374 | } | |
4375 | int32_t available = capacity_ - length; | |
4376 | if (bytes == NULL) { | |
4377 | // assume that the caller failed to allocate memory | |
4378 | if (fill_) { | |
4379 | if (n > available) { | |
4380 | n = available; | |
4381 | } | |
4382 | uprv_memset(buffer_, 0, n); | |
4383 | } | |
4384 | SetNotOk(); // propagate the out-of-memory error | |
4385 | return; | |
4386 | } | |
4387 | if (n > available) { | |
4388 | if (fill_ && available > 0) { | |
4389 | // Fill the original buffer completely. | |
4390 | uprv_memcpy(buffer_ + length, bytes, available); | |
4391 | bytes += available; | |
4392 | length += available; | |
4393 | n -= available; | |
4394 | available = 0; | |
4395 | } | |
4396 | fill_ = FALSE; | |
4397 | if (!Resize(n, length)) { | |
4398 | SetNotOk(); | |
4399 | return; | |
4400 | } | |
4401 | } | |
4402 | uprv_memcpy(buffer_ + length, bytes, n); | |
4403 | } | |
4404 | ||
4405 | char * | |
4406 | SortKeyByteSink::GetAppendBuffer(int32_t min_capacity, | |
4407 | int32_t desired_capacity_hint, | |
4408 | char *scratch, | |
4409 | int32_t scratch_capacity, | |
4410 | int32_t *result_capacity) { | |
4411 | if (min_capacity < 1 || scratch_capacity < min_capacity) { | |
4412 | *result_capacity = 0; | |
4413 | return NULL; | |
4414 | } | |
4415 | int32_t available = capacity_ - appended_; | |
4416 | if (available >= min_capacity) { | |
4417 | *result_capacity = available; | |
4418 | return buffer_ + appended_; | |
4419 | } else if (Resize(desired_capacity_hint, appended_)) { | |
4420 | *result_capacity = capacity_ - appended_; | |
4421 | return buffer_ + appended_; | |
4422 | } else { | |
4423 | *result_capacity = scratch_capacity; | |
4424 | return scratch; | |
4425 | } | |
4426 | } | |
4427 | ||
4428 | UBool | |
4429 | SortKeyByteSink::Resize(int32_t appendCapacity, int32_t length) { | |
4430 | if (!grow_) { | |
4431 | return FALSE; | |
4432 | } | |
4433 | int32_t newCapacity = 2 * capacity_; | |
4434 | int32_t altCapacity = length + 2 * appendCapacity; | |
4435 | if (newCapacity < altCapacity) { | |
4436 | newCapacity = altCapacity; | |
4437 | } | |
4438 | if (newCapacity < 1024) { | |
4439 | newCapacity = 1024; | |
4440 | } | |
4441 | char *newBuffer = (char *)uprv_malloc(newCapacity); | |
4442 | if (newBuffer == NULL) { | |
4443 | return FALSE; | |
4444 | } | |
4445 | uprv_memcpy(newBuffer, buffer_, length); | |
4446 | uprv_free(ownedBuffer_); | |
4447 | ownedBuffer_ = buffer_ = newBuffer; | |
4448 | capacity_ = newCapacity; | |
4449 | return TRUE; | |
4450 | } | |
4451 | ||
4452 | uint8_t * | |
4453 | SortKeyByteSink::OrphanUnsignedBuffer(int32_t &orphanedCapacity) { | |
4454 | if (buffer_ == NULL || appended_ == 0) { | |
4455 | orphanedCapacity = 0; | |
4456 | return NULL; | |
4457 | } | |
4458 | if (ownedBuffer_ != NULL) { | |
4459 | // orphan & forget the ownedBuffer_ | |
4460 | uint8_t *returnBuffer = reinterpret_cast<uint8_t *>(ownedBuffer_); | |
4461 | ownedBuffer_ = buffer_ = NULL; | |
4462 | orphanedCapacity = capacity_; | |
4463 | capacity_ = appended_ = 0; | |
4464 | return returnBuffer; | |
4465 | } | |
4466 | // clone the buffer_ | |
4467 | uint8_t *newBuffer = (uint8_t *)uprv_malloc(appended_); | |
4468 | if (newBuffer == NULL) { | |
4469 | orphanedCapacity = 0; | |
4470 | return NULL; | |
4471 | } | |
4472 | uprv_memcpy(newBuffer, buffer_, appended_); | |
4473 | orphanedCapacity = appended_; | |
4474 | return newBuffer; | |
4475 | } | |
4476 | ||
4477 | U_NAMESPACE_END | |
4478 | ||
4479 | /* sortkey API */ | |
4480 | U_CAPI int32_t U_EXPORT2 | |
4481 | ucol_getSortKey(const UCollator *coll, | |
4482 | const UChar *source, | |
4483 | int32_t sourceLength, | |
4484 | uint8_t *result, | |
4485 | int32_t resultLength) | |
4486 | { | |
4487 | UTRACE_ENTRY(UTRACE_UCOL_GET_SORTKEY); | |
4488 | if (UTRACE_LEVEL(UTRACE_VERBOSE)) { | |
4489 | UTRACE_DATA3(UTRACE_VERBOSE, "coll=%p, source string = %vh ", coll, source, | |
4490 | ((sourceLength==-1 && source!=NULL) ? u_strlen(source) : sourceLength)); | |
4491 | } | |
4492 | ||
4493 | if(coll->delegate != NULL) { | |
4494 | return ((const Collator*)coll->delegate)->getSortKey(source, sourceLength, result, resultLength); | |
4495 | } | |
4496 | ||
4497 | UErrorCode status = U_ZERO_ERROR; | |
4498 | int32_t keySize = 0; | |
4499 | ||
4500 | if(source != NULL) { | |
4501 | // source == NULL is actually an error situation, but we would need to | |
4502 | // have an error code to return it. Until we introduce a new | |
4503 | // API, it stays like this | |
4504 | ||
4505 | /* this uses the function pointer that is set in updateinternalstate */ | |
4506 | /* currently, there are two funcs: */ | |
4507 | /*ucol_calcSortKey(...);*/ | |
4508 | /*ucol_calcSortKeySimpleTertiary(...);*/ | |
4509 | ||
4510 | SortKeyByteSink sink(reinterpret_cast<char *>(result), resultLength, | |
4511 | SortKeyByteSink::FILL_ORIGINAL_BUFFER | SortKeyByteSink::DONT_GROW); | |
4512 | coll->sortKeyGen(coll, source, sourceLength, sink, &status); | |
4513 | keySize = sink.NumberOfBytesAppended(); | |
4514 | } | |
4515 | UTRACE_DATA2(UTRACE_VERBOSE, "Sort Key = %vb", result, keySize); | |
4516 | UTRACE_EXIT_STATUS(status); | |
4517 | return keySize; | |
4518 | } | |
4519 | ||
4520 | /* this function is called by the C++ API for sortkey generation */ | |
4521 | U_CFUNC int32_t | |
4522 | ucol_getSortKeyWithAllocation(const UCollator *coll, | |
4523 | const UChar *source, int32_t sourceLength, | |
4524 | uint8_t *&result, int32_t &resultCapacity, | |
4525 | UErrorCode *pErrorCode) { | |
4526 | SortKeyByteSink sink(reinterpret_cast<char *>(result), resultCapacity); | |
4527 | coll->sortKeyGen(coll, source, sourceLength, sink, pErrorCode); | |
4528 | int32_t resultLen = sink.NumberOfBytesAppended(); | |
4529 | if (U_SUCCESS(*pErrorCode)) { | |
4530 | if (!sink.IsOk()) { | |
4531 | *pErrorCode = U_MEMORY_ALLOCATION_ERROR; | |
4532 | } else if (result != sink.GetUnsignedBuffer()) { | |
4533 | result = sink.OrphanUnsignedBuffer(resultCapacity); | |
4534 | } | |
4535 | } | |
4536 | return resultLen; | |
4537 | } | |
4538 | ||
4539 | // Is this primary weight compressible? | |
4540 | // Returns false for multi-lead-byte scripts (digits, Latin, Han, implicit). | |
4541 | // TODO: This should use per-lead-byte flags from FractionalUCA.txt. | |
4542 | static inline UBool | |
4543 | isCompressible(const UCollator * /*coll*/, uint8_t primary1) { | |
4544 | return UCOL_BYTE_FIRST_NON_LATIN_PRIMARY <= primary1 && primary1 <= maxRegularPrimary; | |
4545 | } | |
4546 | ||
4547 | static | |
4548 | inline void doCaseShift(SortKeyByteSink &cases, uint32_t &caseShift) { | |
4549 | if (caseShift == 0) { | |
4550 | cases.Append(UCOL_CASE_BYTE_START); | |
4551 | caseShift = UCOL_CASE_SHIFT_START; | |
4552 | } | |
4553 | } | |
4554 | ||
4555 | // Packs the secondary buffer when processing French locale. | |
4556 | static void | |
4557 | packFrench(uint8_t *secondaries, int32_t secsize, SortKeyByteSink &result) { | |
4558 | secondaries += secsize; // We read the secondary-level bytes back to front. | |
4559 | uint8_t secondary; | |
4560 | int32_t count2 = 0; | |
4561 | int32_t i = 0; | |
4562 | // we use i here since the key size already accounts for terminators, so we'll discard the increment | |
4563 | for(i = 0; i<secsize; i++) { | |
4564 | secondary = *(secondaries-i-1); | |
4565 | /* This is compression code. */ | |
4566 | if (secondary == UCOL_COMMON2) { | |
4567 | ++count2; | |
4568 | } else { | |
4569 | if (count2 > 0) { | |
4570 | if (secondary > UCOL_COMMON2) { // not necessary for 4th level. | |
4571 | while (count2 > UCOL_TOP_COUNT2) { | |
4572 | result.Append((uint8_t)(UCOL_COMMON_TOP2 - UCOL_TOP_COUNT2)); | |
4573 | count2 -= (uint32_t)UCOL_TOP_COUNT2; | |
4574 | } | |
4575 | result.Append((uint8_t)(UCOL_COMMON_TOP2 - (count2-1))); | |
4576 | } else { | |
4577 | while (count2 > UCOL_BOT_COUNT2) { | |
4578 | result.Append((uint8_t)(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2)); | |
4579 | count2 -= (uint32_t)UCOL_BOT_COUNT2; | |
4580 | } | |
4581 | result.Append((uint8_t)(UCOL_COMMON_BOT2 + (count2-1))); | |
4582 | } | |
4583 | count2 = 0; | |
4584 | } | |
4585 | result.Append(secondary); | |
4586 | } | |
4587 | } | |
4588 | if (count2 > 0) { | |
4589 | while (count2 > UCOL_BOT_COUNT2) { | |
4590 | result.Append((uint8_t)(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2)); | |
4591 | count2 -= (uint32_t)UCOL_BOT_COUNT2; | |
4592 | } | |
4593 | result.Append((uint8_t)(UCOL_COMMON_BOT2 + (count2-1))); | |
4594 | } | |
4595 | } | |
4596 | ||
4597 | #define DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY 0 | |
4598 | ||
4599 | /* This is the sortkey work horse function */ | |
4600 | U_CFUNC void U_CALLCONV | |
4601 | ucol_calcSortKey(const UCollator *coll, | |
4602 | const UChar *source, | |
4603 | int32_t sourceLength, | |
4604 | SortKeyByteSink &result, | |
4605 | UErrorCode *status) | |
4606 | { | |
4607 | if(U_FAILURE(*status)) { | |
4608 | return; | |
4609 | } | |
4610 | ||
4611 | /* Stack allocated buffers for buffers we use */ | |
4612 | char second[UCOL_SECONDARY_MAX_BUFFER], tert[UCOL_TERTIARY_MAX_BUFFER]; | |
4613 | char caseB[UCOL_CASE_MAX_BUFFER], quad[UCOL_QUAD_MAX_BUFFER]; | |
4614 | ||
4615 | SortKeyByteSink &primaries = result; | |
4616 | SortKeyByteSink secondaries(second, LENGTHOF(second)); | |
4617 | SortKeyByteSink tertiaries(tert, LENGTHOF(tert)); | |
4618 | SortKeyByteSink cases(caseB, LENGTHOF(caseB)); | |
4619 | SortKeyByteSink quads(quad, LENGTHOF(quad)); | |
4620 | ||
4621 | UnicodeString normSource; | |
4622 | ||
4623 | int32_t len = (sourceLength == -1 ? u_strlen(source) : sourceLength); | |
4624 | ||
4625 | UColAttributeValue strength = coll->strength; | |
4626 | ||
4627 | uint8_t compareSec = (uint8_t)((strength >= UCOL_SECONDARY)?0:0xFF); | |
4628 | uint8_t compareTer = (uint8_t)((strength >= UCOL_TERTIARY)?0:0xFF); | |
4629 | uint8_t compareQuad = (uint8_t)((strength >= UCOL_QUATERNARY)?0:0xFF); | |
4630 | UBool compareIdent = (strength == UCOL_IDENTICAL); | |
4631 | UBool doCase = (coll->caseLevel == UCOL_ON); | |
4632 | UBool isFrenchSec = (coll->frenchCollation == UCOL_ON) && (compareSec == 0); | |
4633 | UBool shifted = (coll->alternateHandling == UCOL_SHIFTED); | |
4634 | //UBool qShifted = shifted && (compareQuad == 0); | |
4635 | UBool doHiragana = (coll->hiraganaQ == UCOL_ON) && (compareQuad == 0); | |
4636 | ||
4637 | uint32_t variableTopValue = coll->variableTopValue; | |
4638 | // TODO: UCOL_COMMON_BOT4 should be a function of qShifted. If we have no | |
4639 | // qShifted, we don't need to set UCOL_COMMON_BOT4 so high. | |
4640 | uint8_t UCOL_COMMON_BOT4 = (uint8_t)((coll->variableTopValue>>8)+1); | |
4641 | uint8_t UCOL_HIRAGANA_QUAD = 0; | |
4642 | if(doHiragana) { | |
4643 | UCOL_HIRAGANA_QUAD=UCOL_COMMON_BOT4++; | |
4644 | /* allocate one more space for hiragana, value for hiragana */ | |
4645 | } | |
4646 | uint8_t UCOL_BOT_COUNT4 = (uint8_t)(0xFF - UCOL_COMMON_BOT4); | |
4647 | ||
4648 | /* support for special features like caselevel and funky secondaries */ | |
4649 | int32_t lastSecondaryLength = 0; | |
4650 | uint32_t caseShift = 0; | |
4651 | ||
4652 | /* If we need to normalize, we'll do it all at once at the beginning! */ | |
4653 | const Normalizer2 *norm2; | |
4654 | if(compareIdent) { | |
4655 | norm2 = Normalizer2Factory::getNFDInstance(*status); | |
4656 | } else if(coll->normalizationMode != UCOL_OFF) { | |
4657 | norm2 = Normalizer2Factory::getFCDInstance(*status); | |
4658 | } else { | |
4659 | norm2 = NULL; | |
4660 | } | |
4661 | if(norm2 != NULL) { | |
4662 | normSource.setTo(FALSE, source, len); | |
4663 | int32_t qcYesLength = norm2->spanQuickCheckYes(normSource, *status); | |
4664 | if(qcYesLength != len) { | |
4665 | UnicodeString unnormalized = normSource.tempSubString(qcYesLength); | |
4666 | normSource.truncate(qcYesLength); | |
4667 | norm2->normalizeSecondAndAppend(normSource, unnormalized, *status); | |
4668 | source = normSource.getBuffer(); | |
4669 | len = normSource.length(); | |
4670 | } | |
4671 | } | |
4672 | collIterate s; | |
4673 | IInit_collIterate(coll, source, len, &s, status); | |
4674 | if(U_FAILURE(*status)) { | |
4675 | return; | |
4676 | } | |
4677 | s.flags &= ~UCOL_ITER_NORM; // source passed the FCD test or else was normalized. | |
4678 | ||
4679 | uint32_t order = 0; | |
4680 | ||
4681 | uint8_t primary1 = 0; | |
4682 | uint8_t primary2 = 0; | |
4683 | uint8_t secondary = 0; | |
4684 | uint8_t tertiary = 0; | |
4685 | uint8_t caseSwitch = coll->caseSwitch; | |
4686 | uint8_t tertiaryMask = coll->tertiaryMask; | |
4687 | int8_t tertiaryAddition = coll->tertiaryAddition; | |
4688 | uint8_t tertiaryTop = coll->tertiaryTop; | |
4689 | uint8_t tertiaryBottom = coll->tertiaryBottom; | |
4690 | uint8_t tertiaryCommon = coll->tertiaryCommon; | |
4691 | uint8_t caseBits = 0; | |
4692 | ||
4693 | UBool wasShifted = FALSE; | |
4694 | UBool notIsContinuation = FALSE; | |
4695 | ||
4696 | uint32_t count2 = 0, count3 = 0, count4 = 0; | |
4697 | uint8_t leadPrimary = 0; | |
4698 | ||
4699 | for(;;) { | |
4700 | order = ucol_IGetNextCE(coll, &s, status); | |
4701 | if(order == UCOL_NO_MORE_CES) { | |
4702 | break; | |
4703 | } | |
4704 | ||
4705 | if(order == 0) { | |
4706 | continue; | |
4707 | } | |
4708 | ||
4709 | notIsContinuation = !isContinuation(order); | |
4710 | ||
4711 | if(notIsContinuation) { | |
4712 | tertiary = (uint8_t)(order & UCOL_BYTE_SIZE_MASK); | |
4713 | } else { | |
4714 | tertiary = (uint8_t)((order & UCOL_REMOVE_CONTINUATION)); | |
4715 | } | |
4716 | ||
4717 | secondary = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK); | |
4718 | primary2 = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK); | |
4719 | primary1 = (uint8_t)(order >> 8); | |
4720 | ||
4721 | uint8_t originalPrimary1 = primary1; | |
4722 | if(notIsContinuation && coll->leadBytePermutationTable != NULL) { | |
4723 | primary1 = coll->leadBytePermutationTable[primary1]; | |
4724 | } | |
4725 | ||
4726 | if((shifted && ((notIsContinuation && order <= variableTopValue && primary1 > 0) | |
4727 | || (!notIsContinuation && wasShifted))) | |
4728 | || (wasShifted && primary1 == 0)) /* amendment to the UCA says that primary ignorables */ | |
4729 | { | |
4730 | /* and other ignorables should be removed if following a shifted code point */ | |
4731 | if(primary1 == 0) { /* if we were shifted and we got an ignorable code point */ | |
4732 | /* we should just completely ignore it */ | |
4733 | continue; | |
4734 | } | |
4735 | if(compareQuad == 0) { | |
4736 | if(count4 > 0) { | |
4737 | while (count4 > UCOL_BOT_COUNT4) { | |
4738 | quads.Append((uint8_t)(UCOL_COMMON_BOT4 + UCOL_BOT_COUNT4)); | |
4739 | count4 -= UCOL_BOT_COUNT4; | |
4740 | } | |
4741 | quads.Append((uint8_t)(UCOL_COMMON_BOT4 + (count4-1))); | |
4742 | count4 = 0; | |
4743 | } | |
4744 | /* We are dealing with a variable and we're treating them as shifted */ | |
4745 | /* This is a shifted ignorable */ | |
4746 | if(primary1 != 0) { /* we need to check this since we could be in continuation */ | |
4747 | quads.Append(primary1); | |
4748 | } | |
4749 | if(primary2 != 0) { | |
4750 | quads.Append(primary2); | |
4751 | } | |
4752 | } | |
4753 | wasShifted = TRUE; | |
4754 | } else { | |
4755 | wasShifted = FALSE; | |
4756 | /* Note: This code assumes that the table is well built i.e. not having 0 bytes where they are not supposed to be. */ | |
4757 | /* Usually, we'll have non-zero primary1 & primary2, except in cases of a-z and friends, when primary2 will */ | |
4758 | /* regular and simple sortkey calc */ | |
4759 | if(primary1 != UCOL_IGNORABLE) { | |
4760 | if(notIsContinuation) { | |
4761 | if(leadPrimary == primary1) { | |
4762 | primaries.Append(primary2); | |
4763 | } else { | |
4764 | if(leadPrimary != 0) { | |
4765 | primaries.Append((uint8_t)((primary1 > leadPrimary) ? UCOL_BYTE_UNSHIFTED_MAX : UCOL_BYTE_UNSHIFTED_MIN)); | |
4766 | } | |
4767 | if(primary2 == UCOL_IGNORABLE) { | |
4768 | /* one byter, not compressed */ | |
4769 | primaries.Append(primary1); | |
4770 | leadPrimary = 0; | |
4771 | } else if(isCompressible(coll, originalPrimary1)) { | |
4772 | /* compress */ | |
4773 | primaries.Append(leadPrimary = primary1, primary2); | |
4774 | } else { | |
4775 | leadPrimary = 0; | |
4776 | primaries.Append(primary1, primary2); | |
4777 | } | |
4778 | } | |
4779 | } else { /* we are in continuation, so we're gonna add primary to the key don't care about compression */ | |
4780 | if(primary2 == UCOL_IGNORABLE) { | |
4781 | primaries.Append(primary1); | |
4782 | } else { | |
4783 | primaries.Append(primary1, primary2); | |
4784 | } | |
4785 | } | |
4786 | } | |
4787 | ||
4788 | if(secondary > compareSec) { | |
4789 | if(!isFrenchSec) { | |
4790 | /* This is compression code. */ | |
4791 | if (secondary == UCOL_COMMON2 && notIsContinuation) { | |
4792 | ++count2; | |
4793 | } else { | |
4794 | if (count2 > 0) { | |
4795 | if (secondary > UCOL_COMMON2) { // not necessary for 4th level. | |
4796 | while (count2 > UCOL_TOP_COUNT2) { | |
4797 | secondaries.Append((uint8_t)(UCOL_COMMON_TOP2 - UCOL_TOP_COUNT2)); | |
4798 | count2 -= (uint32_t)UCOL_TOP_COUNT2; | |
4799 | } | |
4800 | secondaries.Append((uint8_t)(UCOL_COMMON_TOP2 - (count2-1))); | |
4801 | } else { | |
4802 | while (count2 > UCOL_BOT_COUNT2) { | |
4803 | secondaries.Append((uint8_t)(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2)); | |
4804 | count2 -= (uint32_t)UCOL_BOT_COUNT2; | |
4805 | } | |
4806 | secondaries.Append((uint8_t)(UCOL_COMMON_BOT2 + (count2-1))); | |
4807 | } | |
4808 | count2 = 0; | |
4809 | } | |
4810 | secondaries.Append(secondary); | |
4811 | } | |
4812 | } else { | |
4813 | /* Do the special handling for French secondaries */ | |
4814 | /* We need to get continuation elements and do intermediate restore */ | |
4815 | /* abc1c2c3de with french secondaries need to be edc1c2c3ba NOT edc3c2c1ba */ | |
4816 | if(notIsContinuation) { | |
4817 | if (lastSecondaryLength > 1) { | |
4818 | uint8_t *frenchStartPtr = secondaries.GetLastFewBytes(lastSecondaryLength); | |
4819 | if (frenchStartPtr != NULL) { | |
4820 | /* reverse secondaries from frenchStartPtr up to frenchEndPtr */ | |
4821 | uint8_t *frenchEndPtr = frenchStartPtr + lastSecondaryLength - 1; | |
4822 | uprv_ucol_reverse_buffer(uint8_t, frenchStartPtr, frenchEndPtr); | |
4823 | } | |
4824 | } | |
4825 | lastSecondaryLength = 1; | |
4826 | } else { | |
4827 | ++lastSecondaryLength; | |
4828 | } | |
4829 | secondaries.Append(secondary); | |
4830 | } | |
4831 | } | |
4832 | ||
4833 | if(doCase && (primary1 > 0 || strength >= UCOL_SECONDARY)) { | |
4834 | // do the case level if we need to do it. We don't want to calculate | |
4835 | // case level for primary ignorables if we have only primary strength and case level | |
4836 | // otherwise we would break well formedness of CEs | |
4837 | doCaseShift(cases, caseShift); | |
4838 | if(notIsContinuation) { | |
4839 | caseBits = (uint8_t)(tertiary & 0xC0); | |
4840 | ||
4841 | if(tertiary != 0) { | |
4842 | if(coll->caseFirst == UCOL_UPPER_FIRST) { | |
4843 | if((caseBits & 0xC0) == 0) { | |
4844 | cases.LastByte() |= 1 << (--caseShift); | |
4845 | } else { | |
4846 | cases.LastByte() |= 0 << (--caseShift); | |
4847 | /* second bit */ | |
4848 | doCaseShift(cases, caseShift); | |
