]>
Commit | Line | Data |
---|---|---|
1 | // © 2016 and later: Unicode, Inc. and others. | |
2 | // License & terms of use: http://www.unicode.org/copyright.html | |
3 | /* | |
4 | ****************************************************************************** | |
5 | * Copyright (C) 1997-2016, International Business Machines | |
6 | * Corporation and others. All Rights Reserved. | |
7 | ****************************************************************************** | |
8 | * Date Name Description | |
9 | * 03/22/00 aliu Adapted from original C++ ICU Hashtable. | |
10 | * 07/06/01 aliu Modified to support int32_t keys on | |
11 | * platforms with sizeof(void*) < 32. | |
12 | ****************************************************************************** | |
13 | */ | |
14 | ||
15 | #include "uhash.h" | |
16 | #include "unicode/ustring.h" | |
17 | #include "cstring.h" | |
18 | #include "cmemory.h" | |
19 | #include "uassert.h" | |
20 | #include "ustr_imp.h" | |
21 | ||
22 | /* This hashtable is implemented as a double hash. All elements are | |
23 | * stored in a single array with no secondary storage for collision | |
24 | * resolution (no linked list, etc.). When there is a hash collision | |
25 | * (when two unequal keys have the same hashcode) we resolve this by | |
26 | * using a secondary hash. The secondary hash is an increment | |
27 | * computed as a hash function (a different one) of the primary | |
28 | * hashcode. This increment is added to the initial hash value to | |
29 | * obtain further slots assigned to the same hash code. For this to | |
30 | * work, the length of the array and the increment must be relatively | |
31 | * prime. The easiest way to achieve this is to have the length of | |
32 | * the array be prime, and the increment be any value from | |
33 | * 1..length-1. | |
34 | * | |
35 | * Hashcodes are 32-bit integers. We make sure all hashcodes are | |
36 | * non-negative by masking off the top bit. This has two effects: (1) | |
37 | * modulo arithmetic is simplified. If we allowed negative hashcodes, | |
38 | * then when we computed hashcode % length, we could get a negative | |
39 | * result, which we would then have to adjust back into range. It's | |
40 | * simpler to just make hashcodes non-negative. (2) It makes it easy | |
41 | * to check for empty vs. occupied slots in the table. We just mark | |
42 | * empty or deleted slots with a negative hashcode. | |
43 | * | |
44 | * The central function is _uhash_find(). This function looks for a | |
45 | * slot matching the given key and hashcode. If one is found, it | |
46 | * returns a pointer to that slot. If the table is full, and no match | |
47 | * is found, it returns NULL -- in theory. This would make the code | |
48 | * more complicated, since all callers of _uhash_find() would then | |
49 | * have to check for a NULL result. To keep this from happening, we | |
50 | * don't allow the table to fill. When there is only one | |
51 | * empty/deleted slot left, uhash_put() will refuse to increase the | |
52 | * count, and fail. This simplifies the code. In practice, one will | |
53 | * seldom encounter this using default UHashtables. However, if a | |
54 | * hashtable is set to a U_FIXED resize policy, or if memory is | |
55 | * exhausted, then the table may fill. | |
56 | * | |
57 | * High and low water ratios control rehashing. They establish levels | |
58 | * of fullness (from 0 to 1) outside of which the data array is | |
59 | * reallocated and repopulated. Setting the low water ratio to zero | |
60 | * means the table will never shrink. Setting the high water ratio to | |
61 | * one means the table will never grow. The ratios should be | |
62 | * coordinated with the ratio between successive elements of the | |
63 | * PRIMES table, so that when the primeIndex is incremented or | |
64 | * decremented during rehashing, it brings the ratio of count / length | |
65 | * back into the desired range (between low and high water ratios). | |
66 | */ | |
67 | ||
68 | /******************************************************************** | |
69 | * PRIVATE Constants, Macros | |
70 | ********************************************************************/ | |
71 | ||
72 | /* This is a list of non-consecutive primes chosen such that | |
73 | * PRIMES[i+1] ~ 2*PRIMES[i]. (Currently, the ratio ranges from 1.81 | |
74 | * to 2.18; the inverse ratio ranges from 0.459 to 0.552.) If this | |
75 | * ratio is changed, the low and high water ratios should also be | |
76 | * adjusted to suit. | |
77 | * | |
78 | * These prime numbers were also chosen so that they are the largest | |
79 | * prime number while being less than a power of two. | |