4849 | cases.LastByte() |= ((caseBits>>6)&1) << (--caseShift); | |
4850 | } | |
4851 | } else { | |
4852 | if((caseBits & 0xC0) == 0) { | |
4853 | cases.LastByte() |= 0 << (--caseShift); | |
4854 | } else { | |
4855 | cases.LastByte() |= 1 << (--caseShift); | |
4856 | /* second bit */ | |
4857 | doCaseShift(cases, caseShift); | |
4858 | cases.LastByte() |= ((caseBits>>7)&1) << (--caseShift); | |
4859 | } | |
4860 | } | |
4861 | } | |
4862 | } | |
4863 | } else { | |
4864 | if(notIsContinuation) { | |
4865 | tertiary ^= caseSwitch; | |
4866 | } | |
4867 | } | |
4868 | ||
4869 | tertiary &= tertiaryMask; | |
4870 | if(tertiary > compareTer) { | |
4871 | /* This is compression code. */ | |
4872 | /* sequence size check is included in the if clause */ | |
4873 | if (tertiary == tertiaryCommon && notIsContinuation) { | |
4874 | ++count3; | |
4875 | } else { | |
4876 | if(tertiary > tertiaryCommon && tertiaryCommon == UCOL_COMMON3_NORMAL) { | |
4877 | tertiary += tertiaryAddition; | |
4878 | } else if(tertiary <= tertiaryCommon && tertiaryCommon == UCOL_COMMON3_UPPERFIRST) { | |
4879 | tertiary -= tertiaryAddition; | |
4880 | } | |
4881 | if (count3 > 0) { | |
4882 | if ((tertiary > tertiaryCommon)) { | |
4883 | while (count3 > coll->tertiaryTopCount) { | |
4884 | tertiaries.Append((uint8_t)(tertiaryTop - coll->tertiaryTopCount)); | |
4885 | count3 -= (uint32_t)coll->tertiaryTopCount; | |
4886 | } | |
4887 | tertiaries.Append((uint8_t)(tertiaryTop - (count3-1))); | |
4888 | } else { | |
4889 | while (count3 > coll->tertiaryBottomCount) { | |
4890 | tertiaries.Append((uint8_t)(tertiaryBottom + coll->tertiaryBottomCount)); | |
4891 | count3 -= (uint32_t)coll->tertiaryBottomCount; | |
4892 | } | |
4893 | tertiaries.Append((uint8_t)(tertiaryBottom + (count3-1))); | |
4894 | } | |
4895 | count3 = 0; | |
4896 | } | |
4897 | tertiaries.Append(tertiary); | |
4898 | } | |
4899 | } | |
4900 | ||
4901 | if(/*qShifted*/(compareQuad==0) && notIsContinuation) { | |
4902 | if(s.flags & UCOL_WAS_HIRAGANA) { // This was Hiragana and we need to note it | |
4903 | if(count4>0) { // Close this part | |
4904 | while (count4 > UCOL_BOT_COUNT4) { | |
4905 | quads.Append((uint8_t)(UCOL_COMMON_BOT4 + UCOL_BOT_COUNT4)); | |
4906 | count4 -= UCOL_BOT_COUNT4; | |
4907 | } | |
4908 | quads.Append((uint8_t)(UCOL_COMMON_BOT4 + (count4-1))); | |
4909 | count4 = 0; | |
4910 | } | |
4911 | quads.Append(UCOL_HIRAGANA_QUAD); // Add the Hiragana | |
4912 | } else { // This wasn't Hiragana, so we can continue adding stuff | |
4913 | count4++; | |
4914 | } | |
4915 | } | |
4916 | } | |
4917 | } | |
4918 | ||
4919 | /* Here, we are generally done with processing */ | |
4920 | /* bailing out would not be too productive */ | |
4921 | ||
4922 | if(U_SUCCESS(*status)) { | |
4923 | /* we have done all the CE's, now let's put them together to form a key */ | |
4924 | if(compareSec == 0) { | |
4925 | if (count2 > 0) { | |
4926 | while (count2 > UCOL_BOT_COUNT2) { | |
4927 | secondaries.Append((uint8_t)(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2)); | |
4928 | count2 -= (uint32_t)UCOL_BOT_COUNT2; | |
4929 | } | |
4930 | secondaries.Append((uint8_t)(UCOL_COMMON_BOT2 + (count2-1))); | |
4931 | } | |
4932 | result.Append(UCOL_LEVELTERMINATOR); | |
4933 | if(!isFrenchSec || !secondaries.IsOk()) { | |
4934 | result.Append(secondaries); | |
4935 | } else { | |
4936 | // If there are any unresolved continuation secondaries, | |
4937 | // reverse them here so that we can reverse the whole secondary thing. | |
4938 | if (lastSecondaryLength > 1) { | |
4939 | uint8_t *frenchStartPtr = secondaries.GetLastFewBytes(lastSecondaryLength); | |
4940 | if (frenchStartPtr != NULL) { | |
4941 | /* reverse secondaries from frenchStartPtr up to frenchEndPtr */ | |
4942 | uint8_t *frenchEndPtr = frenchStartPtr + lastSecondaryLength - 1; | |
4943 | uprv_ucol_reverse_buffer(uint8_t, frenchStartPtr, frenchEndPtr); | |
4944 | } | |
4945 | } | |
4946 | packFrench(secondaries.GetUnsignedBuffer(), secondaries.NumberOfBytesAppended(), result); | |
4947 | } | |
4948 | } | |
4949 | ||
4950 | if(doCase) { | |
4951 | result.Append(UCOL_LEVELTERMINATOR); | |
4952 | result.Append(cases); | |
4953 | } | |
4954 | ||
4955 | if(compareTer == 0) { | |
4956 | if (count3 > 0) { | |
4957 | if (coll->tertiaryCommon != UCOL_COMMON_BOT3) { | |
4958 | while (count3 >= coll->tertiaryTopCount) { | |
4959 | tertiaries.Append((uint8_t)(tertiaryTop - coll->tertiaryTopCount)); | |
4960 | count3 -= (uint32_t)coll->tertiaryTopCount; | |
4961 | } | |
4962 | tertiaries.Append((uint8_t)(tertiaryTop - count3)); | |
4963 | } else { | |
4964 | while (count3 > coll->tertiaryBottomCount) { | |
4965 | tertiaries.Append((uint8_t)(tertiaryBottom + coll->tertiaryBottomCount)); | |
4966 | count3 -= (uint32_t)coll->tertiaryBottomCount; | |
4967 | } | |
4968 | tertiaries.Append((uint8_t)(tertiaryBottom + (count3-1))); | |
4969 | } | |
4970 | } | |
4971 | result.Append(UCOL_LEVELTERMINATOR); | |
4972 | result.Append(tertiaries); | |
4973 | ||
4974 | if(compareQuad == 0/*qShifted == TRUE*/) { | |
4975 | if(count4 > 0) { | |
4976 | while (count4 > UCOL_BOT_COUNT4) { | |
4977 | quads.Append((uint8_t)(UCOL_COMMON_BOT4 + UCOL_BOT_COUNT4)); | |
4978 | count4 -= UCOL_BOT_COUNT4; | |
4979 | } | |
4980 | quads.Append((uint8_t)(UCOL_COMMON_BOT4 + (count4-1))); | |
4981 | } | |
4982 | result.Append(UCOL_LEVELTERMINATOR); | |
4983 | result.Append(quads); | |
4984 | } | |
4985 | ||
4986 | if(compareIdent) { | |
4987 | result.Append(UCOL_LEVELTERMINATOR); | |
4988 | u_writeIdenticalLevelRun(s.string, len, result); | |
4989 | } | |
4990 | } | |
4991 | result.Append(0); | |
4992 | } | |
4993 | ||
4994 | /* To avoid memory leak, free the offset buffer if necessary. */ | |
4995 | ucol_freeOffsetBuffer(&s); | |
4996 | } | |
4997 | ||
4998 | ||
4999 | U_CFUNC void U_CALLCONV | |
5000 | ucol_calcSortKeySimpleTertiary(const UCollator *coll, | |
5001 | const UChar *source, | |
5002 | int32_t sourceLength, | |
5003 | SortKeyByteSink &result, | |
5004 | UErrorCode *status) | |
5005 | { | |
5006 | U_ALIGN_CODE(16); | |
5007 | ||
5008 | if(U_FAILURE(*status)) { | |
5009 | return; | |
5010 | } | |
5011 | ||
5012 | /* Stack allocated buffers for buffers we use */ | |
5013 | char second[UCOL_SECONDARY_MAX_BUFFER], tert[UCOL_TERTIARY_MAX_BUFFER]; | |
5014 | ||
5015 | SortKeyByteSink &primaries = result; | |
5016 | SortKeyByteSink secondaries(second, LENGTHOF(second)); | |
5017 | SortKeyByteSink tertiaries(tert, LENGTHOF(tert)); | |
5018 | ||
5019 | UnicodeString normSource; | |
5020 | ||
5021 | int32_t len = sourceLength; | |
5022 | ||
5023 | /* If we need to normalize, we'll do it all at once at the beginning! */ | |
5024 | if(coll->normalizationMode != UCOL_OFF) { | |
5025 | normSource.setTo(len < 0, source, len); | |
5026 | const Normalizer2 *norm2 = Normalizer2Factory::getFCDInstance(*status); | |
5027 | int32_t qcYesLength = norm2->spanQuickCheckYes(normSource, *status); | |
5028 | if(qcYesLength != normSource.length()) { | |
5029 | UnicodeString unnormalized = normSource.tempSubString(qcYesLength); | |
5030 | normSource.truncate(qcYesLength); | |
5031 | norm2->normalizeSecondAndAppend(normSource, unnormalized, *status); | |
5032 | source = normSource.getBuffer(); | |
5033 | len = normSource.length(); | |
5034 | } | |
5035 | } | |
5036 | collIterate s; | |
5037 | IInit_collIterate(coll, (UChar *)source, len, &s, status); | |
5038 | if(U_FAILURE(*status)) { | |
5039 | return; | |
5040 | } | |
5041 | s.flags &= ~UCOL_ITER_NORM; // source passed the FCD test or else was normalized. | |
5042 | ||
5043 | uint32_t order = 0; | |
5044 | ||
5045 | uint8_t primary1 = 0; | |
5046 | uint8_t primary2 = 0; | |
5047 | uint8_t secondary = 0; | |
5048 | uint8_t tertiary = 0; | |
5049 | uint8_t caseSwitch = coll->caseSwitch; | |
5050 | uint8_t tertiaryMask = coll->tertiaryMask; | |
5051 | int8_t tertiaryAddition = coll->tertiaryAddition; | |
5052 | uint8_t tertiaryTop = coll->tertiaryTop; | |
5053 | uint8_t tertiaryBottom = coll->tertiaryBottom; | |
5054 | uint8_t tertiaryCommon = coll->tertiaryCommon; | |
5055 | ||
5056 | UBool notIsContinuation = FALSE; | |
5057 | ||
5058 | uint32_t count2 = 0, count3 = 0; | |
5059 | uint8_t leadPrimary = 0; | |
5060 | ||
5061 | for(;;) { | |
5062 | order = ucol_IGetNextCE(coll, &s, status); | |
5063 | ||
5064 | if(order == 0) { | |
5065 | continue; | |
5066 | } | |
5067 | ||
5068 | if(order == UCOL_NO_MORE_CES) { | |
5069 | break; | |
5070 | } | |
5071 | ||
5072 | notIsContinuation = !isContinuation(order); | |
5073 | ||
5074 | if(notIsContinuation) { | |
5075 | tertiary = (uint8_t)((order & tertiaryMask)); | |
5076 | } else { | |
5077 | tertiary = (uint8_t)((order & UCOL_REMOVE_CONTINUATION)); | |
5078 | } | |
5079 | ||
5080 | secondary = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK); | |
5081 | primary2 = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK); | |
5082 | primary1 = (uint8_t)(order >> 8); | |
5083 | ||
5084 | uint8_t originalPrimary1 = primary1; | |
5085 | if (coll->leadBytePermutationTable != NULL && notIsContinuation) { | |
5086 | primary1 = coll->leadBytePermutationTable[primary1]; | |
5087 | } | |
5088 | ||
5089 | /* Note: This code assumes that the table is well built i.e. not having 0 bytes where they are not supposed to be. */ | |
5090 | /* Usually, we'll have non-zero primary1 & primary2, except in cases of a-z and friends, when primary2 will */ | |
5091 | /* be zero with non zero primary1. primary3 is different than 0 only for long primaries - see above. */ | |
5092 | /* regular and simple sortkey calc */ | |
5093 | if(primary1 != UCOL_IGNORABLE) { | |
5094 | if(notIsContinuation) { | |
5095 | if(leadPrimary == primary1) { | |
5096 | primaries.Append(primary2); | |
5097 | } else { | |
5098 | if(leadPrimary != 0) { | |
5099 | primaries.Append((uint8_t)((primary1 > leadPrimary) ? UCOL_BYTE_UNSHIFTED_MAX : UCOL_BYTE_UNSHIFTED_MIN)); | |
5100 | } | |
5101 | if(primary2 == UCOL_IGNORABLE) { | |
5102 | /* one byter, not compressed */ | |
5103 | primaries.Append(primary1); | |
5104 | leadPrimary = 0; | |
5105 | } else if(isCompressible(coll, originalPrimary1)) { | |
5106 | /* compress */ | |
5107 | primaries.Append(leadPrimary = primary1, primary2); | |
5108 | } else { | |
5109 | leadPrimary = 0; | |
5110 | primaries.Append(primary1, primary2); | |
5111 | } | |
5112 | } | |
5113 | } else { /* we are in continuation, so we're gonna add primary to the key don't care about compression */ | |
5114 | if(primary2 == UCOL_IGNORABLE) { | |
5115 | primaries.Append(primary1); | |
5116 | } else { | |
5117 | primaries.Append(primary1, primary2); | |
5118 | } | |
5119 | } | |
5120 | } | |
5121 | ||
5122 | if(secondary > 0) { /* I think that != 0 test should be != IGNORABLE */ | |
5123 | /* This is compression code. */ | |
5124 | if (secondary == UCOL_COMMON2 && notIsContinuation) { | |
5125 | ++count2; | |
5126 | } else { | |
5127 | if (count2 > 0) { | |
5128 | if (secondary > UCOL_COMMON2) { // not necessary for 4th level. | |
5129 | while (count2 > UCOL_TOP_COUNT2) { | |
5130 | secondaries.Append((uint8_t)(UCOL_COMMON_TOP2 - UCOL_TOP_COUNT2)); | |
5131 | count2 -= (uint32_t)UCOL_TOP_COUNT2; | |
5132 | } | |
5133 | secondaries.Append((uint8_t)(UCOL_COMMON_TOP2 - (count2-1))); | |
5134 | } else { | |
5135 | while (count2 > UCOL_BOT_COUNT2) { | |
5136 | secondaries.Append((uint8_t)(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2)); | |
5137 | count2 -= (uint32_t)UCOL_BOT_COUNT2; | |
5138 | } | |
5139 | secondaries.Append((uint8_t)(UCOL_COMMON_BOT2 + (count2-1))); | |
5140 | } | |
5141 | count2 = 0; | |
5142 | } | |
5143 | secondaries.Append(secondary); | |
5144 | } | |
5145 | } | |
5146 | ||
5147 | if(notIsContinuation) { | |
5148 | tertiary ^= caseSwitch; | |
5149 | } | |
5150 | ||
5151 | if(tertiary > 0) { | |
5152 | /* This is compression code. */ | |
5153 | /* sequence size check is included in the if clause */ | |
5154 | if (tertiary == tertiaryCommon && notIsContinuation) { | |
5155 | ++count3; | |
5156 | } else { | |
5157 | if(tertiary > tertiaryCommon && tertiaryCommon == UCOL_COMMON3_NORMAL) { | |
5158 | tertiary += tertiaryAddition; | |
5159 | } else if (tertiary <= tertiaryCommon && tertiaryCommon == UCOL_COMMON3_UPPERFIRST) { | |
5160 | tertiary -= tertiaryAddition; | |
5161 | } | |
5162 | if (count3 > 0) { | |
5163 | if ((tertiary > tertiaryCommon)) { | |
5164 | while (count3 > coll->tertiaryTopCount) { | |
5165 | tertiaries.Append((uint8_t)(tertiaryTop - coll->tertiaryTopCount)); | |
5166 | count3 -= (uint32_t)coll->tertiaryTopCount; | |
5167 | } | |
5168 | tertiaries.Append((uint8_t)(tertiaryTop - (count3-1))); | |
5169 | } else { | |
5170 | while (count3 > coll->tertiaryBottomCount) { | |
5171 | tertiaries.Append((uint8_t)(tertiaryBottom + coll->tertiaryBottomCount)); | |
5172 | count3 -= (uint32_t)coll->tertiaryBottomCount; | |
5173 | } | |
5174 | tertiaries.Append((uint8_t)(tertiaryBottom + (count3-1))); | |
5175 | } | |
5176 | count3 = 0; | |
5177 | } | |
5178 | tertiaries.Append(tertiary); | |
5179 | } | |
5180 | } | |
5181 | } | |
5182 | ||
5183 | if(U_SUCCESS(*status)) { | |
5184 | /* we have done all the CE's, now let's put them together to form a key */ | |
5185 | if (count2 > 0) { | |
5186 | while (count2 > UCOL_BOT_COUNT2) { | |
5187 | secondaries.Append((uint8_t)(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2)); | |
5188 | count2 -= (uint32_t)UCOL_BOT_COUNT2; | |
5189 | } | |
5190 | secondaries.Append((uint8_t)(UCOL_COMMON_BOT2 + (count2-1))); | |
5191 | } | |
5192 | result.Append(UCOL_LEVELTERMINATOR); | |
5193 | result.Append(secondaries); | |
5194 | ||
5195 | if (count3 > 0) { | |
5196 | if (coll->tertiaryCommon != UCOL_COMMON3_NORMAL) { | |
5197 | while (count3 >= coll->tertiaryTopCount) { | |
5198 | tertiaries.Append((uint8_t)(tertiaryTop - coll->tertiaryTopCount)); | |
5199 | count3 -= (uint32_t)coll->tertiaryTopCount; | |
5200 | } | |
5201 | tertiaries.Append((uint8_t)(tertiaryTop - count3)); | |
5202 | } else { | |
5203 | while (count3 > coll->tertiaryBottomCount) { | |
5204 | tertiaries.Append((uint8_t)(tertiaryBottom + coll->tertiaryBottomCount)); | |
5205 | count3 -= (uint32_t)coll->tertiaryBottomCount; | |
5206 | } | |
5207 | tertiaries.Append((uint8_t)(tertiaryBottom + (count3-1))); | |
5208 | } | |
5209 | } | |
5210 | result.Append(UCOL_LEVELTERMINATOR); | |
5211 | result.Append(tertiaries); | |
5212 | ||
5213 | result.Append(0); | |
5214 | } | |
5215 | ||
5216 | /* To avoid memory leak, free the offset buffer if necessary. */ | |
5217 | ucol_freeOffsetBuffer(&s); | |
5218 | ||
5219 | if (U_SUCCESS(*status) && !result.IsOk()) { | |
5220 | *status = U_BUFFER_OVERFLOW_ERROR; | |
5221 | } | |
5222 | } | |
5223 | ||
5224 | static inline | |
5225 | UBool isShiftedCE(uint32_t CE, uint32_t LVT, UBool *wasShifted) { | |
5226 | UBool notIsContinuation = !isContinuation(CE); | |
5227 | uint8_t primary1 = (uint8_t)((CE >> 24) & 0xFF); | |
5228 | if((LVT && ((notIsContinuation && (CE & 0xFFFF0000)<= LVT && primary1 > 0) | |
5229 | || (!notIsContinuation && *wasShifted))) | |
5230 | || (*wasShifted && primary1 == 0)) /* amendment to the UCA says that primary ignorables */ | |
5231 | { | |
5232 | // The stuff below should probably be in the sortkey code... maybe not... | |
5233 | if(primary1 != 0) { /* if we were shifted and we got an ignorable code point */ | |
5234 | /* we should just completely ignore it */ | |
5235 | *wasShifted = TRUE; | |
5236 | //continue; | |
5237 | } | |
5238 | //*wasShifted = TRUE; | |
5239 | return TRUE; | |
5240 | } else { | |
5241 | *wasShifted = FALSE; | |
5242 | return FALSE; | |
5243 | } | |
5244 | } | |
5245 | static inline | |
5246 | void terminatePSKLevel(int32_t level, int32_t maxLevel, int32_t &i, uint8_t *dest) { | |
5247 | if(level < maxLevel) { | |
5248 | dest[i++] = UCOL_LEVELTERMINATOR; | |
5249 | } else { | |
5250 | dest[i++] = 0; | |
5251 | } | |
5252 | } | |
5253 | ||
5254 | /** enumeration of level identifiers for partial sort key generation */ | |
5255 | enum { | |
5256 | UCOL_PSK_PRIMARY = 0, | |
5257 | UCOL_PSK_SECONDARY = 1, | |
5258 | UCOL_PSK_CASE = 2, | |
5259 | UCOL_PSK_TERTIARY = 3, | |
5260 | UCOL_PSK_QUATERNARY = 4, | |
5261 | UCOL_PSK_QUIN = 5, /** This is an extra level, not used - but we have three bits to blow */ | |
5262 | UCOL_PSK_IDENTICAL = 6, | |
5263 | UCOL_PSK_NULL = 7, /** level for the end of sort key. Will just produce zeros */ | |
5264 | UCOL_PSK_LIMIT | |
5265 | }; | |
5266 | ||
5267 | /** collation state enum. *_SHIFT value is how much to shift right | |
5268 | * to get the state piece to the right. *_MASK value should be | |
5269 | * ANDed with the shifted state. This data is stored in state[1] | |
5270 | * field. | |
5271 | */ | |
5272 | enum { | |
5273 | UCOL_PSK_LEVEL_SHIFT = 0, /** level identificator. stores an enum value from above */ | |
5274 | UCOL_PSK_LEVEL_MASK = 7, /** three bits */ | |
5275 | UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_SHIFT = 3, /** number of bytes of primary or quaternary already written */ | |
5276 | UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_MASK = 1, | |
5277 | /** can be only 0 or 1, since we get up to two bytes from primary or quaternary | |
5278 | * This field is also used to denote that the French secondary level is finished | |
5279 | */ | |
5280 | UCOL_PSK_WAS_SHIFTED_SHIFT = 4,/** was the last value shifted */ | |
5281 | UCOL_PSK_WAS_SHIFTED_MASK = 1, /** can be 0 or 1 (Boolean) */ | |
5282 | UCOL_PSK_USED_FRENCH_SHIFT = 5,/** how many French bytes have we already written */ | |
5283 | UCOL_PSK_USED_FRENCH_MASK = 3, /** up to 4 bytes. See comment just below */ | |
5284 | /** When we do French we need to reverse secondary values. However, continuations | |
5285 | * need to stay the same. So if you had abc1c2c3de, you need to have edc1c2c3ba | |
5286 | */ | |
5287 | UCOL_PSK_BOCSU_BYTES_SHIFT = 7, | |
5288 | UCOL_PSK_BOCSU_BYTES_MASK = 3, | |
5289 | UCOL_PSK_CONSUMED_CES_SHIFT = 9, | |
5290 | UCOL_PSK_CONSUMED_CES_MASK = 0x7FFFF | |
5291 | }; | |
5292 | ||
5293 | // macro calculating the number of expansion CEs available | |
5294 | #define uprv_numAvailableExpCEs(s) (s).CEpos - (s).toReturn | |
5295 | ||
5296 | ||
5297 | /** main sortkey part procedure. On the first call, | |
5298 | * you should pass in a collator, an iterator, empty state | |
5299 | * state[0] == state[1] == 0, a buffer to hold results | |
5300 | * number of bytes you need and an error code pointer. | |
5301 | * Make sure your buffer is big enough to hold the wanted | |
5302 | * number of sortkey bytes. I don't check. | |
5303 | * The only meaningful status you can get back is | |
5304 | * U_BUFFER_OVERFLOW_ERROR, which basically means that you | |
5305 | * have been dealt a raw deal and that you probably won't | |
5306 | * be able to use partial sortkey generation for this | |
5307 | * particular combination of string and collator. This | |
5308 | * is highly unlikely, but you should still check the error code. | |
5309 | * Any other status means that you're not in a sane situation | |
5310 | * anymore. After the first call, preserve state values and | |
5311 | * use them on subsequent calls to obtain more bytes of a sortkey. | |
5312 | * Use until the number of bytes written is smaller than the requested | |
5313 | * number of bytes. Generated sortkey is not compatible with the | |
5314 | * one generated by ucol_getSortKey, as we don't do any compression. | |
5315 | * However, levels are still terminated by a 1 (one) and the sortkey | |
5316 | * is terminated by a 0 (zero). Identical level is the same as in the | |
5317 | * regular sortkey - internal bocu-1 implementation is used. | |
5318 | * For curious, although you cannot do much about this, here is | |
5319 | * the structure of state words. | |
5320 | * state[0] - iterator state. Depends on the iterator implementation, | |
5321 | * but allows the iterator to continue where it stopped in | |
5322 | * the last iteration. | |
5323 | * state[1] - collation processing state. Here is the distribution | |
5324 | * of the bits: | |
5325 | * 0, 1, 2 - level of the sortkey - primary, secondary, case, tertiary | |
5326 | * quaternary, quin (we don't use this one), identical and | |
5327 | * null (producing only zeroes - first one to terminate the | |
5328 | * sortkey and subsequent to fill the buffer). | |
5329 | * 3 - byte count. Number of bytes written on the primary level. | |
5330 | * 4 - was shifted. Whether the previous iteration finished in the | |
5331 | * shifted state. | |
5332 | * 5, 6 - French continuation bytes written. See the comment in the enum | |
5333 | * 7,8 - Bocsu bytes used. Number of bytes from a bocu sequence on | |
5334 | * the identical level. | |
5335 | * 9..31 - CEs consumed. Number of getCE or next32 operations performed | |
5336 | * since thes last successful update of the iterator state. | |
5337 | */ | |
5338 | U_CAPI int32_t U_EXPORT2 | |
5339 | ucol_nextSortKeyPart(const UCollator *coll, | |
5340 | UCharIterator *iter, | |
5341 | uint32_t state[2], | |
5342 | uint8_t *dest, int32_t count, | |
5343 | UErrorCode *status) | |
5344 | { | |
5345 | /* error checking */ | |
5346 | if(status==NULL || U_FAILURE(*status)) { | |
5347 | return 0; | |
5348 | } | |
5349 | UTRACE_ENTRY(UTRACE_UCOL_NEXTSORTKEYPART); | |
5350 | if( coll==NULL || iter==NULL || | |
5351 | state==NULL || | |
5352 | count<0 || (count>0 && dest==NULL) | |
5353 | ) { | |
5354 | *status=U_ILLEGAL_ARGUMENT_ERROR; | |
5355 | UTRACE_EXIT_STATUS(status); | |
5356 | return 0; | |
5357 | } | |
5358 | ||
5359 | UTRACE_DATA6(UTRACE_VERBOSE, "coll=%p, iter=%p, state=%d %d, dest=%p, count=%d", | |
5360 | coll, iter, state[0], state[1], dest, count); | |
5361 | ||
5362 | if(count==0) { | |
5363 | /* nothing to do */ | |
5364 | UTRACE_EXIT_VALUE(0); | |
5365 | return 0; | |
5366 | } | |
5367 | /** Setting up situation according to the state we got from the previous iteration */ | |
5368 | // The state of the iterator from the previous invocation | |
5369 | uint32_t iterState = state[0]; | |
5370 | // Has the last iteration ended in the shifted state | |
5371 | UBool wasShifted = ((state[1] >> UCOL_PSK_WAS_SHIFTED_SHIFT) & UCOL_PSK_WAS_SHIFTED_MASK)?TRUE:FALSE; | |
5372 | // What is the current level of the sortkey? | |
5373 | int32_t level= (state[1] >> UCOL_PSK_LEVEL_SHIFT) & UCOL_PSK_LEVEL_MASK; | |
5374 | // Have we written only one byte from a two byte primary in the previous iteration? | |
5375 | // Also on secondary level - have we finished with the French secondary? | |
5376 | int32_t byteCountOrFrenchDone = (state[1] >> UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_SHIFT) & UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_MASK; | |
5377 | // number of bytes in the continuation buffer for French | |
5378 | int32_t usedFrench = (state[1] >> UCOL_PSK_USED_FRENCH_SHIFT) & UCOL_PSK_USED_FRENCH_MASK; | |
5379 | // Number of bytes already written from a bocsu sequence. Since | |
5380 | // the longes bocsu sequence is 4 long, this can be up to 3. | |
5381 | int32_t bocsuBytesUsed = (state[1] >> UCOL_PSK_BOCSU_BYTES_SHIFT) & UCOL_PSK_BOCSU_BYTES_MASK; | |
5382 | // Number of elements that need to be consumed in this iteration because | |
5383 | // the iterator returned UITER_NO_STATE at the end of the last iteration, | |
5384 | // so we had to save the last valid state. | |
5385 | int32_t cces = (state[1] >> UCOL_PSK_CONSUMED_CES_SHIFT) & UCOL_PSK_CONSUMED_CES_MASK; | |
5386 | ||
5387 | /** values that depend on the collator attributes */ | |
5388 | // strength of the collator. | |
5389 | int32_t strength = ucol_getAttribute(coll, UCOL_STRENGTH, status); | |
5390 | // maximal level of the partial sortkey. Need to take whether case level is done | |
5391 | int32_t maxLevel = 0; | |
5392 | if(strength < UCOL_TERTIARY) { | |
5393 | if(ucol_getAttribute(coll, UCOL_CASE_LEVEL, status) == UCOL_ON) { | |
5394 | maxLevel = UCOL_PSK_CASE; | |
5395 | } else { | |
5396 | maxLevel = strength; | |
5397 | } | |
5398 | } else { | |
5399 | if(strength == UCOL_TERTIARY) { | |
5400 | maxLevel = UCOL_PSK_TERTIARY; | |
5401 | } else if(strength == UCOL_QUATERNARY) { | |
5402 | maxLevel = UCOL_PSK_QUATERNARY; | |
5403 | } else { // identical | |
5404 | maxLevel = UCOL_IDENTICAL; | |
5405 | } | |
5406 | } | |
5407 | // value for the quaternary level if Hiragana is encountered. Used for JIS X 4061 collation | |
5408 | uint8_t UCOL_HIRAGANA_QUAD = | |
5409 | (ucol_getAttribute(coll, UCOL_HIRAGANA_QUATERNARY_MODE, status) == UCOL_ON)?0xFE:0xFF; | |
5410 | // Boundary value that decides whether a CE is shifted or not | |
5411 | uint32_t LVT = (coll->alternateHandling == UCOL_SHIFTED)?(coll->variableTopValue<<16):0; | |
5412 | // Are we doing French collation? | |
5413 | UBool doingFrench = (ucol_getAttribute(coll, UCOL_FRENCH_COLLATION, status) == UCOL_ON); | |
5414 | ||
5415 | /** initializing the collation state */ | |
5416 | UBool notIsContinuation = FALSE; | |
5417 | uint32_t CE = UCOL_NO_MORE_CES; | |
5418 | ||
5419 | collIterate s; | |
5420 | IInit_collIterate(coll, NULL, -1, &s, status); | |
5421 | if(U_FAILURE(*status)) { | |
5422 | UTRACE_EXIT_STATUS(*status); | |
5423 | return 0; | |
5424 | } | |
5425 | s.iterator = iter; | |
5426 | s.flags |= UCOL_USE_ITERATOR; | |
5427 | // This variable tells us whether we have produced some other levels in this iteration | |
5428 | // before we moved to the identical level. In that case, we need to switch the | |
5429 | // type of the iterator. | |
5430 | UBool doingIdenticalFromStart = FALSE; | |
5431 | // Normalizing iterator | |
5432 | // The division for the array length may truncate the array size to | |
5433 | // a little less than UNORM_ITER_SIZE, but that size is dimensioned too high | |
5434 | // for all platforms anyway. | |
5435 | UAlignedMemory stackNormIter[UNORM_ITER_SIZE/sizeof(UAlignedMemory)]; | |
5436 | UNormIterator *normIter = NULL; | |
5437 | // If the normalization is turned on for the collator and we are below identical level | |
5438 | // we will use a FCD normalizing iterator | |
5439 | if(ucol_getAttribute(coll, UCOL_NORMALIZATION_MODE, status) == UCOL_ON && level < UCOL_PSK_IDENTICAL) { | |
5440 | normIter = unorm_openIter(stackNormIter, sizeof(stackNormIter), status); | |
5441 | s.iterator = unorm_setIter(normIter, iter, UNORM_FCD, status); | |
5442 | s.flags &= ~UCOL_ITER_NORM; | |
5443 | if(U_FAILURE(*status)) { | |
5444 | UTRACE_EXIT_STATUS(*status); | |
5445 | return 0; | |
5446 | } | |
5447 | } else if(level == UCOL_PSK_IDENTICAL) { | |
5448 | // for identical level, we need a NFD iterator. We need to instantiate it here, since we | |
5449 | // will be updating the state - and this cannot be done on an ordinary iterator. | |
5450 | normIter = unorm_openIter(stackNormIter, sizeof(stackNormIter), status); | |
5451 | s.iterator = unorm_setIter(normIter, iter, UNORM_NFD, status); | |
5452 | s.flags &= ~UCOL_ITER_NORM; | |
5453 | if(U_FAILURE(*status)) { | |
5454 | UTRACE_EXIT_STATUS(*status); | |
5455 | return 0; | |
5456 | } | |
5457 | doingIdenticalFromStart = TRUE; | |
5458 | } | |
5459 | ||
5460 | // This is the tentative new state of the iterator. The problem | |
5461 | // is that the iterator might return an undefined state, in | |
5462 | // which case we should save the last valid state and increase | |
5463 | // the iterator skip value. | |
5464 | uint32_t newState = 0; | |
5465 | ||
5466 | // First, we set the iterator to the last valid position | |
5467 | // from the last iteration. This was saved in state[0]. | |
5468 | if(iterState == 0) { | |
5469 | /* initial state */ | |
5470 | if(level == UCOL_PSK_SECONDARY && doingFrench && !byteCountOrFrenchDone) { | |
5471 | s.iterator->move(s.iterator, 0, UITER_LIMIT); | |
5472 | } else { | |
5473 | s.iterator->move(s.iterator, 0, UITER_START); | |
5474 | } | |
5475 | } else { | |
5476 | /* reset to previous state */ | |
5477 | s.iterator->setState(s.iterator, iterState, status); | |
5478 | if(U_FAILURE(*status)) { | |
5479 | UTRACE_EXIT_STATUS(*status); | |
5480 | return 0; | |
5481 | } | |
5482 | } | |
5483 | ||
5484 | ||
5485 | ||
5486 | // This variable tells us whether we can attempt to update the state | |
5487 | // of iterator. Situations where we don't want to update iterator state | |
5488 | // are the existence of expansion CEs that are not yet processed, and | |
5489 | // finishing the case level without enough space in the buffer to insert | |
5490 | // a level terminator. | |
5491 | UBool canUpdateState = TRUE; | |
5492 | ||
5493 | // Consume all the CEs that were consumed at the end of the previous | |
5494 | // iteration without updating the iterator state. On identical level, | |
5495 | // consume the code points. | |
5496 | int32_t counter = cces; | |
5497 | if(level < UCOL_PSK_IDENTICAL) { | |
5498 | while(counter-->0) { | |
5499 | // If we're doing French and we are on the secondary level, | |
5500 | // we go backwards. | |
5501 | if(level == UCOL_PSK_SECONDARY && doingFrench) { | |
5502 | CE = ucol_IGetPrevCE(coll, &s, status); | |
5503 | } else { | |
5504 | CE = ucol_IGetNextCE(coll, &s, status); | |
5505 | } | |
5506 | if(CE==UCOL_NO_MORE_CES) { | |
5507 | /* should not happen */ | |
5508 | *status=U_INTERNAL_PROGRAM_ERROR; | |
5509 | UTRACE_EXIT_STATUS(*status); | |
5510 | return 0; | |
5511 | } | |
5512 | if(uprv_numAvailableExpCEs(s)) { | |
5513 | canUpdateState = FALSE; | |
5514 | } | |
5515 | } | |
5516 | } else { | |
5517 | while(counter-->0) { | |
5518 | uiter_next32(s.iterator); | |
5519 | } | |
5520 | } | |
5521 | ||
5522 | // French secondary needs to know whether the iterator state of zero came from previous level OR | |
5523 | // from a new invocation... | |
5524 | UBool wasDoingPrimary = FALSE; | |
5525 | // destination buffer byte counter. When this guy | |
5526 | // gets to count, we're done with the iteration | |
5527 | int32_t i = 0; | |
5528 | // used to count the zero bytes written after we | |
5529 | // have finished with the sort key | |
5530 | int32_t j = 0; | |
5531 | ||
5532 | ||
5533 | // Hm.... I think we're ready to plunge in. Basic story is as following: | |
5534 | // we have a fall through case based on level. This is used for initial | |
5535 | // positioning on iteration start. Every level processor contains a | |
5536 | // for(;;) which will be broken when we exhaust all the CEs. Other | |
5537 | // way to exit is a goto saveState, which happens when we have filled | |
5538 | // out our buffer. | |
5539 | switch(level) { | |
5540 | case UCOL_PSK_PRIMARY: | |
5541 | wasDoingPrimary = TRUE; | |
5542 | for(;;) { | |
5543 | if(i==count) { | |
5544 | goto saveState; | |
5545 | } | |
5546 | // We should save the state only if we | |
5547 | // are sure that we are done with the | |
5548 | // previous iterator state | |
5549 | if(canUpdateState && byteCountOrFrenchDone == 0) { | |
5550 | newState = s.iterator->getState(s.iterator); | |
5551 | if(newState != UITER_NO_STATE) { | |
5552 | iterState = newState; | |
5553 | cces = 0; | |
5554 | } | |
5555 | } | |
5556 | CE = ucol_IGetNextCE(coll, &s, status); | |
5557 | cces++; | |
5558 | if(CE==UCOL_NO_MORE_CES) { | |
5559 | // Add the level separator | |
5560 | terminatePSKLevel(level, maxLevel, i, dest); | |
5561 | byteCountOrFrenchDone=0; | |
5562 | // Restart the iteration an move to the | |
5563 | // second level | |
5564 | s.iterator->move(s.iterator, 0, UITER_START); | |
5565 | cces = 0; | |
5566 | level = UCOL_PSK_SECONDARY; | |
5567 | break; | |
5568 | } | |
5569 | if(!isContinuation(CE)){ | |
5570 | if(coll->leadBytePermutationTable != NULL){ | |
5571 | CE = (coll->leadBytePermutationTable[CE>>24] << 24) | (CE & 0x00FFFFFF); | |
5572 | } | |
5573 | } | |
5574 | if(!isShiftedCE(CE, LVT, &wasShifted)) { | |
5575 | CE >>= UCOL_PRIMARYORDERSHIFT; /* get primary */ | |
5576 | if(CE != 0) { | |
5577 | if(byteCountOrFrenchDone == 0) { | |
5578 | // get the second byte of primary | |
5579 | dest[i++]=(uint8_t)(CE >> 8); | |
5580 | } else { | |
5581 | byteCountOrFrenchDone = 0; | |
5582 | } | |
5583 | if((CE &=0xff)!=0) { | |
5584 | if(i==count) { | |
5585 | /* overflow */ | |
5586 | byteCountOrFrenchDone = 1; | |
5587 | cces--; | |
5588 | goto saveState; | |
5589 | } | |
5590 | dest[i++]=(uint8_t)CE; | |
5591 | } | |
5592 | } | |
5593 | } | |
5594 | if(uprv_numAvailableExpCEs(s)) { | |
5595 | canUpdateState = FALSE; | |
5596 | } else { | |
5597 | canUpdateState = TRUE; | |
5598 | } | |
5599 | } | |
5600 | /* fall through to next level */ | |
5601 | case UCOL_PSK_SECONDARY: | |
5602 | if(strength >= UCOL_SECONDARY) { | |
5603 | if(!doingFrench) { | |
5604 | for(;;) { | |
5605 | if(i == count) { | |
5606 | goto saveState; | |
5607 | } | |
5608 | // We should save the state only if we | |
5609 | // are sure that we are done with the | |
5610 | // previous iterator state | |
5611 | if(canUpdateState) { | |
5612 | newState = s.iterator->getState(s.iterator); | |
5613 | if(newState != UITER_NO_STATE) { | |
5614 | iterState = newState; | |
5615 | cces = 0; | |
5616 | } | |
5617 | } | |
5618 | CE = ucol_IGetNextCE(coll, &s, status); | |
5619 | cces++; | |
5620 | if(CE==UCOL_NO_MORE_CES) { | |
5621 | // Add the level separator | |
5622 | terminatePSKLevel(level, maxLevel, i, dest); | |
5623 | byteCountOrFrenchDone = 0; | |
5624 | // Restart the iteration an move to the | |
5625 | // second level | |
5626 | s.iterator->move(s.iterator, 0, UITER_START); | |
5627 | cces = 0; | |
5628 | level = UCOL_PSK_CASE; | |
5629 | break; | |
5630 | } | |
5631 | if(!isShiftedCE(CE, LVT, &wasShifted)) { | |
5632 | CE >>= 8; /* get secondary */ | |
5633 | if(CE != 0) { | |
5634 | dest[i++]=(uint8_t)CE; | |
5635 | } | |
5636 | } | |
5637 | if(uprv_numAvailableExpCEs(s)) { | |
5638 | canUpdateState = FALSE; | |
5639 | } else { | |
5640 | canUpdateState = TRUE; | |
5641 | } | |
5642 | } | |
5643 | } else { // French secondary processing | |
5644 | uint8_t frenchBuff[UCOL_MAX_BUFFER]; | |
5645 | int32_t frenchIndex = 0; | |
5646 | // Here we are going backwards. | |
5647 | // If the iterator is at the beggining, it should be | |
5648 | // moved to end. | |
5649 | if(wasDoingPrimary) { | |
5650 | s.iterator->move(s.iterator, 0, UITER_LIMIT); | |
5651 | cces = 0; | |
5652 | } | |
5653 | for(;;) { | |
5654 | if(i == count) { | |
5655 | goto saveState; | |
5656 | } | |
5657 | if(canUpdateState) { | |
5658 | newState = s.iterator->getState(s.iterator); | |
5659 | if(newState != UITER_NO_STATE) { | |
5660 | iterState = newState; | |
5661 | cces = 0; | |
5662 | } | |
5663 | } | |
5664 | CE = ucol_IGetPrevCE(coll, &s, status); | |
5665 | cces++; | |
5666 | if(CE==UCOL_NO_MORE_CES) { | |
5667 | // Add the level separator | |
5668 | terminatePSKLevel(level, maxLevel, i, dest); | |
5669 | byteCountOrFrenchDone = 0; | |
5670 | // Restart the iteration an move to the next level | |
5671 | s.iterator->move(s.iterator, 0, UITER_START); | |
5672 | level = UCOL_PSK_CASE; | |
5673 | break; | |
5674 | } | |
5675 | if(isContinuation(CE)) { // if it's a continuation, we want to save it and | |
5676 | // reverse when we get a first non-continuation CE. | |
5677 | CE >>= 8; | |
5678 | frenchBuff[frenchIndex++] = (uint8_t)CE; | |
5679 | } else if(!isShiftedCE(CE, LVT, &wasShifted)) { | |
5680 | CE >>= 8; /* get secondary */ | |
5681 | if(!frenchIndex) { | |
5682 | if(CE != 0) { | |
5683 | dest[i++]=(uint8_t)CE; | |
5684 | } | |
5685 | } else { | |
5686 | frenchBuff[frenchIndex++] = (uint8_t)CE; | |
5687 | frenchIndex -= usedFrench; | |
5688 | usedFrench = 0; | |
5689 | while(i < count && frenchIndex) { | |
5690 | dest[i++] = frenchBuff[--frenchIndex]; | |
5691 | usedFrench++; | |
5692 | } | |
5693 | } | |
5694 | } | |
5695 | if(uprv_numAvailableExpCEs(s)) { | |
5696 | canUpdateState = FALSE; | |
5697 | } else { | |
5698 | canUpdateState = TRUE; | |
5699 | } | |
5700 | } | |
5701 | } | |
5702 | } else { | |
5703 | level = UCOL_PSK_CASE; | |
5704 | } | |
5705 | /* fall through to next level */ | |
5706 | case UCOL_PSK_CASE: | |
5707 | if(ucol_getAttribute(coll, UCOL_CASE_LEVEL, status) == UCOL_ON) { | |
5708 | uint32_t caseShift = UCOL_CASE_SHIFT_START; | |
5709 | uint8_t caseByte = UCOL_CASE_BYTE_START; | |
5710 | uint8_t caseBits = 0; | |
5711 | ||
5712 | for(;;) { | |
5713 | U_ASSERT(caseShift <= UCOL_CASE_SHIFT_START); | |
5714 | if(i == count) { | |
5715 | goto saveState; | |
5716 | } | |
5717 | // We should save the state only if we | |
5718 | // are sure that we are done with the | |
5719 | // previous iterator state | |
5720 | if(canUpdateState) { | |
5721 | newState = s.iterator->getState(s.iterator); | |
5722 | if(newState != UITER_NO_STATE) { | |
5723 | iterState = newState; | |
5724 | cces = 0; | |
5725 | } | |
5726 | } | |
5727 | CE = ucol_IGetNextCE(coll, &s, status); | |
5728 | cces++; | |
5729 | if(CE==UCOL_NO_MORE_CES) { | |
5730 | // On the case level we might have an unfinished | |
5731 | // case byte. Add one if it's started. | |
5732 | if(caseShift != UCOL_CASE_SHIFT_START) { | |
5733 | dest[i++] = caseByte; | |
5734 | } | |
5735 | cces = 0; | |
5736 | // We have finished processing CEs on this level. | |
5737 | // However, we don't know if we have enough space | |
5738 | // to add a case level terminator. | |
5739 | if(i < count) { | |
5740 | // Add the level separator | |
5741 | terminatePSKLevel(level, maxLevel, i, dest); | |
5742 | // Restart the iteration and move to the | |
5743 | // next level | |
5744 | s.iterator->move(s.iterator, 0, UITER_START); | |
5745 | level = UCOL_PSK_TERTIARY; | |
5746 | } else { | |
5747 | canUpdateState = FALSE; | |
5748 | } | |
5749 | break; | |
5750 | } | |
5751 | ||
5752 | if(!isShiftedCE(CE, LVT, &wasShifted)) { | |
5753 | if(!isContinuation(CE) && ((CE & UCOL_PRIMARYMASK) != 0 || strength > UCOL_PRIMARY)) { | |
5754 | // do the case level if we need to do it. We don't want to calculate | |
5755 | // case level for primary ignorables if we have only primary strength and case level | |
5756 | // otherwise we would break well formedness of CEs | |
5757 | CE = (uint8_t)(CE & UCOL_BYTE_SIZE_MASK); | |
5758 | caseBits = (uint8_t)(CE & 0xC0); | |
5759 | // this copies the case level logic from the | |
5760 | // sort key generation code | |
5761 | if(CE != 0) { | |
5762 | if (caseShift == 0) { | |
5763 | dest[i++] = caseByte; | |
5764 | caseShift = UCOL_CASE_SHIFT_START; | |
5765 | caseByte = UCOL_CASE_BYTE_START; | |
5766 | } | |
5767 | if(coll->caseFirst == UCOL_UPPER_FIRST) { | |
5768 | if((caseBits & 0xC0) == 0) { | |
5769 | caseByte |= 1 << (--caseShift); | |
5770 | } else { | |
5771 | caseByte |= 0 << (--caseShift); | |
5772 | /* second bit */ | |
5773 | if(caseShift == 0) { | |
5774 | dest[i++] = caseByte; | |
5775 | caseShift = UCOL_CASE_SHIFT_START; | |
5776 | caseByte = UCOL_CASE_BYTE_START; | |
5777 | } | |
5778 | caseByte |= ((caseBits>>6)&1) << (--caseShift); | |
5779 | } | |
5780 | } else { | |
5781 | if((caseBits & 0xC0) == 0) { | |
5782 | caseByte |= 0 << (--caseShift); | |
5783 | } else { | |
5784 | caseByte |= 1 << (--caseShift); | |
5785 | /* second bit */ | |
5786 | if(caseShift == 0) { | |
5787 | dest[i++] = caseByte; | |
5788 | caseShift = UCOL_CASE_SHIFT_START; | |
5789 | caseByte = UCOL_CASE_BYTE_START; | |
5790 | } | |
5791 | caseByte |= ((caseBits>>7)&1) << (--caseShift); | |
5792 | } | |
5793 | } | |
5794 | } | |
5795 | ||
5796 | } | |
5797 | } | |
5798 | // Not sure this is correct for the case level - revisit | |
5799 | if(uprv_numAvailableExpCEs(s)) { | |
5800 | canUpdateState = FALSE; | |
5801 | } else { | |
5802 | canUpdateState = TRUE; | |
5803 | } | |
5804 | } | |
5805 | } else { | |
5806 | level = UCOL_PSK_TERTIARY; | |
5807 | } | |
5808 | /* fall through to next level */ | |
5809 | case UCOL_PSK_TERTIARY: | |
5810 | if(strength >= UCOL_TERTIARY) { | |
5811 | for(;;) { | |
5812 | if(i == count) { | |
5813 | goto saveState; | |
5814 | } | |
5815 | // We should save the state only if we | |
5816 | // are sure that we are done with the | |
5817 | // previous iterator state | |
5818 | if(canUpdateState) { | |
5819 | newState = s.iterator->getState(s.iterator); | |
5820 | if(newState != UITER_NO_STATE) { | |
5821 | iterState = newState; | |
5822 | cces = 0; | |
5823 | } | |
5824 | } | |
5825 | CE = ucol_IGetNextCE(coll, &s, status); | |
5826 | cces++; | |
5827 | if(CE==UCOL_NO_MORE_CES) { | |
5828 | // Add the level separator | |
5829 | terminatePSKLevel(level, maxLevel, i, dest); | |
5830 | byteCountOrFrenchDone = 0; | |
5831 | // Restart the iteration an move to the | |
5832 | // second level | |
5833 | s.iterator->move(s.iterator, 0, UITER_START); | |
5834 | cces = 0; | |
5835 | level = UCOL_PSK_QUATERNARY; | |
5836 | break; | |
5837 | } | |
5838 | if(!isShiftedCE(CE, LVT, &wasShifted)) { | |
5839 | notIsContinuation = !isContinuation(CE); | |
5840 | ||
5841 | if(notIsContinuation) { | |
5842 | CE = (uint8_t)(CE & UCOL_BYTE_SIZE_MASK); | |
5843 | CE ^= coll->caseSwitch; | |
5844 | CE &= coll->tertiaryMask; | |
5845 | } else { | |
5846 | CE = (uint8_t)((CE & UCOL_REMOVE_CONTINUATION)); | |
5847 | } | |
5848 | ||
5849 | if(CE != 0) { | |
5850 | dest[i++]=(uint8_t)CE; | |
5851 | } | |
5852 | } | |
5853 | if(uprv_numAvailableExpCEs(s)) { | |
5854 | canUpdateState = FALSE; | |
5855 | } else { | |
5856 | canUpdateState = TRUE; | |
5857 | } | |
5858 | } | |
5859 | } else { | |
5860 | // if we're not doing tertiary | |
5861 | // skip to the end | |
5862 | level = UCOL_PSK_NULL; | |
5863 | } | |
5864 | /* fall through to next level */ | |
5865 | case UCOL_PSK_QUATERNARY: | |
5866 | if(strength >= UCOL_QUATERNARY) { | |
5867 | for(;;) { | |
5868 | if(i == count) { | |
5869 | goto saveState; | |
5870 | } | |
5871 | // We should save the state only if we | |
5872 | // are sure that we are done with the | |
5873 | // previous iterator state | |
5874 | if(canUpdateState) { | |
5875 | newState = s.iterator->getState(s.iterator); | |
5876 | if(newState != UITER_NO_STATE) { | |
5877 | iterState = newState; | |
5878 | cces = 0; | |
5879 | } | |
5880 | } | |
5881 | CE = ucol_IGetNextCE(coll, &s, status); | |
5882 | cces++; | |
5883 | if(CE==UCOL_NO_MORE_CES) { | |
5884 | // Add the level separator | |
5885 | terminatePSKLevel(level, maxLevel, i, dest); | |
5886 | //dest[i++] = UCOL_LEVELTERMINATOR; | |
5887 | byteCountOrFrenchDone = 0; | |
5888 | // Restart the iteration an move to the | |
5889 | // second level | |
5890 | s.iterator->move(s.iterator, 0, UITER_START); | |
5891 | cces = 0; | |
5892 | level = UCOL_PSK_QUIN; | |
5893 | break; | |
5894 | } | |
5895 | if(CE==0) | |
5896 | continue; | |
5897 | if(isShiftedCE(CE, LVT, &wasShifted)) { | |
5898 | CE >>= 16; /* get primary */ | |
5899 | if(CE != 0) { | |
5900 | if(byteCountOrFrenchDone == 0) { | |
5901 | dest[i++]=(uint8_t)(CE >> 8); | |
5902 | } else { | |
5903 | byteCountOrFrenchDone = 0; | |
5904 | } | |
5905 | if((CE &=0xff)!=0) { | |
5906 | if(i==count) { | |
5907 | /* overflow */ | |
5908 | byteCountOrFrenchDone = 1; | |
5909 | goto saveState; | |
5910 | } | |
5911 | dest[i++]=(uint8_t)CE; | |
5912 | } | |
5913 | } | |
5914 | } else { | |
5915 | notIsContinuation = !isContinuation(CE); | |
5916 | if(notIsContinuation) { | |
5917 | if(s.flags & UCOL_WAS_HIRAGANA) { // This was Hiragana and we need to note it | |
5918 | dest[i++] = UCOL_HIRAGANA_QUAD; | |
5919 | } else { | |
5920 | dest[i++] = 0xFF; | |
5921 | } | |
5922 | } | |
5923 | } | |
5924 | if(uprv_numAvailableExpCEs(s)) { | |
5925 | canUpdateState = FALSE; | |
5926 | } else { | |
5927 | canUpdateState = TRUE; | |
5928 | } | |
5929 | } | |
5930 | } else { | |
5931 | // if we're not doing quaternary | |
5932 | // skip to the end | |
5933 | level = UCOL_PSK_NULL; | |
5934 | } | |
5935 | /* fall through to next level */ | |
5936 | case UCOL_PSK_QUIN: | |
5937 | level = UCOL_PSK_IDENTICAL; | |
5938 | /* fall through to next level */ | |
5939 | case UCOL_PSK_IDENTICAL: | |
5940 | if(strength >= UCOL_IDENTICAL) { | |
5941 | UChar32 first, second; | |
5942 | int32_t bocsuBytesWritten = 0; | |
5943 | // We always need to do identical on | |
5944 | // the NFD form of the string. | |
5945 | if(normIter == NULL) { | |
5946 | // we arrived from the level below and | |
5947 | // normalization was not turned on. | |
5948 | // therefore, we need to make a fresh NFD iterator | |
5949 | normIter = unorm_openIter(stackNormIter, sizeof(stackNormIter), status); | |
5950 | s.iterator = unorm_setIter(normIter, iter, UNORM_NFD, status); | |
5951 | } else if(!doingIdenticalFromStart) { | |
5952 | // there is an iterator, but we did some other levels. | |
5953 | // therefore, we have a FCD iterator - need to make | |
5954 | // a NFD one. | |
5955 | // normIter being at the beginning does not guarantee | |
5956 | // that the underlying iterator is at the beginning | |
5957 | iter->move(iter, 0, UITER_START); | |
5958 | s.iterator = unorm_setIter(normIter, iter, UNORM_NFD, status); | |
5959 | } | |
5960 | // At this point we have a NFD iterator that is positioned | |
5961 | // in the right place | |
5962 | if(U_FAILURE(*status)) { | |
5963 | UTRACE_EXIT_STATUS(*status); | |
5964 | return 0; | |
5965 | } | |
5966 | first = uiter_previous32(s.iterator); | |
5967 | // maybe we're at the start of the string | |
5968 | if(first == U_SENTINEL) { | |
5969 | first = 0; | |
5970 | } else { | |
5971 | uiter_next32(s.iterator); | |
5972 | } | |
5973 | ||
5974 | j = 0; | |
5975 | for(;;) { | |
5976 | if(i == count) { | |
5977 | if(j+1 < bocsuBytesWritten) { | |
5978 | bocsuBytesUsed = j+1; | |
5979 | } | |
5980 | goto saveState; | |
5981 | } | |
5982 | ||
5983 | // On identical level, we will always save | |
5984 | // the state if we reach this point, since | |
5985 | // we don't depend on getNextCE for content | |
5986 | // all the content is in our buffer and we | |
5987 | // already either stored the full buffer OR | |
5988 | // otherwise we won't arrive here. | |
5989 | newState = s.iterator->getState(s.iterator); | |
5990 | if(newState != UITER_NO_STATE) { | |
5991 | iterState = newState; | |
5992 | cces = 0; | |
5993 | } | |
5994 | ||
5995 | uint8_t buff[4]; | |
5996 | second = uiter_next32(s.iterator); | |
5997 | cces++; | |
5998 | ||
5999 | // end condition for identical level | |
6000 | if(second == U_SENTINEL) { | |
6001 | terminatePSKLevel(level, maxLevel, i, dest); | |
6002 | level = UCOL_PSK_NULL; | |
6003 | break; | |
6004 | } | |
6005 | bocsuBytesWritten = u_writeIdenticalLevelRunTwoChars(first, second, buff); | |
6006 | first = second; | |
6007 | ||
6008 | j = 0; | |
6009 | if(bocsuBytesUsed != 0) { | |
6010 | while(bocsuBytesUsed-->0) { | |
6011 | j++; | |
6012 | } | |
6013 | } | |
6014 | ||
6015 | while(i < count && j < bocsuBytesWritten) { | |
6016 | dest[i++] = buff[j++]; | |
6017 | } | |
6018 | } | |
6019 | ||
6020 | } else { | |
6021 | level = UCOL_PSK_NULL; | |
6022 | } | |
6023 | /* fall through to next level */ | |
6024 | case UCOL_PSK_NULL: | |
6025 | j = i; | |
6026 | while(j<count) { | |
6027 | dest[j++]=0; | |
6028 | } | |
6029 | break; | |
6030 | default: | |
6031 | *status = U_INTERNAL_PROGRAM_ERROR; | |
6032 | UTRACE_EXIT_STATUS(*status); | |
6033 | return 0; | |
6034 | } | |
6035 | ||
6036 | saveState: | |
6037 | // Now we need to return stuff. First we want to see whether we have | |
6038 | // done everything for the current state of iterator. | |
6039 | if(byteCountOrFrenchDone | |
6040 | || canUpdateState == FALSE | |
6041 | || (newState = s.iterator->getState(s.iterator)) == UITER_NO_STATE) | |
6042 | { | |
6043 | // Any of above mean that the previous transaction | |
6044 | // wasn't finished and that we should store the | |
6045 | // previous iterator state. | |
6046 | state[0] = iterState; | |
6047 | } else { | |
6048 | // The transaction is complete. We will continue in the next iteration. | |
6049 | state[0] = s.iterator->getState(s.iterator); | |
6050 | cces = 0; | |
6051 | } | |
6052 | // Store the number of bocsu bytes written. | |
6053 | if((bocsuBytesUsed & UCOL_PSK_BOCSU_BYTES_MASK) != bocsuBytesUsed) { | |
6054 | *status = U_INDEX_OUTOFBOUNDS_ERROR; | |
6055 | } | |
6056 | state[1] = (bocsuBytesUsed & UCOL_PSK_BOCSU_BYTES_MASK) << UCOL_PSK_BOCSU_BYTES_SHIFT; | |
6057 | ||
6058 | // Next we put in the level of comparison | |
6059 | state[1] |= ((level & UCOL_PSK_LEVEL_MASK) << UCOL_PSK_LEVEL_SHIFT); | |
6060 | ||
6061 | // If we are doing French, we need to store whether we have just finished the French level | |
6062 | if(level == UCOL_PSK_SECONDARY && doingFrench) { | |
6063 | state[1] |= (((state[0] == 0) & UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_MASK) << UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_SHIFT); | |
6064 | } else { | |
6065 | state[1] |= ((byteCountOrFrenchDone & UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_MASK) << UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_SHIFT); | |
6066 | } | |
6067 | ||
6068 | // Was the latest CE shifted | |
6069 | if(wasShifted) { | |
6070 | state[1] |= 1 << UCOL_PSK_WAS_SHIFTED_SHIFT; | |
6071 | } | |
6072 | // Check for cces overflow | |
6073 | if((cces & UCOL_PSK_CONSUMED_CES_MASK) != cces) { | |
6074 | *status = U_INDEX_OUTOFBOUNDS_ERROR; | |
6075 | } | |
6076 | // Store cces | |
6077 | state[1] |= ((cces & UCOL_PSK_CONSUMED_CES_MASK) << UCOL_PSK_CONSUMED_CES_SHIFT); | |
6078 | ||
6079 | // Check for French overflow | |
6080 | if((usedFrench & UCOL_PSK_USED_FRENCH_MASK) != usedFrench) { | |
6081 | *status = U_INDEX_OUTOFBOUNDS_ERROR; | |
6082 | } | |
6083 | // Store number of bytes written in the French secondary continuation sequence | |
6084 | state[1] |= ((usedFrench & UCOL_PSK_USED_FRENCH_MASK) << UCOL_PSK_USED_FRENCH_SHIFT); | |
6085 | ||
6086 | ||
6087 | // If we have used normalizing iterator, get rid of it | |
6088 | if(normIter != NULL) { | |
6089 | unorm_closeIter(normIter); | |
6090 | } | |
6091 | ||
6092 | /* To avoid memory leak, free the offset buffer if necessary. */ | |
6093 | ucol_freeOffsetBuffer(&s); | |
6094 | ||
6095 | // Return number of meaningful sortkey bytes. | |
6096 | UTRACE_DATA4(UTRACE_VERBOSE, "dest = %vb, state=%d %d", | |
6097 | dest,i, state[0], state[1]); | |
6098 | UTRACE_EXIT_VALUE(i); | |
6099 | return i; | |
6100 | } | |
6101 | ||
6102 | /** | |
6103 | * Produce a bound for a given sortkey and a number of levels. | |
6104 | */ | |
6105 | U_CAPI int32_t U_EXPORT2 | |
6106 | ucol_getBound(const uint8_t *source, | |
6107 | int32_t sourceLength, | |
6108 | UColBoundMode boundType, | |
6109 | uint32_t noOfLevels, | |
6110 | uint8_t *result, | |
6111 | int32_t resultLength, | |
6112 | UErrorCode *status) | |
6113 | { | |
6114 | // consistency checks | |
6115 | if(status == NULL || U_FAILURE(*status)) { | |
6116 | return 0; | |
6117 | } | |
6118 | if(source == NULL) { | |
6119 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
6120 | return 0; | |
6121 | } | |
6122 | ||
6123 | int32_t sourceIndex = 0; | |
6124 | // Scan the string until we skip enough of the key OR reach the end of the key | |
6125 | do { | |
6126 | sourceIndex++; | |
6127 | if(source[sourceIndex] == UCOL_LEVELTERMINATOR) { | |
6128 | noOfLevels--; | |
6129 | } | |
6130 | } while (noOfLevels > 0 | |
6131 | && (source[sourceIndex] != 0 || sourceIndex < sourceLength)); | |
6132 | ||
6133 | if((source[sourceIndex] == 0 || sourceIndex == sourceLength) | |
6134 | && noOfLevels > 0) { | |
6135 | *status = U_SORT_KEY_TOO_SHORT_WARNING; | |
6136 | } | |
6137 | ||
6138 | ||
6139 | // READ ME: this code assumes that the values for boundType | |
6140 | // enum will not changes. They are set so that the enum value | |
6141 | // corresponds to the number of extra bytes each bound type | |
6142 | // needs. | |
6143 | if(result != NULL && resultLength >= sourceIndex+boundType) { | |
6144 | uprv_memcpy(result, source, sourceIndex); | |
6145 | switch(boundType) { | |
6146 | // Lower bound just gets terminated. No extra bytes | |
6147 | case UCOL_BOUND_LOWER: // = 0 | |
6148 | break; | |
6149 | // Upper bound needs one extra byte | |
6150 | case UCOL_BOUND_UPPER: // = 1 | |
6151 | result[sourceIndex++] = 2; | |
6152 | break; | |
6153 | // Upper long bound needs two extra bytes | |
6154 | case UCOL_BOUND_UPPER_LONG: // = 2 | |
6155 | result[sourceIndex++] = 0xFF; | |
6156 | result[sourceIndex++] = 0xFF; | |
6157 | break; | |
6158 | default: | |
6159 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
6160 | return 0; | |
6161 | } | |
6162 | result[sourceIndex++] = 0; | |
6163 | ||
6164 | return sourceIndex; | |
6165 | } else { | |
6166 | return sourceIndex+boundType+1; | |
6167 | } | |
6168 | } | |
6169 | ||
6170 | /****************************************************************************/ | |
6171 | /* Following are the functions that deal with the properties of a collator */ | |
6172 | /* there are new APIs and some compatibility APIs */ | |
6173 | /****************************************************************************/ | |
6174 | ||
6175 | static inline void | |
6176 | ucol_addLatinOneEntry(UCollator *coll, UChar ch, uint32_t CE, | |
6177 | int32_t *primShift, int32_t *secShift, int32_t *terShift) | |
6178 | { | |
6179 | uint8_t primary1 = 0, primary2 = 0, secondary = 0, tertiary = 0; | |
6180 | UBool reverseSecondary = FALSE; | |
6181 | UBool continuation = isContinuation(CE); | |
6182 | if(!continuation) { | |
6183 | tertiary = (uint8_t)((CE & coll->tertiaryMask)); | |
6184 | tertiary ^= coll->caseSwitch; | |
6185 | reverseSecondary = TRUE; | |
6186 | } else { | |
6187 | tertiary = (uint8_t)((CE & UCOL_REMOVE_CONTINUATION)); | |
6188 | tertiary &= UCOL_REMOVE_CASE; | |
6189 | reverseSecondary = FALSE; | |
6190 | } | |
6191 | ||
6192 | secondary = (uint8_t)((CE >>= 8) & UCOL_BYTE_SIZE_MASK); | |
6193 | primary2 = (uint8_t)((CE >>= 8) & UCOL_BYTE_SIZE_MASK); | |
6194 | primary1 = (uint8_t)(CE >> 8); | |
6195 | ||
6196 | if(primary1 != 0) { | |
6197 | if (coll->leadBytePermutationTable != NULL && !continuation) { | |
6198 | primary1 = coll->leadBytePermutationTable[primary1]; | |
6199 | } | |
6200 | ||
6201 | coll->latinOneCEs[ch] |= (primary1 << *primShift); | |
6202 | *primShift -= 8; | |
6203 | } | |
6204 | if(primary2 != 0) { | |
6205 | if(*primShift < 0) { | |
6206 | coll->latinOneCEs[ch] = UCOL_BAIL_OUT_CE; | |
6207 | coll->latinOneCEs[coll->latinOneTableLen+ch] = UCOL_BAIL_OUT_CE; | |
6208 | coll->latinOneCEs[2*coll->latinOneTableLen+ch] = UCOL_BAIL_OUT_CE; | |
6209 | return; | |
6210 | } | |
6211 | coll->latinOneCEs[ch] |= (primary2 << *primShift); | |
6212 | *primShift -= 8; | |
6213 | } | |
6214 | if(secondary != 0) { | |
6215 | if(reverseSecondary && coll->frenchCollation == UCOL_ON) { // reverse secondary | |
6216 | coll->latinOneCEs[coll->latinOneTableLen+ch] >>= 8; // make space for secondary | |
6217 | coll->latinOneCEs[coll->latinOneTableLen+ch] |= (secondary << 24); | |
6218 | } else { // normal case | |
6219 | coll->latinOneCEs[coll->latinOneTableLen+ch] |= (secondary << *secShift); | |
6220 | } | |
6221 | *secShift -= 8; | |
6222 | } | |
6223 | if(tertiary != 0) { | |
6224 | coll->latinOneCEs[2*coll->latinOneTableLen+ch] |= (tertiary << *terShift); | |
6225 | *terShift -= 8; | |
6226 | } | |
6227 | } | |
6228 | ||
6229 | static inline UBool | |
6230 | ucol_resizeLatinOneTable(UCollator *coll, int32_t size, UErrorCode *status) { | |
6231 | uint32_t *newTable = (uint32_t *)uprv_malloc(size*sizeof(uint32_t)*3); | |
6232 | if(newTable == NULL) { | |
6233 | *status = U_MEMORY_ALLOCATION_ERROR; | |
6234 | coll->latinOneFailed = TRUE; | |
6235 | return FALSE; | |
6236 | } | |
6237 | int32_t sizeToCopy = ((size<coll->latinOneTableLen)?size:coll->latinOneTableLen)*sizeof(uint32_t); | |
6238 | uprv_memset(newTable, 0, size*sizeof(uint32_t)*3); | |
6239 | uprv_memcpy(newTable, coll->latinOneCEs, sizeToCopy); | |
6240 | uprv_memcpy(newTable+size, coll->latinOneCEs+coll->latinOneTableLen, sizeToCopy); | |
6241 | uprv_memcpy(newTable+2*size, coll->latinOneCEs+2*coll->latinOneTableLen, sizeToCopy); | |
6242 | coll->latinOneTableLen = size; | |
6243 | uprv_free(coll->latinOneCEs); | |
6244 | coll->latinOneCEs = newTable; | |
6245 | return TRUE; | |
6246 | } | |
6247 | ||
6248 | static UBool | |
6249 | ucol_setUpLatinOne(UCollator *coll, UErrorCode *status) { | |
6250 | UBool result = TRUE; | |
6251 | if(coll->latinOneCEs == NULL) { | |
6252 | coll->latinOneCEs = (uint32_t *)uprv_malloc(sizeof(uint32_t)*UCOL_LATINONETABLELEN*3); | |
6253 | if(coll->latinOneCEs == NULL) { | |
6254 | *status = U_MEMORY_ALLOCATION_ERROR; | |
6255 | return FALSE; | |
6256 | } | |
6257 | coll->latinOneTableLen = UCOL_LATINONETABLELEN; | |
6258 | } | |
6259 | UChar ch = 0; | |
6260 | UCollationElements *it = ucol_openElements(coll, &ch, 1, status); | |
6261 | // Check for null pointer | |
6262 | if (U_FAILURE(*status)) { | |
6263 | return FALSE; | |
6264 | } | |
6265 | uprv_memset(coll->latinOneCEs, 0, sizeof(uint32_t)*coll->latinOneTableLen*3); | |
6266 | ||
6267 | int32_t primShift = 24, secShift = 24, terShift = 24; | |
6268 | uint32_t CE = 0; | |
6269 | int32_t contractionOffset = UCOL_ENDOFLATINONERANGE+1; | |
6270 | ||
6271 | // TODO: make safe if you get more than you wanted... | |
6272 | for(ch = 0; ch <= UCOL_ENDOFLATINONERANGE; ch++) { | |
6273 | primShift = 24; secShift = 24; terShift = 24; | |
6274 | if(ch < 0x100) { | |
6275 | CE = coll->latinOneMapping[ch]; | |
6276 | } else { | |
6277 | CE = UTRIE_GET32_FROM_LEAD(&coll->mapping, ch); | |
6278 | if(CE == UCOL_NOT_FOUND && coll->UCA) { | |
6279 | CE = UTRIE_GET32_FROM_LEAD(&coll->UCA->mapping, ch); | |
6280 | } | |
6281 | } | |
6282 | if(CE < UCOL_NOT_FOUND) { | |
6283 | ucol_addLatinOneEntry(coll, ch, CE, &primShift, &secShift, &terShift); | |
6284 | } else { | |
6285 | switch (getCETag(CE)) { | |
6286 | case EXPANSION_TAG: | |
6287 | case DIGIT_TAG: | |
6288 | ucol_setText(it, &ch, 1, status); | |
6289 | while((int32_t)(CE = ucol_next(it, status)) != UCOL_NULLORDER) { | |
6290 | if(primShift < 0 || secShift < 0 || terShift < 0) { | |
6291 | coll->latinOneCEs[ch] = UCOL_BAIL_OUT_CE; | |
6292 | coll->latinOneCEs[coll->latinOneTableLen+ch] = UCOL_BAIL_OUT_CE; | |
6293 | coll->latinOneCEs[2*coll->latinOneTableLen+ch] = UCOL_BAIL_OUT_CE; | |
6294 | break; | |
6295 | } | |
6296 | ucol_addLatinOneEntry(coll, ch, CE, &primShift, &secShift, &terShift); | |
6297 | } | |
6298 | break; | |
6299 | case CONTRACTION_TAG: | |
6300 | // here is the trick | |
6301 | // F2 is contraction. We do something very similar to contractions | |
6302 | // but have two indices, one in the real contraction table and the | |
6303 | // other to where we stuffed things. This hopes that we don't have | |
6304 | // many contractions (this should work for latin-1 tables). | |
6305 | { | |
6306 | if((CE & 0x00FFF000) != 0) { | |
6307 | *status = U_UNSUPPORTED_ERROR; | |
6308 | goto cleanup_after_failure; | |
6309 | } | |
6310 | ||
6311 | const UChar *UCharOffset = (UChar *)coll->image+getContractOffset(CE); | |
6312 | ||
6313 | CE |= (contractionOffset & 0xFFF) << 12; // insert the offset in latin-1 table | |
6314 | ||
6315 | coll->latinOneCEs[ch] = CE; | |
6316 | coll->latinOneCEs[coll->latinOneTableLen+ch] = CE; | |
6317 | coll->latinOneCEs[2*coll->latinOneTableLen+ch] = CE; | |
6318 | ||
6319 | // We're going to jump into contraction table, pick the elements | |
6320 | // and use them | |
6321 | do { | |
6322 | CE = *(coll->contractionCEs + | |
6323 | (UCharOffset - coll->contractionIndex)); | |
6324 | if(CE > UCOL_NOT_FOUND && getCETag(CE) == EXPANSION_TAG) { | |
6325 | uint32_t size; | |
6326 | uint32_t i; /* general counter */ | |
6327 | uint32_t *CEOffset = (uint32_t *)coll->image+getExpansionOffset(CE); /* find the offset to expansion table */ | |
6328 | size = getExpansionCount(CE); | |
6329 | //CE = *CEOffset++; | |
6330 | if(size != 0) { /* if there are less than 16 elements in expansion, we don't terminate */ | |
6331 | for(i = 0; i<size; i++) { | |
6332 | if(primShift < 0 || secShift < 0 || terShift < 0) { | |
6333 | coll->latinOneCEs[(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; | |
6334 | coll->latinOneCEs[coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; | |
6335 | coll->latinOneCEs[2*coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; | |
6336 | break; | |
6337 | } | |
6338 | ucol_addLatinOneEntry(coll, (UChar)contractionOffset, *CEOffset++, &primShift, &secShift, &terShift); | |
6339 | } | |
6340 | } else { /* else, we do */ | |
6341 | while(*CEOffset != 0) { | |
6342 | if(primShift < 0 || secShift < 0 || terShift < 0) { | |
6343 | coll->latinOneCEs[(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; | |
6344 | coll->latinOneCEs[coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; | |
6345 | coll->latinOneCEs[2*coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; | |
6346 | break; | |
6347 | } | |
6348 | ucol_addLatinOneEntry(coll, (UChar)contractionOffset, *CEOffset++, &primShift, &secShift, &terShift); | |
6349 | } | |
6350 | } | |
6351 | contractionOffset++; | |
6352 | } else if(CE < UCOL_NOT_FOUND) { | |
6353 | ucol_addLatinOneEntry(coll, (UChar)contractionOffset++, CE, &primShift, &secShift, &terShift); | |
6354 | } else { | |
6355 | coll->latinOneCEs[(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; | |
6356 | coll->latinOneCEs[coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; | |
6357 | coll->latinOneCEs[2*coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE; | |
6358 | contractionOffset++; | |
6359 | } | |
6360 | UCharOffset++; | |
6361 | primShift = 24; secShift = 24; terShift = 24; | |
6362 | if(contractionOffset == coll->latinOneTableLen) { // we need to reallocate | |
6363 | if(!ucol_resizeLatinOneTable(coll, 2*coll->latinOneTableLen, status)) { | |
6364 | goto cleanup_after_failure; | |
6365 | } | |
6366 | } | |
6367 | } while(*UCharOffset != 0xFFFF); | |
6368 | } | |
6369 | break;; | |
6370 | case SPEC_PROC_TAG: | |
6371 | { | |
6372 | // 0xB7 is a precontext character defined in UCA5.1, a special | |
6373 | // handle is implemeted in order to save LatinOne table for | |
6374 | // most locales. | |
6375 | if (ch==0xb7) { | |
6376 | ucol_addLatinOneEntry(coll, ch, CE, &primShift, &secShift, &terShift); | |
6377 | } | |
6378 | else { | |
6379 | goto cleanup_after_failure; | |
6380 | } | |
6381 | } | |
6382 | break; | |
6383 | default: | |
6384 | goto cleanup_after_failure; | |
6385 | } | |
6386 | } | |
6387 | } | |
6388 | // compact table | |
6389 | if(contractionOffset < coll->latinOneTableLen) { | |
6390 | if(!ucol_resizeLatinOneTable(coll, contractionOffset, status)) { | |
6391 | goto cleanup_after_failure; | |
6392 | } | |
6393 | } | |
6394 | ucol_closeElements(it); | |
6395 | return result; | |
6396 | ||
6397 | cleanup_after_failure: | |
6398 | // status should already be set before arriving here. | |
6399 | coll->latinOneFailed = TRUE; | |
6400 | ucol_closeElements(it); | |
6401 | return FALSE; | |
6402 | } | |
6403 | ||
6404 | void ucol_updateInternalState(UCollator *coll, UErrorCode *status) { | |
6405 | if(U_SUCCESS(*status)) { | |
6406 | if(coll->caseFirst == UCOL_UPPER_FIRST) { | |
6407 | coll->caseSwitch = UCOL_CASE_SWITCH; | |
6408 | } else { | |
6409 | coll->caseSwitch = UCOL_NO_CASE_SWITCH; | |
6410 | } | |
6411 | ||
6412 | if(coll->caseLevel == UCOL_ON || coll->caseFirst == UCOL_OFF) { | |
6413 | coll->tertiaryMask = UCOL_REMOVE_CASE; | |
6414 | coll->tertiaryCommon = UCOL_COMMON3_NORMAL; | |
6415 | coll->tertiaryAddition = (int8_t)UCOL_FLAG_BIT_MASK_CASE_SW_OFF; /* Should be 0x80 */ | |
6416 | coll->tertiaryTop = UCOL_COMMON_TOP3_CASE_SW_OFF; | |
6417 | coll->tertiaryBottom = UCOL_COMMON_BOT3; | |
6418 | } else { | |
6419 | coll->tertiaryMask = UCOL_KEEP_CASE; | |
6420 | coll->tertiaryAddition = UCOL_FLAG_BIT_MASK_CASE_SW_ON; | |
6421 | if(coll->caseFirst == UCOL_UPPER_FIRST) { | |
6422 | coll->tertiaryCommon = UCOL_COMMON3_UPPERFIRST; | |
6423 | coll->tertiaryTop = UCOL_COMMON_TOP3_CASE_SW_UPPER; | |
6424 | coll->tertiaryBottom = UCOL_COMMON_BOTTOM3_CASE_SW_UPPER; | |
6425 | } else { | |
6426 | coll->tertiaryCommon = UCOL_COMMON3_NORMAL; | |
6427 | coll->tertiaryTop = UCOL_COMMON_TOP3_CASE_SW_LOWER; | |
6428 | coll->tertiaryBottom = UCOL_COMMON_BOTTOM3_CASE_SW_LOWER; | |
6429 | } | |
6430 | } | |
6431 | ||
6432 | /* Set the compression values */ | |
6433 | uint8_t tertiaryTotal = (uint8_t)(coll->tertiaryTop - coll->tertiaryBottom - 1); | |
6434 | coll->tertiaryTopCount = (uint8_t)(UCOL_PROPORTION3*tertiaryTotal); /* we multilply double with int, but need only int */ | |
6435 | coll->tertiaryBottomCount = (uint8_t)(tertiaryTotal - coll->tertiaryTopCount); | |
6436 | ||
6437 | if(coll->caseLevel == UCOL_OFF && coll->strength == UCOL_TERTIARY | |
6438 | && coll->frenchCollation == UCOL_OFF && coll->alternateHandling == UCOL_NON_IGNORABLE) | |
6439 | { | |
6440 | coll->sortKeyGen = ucol_calcSortKeySimpleTertiary; | |
6441 | } else { | |
6442 | coll->sortKeyGen = ucol_calcSortKey; | |
6443 | } | |
6444 | if(coll->caseLevel == UCOL_OFF && coll->strength <= UCOL_TERTIARY && coll->numericCollation == UCOL_OFF | |
6445 | && coll->alternateHandling == UCOL_NON_IGNORABLE && !coll->latinOneFailed) | |
6446 | { | |
6447 | if(coll->latinOneCEs == NULL || coll->latinOneRegenTable) { | |
6448 | if(ucol_setUpLatinOne(coll, status)) { // if we succeed in building latin1 table, we'll use it | |
6449 | //fprintf(stderr, "F"); | |
6450 | coll->latinOneUse = TRUE; | |
6451 | } else { | |
6452 | coll->latinOneUse = FALSE; | |
6453 | } | |
6454 | if(*status == U_UNSUPPORTED_ERROR) { | |
6455 | *status = U_ZERO_ERROR; | |
6456 | } | |
6457 | } else { // latin1Table exists and it doesn't need to be regenerated, just use it | |
6458 | coll->latinOneUse = TRUE; | |
6459 | } | |
6460 | } else { | |
6461 | coll->latinOneUse = FALSE; | |
6462 | } | |
6463 | } | |
6464 | } | |
6465 | ||
6466 | U_CAPI uint32_t U_EXPORT2 | |
6467 | ucol_setVariableTop(UCollator *coll, const UChar *varTop, int32_t len, UErrorCode *status) { | |
6468 | if(U_FAILURE(*status) || coll == NULL) { | |
6469 | return 0; | |
6470 | } | |
6471 | if(len == -1) { | |
6472 | len = u_strlen(varTop); | |
6473 | } | |
6474 | if(len == 0) { | |
6475 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
6476 | return 0; | |
6477 | } | |
6478 | ||
6479 | if(coll->delegate!=NULL) { | |
6480 | return ((Collator*)coll->delegate)->setVariableTop(varTop, len, *status); | |
6481 | } | |
6482 | ||
6483 | ||
6484 | collIterate s; | |
6485 | IInit_collIterate(coll, varTop, len, &s, status); | |
6486 | if(U_FAILURE(*status)) { | |
6487 | return 0; | |
6488 | } | |
6489 | ||
6490 | uint32_t CE = ucol_IGetNextCE(coll, &s, status); | |
6491 | ||
6492 | /* here we check if we have consumed all characters */ | |
6493 | /* you can put in either one character or a contraction */ | |
6494 | /* you shouldn't put more... */ | |
6495 | if(s.pos != s.endp || CE == UCOL_NO_MORE_CES) { | |
6496 | *status = U_CE_NOT_FOUND_ERROR; | |
6497 | return 0; | |
6498 | } | |
6499 | ||
6500 | uint32_t nextCE = ucol_IGetNextCE(coll, &s, status); | |
6501 | ||
6502 | if(isContinuation(nextCE) && (nextCE & UCOL_PRIMARYMASK) != 0) { | |
6503 | *status = U_PRIMARY_TOO_LONG_ERROR; | |
6504 | return 0; | |
6505 | } | |
6506 | if(coll->variableTopValue != (CE & UCOL_PRIMARYMASK)>>16) { | |
6507 | coll->variableTopValueisDefault = FALSE; | |
6508 | coll->variableTopValue = (CE & UCOL_PRIMARYMASK)>>16; | |
6509 | } | |
6510 | ||
6511 | /* To avoid memory leak, free the offset buffer if necessary. */ | |
6512 | ucol_freeOffsetBuffer(&s); | |
6513 | ||
6514 | return CE & UCOL_PRIMARYMASK; | |
6515 | } | |
6516 | ||
6517 | U_CAPI uint32_t U_EXPORT2 ucol_getVariableTop(const UCollator *coll, UErrorCode *status) { | |
6518 | if(U_FAILURE(*status) || coll == NULL) { | |
6519 | return 0; | |
6520 | } | |
6521 | if(coll->delegate!=NULL) { | |
6522 | return ((const Collator*)coll->delegate)->getVariableTop(*status); | |
6523 | } | |
6524 | return coll->variableTopValue<<16; | |
6525 | } | |
6526 | ||
6527 | U_CAPI void U_EXPORT2 | |
6528 | ucol_restoreVariableTop(UCollator *coll, const uint32_t varTop, UErrorCode *status) { | |
6529 | if(U_FAILURE(*status) || coll == NULL) { | |
6530 | return; | |
6531 | } | |
6532 | ||
6533 | if(coll->variableTopValue != (varTop & UCOL_PRIMARYMASK)>>16) { | |
6534 | coll->variableTopValueisDefault = FALSE; | |
6535 | coll->variableTopValue = (varTop & UCOL_PRIMARYMASK)>>16; | |
6536 | } | |
6537 | } | |
6538 | /* Attribute setter API */ | |
6539 | U_CAPI void U_EXPORT2 | |
6540 | ucol_setAttribute(UCollator *coll, UColAttribute attr, UColAttributeValue value, UErrorCode *status) { | |
6541 | if(U_FAILURE(*status) || coll == NULL) { | |
6542 | return; | |
6543 | } | |
6544 | ||
6545 | if(coll->delegate != NULL) { | |
6546 | ((Collator*)coll->delegate)->setAttribute(attr,value,*status); | |
6547 | return; | |
6548 | } | |
6549 | ||
6550 | UColAttributeValue oldFrench = coll->frenchCollation; | |
6551 | UColAttributeValue oldCaseFirst = coll->caseFirst; | |
6552 | switch(attr) { | |
6553 | case UCOL_NUMERIC_COLLATION: /* sort substrings of digits as numbers */ | |
6554 | if(value == UCOL_ON) { | |
6555 | coll->numericCollation = UCOL_ON; | |
6556 | coll->numericCollationisDefault = FALSE; | |
6557 | } else if (value == UCOL_OFF) { | |
6558 | coll->numericCollation = UCOL_OFF; | |
6559 | coll->numericCollationisDefault = FALSE; | |
6560 | } else if (value == UCOL_DEFAULT) { | |
6561 | coll->numericCollationisDefault = TRUE; | |
6562 | coll->numericCollation = (UColAttributeValue)coll->options->numericCollation; | |
6563 | } else { | |
6564 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
6565 | } | |
6566 | break; | |
6567 | case UCOL_HIRAGANA_QUATERNARY_MODE: /* special quaternary values for Hiragana */ | |
6568 | if(value == UCOL_ON) { | |
6569 | coll->hiraganaQ = UCOL_ON; | |
6570 | coll->hiraganaQisDefault = FALSE; | |
6571 | } else if (value == UCOL_OFF) { | |
6572 | coll->hiraganaQ = UCOL_OFF; | |
6573 | coll->hiraganaQisDefault = FALSE; | |
6574 | } else if (value == UCOL_DEFAULT) { | |
6575 | coll->hiraganaQisDefault = TRUE; | |
6576 | coll->hiraganaQ = (UColAttributeValue)coll->options->hiraganaQ; | |
6577 | } else { | |
6578 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
6579 | } | |
6580 | break; | |
6581 | case UCOL_FRENCH_COLLATION: /* attribute for direction of secondary weights*/ | |
6582 | if(value == UCOL_ON) { | |
6583 | coll->frenchCollation = UCOL_ON; | |
6584 | coll->frenchCollationisDefault = FALSE; | |
6585 | } else if (value == UCOL_OFF) { | |
6586 | coll->frenchCollation = UCOL_OFF; | |
6587 | coll->frenchCollationisDefault = FALSE; | |
6588 | } else if (value == UCOL_DEFAULT) { | |
6589 | coll->frenchCollationisDefault = TRUE; | |
6590 | coll->frenchCollation = (UColAttributeValue)coll->options->frenchCollation; | |
6591 | } else { | |
6592 | *status = U_ILLEGAL_ARGUMENT_ERROR ; | |
6593 | } | |
6594 | break; | |
6595 | case UCOL_ALTERNATE_HANDLING: /* attribute for handling variable elements*/ | |
6596 | if(value == UCOL_SHIFTED) { | |
6597 | coll->alternateHandling = UCOL_SHIFTED; | |
6598 | coll->alternateHandlingisDefault = FALSE; | |
6599 | } else if (value == UCOL_NON_IGNORABLE) { | |
6600 | coll->alternateHandling = UCOL_NON_IGNORABLE; | |
6601 | coll->alternateHandlingisDefault = FALSE; | |
6602 | } else if (value == UCOL_DEFAULT) { | |
6603 | coll->alternateHandlingisDefault = TRUE; | |
6604 | coll->alternateHandling = (UColAttributeValue)coll->options->alternateHandling ; | |
6605 | } else { | |
6606 | *status = U_ILLEGAL_ARGUMENT_ERROR ; | |
6607 | } | |
6608 | break; | |
6609 | case UCOL_CASE_FIRST: /* who goes first, lower case or uppercase */ | |
6610 | if(value == UCOL_LOWER_FIRST) { | |
6611 | coll->caseFirst = UCOL_LOWER_FIRST; | |
6612 | coll->caseFirstisDefault = FALSE; | |
6613 | } else if (value == UCOL_UPPER_FIRST) { | |
6614 | coll->caseFirst = UCOL_UPPER_FIRST; | |
6615 | coll->caseFirstisDefault = FALSE; | |
6616 | } else if (value == UCOL_OFF) { | |
6617 | coll->caseFirst = UCOL_OFF; | |
6618 | coll->caseFirstisDefault = FALSE; | |
6619 | } else if (value == UCOL_DEFAULT) { | |
6620 | coll->caseFirst = (UColAttributeValue)coll->options->caseFirst; | |
6621 | coll->caseFirstisDefault = TRUE; | |
6622 | } else { | |
6623 | *status = U_ILLEGAL_ARGUMENT_ERROR ; | |
6624 | } | |
6625 | break; | |
6626 | case UCOL_CASE_LEVEL: /* do we have an extra case level */ | |
6627 | if(value == UCOL_ON) { | |
6628 | coll->caseLevel = UCOL_ON; | |
6629 | coll->caseLevelisDefault = FALSE; | |
6630 | } else if (value == UCOL_OFF) { | |
6631 | coll->caseLevel = UCOL_OFF; | |
6632 | coll->caseLevelisDefault = FALSE; | |
6633 | } else if (value == UCOL_DEFAULT) { | |
6634 | coll->caseLevel = (UColAttributeValue)coll->options->caseLevel; | |
6635 | coll->caseLevelisDefault = TRUE; | |
6636 | } else { | |
6637 | *status = U_ILLEGAL_ARGUMENT_ERROR ; | |
6638 | } | |
6639 | break; | |
6640 | case UCOL_NORMALIZATION_MODE: /* attribute for normalization */ | |
6641 | if(value == UCOL_ON) { | |
6642 | coll->normalizationMode = UCOL_ON; | |
6643 | coll->normalizationModeisDefault = FALSE; | |
6644 | initializeFCD(status); | |
6645 | } else if (value == UCOL_OFF) { | |
6646 | coll->normalizationMode = UCOL_OFF; | |
6647 | coll->normalizationModeisDefault = FALSE; | |
6648 | } else if (value == UCOL_DEFAULT) { | |
6649 | coll->normalizationModeisDefault = TRUE; | |
6650 | coll->normalizationMode = (UColAttributeValue)coll->options->normalizationMode; | |
6651 | if(coll->normalizationMode == UCOL_ON) { | |
6652 | initializeFCD(status); | |
6653 | } | |
6654 | } else { | |
6655 | *status = U_ILLEGAL_ARGUMENT_ERROR ; | |
6656 | } | |
6657 | break; | |
6658 | case UCOL_STRENGTH: /* attribute for strength */ | |
6659 | if (value == UCOL_DEFAULT) { | |
6660 | coll->strengthisDefault = TRUE; | |
6661 | coll->strength = (UColAttributeValue)coll->options->strength; | |
6662 | } else if (value <= UCOL_IDENTICAL) { | |
6663 | coll->strengthisDefault = FALSE; | |
6664 | coll->strength = value; | |
6665 | } else { | |
6666 | *status = U_ILLEGAL_ARGUMENT_ERROR ; | |
6667 | } | |
6668 | break; | |
6669 | case UCOL_ATTRIBUTE_COUNT: | |
6670 | default: | |
6671 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
6672 | break; | |
6673 | } | |
6674 | if(oldFrench != coll->frenchCollation || oldCaseFirst != coll->caseFirst) { | |
6675 | coll->latinOneRegenTable = TRUE; | |
6676 | } else { | |
6677 | coll->latinOneRegenTable = FALSE; | |
6678 | } | |
6679 | ucol_updateInternalState(coll, status); | |
6680 | } | |
6681 | ||
6682 | U_CAPI UColAttributeValue U_EXPORT2 | |
6683 | ucol_getAttribute(const UCollator *coll, UColAttribute attr, UErrorCode *status) { | |
6684 | if(U_FAILURE(*status) || coll == NULL) { | |
6685 | return UCOL_DEFAULT; | |
6686 | } | |
6687 | ||
6688 | if(coll->delegate != NULL) { | |
6689 | return ((Collator*)coll->delegate)->getAttribute(attr,*status); | |
6690 | } | |
6691 | ||
6692 | switch(attr) { | |
6693 | case UCOL_NUMERIC_COLLATION: | |
6694 | return coll->numericCollation; | |
6695 | case UCOL_HIRAGANA_QUATERNARY_MODE: | |
6696 | return coll->hiraganaQ; | |
6697 | case UCOL_FRENCH_COLLATION: /* attribute for direction of secondary weights*/ | |
6698 | return coll->frenchCollation; | |
6699 | case UCOL_ALTERNATE_HANDLING: /* attribute for handling variable elements*/ | |
6700 | return coll->alternateHandling; | |
6701 | case UCOL_CASE_FIRST: /* who goes first, lower case or uppercase */ | |
6702 | return coll->caseFirst; | |
6703 | case UCOL_CASE_LEVEL: /* do we have an extra case level */ | |
6704 | return coll->caseLevel; | |
6705 | case UCOL_NORMALIZATION_MODE: /* attribute for normalization */ | |
6706 | return coll->normalizationMode; | |
6707 | case UCOL_STRENGTH: /* attribute for strength */ | |
6708 | return coll->strength; | |
6709 | case UCOL_ATTRIBUTE_COUNT: | |
6710 | default: | |
6711 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
6712 | break; | |
6713 | } | |
6714 | return UCOL_DEFAULT; | |
6715 | } | |
6716 | ||
6717 | U_CAPI void U_EXPORT2 | |
6718 | ucol_setStrength( UCollator *coll, | |
6719 | UCollationStrength strength) | |
6720 | { | |
6721 | UErrorCode status = U_ZERO_ERROR; | |
6722 | ucol_setAttribute(coll, UCOL_STRENGTH, strength, &status); | |
6723 | } | |
6724 | ||
6725 | U_CAPI UCollationStrength U_EXPORT2 | |
6726 | ucol_getStrength(const UCollator *coll) | |
6727 | { | |
6728 | UErrorCode status = U_ZERO_ERROR; | |
6729 | return ucol_getAttribute(coll, UCOL_STRENGTH, &status); | |
6730 | } | |
6731 | ||
6732 | U_DRAFT int32_t U_EXPORT2 | |
6733 | ucol_getReorderCodes(const UCollator *coll, | |
6734 | int32_t *dest, | |
6735 | int32_t destCapacity, | |
6736 | UErrorCode *status) { | |
6737 | if (U_FAILURE(*status)) { | |
6738 | return 0; | |
6739 | } | |
6740 | ||
6741 | if(coll->delegate!=NULL) { | |
6742 | return ((const Collator*)coll->delegate)->getReorderCodes(dest, destCapacity, *status); | |
6743 | } | |
6744 | ||
6745 | if (destCapacity < 0 || (destCapacity > 0 && dest == NULL)) { | |
6746 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
6747 | return 0; | |
6748 | } | |
6749 | ||
6750 | #ifdef UCOL_DEBUG | |
6751 | printf("coll->reorderCodesLength = %d\n", coll->reorderCodesLength); | |
6752 | printf("coll->defaultReorderCodesLength = %d\n", coll->defaultReorderCodesLength); | |
6753 | #endif | |
6754 | ||
6755 | if (coll->reorderCodesLength > destCapacity) { | |
6756 | *status = U_BUFFER_OVERFLOW_ERROR; | |
6757 | return coll->reorderCodesLength; | |
6758 | } | |
6759 | for (int32_t i = 0; i < coll->reorderCodesLength; i++) { | |
6760 | dest[i] = coll->reorderCodes[i]; | |
6761 | } | |
6762 | return coll->reorderCodesLength; | |
6763 | } | |
6764 | ||
6765 | U_DRAFT void U_EXPORT2 | |
6766 | ucol_setReorderCodes(UCollator* coll, | |
6767 | const int32_t* reorderCodes, | |
6768 | int32_t reorderCodesLength, | |
6769 | UErrorCode *status) { | |
6770 | if (U_FAILURE(*status)) { | |
6771 | return; | |
6772 | } | |
6773 | ||
6774 | if (reorderCodesLength < 0 || (reorderCodesLength > 0 && reorderCodes == NULL)) { | |
6775 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
6776 | return; | |
6777 | } | |
6778 | ||
6779 | if(coll->delegate!=NULL) { | |
6780 | ((Collator*)coll->delegate)->setReorderCodes(reorderCodes, reorderCodesLength, *status); | |
6781 | return; | |
6782 | } | |
6783 | ||
6784 | if (coll->reorderCodes != NULL && coll->freeReorderCodesOnClose == TRUE) { | |
6785 | uprv_free(coll->reorderCodes); | |
6786 | } | |
6787 | coll->reorderCodes = NULL; | |
6788 | coll->reorderCodesLength = 0; | |
6789 | if (reorderCodesLength == 0) { | |
6790 | if (coll->leadBytePermutationTable != NULL && coll->freeLeadBytePermutationTableOnClose == TRUE) { | |
6791 | uprv_free(coll->leadBytePermutationTable); | |
6792 | } | |
6793 | coll->leadBytePermutationTable = NULL; | |
6794 | return; | |
6795 | } | |
6796 | coll->reorderCodes = (int32_t*) uprv_malloc(reorderCodesLength * sizeof(int32_t)); | |
6797 | if (coll->reorderCodes == NULL) { | |
6798 | *status = U_MEMORY_ALLOCATION_ERROR; | |
6799 | return; | |
6800 | } | |
6801 | coll->freeReorderCodesOnClose = TRUE; | |
6802 | for (int32_t i = 0; i < reorderCodesLength; i++) { | |
6803 | coll->reorderCodes[i] = reorderCodes[i]; | |
6804 | } | |
6805 | coll->reorderCodesLength = reorderCodesLength; | |
6806 | ucol_buildPermutationTable(coll, status); | |
6807 | } | |
6808 | ||
6809 | U_DRAFT int32_t U_EXPORT2 | |
6810 | ucol_getEquivalentReorderCodes(int32_t reorderCode, | |
6811 | int32_t* dest, | |
6812 | int32_t destCapacity, | |
6813 | UErrorCode *pErrorCode) { | |
6814 | bool equivalentCodesSet[USCRIPT_CODE_LIMIT]; | |
6815 | uint16_t leadBytes[256]; | |
6816 | int leadBytesCount; | |
6817 | int leadByteIndex; | |
6818 | int16_t reorderCodesForLeadByte[USCRIPT_CODE_LIMIT]; | |
6819 | int reorderCodesForLeadByteCount; | |
6820 | int reorderCodeIndex; | |
6821 | ||
6822 | int32_t equivalentCodesCount = 0; | |
6823 | int setIndex; | |
6824 | ||
6825 | if (U_FAILURE(*pErrorCode)) { | |
6826 | return 0; | |
6827 | } | |
6828 | ||
6829 | if (destCapacity < 0 || (destCapacity > 0 && dest == NULL)) { | |
6830 | *pErrorCode = U_ILLEGAL_ARGUMENT_ERROR; | |
6831 | return 0; | |
6832 | } | |
6833 | ||
6834 | uprv_memset(equivalentCodesSet, 0, USCRIPT_CODE_LIMIT * sizeof(bool)); | |
6835 | ||
6836 | const UCollator* uca = ucol_initUCA(pErrorCode); | |
6837 | if (U_FAILURE(*pErrorCode)) { | |
6838 | return 0; | |
6839 | } | |
6840 | leadBytesCount = ucol_getLeadBytesForReorderCode(uca, reorderCode, leadBytes, 256); | |
6841 | for (leadByteIndex = 0; leadByteIndex < leadBytesCount; leadByteIndex++) { | |
6842 | reorderCodesForLeadByteCount = ucol_getReorderCodesForLeadByte( | |
6843 | uca, leadBytes[leadByteIndex], reorderCodesForLeadByte, USCRIPT_CODE_LIMIT); | |
6844 | for (reorderCodeIndex = 0; reorderCodeIndex < reorderCodesForLeadByteCount; reorderCodeIndex++) { | |
6845 | equivalentCodesSet[reorderCodesForLeadByte[reorderCodeIndex]] = true; | |
6846 | } | |
6847 | } | |
6848 | ||
6849 | for (setIndex = 0; setIndex < USCRIPT_CODE_LIMIT; setIndex++) { | |
6850 | if (equivalentCodesSet[setIndex] == true) { | |
6851 | equivalentCodesCount++; | |
6852 | } | |
6853 | } | |
6854 | ||
6855 | if (destCapacity == 0) { | |
6856 | return equivalentCodesCount; | |
6857 | } | |
6858 | ||
6859 | equivalentCodesCount = 0; | |
6860 | for (setIndex = 0; setIndex < USCRIPT_CODE_LIMIT; setIndex++) { | |
6861 | if (equivalentCodesSet[setIndex] == true) { | |
6862 | dest[equivalentCodesCount++] = setIndex; | |
6863 | if (equivalentCodesCount >= destCapacity) { | |
6864 | break; | |
6865 | } | |
6866 | } | |
6867 | } | |
6868 | return equivalentCodesCount; | |
6869 | } | |
6870 | ||
6871 | ||
6872 | /****************************************************************************/ | |
6873 | /* Following are misc functions */ | |
6874 | /* there are new APIs and some compatibility APIs */ | |
6875 | /****************************************************************************/ | |
6876 | ||
6877 | U_CAPI void U_EXPORT2 | |
6878 | ucol_getVersion(const UCollator* coll, | |
6879 | UVersionInfo versionInfo) | |
6880 | { | |
6881 | if(coll->delegate!=NULL) { | |
6882 | ((const Collator*)coll->delegate)->getVersion(versionInfo); | |
6883 | return; | |
6884 | } | |
6885 | /* RunTime version */ | |
6886 | uint8_t rtVersion = UCOL_RUNTIME_VERSION; | |
6887 | /* Builder version*/ | |
6888 | uint8_t bdVersion = coll->image->version[0]; | |
6889 | ||
6890 | /* Charset Version. Need to get the version from cnv files | |
6891 | * makeconv should populate cnv files with version and | |
6892 | * an api has to be provided in ucnv.h to obtain this version | |
6893 | */ | |
6894 | uint8_t csVersion = 0; | |
6895 | ||
6896 | /* combine the version info */ | |
6897 | uint16_t cmbVersion = (uint16_t)((rtVersion<<11) | (bdVersion<<6) | (csVersion)); | |
6898 | ||
6899 | /* Tailoring rules */ | |
6900 | versionInfo[0] = (uint8_t)(cmbVersion>>8); | |
6901 | versionInfo[1] = (uint8_t)cmbVersion; | |
6902 | versionInfo[2] = coll->image->version[1]; | |
6903 | if(coll->UCA) { | |
6904 | /* Include the minor number when getting the UCA version. (major & 1f) << 3 | (minor & 7) */ | |
6905 | versionInfo[3] = (coll->UCA->image->UCAVersion[0] & 0x1f) << 3 | (coll->UCA->image->UCAVersion[1] & 0x07); | |
6906 | } else { | |
6907 | versionInfo[3] = 0; | |
6908 | } | |
6909 | } | |
6910 | ||
6911 | ||
6912 | /* This internal API checks whether a character is tailored or not */ | |
6913 | U_CAPI UBool U_EXPORT2 | |
6914 | ucol_isTailored(const UCollator *coll, const UChar u, UErrorCode *status) { | |
6915 | if(U_FAILURE(*status) || coll == NULL || coll == coll->UCA) { | |
6916 | return FALSE; | |
6917 | } | |
6918 | ||
6919 | uint32_t CE = UCOL_NOT_FOUND; | |
6920 | const UChar *ContractionStart = NULL; | |
6921 | if(u < 0x100) { /* latin-1 */ | |
6922 | CE = coll->latinOneMapping[u]; | |
6923 | if(coll->UCA && CE == coll->UCA->latinOneMapping[u]) { | |
6924 | return FALSE; | |
6925 | } | |
6926 | } else { /* regular */ | |
6927 | CE = UTRIE_GET32_FROM_LEAD(&coll->mapping, u); | |
6928 | } | |
6929 | ||
6930 | if(isContraction(CE)) { | |
6931 | ContractionStart = (UChar *)coll->image+getContractOffset(CE); | |
6932 | CE = *(coll->contractionCEs + (ContractionStart- coll->contractionIndex)); | |
6933 | } | |
6934 | ||
6935 | return (UBool)(CE != UCOL_NOT_FOUND); | |
6936 | } | |
6937 | ||
6938 | ||
6939 | /****************************************************************************/ | |
6940 | /* Following are the string compare functions */ | |
6941 | /* */ | |
6942 | /****************************************************************************/ | |
6943 | ||
6944 | ||
6945 | /* ucol_checkIdent internal function. Does byte level string compare. */ | |
6946 | /* Used by strcoll if strength == identical and strings */ | |
6947 | /* are otherwise equal. */ | |
6948 | /* */ | |
6949 | /* Comparison must be done on NFD normalized strings. */ | |
6950 | /* FCD is not good enough. */ | |
6951 | ||
6952 | static | |
6953 | UCollationResult ucol_checkIdent(collIterate *sColl, collIterate *tColl, UBool normalize, UErrorCode *status) | |
6954 | { | |
6955 | // When we arrive here, we can have normal strings or UCharIterators. Currently they are both | |
6956 | // of same type, but that doesn't really mean that it will stay that way. | |
6957 | int32_t comparison; | |
6958 | ||
6959 | if (sColl->flags & UCOL_USE_ITERATOR) { | |
6960 | // The division for the array length may truncate the array size to | |
6961 | // a little less than UNORM_ITER_SIZE, but that size is dimensioned too high | |
6962 | // for all platforms anyway. | |
6963 | UAlignedMemory stackNormIter1[UNORM_ITER_SIZE/sizeof(UAlignedMemory)]; | |
6964 | UAlignedMemory stackNormIter2[UNORM_ITER_SIZE/sizeof(UAlignedMemory)]; | |
6965 | UNormIterator *sNIt = NULL, *tNIt = NULL; | |
6966 | sNIt = unorm_openIter(stackNormIter1, sizeof(stackNormIter1), status); | |
6967 | tNIt = unorm_openIter(stackNormIter2, sizeof(stackNormIter2), status); | |
6968 | sColl->iterator->move(sColl->iterator, 0, UITER_START); | |
6969 | tColl->iterator->move(tColl->iterator, 0, UITER_START); | |
6970 | UCharIterator *sIt = unorm_setIter(sNIt, sColl->iterator, UNORM_NFD, status); | |
6971 | UCharIterator *tIt = unorm_setIter(tNIt, tColl->iterator, UNORM_NFD, status); | |
6972 | comparison = u_strCompareIter(sIt, tIt, TRUE); | |
6973 | unorm_closeIter(sNIt); | |
6974 | unorm_closeIter(tNIt); | |
6975 | } else { | |
6976 | int32_t sLen = (sColl->flags & UCOL_ITER_HASLEN) ? (int32_t)(sColl->endp - sColl->string) : -1; | |
6977 | const UChar *sBuf = sColl->string; | |
6978 | int32_t tLen = (tColl->flags & UCOL_ITER_HASLEN) ? (int32_t)(tColl->endp - tColl->string) : -1; | |
6979 | const UChar *tBuf = tColl->string; | |
6980 | ||
6981 | if (normalize) { | |
6982 | *status = U_ZERO_ERROR; | |
6983 | // Note: We could use Normalizer::compare() or similar, but for short strings | |
6984 | // which may not be in FCD it might be faster to just NFD them. | |
6985 | // Note: spanQuickCheckYes() + normalizeSecondAndAppend() rather than | |
6986 | // NFD'ing immediately might be faster for long strings, | |
6987 | // but string comparison is usually done on relatively short strings. | |
6988 | sColl->nfd->normalize(UnicodeString((sColl->flags & UCOL_ITER_HASLEN) == 0, sBuf, sLen), | |
6989 | sColl->writableBuffer, | |
6990 | *status); | |
6991 | tColl->nfd->normalize(UnicodeString((tColl->flags & UCOL_ITER_HASLEN) == 0, tBuf, tLen), | |
6992 | tColl->writableBuffer, | |
6993 | *status); | |
6994 | if(U_FAILURE(*status)) { | |
6995 | return UCOL_LESS; | |
6996 | } | |
6997 | comparison = sColl->writableBuffer.compareCodePointOrder(tColl->writableBuffer); | |
6998 | } else { | |
6999 | comparison = u_strCompare(sBuf, sLen, tBuf, tLen, TRUE); | |
7000 | } | |
7001 | } | |
7002 | ||
7003 | if (comparison < 0) { | |
7004 | return UCOL_LESS; | |
7005 | } else if (comparison == 0) { | |
7006 | return UCOL_EQUAL; | |
7007 | } else /* comparison > 0 */ { | |
7008 | return UCOL_GREATER; | |
7009 | } | |
7010 | } | |
7011 | ||
7012 | /* CEBuf - A struct and some inline functions to handle the saving */ | |
7013 | /* of CEs in a buffer within ucol_strcoll */ | |
7014 | ||
7015 | #define UCOL_CEBUF_SIZE 512 | |
7016 | typedef struct ucol_CEBuf { | |
7017 | uint32_t *buf; | |
7018 | uint32_t *endp; | |
7019 | uint32_t *pos; | |
7020 | uint32_t localArray[UCOL_CEBUF_SIZE]; | |
7021 | } ucol_CEBuf; | |
7022 | ||
7023 | ||
7024 | static | |
7025 | inline void UCOL_INIT_CEBUF(ucol_CEBuf *b) { | |
7026 | (b)->buf = (b)->pos = (b)->localArray; | |
7027 | (b)->endp = (b)->buf + UCOL_CEBUF_SIZE; | |
7028 | } | |
7029 | ||
7030 | static | |
7031 | void ucol_CEBuf_Expand(ucol_CEBuf *b, collIterate *ci, UErrorCode *status) { | |
7032 | uint32_t oldSize; | |
7033 | uint32_t newSize; | |
7034 | uint32_t *newBuf; | |
7035 | ||
7036 | ci->flags |= UCOL_ITER_ALLOCATED; | |
7037 | oldSize = (uint32_t)(b->pos - b->buf); | |
7038 | newSize = oldSize * 2; | |
7039 | newBuf = (uint32_t *)uprv_malloc(newSize * sizeof(uint32_t)); | |
7040 | if(newBuf == NULL) { | |
7041 | *status = U_MEMORY_ALLOCATION_ERROR; | |
7042 | } | |
7043 | else { | |
7044 | uprv_memcpy(newBuf, b->buf, oldSize * sizeof(uint32_t)); | |
7045 | if (b->buf != b->localArray) { | |
7046 | uprv_free(b->buf); | |
7047 | } | |
7048 | b->buf = newBuf; | |
7049 | b->endp = b->buf + newSize; | |
7050 | b->pos = b->buf + oldSize; | |
7051 | } | |
7052 | } | |
7053 | ||
7054 | static | |
7055 | inline void UCOL_CEBUF_PUT(ucol_CEBuf *b, uint32_t ce, collIterate *ci, UErrorCode *status) { | |
7056 | if (b->pos == b->endp) { | |
7057 | ucol_CEBuf_Expand(b, ci, status); | |
7058 | } | |
7059 | if (U_SUCCESS(*status)) { | |
7060 | *(b)->pos++ = ce; | |
7061 | } | |
7062 | } | |
7063 | ||
7064 | /* This is a trick string compare function that goes in and uses sortkeys to compare */ | |
7065 | /* It is used when compare gets in trouble and needs to bail out */ | |
7066 | static UCollationResult ucol_compareUsingSortKeys(collIterate *sColl, | |
7067 | collIterate *tColl, | |
7068 | UErrorCode *status) | |
7069 | { | |
7070 | uint8_t sourceKey[UCOL_MAX_BUFFER], targetKey[UCOL_MAX_BUFFER]; | |
7071 | uint8_t *sourceKeyP = sourceKey; | |
7072 | uint8_t *targetKeyP = targetKey; | |
7073 | int32_t sourceKeyLen = UCOL_MAX_BUFFER, targetKeyLen = UCOL_MAX_BUFFER; | |
7074 | const UCollator *coll = sColl->coll; | |
7075 | const UChar *source = NULL; | |
7076 | const UChar *target = NULL; | |
7077 | int32_t result = UCOL_EQUAL; | |
7078 | UnicodeString sourceString, targetString; | |
7079 | int32_t sourceLength; | |
7080 | int32_t targetLength; | |
7081 | ||
7082 | if(sColl->flags & UCOL_USE_ITERATOR) { | |
7083 | sColl->iterator->move(sColl->iterator, 0, UITER_START); | |
7084 | tColl->iterator->move(tColl->iterator, 0, UITER_START); | |
7085 | UChar32 c; | |
7086 | while((c=sColl->iterator->next(sColl->iterator))>=0) { | |
7087 | sourceString.append((UChar)c); | |
7088 | } | |
7089 | while((c=tColl->iterator->next(tColl->iterator))>=0) { | |
7090 | targetString.append((UChar)c); | |
7091 | } | |
7092 | source = sourceString.getBuffer(); | |
7093 | sourceLength = sourceString.length(); | |
7094 | target = targetString.getBuffer(); | |
7095 | targetLength = targetString.length(); | |
7096 | } else { // no iterators | |
7097 | sourceLength = (sColl->flags&UCOL_ITER_HASLEN)?(int32_t)(sColl->endp-sColl->string):-1; | |
7098 | targetLength = (tColl->flags&UCOL_ITER_HASLEN)?(int32_t)(tColl->endp-tColl->string):-1; | |
7099 | source = sColl->string; | |
7100 | target = tColl->string; | |
7101 | } | |
7102 | ||
7103 | ||
7104 | ||
7105 | sourceKeyLen = ucol_getSortKey(coll, source, sourceLength, sourceKeyP, sourceKeyLen); | |
7106 | if(sourceKeyLen > UCOL_MAX_BUFFER) { | |
7107 | sourceKeyP = (uint8_t*)uprv_malloc(sourceKeyLen*sizeof(uint8_t)); | |
7108 | if(sourceKeyP == NULL) { | |
7109 | *status = U_MEMORY_ALLOCATION_ERROR; | |
7110 | goto cleanup_and_do_compare; | |
7111 | } | |
7112 | sourceKeyLen = ucol_getSortKey(coll, source, sourceLength, sourceKeyP, sourceKeyLen); | |
7113 | } | |
7114 | ||
7115 | targetKeyLen = ucol_getSortKey(coll, target, targetLength, targetKeyP, targetKeyLen); | |
7116 | if(targetKeyLen > UCOL_MAX_BUFFER) { | |
7117 | targetKeyP = (uint8_t*)uprv_malloc(targetKeyLen*sizeof(uint8_t)); | |
7118 | if(targetKeyP == NULL) { | |
7119 | *status = U_MEMORY_ALLOCATION_ERROR; | |
7120 | goto cleanup_and_do_compare; | |
7121 | } | |
7122 | targetKeyLen = ucol_getSortKey(coll, target, targetLength, targetKeyP, targetKeyLen); | |
7123 | } | |
7124 | ||
7125 | result = uprv_strcmp((const char*)sourceKeyP, (const char*)targetKeyP); | |
7126 | ||
7127 | cleanup_and_do_compare: | |
7128 | if(sourceKeyP != NULL && sourceKeyP != sourceKey) { | |
7129 | uprv_free(sourceKeyP); | |
7130 | } | |
7131 | ||
7132 | if(targetKeyP != NULL && targetKeyP != targetKey) { | |
7133 | uprv_free(targetKeyP); | |
7134 | } | |
7135 | ||
7136 | if(result<0) { | |
7137 | return UCOL_LESS; | |
7138 | } else if(result>0) { | |
7139 | return UCOL_GREATER; | |
7140 | } else { | |
7141 | return UCOL_EQUAL; | |
7142 | } | |
7143 | } | |
7144 | ||
7145 | ||
7146 | static UCollationResult | |
7147 | ucol_strcollRegular(collIterate *sColl, collIterate *tColl, UErrorCode *status) | |
7148 | { | |
7149 | U_ALIGN_CODE(16); | |
7150 | ||
7151 | const UCollator *coll = sColl->coll; | |
7152 | ||
7153 | ||
7154 | // setting up the collator parameters | |
7155 | UColAttributeValue strength = coll->strength; | |
7156 | UBool initialCheckSecTer = (strength >= UCOL_SECONDARY); | |
7157 | ||
7158 | UBool checkSecTer = initialCheckSecTer; | |
7159 | UBool checkTertiary = (strength >= UCOL_TERTIARY); | |
7160 | UBool checkQuad = (strength >= UCOL_QUATERNARY); | |
7161 | UBool checkIdent = (strength == UCOL_IDENTICAL); | |
7162 | UBool checkCase = (coll->caseLevel == UCOL_ON); | |
7163 | UBool isFrenchSec = (coll->frenchCollation == UCOL_ON) && checkSecTer; | |
7164 | UBool shifted = (coll->alternateHandling == UCOL_SHIFTED); | |
7165 | UBool qShifted = shifted && checkQuad; | |
7166 | UBool doHiragana = (coll->hiraganaQ == UCOL_ON) && checkQuad; | |
7167 | ||
7168 | if(doHiragana && shifted) { | |
7169 | return (ucol_compareUsingSortKeys(sColl, tColl, status)); | |
7170 | } | |
7171 | uint8_t caseSwitch = coll->caseSwitch; | |
7172 | uint8_t tertiaryMask = coll->tertiaryMask; | |
7173 | ||
7174 | // This is the lowest primary value that will not be ignored if shifted | |
7175 | uint32_t LVT = (shifted)?(coll->variableTopValue<<16):0; | |
7176 | ||
7177 | UCollationResult result = UCOL_EQUAL; | |
7178 | UCollationResult hirResult = UCOL_EQUAL; | |
7179 | ||
7180 | // Preparing the CE buffers. They will be filled during the primary phase | |
7181 | ucol_CEBuf sCEs; | |
7182 | ucol_CEBuf tCEs; | |
7183 | UCOL_INIT_CEBUF(&sCEs); | |
7184 | UCOL_INIT_CEBUF(&tCEs); | |
7185 | ||
7186 | uint32_t secS = 0, secT = 0; | |
7187 | uint32_t sOrder=0, tOrder=0; | |
7188 | ||
7189 | // Non shifted primary processing is quite simple | |
7190 | if(!shifted) { | |
7191 | for(;;) { | |
7192 | ||
7193 | // We fetch CEs until we hit a non ignorable primary or end. | |
7194 | do { | |
7195 | // We get the next CE | |
7196 | sOrder = ucol_IGetNextCE(coll, sColl, status); | |
7197 | // Stuff it in the buffer | |
7198 | UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status); | |
7199 | // And keep just the primary part. | |
7200 | sOrder &= UCOL_PRIMARYMASK; | |
7201 | } while(sOrder == 0); | |
7202 | ||
7203 | // see the comments on the above block | |
7204 | do { | |
7205 | tOrder = ucol_IGetNextCE(coll, tColl, status); | |
7206 | UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status); | |
7207 | tOrder &= UCOL_PRIMARYMASK; | |
7208 | } while(tOrder == 0); | |
7209 | ||
7210 | // if both primaries are the same | |
7211 | if(sOrder == tOrder) { | |
7212 | // and there are no more CEs, we advance to the next level | |
7213 | if(sOrder == UCOL_NO_MORE_CES_PRIMARY) { | |
7214 | break; | |
7215 | } | |
7216 | if(doHiragana && hirResult == UCOL_EQUAL) { | |
7217 | if((sColl->flags & UCOL_WAS_HIRAGANA) != (tColl->flags & UCOL_WAS_HIRAGANA)) { | |
7218 | hirResult = ((sColl->flags & UCOL_WAS_HIRAGANA) > (tColl->flags & UCOL_WAS_HIRAGANA)) | |
7219 | ? UCOL_LESS:UCOL_GREATER; | |
7220 | } | |
7221 | } | |
7222 | } else { | |
7223 | // only need to check one for continuation | |
7224 | // if one is then the other must be or the preceding CE would be a prefix of the other | |
7225 | if (coll->leadBytePermutationTable != NULL && !isContinuation(sOrder)) { | |
7226 | sOrder = (coll->leadBytePermutationTable[sOrder>>24] << 24) | (sOrder & 0x00FFFFFF); | |
7227 | tOrder = (coll->leadBytePermutationTable[tOrder>>24] << 24) | (tOrder & 0x00FFFFFF); | |
7228 | } | |
7229 | // if two primaries are different, we are done | |
7230 | result = (sOrder < tOrder) ? UCOL_LESS: UCOL_GREATER; | |
7231 | goto commonReturn; | |
7232 | } | |
7233 | } // no primary difference... do the rest from the buffers | |
7234 | } else { // shifted - do a slightly more complicated processing :) | |
7235 | for(;;) { | |
7236 | UBool sInShifted = FALSE; | |
7237 | UBool tInShifted = FALSE; | |
7238 | // This version of code can be refactored. However, it seems easier to understand this way. | |
7239 | // Source loop. Sam as the target loop. | |
7240 | for(;;) { | |
7241 | sOrder = ucol_IGetNextCE(coll, sColl, status); | |
7242 | if(sOrder == UCOL_NO_MORE_CES) { | |
7243 | UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status); | |
7244 | break; | |
7245 | } else if(sOrder == 0 || (sInShifted && (sOrder & UCOL_PRIMARYMASK) == 0)) { | |
7246 | /* UCA amendment - ignore ignorables that follow shifted code points */ | |
7247 | continue; | |
7248 | } else if(isContinuation(sOrder)) { | |
7249 | if((sOrder & UCOL_PRIMARYMASK) > 0) { /* There is primary value */ | |
7250 | if(sInShifted) { | |
7251 | sOrder = (sOrder & UCOL_PRIMARYMASK) | 0xC0; /* preserve interesting continuation */ | |
7252 | UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status); | |
7253 | continue; | |
7254 | } else { | |
7255 | UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status); | |
7256 | break; | |
7257 | } | |
7258 | } else { /* Just lower level values */ | |
7259 | if(sInShifted) { | |
7260 | continue; | |
7261 | } else { | |
7262 | UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status); | |
7263 | continue; | |
7264 | } | |
7265 | } | |
7266 | } else { /* regular */ | |
7267 | if(coll->leadBytePermutationTable != NULL){ | |
7268 | sOrder = (coll->leadBytePermutationTable[sOrder>>24] << 24) | (sOrder & 0x00FFFFFF); | |
7269 | } | |
7270 | if((sOrder & UCOL_PRIMARYMASK) > LVT) { | |
7271 | UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status); | |
7272 | break; | |
7273 | } else { | |
7274 | if((sOrder & UCOL_PRIMARYMASK) > 0) { | |
7275 | sInShifted = TRUE; | |
7276 | sOrder &= UCOL_PRIMARYMASK; | |
7277 | UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status); | |
7278 | continue; | |
7279 | } else { | |
7280 | UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status); | |
7281 | sInShifted = FALSE; | |
7282 | continue; | |
7283 | } | |
7284 | } | |
7285 | } | |
7286 | } | |
7287 | sOrder &= UCOL_PRIMARYMASK; | |
7288 | sInShifted = FALSE; | |
7289 | ||
7290 | for(;;) { | |
7291 | tOrder = ucol_IGetNextCE(coll, tColl, status); | |
7292 | if(tOrder == UCOL_NO_MORE_CES) { | |
7293 | UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status); | |
7294 | break; | |
7295 | } else if(tOrder == 0 || (tInShifted && (tOrder & UCOL_PRIMARYMASK) == 0)) { | |
7296 | /* UCA amendment - ignore ignorables that follow shifted code points */ | |
7297 | continue; | |
7298 | } else if(isContinuation(tOrder)) { | |
7299 | if((tOrder & UCOL_PRIMARYMASK) > 0) { /* There is primary value */ | |
7300 | if(tInShifted) { | |
7301 | tOrder = (tOrder & UCOL_PRIMARYMASK) | 0xC0; /* preserve interesting continuation */ | |
7302 | UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status); | |
7303 | continue; | |
7304 | } else { | |
7305 | UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status); | |
7306 | break; | |
7307 | } | |
7308 | } else { /* Just lower level values */ | |
7309 | if(tInShifted) { | |
7310 | continue; | |
7311 | } else { | |
7312 | UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status); | |
7313 | continue; | |
7314 | } | |
7315 | } | |
7316 | } else { /* regular */ | |
7317 | if(coll->leadBytePermutationTable != NULL){ | |
7318 | tOrder = (coll->leadBytePermutationTable[tOrder>>24] << 24) | (tOrder & 0x00FFFFFF); | |
7319 | } | |
7320 | if((tOrder & UCOL_PRIMARYMASK) > LVT) { | |
7321 | UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status); | |
7322 | break; | |
7323 | } else { | |
7324 | if((tOrder & UCOL_PRIMARYMASK) > 0) { | |
7325 | tInShifted = TRUE; | |
7326 | tOrder &= UCOL_PRIMARYMASK; | |
7327 | UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status); | |
7328 | continue; | |
7329 | } else { | |
7330 | UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status); | |
7331 | tInShifted = FALSE; | |
7332 | continue; | |
7333 | } | |
7334 | } | |
7335 | } | |
7336 | } | |
7337 | tOrder &= UCOL_PRIMARYMASK; | |
7338 | tInShifted = FALSE; | |
7339 | ||
7340 | if(sOrder == tOrder) { | |
7341 | /* | |
7342 | if(doHiragana && hirResult == UCOL_EQUAL) { | |
7343 | if((sColl.flags & UCOL_WAS_HIRAGANA) != (tColl.flags & UCOL_WAS_HIRAGANA)) { | |
7344 | hirResult = ((sColl.flags & UCOL_WAS_HIRAGANA) > (tColl.flags & UCOL_WAS_HIRAGANA)) | |
7345 | ? UCOL_LESS:UCOL_GREATER; | |
7346 | } | |
7347 | } | |
7348 | */ | |
7349 | if(sOrder == UCOL_NO_MORE_CES_PRIMARY) { | |
7350 | break; | |
7351 | } else { | |
7352 | sOrder = 0; | |
7353 | tOrder = 0; | |
7354 | continue; | |
7355 | } | |
7356 | } else { | |
7357 | result = (sOrder < tOrder) ? UCOL_LESS : UCOL_GREATER; | |
7358 | goto commonReturn; | |
7359 | } | |
7360 | } /* no primary difference... do the rest from the buffers */ | |
7361 | } | |
7362 | ||
7363 | /* now, we're gonna reexamine collected CEs */ | |
7364 | uint32_t *sCE; | |
7365 | uint32_t *tCE; | |
7366 | ||
7367 | /* This is the secondary level of comparison */ | |
7368 | if(checkSecTer) { | |
7369 | if(!isFrenchSec) { /* normal */ | |
7370 | sCE = sCEs.buf; | |
7371 | tCE = tCEs.buf; | |
7372 | for(;;) { | |
7373 | while (secS == 0) { | |
7374 | secS = *(sCE++) & UCOL_SECONDARYMASK; | |
7375 | } | |
7376 | ||
7377 | while(secT == 0) { | |
7378 | secT = *(tCE++) & UCOL_SECONDARYMASK; | |
7379 | } | |
7380 | ||
7381 | if(secS == secT) { | |
7382 | if(secS == UCOL_NO_MORE_CES_SECONDARY) { | |
7383 | break; | |
7384 | } else { | |
7385 | secS = 0; secT = 0; | |
7386 | continue; | |
7387 | } | |
7388 | } else { | |
7389 | result = (secS < secT) ? UCOL_LESS : UCOL_GREATER; | |
7390 | goto commonReturn; | |
7391 | } | |
7392 | } | |
7393 | } else { /* do the French */ | |
7394 | uint32_t *sCESave = NULL; | |
7395 | uint32_t *tCESave = NULL; | |
7396 | sCE = sCEs.pos-2; /* this could also be sCEs-- if needs to be optimized */ | |
7397 | tCE = tCEs.pos-2; | |
7398 | for(;;) { | |
7399 | while (secS == 0 && sCE >= sCEs.buf) { | |
7400 | if(sCESave == NULL) { | |
7401 | secS = *(sCE--); | |
7402 | if(isContinuation(secS)) { | |
7403 | while(isContinuation(secS = *(sCE--))) | |
7404 | ; | |
7405 | /* after this, secS has the start of continuation, and sCEs points before that */ | |
7406 | sCESave = sCE; /* we save it, so that we know where to come back AND that we need to go forward */ | |
7407 | sCE+=2; /* need to point to the first continuation CP */ | |
7408 | /* However, now you can just continue doing stuff */ | |
7409 | } | |
7410 | } else { | |
7411 | secS = *(sCE++); | |
7412 | if(!isContinuation(secS)) { /* This means we have finished with this cont */ | |
7413 | sCE = sCESave; /* reset the pointer to before continuation */ | |
7414 | sCESave = NULL; | |
7415 | secS = 0; /* Fetch a fresh CE before the continuation sequence. */ | |
7416 | continue; | |
7417 | } | |
7418 | } | |
7419 | secS &= UCOL_SECONDARYMASK; /* remove the continuation bit */ | |
7420 | } | |
7421 | ||
7422 | while(secT == 0 && tCE >= tCEs.buf) { | |
7423 | if(tCESave == NULL) { | |
7424 | secT = *(tCE--); | |
7425 | if(isContinuation(secT)) { | |
7426 | while(isContinuation(secT = *(tCE--))) | |
7427 | ; | |
7428 | /* after this, secS has the start of continuation, and sCEs points before that */ | |
7429 | tCESave = tCE; /* we save it, so that we know where to come back AND that we need to go forward */ | |
7430 | tCE+=2; /* need to point to the first continuation CP */ | |
7431 | /* However, now you can just continue doing stuff */ | |
7432 | } | |
7433 | } else { | |
7434 | secT = *(tCE++); | |
7435 | if(!isContinuation(secT)) { /* This means we have finished with this cont */ | |
7436 | tCE = tCESave; /* reset the pointer to before continuation */ | |
7437 | tCESave = NULL; | |
7438 | secT = 0; /* Fetch a fresh CE before the continuation sequence. */ | |
7439 | continue; | |
7440 | } | |
7441 | } | |
7442 | secT &= UCOL_SECONDARYMASK; /* remove the continuation bit */ | |
7443 | } | |
7444 | ||
7445 | if(secS == secT) { | |
7446 | if(secS == UCOL_NO_MORE_CES_SECONDARY || (sCE < sCEs.buf && tCE < tCEs.buf)) { | |
7447 | break; | |
7448 | } else { | |
7449 | secS = 0; secT = 0; | |
7450 | continue; | |
7451 | } | |
7452 | } else { | |
7453 | result = (secS < secT) ? UCOL_LESS : UCOL_GREATER; | |
7454 | goto commonReturn; | |
7455 | } | |
7456 | } | |
7457 | } | |
7458 | } | |
7459 | ||
7460 | /* doing the case bit */ | |
7461 | if(checkCase) { | |
7462 | sCE = sCEs.buf; | |
7463 | tCE = tCEs.buf; | |
7464 | for(;;) { | |
7465 | while((secS & UCOL_REMOVE_CASE) == 0) { | |
7466 | if(!isContinuation(*sCE++)) { | |
7467 | secS =*(sCE-1); | |
7468 | if(((secS & UCOL_PRIMARYMASK) != 0) || strength > UCOL_PRIMARY) { | |
7469 | // primary ignorables should not be considered on the case level when the strength is primary | |
7470 | // otherwise, the CEs stop being well-formed | |
7471 | secS &= UCOL_TERT_CASE_MASK; | |
7472 | secS ^= caseSwitch; | |
7473 | } else { | |
7474 | secS = 0; | |
7475 | } | |
7476 | } else { | |
7477 | secS = 0; | |
7478 | } | |
7479 | } | |
7480 | ||
7481 | while((secT & UCOL_REMOVE_CASE) == 0) { | |
7482 | if(!isContinuation(*tCE++)) { | |
7483 | secT = *(tCE-1); | |
7484 | if(((secT & UCOL_PRIMARYMASK) != 0) || strength > UCOL_PRIMARY) { | |
7485 | // primary ignorables should not be considered on the case level when the strength is primary | |
7486 | // otherwise, the CEs stop being well-formed | |
7487 | secT &= UCOL_TERT_CASE_MASK; | |
7488 | secT ^= caseSwitch; | |
7489 | } else { | |
7490 | secT = 0; | |
7491 | } | |
7492 | } else { | |
7493 | secT = 0; | |
7494 | } | |
7495 | } | |
7496 | ||
7497 | if((secS & UCOL_CASE_BIT_MASK) < (secT & UCOL_CASE_BIT_MASK)) { | |
7498 | result = UCOL_LESS; | |
7499 | goto commonReturn; | |
7500 | } else if((secS & UCOL_CASE_BIT_MASK) > (secT & UCOL_CASE_BIT_MASK)) { | |
7501 | result = UCOL_GREATER; | |
7502 | goto commonReturn; | |
7503 | } | |
7504 | ||
7505 | if((secS & UCOL_REMOVE_CASE) == UCOL_NO_MORE_CES_TERTIARY || (secT & UCOL_REMOVE_CASE) == UCOL_NO_MORE_CES_TERTIARY ) { | |
7506 | break; | |
7507 | } else { | |
7508 | secS = 0; | |
7509 | secT = 0; | |
7510 | } | |
7511 | } | |
7512 | } | |
7513 | ||
7514 | /* Tertiary level */ | |
7515 | if(checkTertiary) { | |
7516 | secS = 0; | |
7517 | secT = 0; | |
7518 | sCE = sCEs.buf; | |
7519 | tCE = tCEs.buf; | |
7520 | for(;;) { | |
7521 | while((secS & UCOL_REMOVE_CASE) == 0) { | |
7522 | secS = *(sCE++) & tertiaryMask; | |
7523 | if(!isContinuation(secS)) { | |
7524 | secS ^= caseSwitch; | |
7525 | } else { | |
7526 | secS &= UCOL_REMOVE_CASE; | |
7527 | } | |
7528 | } | |
7529 | ||
7530 | while((secT & UCOL_REMOVE_CASE) == 0) { | |
7531 | secT = *(tCE++) & tertiaryMask; | |
7532 | if(!isContinuation(secT)) { | |
7533 | secT ^= caseSwitch; | |
7534 | } else { | |
7535 | secT &= UCOL_REMOVE_CASE; | |
7536 | } | |
7537 | } | |
7538 | ||
7539 | if(secS == secT) { | |
7540 | if((secS & UCOL_REMOVE_CASE) == 1) { | |
7541 | break; | |
7542 | } else { | |
7543 | secS = 0; secT = 0; | |
7544 | continue; | |
7545 | } | |
7546 | } else { | |
7547 | result = (secS < secT) ? UCOL_LESS : UCOL_GREATER; | |
7548 | goto commonReturn; | |
7549 | } | |
7550 | } | |
7551 | } | |
7552 | ||
7553 | ||
7554 | if(qShifted /*checkQuad*/) { | |
7555 | UBool sInShifted = TRUE; | |
7556 | UBool tInShifted = TRUE; | |
7557 | secS = 0; | |
7558 | secT = 0; | |
7559 | sCE = sCEs.buf; | |
7560 | tCE = tCEs.buf; | |
7561 | for(;;) { | |
7562 | while((secS == 0 && secS != UCOL_NO_MORE_CES) || (isContinuation(secS) && !sInShifted)) { | |
7563 | secS = *(sCE++); | |
7564 | if(isContinuation(secS)) { | |
7565 | if(!sInShifted) { | |
7566 | continue; | |
7567 | } | |
7568 | } else if(secS > LVT || (secS & UCOL_PRIMARYMASK) == 0) { /* non continuation */ | |
7569 | secS = UCOL_PRIMARYMASK; | |
7570 | sInShifted = FALSE; | |
7571 | } else { | |
7572 | sInShifted = TRUE; | |
7573 | } | |
7574 | } | |
7575 | secS &= UCOL_PRIMARYMASK; | |
7576 | ||
7577 | ||
7578 | while((secT == 0 && secT != UCOL_NO_MORE_CES) || (isContinuation(secT) && !tInShifted)) { | |
7579 | secT = *(tCE++); | |
7580 | if(isContinuation(secT)) { | |
7581 | if(!tInShifted) { | |
7582 | continue; | |
7583 | } | |
7584 | } else if(secT > LVT || (secT & UCOL_PRIMARYMASK) == 0) { | |
7585 | secT = UCOL_PRIMARYMASK; | |
7586 | tInShifted = FALSE; | |
7587 | } else { | |
7588 | tInShifted = TRUE; | |
7589 | } | |
7590 | } | |
7591 | secT &= UCOL_PRIMARYMASK; | |
7592 | ||
7593 | if(secS == secT) { | |
7594 | if(secS == UCOL_NO_MORE_CES_PRIMARY) { | |
7595 | break; | |
7596 | } else { | |
7597 | secS = 0; secT = 0; | |
7598 | continue; | |
7599 | } | |
7600 | } else { | |
7601 | result = (secS < secT) ? UCOL_LESS : UCOL_GREATER; | |
7602 | goto commonReturn; | |
7603 | } | |
7604 | } | |
7605 | } else if(doHiragana && hirResult != UCOL_EQUAL) { | |
7606 | // If we're fine on quaternaries, we might be different | |
7607 | // on Hiragana. This, however, might fail us in shifted. | |
7608 | result = hirResult; | |
7609 | goto commonReturn; | |
7610 | } | |
7611 | ||
7612 | /* For IDENTICAL comparisons, we use a bitwise character comparison */ | |
7613 | /* as a tiebreaker if all else is equal. */ | |
7614 | /* Getting here should be quite rare - strings are not identical - */ | |
7615 | /* that is checked first, but compared == through all other checks. */ | |
7616 | if(checkIdent) | |
7617 | { | |
7618 | //result = ucol_checkIdent(&sColl, &tColl, coll->normalizationMode == UCOL_ON); | |
7619 | result = ucol_checkIdent(sColl, tColl, TRUE, status); | |
7620 | } | |
7621 | ||
7622 | commonReturn: | |
7623 | if ((sColl->flags | tColl->flags) & UCOL_ITER_ALLOCATED) { | |
7624 | if (sCEs.buf != sCEs.localArray ) { | |
7625 | uprv_free(sCEs.buf); | |
7626 | } | |
7627 | if (tCEs.buf != tCEs.localArray ) { | |
7628 | uprv_free(tCEs.buf); | |
7629 | } | |
7630 | } | |
7631 | ||
7632 | return result; | |
7633 | } | |
7634 | ||
7635 | static UCollationResult | |
7636 | ucol_strcollRegular(const UCollator *coll, | |
7637 | const UChar *source, int32_t sourceLength, | |
7638 | const UChar *target, int32_t targetLength, | |
7639 | UErrorCode *status) { | |
7640 | collIterate sColl, tColl; | |
7641 | // Preparing the context objects for iterating over strings | |
7642 | IInit_collIterate(coll, source, sourceLength, &sColl, status); | |
7643 | IInit_collIterate(coll, target, targetLength, &tColl, status); | |
7644 | if(U_FAILURE(*status)) { | |
7645 | return UCOL_LESS; | |
7646 | } | |
7647 | return ucol_strcollRegular(&sColl, &tColl, status); | |
7648 | } | |
7649 | ||
7650 | static inline uint32_t | |
7651 | ucol_getLatinOneContraction(const UCollator *coll, int32_t strength, | |
7652 | uint32_t CE, const UChar *s, int32_t *index, int32_t len) | |
7653 | { | |
7654 | const UChar *UCharOffset = (UChar *)coll->image+getContractOffset(CE&0xFFF); | |
7655 | int32_t latinOneOffset = (CE & 0x00FFF000) >> 12; | |
7656 | int32_t offset = 1; | |
7657 | UChar schar = 0, tchar = 0; | |
7658 | ||
7659 | for(;;) { | |
7660 | if(len == -1) { | |
7661 | if(s[*index] == 0) { // end of string | |
7662 | return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset]); | |
7663 | } else { | |
7664 | schar = s[*index]; | |
7665 | } | |
7666 | } else { | |
7667 | if(*index == len) { | |
7668 | return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset]); | |
7669 | } else { | |
7670 | schar = s[*index]; | |
7671 | } | |
7672 | } | |
7673 | ||
7674 | while(schar > (tchar = *(UCharOffset+offset))) { /* since the contraction codepoints should be ordered, we skip all that are smaller */ | |
7675 | offset++; | |
7676 | } | |
7677 | ||
7678 | if (schar == tchar) { | |
7679 | (*index)++; | |
7680 | return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset+offset]); | |
7681 | } | |
7682 | else | |
7683 | { | |
7684 | if(schar & 0xFF00 /*> UCOL_ENDOFLATIN1RANGE*/) { | |
7685 | return UCOL_BAIL_OUT_CE; | |
7686 | } | |
7687 | // skip completely ignorables | |
7688 | uint32_t isZeroCE = UTRIE_GET32_FROM_LEAD(&coll->mapping, schar); | |
7689 | if(isZeroCE == 0) { // we have to ignore completely ignorables | |
7690 | (*index)++; | |
7691 | continue; | |
7692 | } | |
7693 | ||
7694 | return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset]); | |
7695 | } | |
7696 | } | |
7697 | } | |
7698 | ||
7699 | ||
7700 | /** | |
7701 | * This is a fast strcoll, geared towards text in Latin-1. | |
7702 | * It supports contractions of size two, French secondaries | |
7703 | * and case switching. You can use it with strengths primary | |
7704 | * to tertiary. It does not support shifted and case level. | |
7705 | * It relies on the table build by setupLatin1Table. If it | |
7706 | * doesn't understand something, it will go to the regular | |
7707 | * strcoll. | |
7708 | */ | |
7709 | static UCollationResult | |
7710 | ucol_strcollUseLatin1( const UCollator *coll, | |
7711 | const UChar *source, | |
7712 | int32_t sLen, | |
7713 | const UChar *target, | |
7714 | int32_t tLen, | |
7715 | UErrorCode *status) | |
7716 | { | |
7717 | U_ALIGN_CODE(16); | |
7718 | int32_t strength = coll->strength; | |
7719 | ||
7720 | int32_t sIndex = 0, tIndex = 0; | |
7721 | UChar sChar = 0, tChar = 0; | |
7722 | uint32_t sOrder=0, tOrder=0; | |
7723 | ||
7724 | UBool endOfSource = FALSE; | |
7725 | ||
7726 | uint32_t *elements = coll->latinOneCEs; | |
7727 | ||
7728 | UBool haveContractions = FALSE; // if we have contractions in our string | |
7729 | // we cannot do French secondary | |
7730 | ||
7731 | // Do the primary level | |
7732 | for(;;) { | |
7733 | while(sOrder==0) { // this loop skips primary ignorables | |
7734 | // sOrder=getNextlatinOneCE(source); | |
7735 | if(sLen==-1) { // handling zero terminated strings | |
7736 | sChar=source[sIndex++]; | |
7737 | if(sChar==0) { | |
7738 | endOfSource = TRUE; | |
7739 | break; | |
7740 | } | |
7741 | } else { // handling strings with known length | |
7742 | if(sIndex==sLen) { | |
7743 | endOfSource = TRUE; | |
7744 | break; | |
7745 | } | |
7746 | sChar=source[sIndex++]; | |
7747 | } | |
7748 | if(sChar&0xFF00) { // if we encounter non-latin-1, we bail out (sChar > 0xFF, but this is faster on win32) | |
7749 | //fprintf(stderr, "R"); | |
7750 | return ucol_strcollRegular(coll, source, sLen, target, tLen, status); | |
7751 | } | |
7752 | sOrder = elements[sChar]; | |
7753 | if(sOrder >= UCOL_NOT_FOUND) { // if we got a special | |
7754 | // specials can basically be either contractions or bail-out signs. If we get anything | |
7755 | // else, we'll bail out anywasy | |
7756 | if(getCETag(sOrder) == CONTRACTION_TAG) { | |
7757 | sOrder = ucol_getLatinOneContraction(coll, UCOL_PRIMARY, sOrder, source, &sIndex, sLen); | |
7758 | haveContractions = TRUE; // if there are contractions, we cannot do French secondary | |
7759 | // However, if there are contractions in the table, but we always use just one char, | |
7760 | // we might be able to do French. This should be checked out. | |
7761 | } | |
7762 | if(sOrder >= UCOL_NOT_FOUND /*== UCOL_BAIL_OUT_CE*/) { | |
7763 | //fprintf(stderr, "S"); | |
7764 | return ucol_strcollRegular(coll, source, sLen, target, tLen, status); | |
7765 | } | |
7766 | } | |
7767 | } | |
7768 | ||
7769 | while(tOrder==0) { // this loop skips primary ignorables | |
7770 | // tOrder=getNextlatinOneCE(target); | |
7771 | if(tLen==-1) { // handling zero terminated strings | |
7772 | tChar=target[tIndex++]; | |
7773 | if(tChar==0) { | |
7774 | if(endOfSource) { // this is different than source loop, | |
7775 | // as we already know that source loop is done here, | |
7776 | // so we can either finish the primary loop if both | |
7777 | // strings are done or anounce the result if only | |
7778 | // target is done. Same below. | |
7779 | goto endOfPrimLoop; | |
7780 | } else { | |
7781 | return UCOL_GREATER; | |
7782 | } | |
7783 | } | |
7784 | } else { // handling strings with known length | |
7785 | if(tIndex==tLen) { | |
7786 | if(endOfSource) { | |
7787 | goto endOfPrimLoop; | |
7788 | } else { | |
7789 | return UCOL_GREATER; | |
7790 | } | |
7791 | } | |
7792 | tChar=target[tIndex++]; | |
7793 | } | |
7794 | if(tChar&0xFF00) { // if we encounter non-latin-1, we bail out (sChar > 0xFF, but this is faster on win32) | |
7795 | //fprintf(stderr, "R"); | |
7796 | return ucol_strcollRegular(coll, source, sLen, target, tLen, status); | |
7797 | } | |
7798 | tOrder = elements[tChar]; | |
7799 | if(tOrder >= UCOL_NOT_FOUND) { | |
7800 | // Handling specials, see the comments for source | |
7801 | if(getCETag(tOrder) == CONTRACTION_TAG) { | |
7802 | tOrder = ucol_getLatinOneContraction(coll, UCOL_PRIMARY, tOrder, target, &tIndex, tLen); | |
7803 | haveContractions = TRUE; | |
7804 | } | |
7805 | if(tOrder >= UCOL_NOT_FOUND /*== UCOL_BAIL_OUT_CE*/) { | |
7806 | //fprintf(stderr, "S"); | |
7807 | return ucol_strcollRegular(coll, source, sLen, target, tLen, status); | |
7808 | } | |
7809 | } | |
7810 | } | |
7811 | if(endOfSource) { // source is finished, but target is not, say the result. | |
7812 | return UCOL_LESS; | |
7813 | } | |
7814 | ||
7815 | if(sOrder == tOrder) { // if we have same CEs, we continue the loop | |
7816 | sOrder = 0; tOrder = 0; | |
7817 | continue; | |
7818 | } else { | |
7819 | // compare current top bytes | |
7820 | if(((sOrder^tOrder)&0xFF000000)!=0) { | |
7821 | // top bytes differ, return difference | |
7822 | if(sOrder < tOrder) { | |
7823 | return UCOL_LESS; | |
7824 | } else if(sOrder > tOrder) { | |
7825 | return UCOL_GREATER; | |
7826 | } | |
7827 | // instead of return (int32_t)(sOrder>>24)-(int32_t)(tOrder>>24); | |
7828 | // since we must return enum value | |
7829 | } | |
7830 | ||
7831 | // top bytes match, continue with following bytes | |
7832 | sOrder<<=8; | |
7833 | tOrder<<=8; | |
7834 | } | |
7835 | } | |
7836 | ||
7837 | endOfPrimLoop: | |
7838 | // after primary loop, we definitely know the sizes of strings, | |
7839 | // so we set it and use simpler loop for secondaries and tertiaries | |
7840 | sLen = sIndex; tLen = tIndex; | |
7841 | if(strength >= UCOL_SECONDARY) { | |
7842 | // adjust the table beggining | |
7843 | elements += coll->latinOneTableLen; | |
7844 | endOfSource = FALSE; | |
7845 | ||
7846 | if(coll->frenchCollation == UCOL_OFF) { // non French | |
7847 | // This loop is a simplified copy of primary loop | |
7848 | // at this point we know that whole strings are latin-1, so we don't | |
7849 | // check for that. We also know that we only have contractions as | |
7850 | // specials. | |
7851 | sIndex = 0; tIndex = 0; | |
7852 | for(;;) { | |
7853 | while(sOrder==0) { | |
7854 | if(sIndex==sLen) { | |
7855 | endOfSource = TRUE; | |
7856 | break; | |
7857 | } | |
7858 | sChar=source[sIndex++]; | |
7859 | sOrder = elements[sChar]; | |
7860 | if(sOrder > UCOL_NOT_FOUND) { | |
7861 | sOrder = ucol_getLatinOneContraction(coll, UCOL_SECONDARY, sOrder, source, &sIndex, sLen); | |
7862 | } | |
7863 | } | |
7864 | ||
7865 | while(tOrder==0) { | |
7866 | if(tIndex==tLen) { | |
7867 | if(endOfSource) { | |
7868 | goto endOfSecLoop; | |
7869 | } else { | |
7870 | return UCOL_GREATER; | |
7871 | } | |
7872 | } | |
7873 | tChar=target[tIndex++]; | |
7874 | tOrder = elements[tChar]; | |
7875 | if(tOrder > UCOL_NOT_FOUND) { | |
7876 | tOrder = ucol_getLatinOneContraction(coll, UCOL_SECONDARY, tOrder, target, &tIndex, tLen); | |
7877 | } | |
7878 | } | |
7879 | if(endOfSource) { | |
7880 | return UCOL_LESS; | |
7881 | } | |
7882 | ||
7883 | if(sOrder == tOrder) { | |
7884 | sOrder = 0; tOrder = 0; | |
7885 | continue; | |
7886 | } else { | |
7887 | // see primary loop for comments on this | |
7888 | if(((sOrder^tOrder)&0xFF000000)!=0) { | |
7889 | if(sOrder < tOrder) { | |
7890 | return UCOL_LESS; | |
7891 | } else if(sOrder > tOrder) { | |
7892 | return UCOL_GREATER; | |
7893 | } | |
7894 | } | |
7895 | sOrder<<=8; | |
7896 | tOrder<<=8; | |
7897 | } | |
7898 | } | |
7899 | } else { // French | |
7900 | if(haveContractions) { // if we have contractions, we have to bail out | |
7901 | // since we don't really know how to handle them here | |
7902 | return ucol_strcollRegular(coll, source, sLen, target, tLen, status); | |
7903 | } | |
7904 | // For French, we go backwards | |
7905 | sIndex = sLen; tIndex = tLen; | |
7906 | for(;;) { | |
7907 | while(sOrder==0) { | |
7908 | if(sIndex==0) { | |
7909 | endOfSource = TRUE; | |
7910 | break; | |
7911 | } | |
7912 | sChar=source[--sIndex]; | |
7913 | sOrder = elements[sChar]; | |
7914 | // don't even look for contractions | |
7915 | } | |
7916 | ||
7917 | while(tOrder==0) { | |
7918 | if(tIndex==0) { | |
7919 | if(endOfSource) { | |
7920 | goto endOfSecLoop; | |
7921 | } else { | |
7922 | return UCOL_GREATER; | |
7923 | } | |
7924 | } | |
7925 | tChar=target[--tIndex]; | |
7926 | tOrder = elements[tChar]; | |
7927 | // don't even look for contractions | |
7928 | } | |
7929 | if(endOfSource) { | |
7930 | return UCOL_LESS; | |
7931 | } | |
7932 | ||
7933 | if(sOrder == tOrder) { | |
7934 | sOrder = 0; tOrder = 0; | |
7935 | continue; | |
7936 | } else { | |
7937 | // see the primary loop for comments | |
7938 | if(((sOrder^tOrder)&0xFF000000)!=0) { | |
7939 | if(sOrder < tOrder) { | |
7940 | return UCOL_LESS; | |
7941 | } else if(sOrder > tOrder) { | |
7942 | return UCOL_GREATER; | |
7943 | } | |
7944 | } | |
7945 | sOrder<<=8; | |
7946 | tOrder<<=8; | |
7947 | } | |
7948 | } | |
7949 | } | |
7950 | } | |
7951 | ||
7952 | endOfSecLoop: | |
7953 | if(strength >= UCOL_TERTIARY) { | |
7954 | // tertiary loop is the same as secondary (except no French) | |
7955 | elements += coll->latinOneTableLen; | |
7956 | sIndex = 0; tIndex = 0; | |
7957 | endOfSource = FALSE; | |
7958 | for(;;) { | |
7959 | while(sOrder==0) { | |
7960 | if(sIndex==sLen) { | |
7961 | endOfSource = TRUE; | |
7962 | break; | |
7963 | } | |
7964 | sChar=source[sIndex++]; | |
7965 | sOrder = elements[sChar]; | |
7966 | if(sOrder > UCOL_NOT_FOUND) { | |
7967 | sOrder = ucol_getLatinOneContraction(coll, UCOL_TERTIARY, sOrder, source, &sIndex, sLen); | |
7968 | } | |
7969 | } | |
7970 | while(tOrder==0) { | |
7971 | if(tIndex==tLen) { | |
7972 | if(endOfSource) { | |
7973 | return UCOL_EQUAL; // if both strings are at the end, they are equal | |
7974 | } else { | |
7975 | return UCOL_GREATER; | |
7976 | } | |
7977 | } | |
7978 | tChar=target[tIndex++]; | |
7979 | tOrder = elements[tChar]; | |
7980 | if(tOrder > UCOL_NOT_FOUND) { | |
7981 | tOrder = ucol_getLatinOneContraction(coll, UCOL_TERTIARY, tOrder, target, &tIndex, tLen); | |
7982 | } | |
7983 | } | |
7984 | if(endOfSource) { | |
7985 | return UCOL_LESS; | |
7986 | } | |
7987 | if(sOrder == tOrder) { | |
7988 | sOrder = 0; tOrder = 0; | |
7989 | continue; | |
7990 | } else { | |
7991 | if(((sOrder^tOrder)&0xff000000)!=0) { | |
7992 | if(sOrder < tOrder) { | |
7993 | return UCOL_LESS; | |
7994 | } else if(sOrder > tOrder) { | |
7995 | return UCOL_GREATER; | |
7996 | } | |
7997 | } | |
7998 | sOrder<<=8; | |
7999 | tOrder<<=8; | |
8000 | } | |
8001 | } | |
8002 | } | |
8003 | return UCOL_EQUAL; | |
8004 | } | |
8005 | ||
8006 | ||
8007 | U_CAPI UCollationResult U_EXPORT2 | |
8008 | ucol_strcollIter( const UCollator *coll, | |
8009 | UCharIterator *sIter, | |
8010 | UCharIterator *tIter, | |
8011 | UErrorCode *status) | |
8012 | { | |
8013 | if(!status || U_FAILURE(*status)) { | |
8014 | return UCOL_EQUAL; | |
8015 | } | |
8016 | ||
8017 | UTRACE_ENTRY(UTRACE_UCOL_STRCOLLITER); | |
8018 | UTRACE_DATA3(UTRACE_VERBOSE, "coll=%p, sIter=%p, tIter=%p", coll, sIter, tIter); | |
8019 | ||
8020 | if (sIter == tIter) { | |
8021 | UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status) | |
8022 | return UCOL_EQUAL; | |
8023 | } | |
8024 | if(sIter == NULL || tIter == NULL || coll == NULL) { | |
8025 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
8026 | UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status) | |
8027 | return UCOL_EQUAL; | |
8028 | } | |
8029 | ||
8030 | UCollationResult result = UCOL_EQUAL; | |
8031 | ||
8032 | // Preparing the context objects for iterating over strings | |
8033 | collIterate sColl, tColl; | |
8034 | IInit_collIterate(coll, NULL, -1, &sColl, status); | |
8035 | IInit_collIterate(coll, NULL, -1, &tColl, status); | |
8036 | if(U_FAILURE(*status)) { | |
8037 | UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status) | |
8038 | return UCOL_EQUAL; | |
8039 | } | |
8040 | // The division for the array length may truncate the array size to | |
8041 | // a little less than UNORM_ITER_SIZE, but that size is dimensioned too high | |
8042 | // for all platforms anyway. | |
8043 | UAlignedMemory stackNormIter1[UNORM_ITER_SIZE/sizeof(UAlignedMemory)]; | |
8044 | UAlignedMemory stackNormIter2[UNORM_ITER_SIZE/sizeof(UAlignedMemory)]; | |
8045 | UNormIterator *sNormIter = NULL, *tNormIter = NULL; | |
8046 | ||
8047 | sColl.iterator = sIter; | |
8048 | sColl.flags |= UCOL_USE_ITERATOR; | |
8049 | tColl.flags |= UCOL_USE_ITERATOR; | |
8050 | tColl.iterator = tIter; | |
8051 | ||
8052 | if(ucol_getAttribute(coll, UCOL_NORMALIZATION_MODE, status) == UCOL_ON) { | |
8053 | sNormIter = unorm_openIter(stackNormIter1, sizeof(stackNormIter1), status); | |
8054 | sColl.iterator = unorm_setIter(sNormIter, sIter, UNORM_FCD, status); | |
8055 | sColl.flags &= ~UCOL_ITER_NORM; | |
8056 | ||
8057 | tNormIter = unorm_openIter(stackNormIter2, sizeof(stackNormIter2), status); | |
8058 | tColl.iterator = unorm_setIter(tNormIter, tIter, UNORM_FCD, status); | |
8059 | tColl.flags &= ~UCOL_ITER_NORM; | |
8060 | } | |
8061 | ||
8062 | UChar32 sChar = U_SENTINEL, tChar = U_SENTINEL; | |
8063 | ||
8064 | while((sChar = sColl.iterator->next(sColl.iterator)) == | |
8065 | (tChar = tColl.iterator->next(tColl.iterator))) { | |
8066 | if(sChar == U_SENTINEL) { | |
8067 | result = UCOL_EQUAL; | |
8068 | goto end_compare; | |
8069 | } | |
8070 | } | |
8071 | ||
8072 | if(sChar == U_SENTINEL) { | |
8073 | tChar = tColl.iterator->previous(tColl.iterator); | |
8074 | } | |
8075 | ||
8076 | if(tChar == U_SENTINEL) { | |
8077 | sChar = sColl.iterator->previous(sColl.iterator); | |
8078 | } | |
8079 | ||
8080 | sChar = sColl.iterator->previous(sColl.iterator); | |
8081 | tChar = tColl.iterator->previous(tColl.iterator); | |
8082 | ||
8083 | if (ucol_unsafeCP((UChar)sChar, coll) || ucol_unsafeCP((UChar)tChar, coll)) | |
8084 | { | |
8085 | // We are stopped in the middle of a contraction. | |
8086 | // Scan backwards through the == part of the string looking for the start of the contraction. | |
8087 | // It doesn't matter which string we scan, since they are the same in this region. | |
8088 | do | |
8089 | { | |
8090 | sChar = sColl.iterator->previous(sColl.iterator); | |
8091 | tChar = tColl.iterator->previous(tColl.iterator); | |
8092 | } | |
8093 | while (sChar != U_SENTINEL && ucol_unsafeCP((UChar)sChar, coll)); | |
8094 | } | |
8095 | ||
8096 | ||
8097 | if(U_SUCCESS(*status)) { | |
8098 | result = ucol_strcollRegular(&sColl, &tColl, status); | |
8099 | } | |
8100 | ||
8101 | end_compare: | |
8102 | if(sNormIter || tNormIter) { | |
8103 | unorm_closeIter(sNormIter); | |
8104 | unorm_closeIter(tNormIter); | |
8105 | } | |
8106 | ||
8107 | UTRACE_EXIT_VALUE_STATUS(result, *status) | |
8108 | return result; | |
8109 | } | |
8110 | ||
8111 | ||
8112 | /* */ | |
8113 | /* ucol_strcoll Main public API string comparison function */ | |
8114 | /* */ | |
8115 | U_CAPI UCollationResult U_EXPORT2 | |
8116 | ucol_strcoll( const UCollator *coll, | |
8117 | const UChar *source, | |
8118 | int32_t sourceLength, | |
8119 | const UChar *target, | |
8120 | int32_t targetLength) | |
8121 | { | |
8122 | U_ALIGN_CODE(16); | |
8123 | ||
8124 | UTRACE_ENTRY(UTRACE_UCOL_STRCOLL); | |
8125 | if (UTRACE_LEVEL(UTRACE_VERBOSE)) { | |
8126 | UTRACE_DATA3(UTRACE_VERBOSE, "coll=%p, source=%p, target=%p", coll, source, target); | |
8127 | UTRACE_DATA2(UTRACE_VERBOSE, "source string = %vh ", source, sourceLength); | |
8128 | UTRACE_DATA2(UTRACE_VERBOSE, "target string = %vh ", target, targetLength); | |
8129 | } | |
8130 | ||
8131 | if(source == NULL || target == NULL) { | |
8132 | // do not crash, but return. Should have | |
8133 | // status argument to return error. | |
8134 | UTRACE_EXIT_VALUE(UCOL_EQUAL); | |
8135 | return UCOL_EQUAL; | |
8136 | } | |
8137 | ||
8138 | /* Quick check if source and target are same strings. */ | |
8139 | /* They should either both be NULL terminated or the explicit length should be set on both. */ | |
8140 | if (source==target && sourceLength==targetLength) { | |
8141 | UTRACE_EXIT_VALUE(UCOL_EQUAL); | |
8142 | return UCOL_EQUAL; | |
8143 | } | |
8144 | ||
8145 | if(coll->delegate != NULL) { | |
8146 | UErrorCode status = U_ZERO_ERROR; | |
8147 | return ((const Collator*)coll->delegate)->compare(source,sourceLength,target,targetLength, status); | |
8148 | } | |
8149 | ||
8150 | /* Scan the strings. Find: */ | |
8151 | /* The length of any leading portion that is equal */ | |
8152 | /* Whether they are exactly equal. (in which case we just return) */ | |
8153 | const UChar *pSrc = source; | |
8154 | const UChar *pTarg = target; | |
8155 | int32_t equalLength; | |
8156 | ||
8157 | if (sourceLength == -1 && targetLength == -1) { | |
8158 | // Both strings are null terminated. | |
8159 | // Scan through any leading equal portion. | |
8160 | while (*pSrc == *pTarg && *pSrc != 0) { | |
8161 | pSrc++; | |
8162 | pTarg++; | |
8163 | } | |
8164 | if (*pSrc == 0 && *pTarg == 0) { | |
8165 | UTRACE_EXIT_VALUE(UCOL_EQUAL); | |
8166 | return UCOL_EQUAL; | |
8167 | } | |
8168 | equalLength = (int32_t)(pSrc - source); | |
8169 | } | |
8170 | else | |
8171 | { | |
8172 | // One or both strings has an explicit length. | |
8173 | const UChar *pSrcEnd = source + sourceLength; | |
8174 | const UChar *pTargEnd = target + targetLength; | |
8175 | ||
8176 | // Scan while the strings are bitwise ==, or until one is exhausted. | |
8177 | for (;;) { | |
8178 | if (pSrc == pSrcEnd || pTarg == pTargEnd) { | |
8179 | break; | |
8180 | } | |
8181 | if ((*pSrc == 0 && sourceLength == -1) || (*pTarg == 0 && targetLength == -1)) { | |
8182 | break; | |
8183 | } | |
8184 | if (*pSrc != *pTarg) { | |
8185 | break; | |
8186 | } | |
8187 | pSrc++; | |
8188 | pTarg++; | |
8189 | } | |
8190 | equalLength = (int32_t)(pSrc - source); | |
8191 | ||
8192 | // If we made it all the way through both strings, we are done. They are == | |
8193 | if ((pSrc ==pSrcEnd || (pSrcEnd <pSrc && *pSrc==0)) && /* At end of src string, however it was specified. */ | |
8194 | (pTarg==pTargEnd || (pTargEnd<pTarg && *pTarg==0))) /* and also at end of dest string */ | |
8195 | { | |
8196 | UTRACE_EXIT_VALUE(UCOL_EQUAL); | |
8197 | return UCOL_EQUAL; | |
8198 | } | |
8199 | } | |
8200 | if (equalLength > 0) { | |
8201 | /* There is an identical portion at the beginning of the two strings. */ | |
8202 | /* If the identical portion ends within a contraction or a comibining */ | |
8203 | /* character sequence, back up to the start of that sequence. */ | |
8204 | ||
8205 | // These values should already be set by the code above. | |
8206 | //pSrc = source + equalLength; /* point to the first differing chars */ | |
8207 | //pTarg = target + equalLength; | |
8208 | if ((pSrc != source+sourceLength && ucol_unsafeCP(*pSrc, coll)) || | |
8209 | (pTarg != target+targetLength && ucol_unsafeCP(*pTarg, coll))) | |
8210 | { | |
8211 | // We are stopped in the middle of a contraction. | |
8212 | // Scan backwards through the == part of the string looking for the start of the contraction. | |
8213 | // It doesn't matter which string we scan, since they are the same in this region. | |
8214 | do | |
8215 | { | |
8216 | equalLength--; | |
8217 | pSrc--; | |
8218 | } | |
8219 | while (equalLength>0 && ucol_unsafeCP(*pSrc, coll)); | |
8220 | } | |
8221 | ||
8222 | source += equalLength; | |
8223 | target += equalLength; | |
8224 | if (sourceLength > 0) { | |
8225 | sourceLength -= equalLength; | |
8226 | } | |
8227 | if (targetLength > 0) { | |
8228 | targetLength -= equalLength; | |
8229 | } | |
8230 | } | |
8231 | ||
8232 | UErrorCode status = U_ZERO_ERROR; | |
8233 | UCollationResult returnVal; | |
8234 | if(!coll->latinOneUse || (sourceLength > 0 && *source&0xff00) || (targetLength > 0 && *target&0xff00)) { | |
8235 | returnVal = ucol_strcollRegular(coll, source, sourceLength, target, targetLength, &status); | |
8236 | } else { | |
8237 | returnVal = ucol_strcollUseLatin1(coll, source, sourceLength, target, targetLength, &status); | |
8238 | } | |
8239 | UTRACE_EXIT_VALUE(returnVal); | |
8240 | return returnVal; | |
8241 | } | |
8242 | ||
8243 | /* convenience function for comparing strings */ | |
8244 | U_CAPI UBool U_EXPORT2 | |
8245 | ucol_greater( const UCollator *coll, | |
8246 | const UChar *source, | |
8247 | int32_t sourceLength, | |
8248 | const UChar *target, | |
8249 | int32_t targetLength) | |
8250 | { | |
8251 | return (ucol_strcoll(coll, source, sourceLength, target, targetLength) | |
8252 | == UCOL_GREATER); | |
8253 | } | |
8254 | ||
8255 | /* convenience function for comparing strings */ | |
8256 | U_CAPI UBool U_EXPORT2 | |
8257 | ucol_greaterOrEqual( const UCollator *coll, | |
8258 | const UChar *source, | |
8259 | int32_t sourceLength, | |
8260 | const UChar *target, | |
8261 | int32_t targetLength) | |
8262 | { | |
8263 | return (ucol_strcoll(coll, source, sourceLength, target, targetLength) | |
8264 | != UCOL_LESS); | |
8265 | } | |
8266 | ||
8267 | /* convenience function for comparing strings */ | |
8268 | U_CAPI UBool U_EXPORT2 | |
8269 | ucol_equal( const UCollator *coll, | |
8270 | const UChar *source, | |
8271 | int32_t sourceLength, | |
8272 | const UChar *target, | |
8273 | int32_t targetLength) | |
8274 | { | |
8275 | return (ucol_strcoll(coll, source, sourceLength, target, targetLength) | |
8276 | == UCOL_EQUAL); | |
8277 | } | |
8278 | ||
8279 | U_CAPI void U_EXPORT2 | |
8280 | ucol_getUCAVersion(const UCollator* coll, UVersionInfo info) { | |
8281 | if(coll && coll->UCA) { | |
8282 | uprv_memcpy(info, coll->UCA->image->UCAVersion, sizeof(UVersionInfo)); | |
8283 | } | |
8284 | } | |
8285 | ||
8286 | #endif /* #if !UCONFIG_NO_COLLATION */ |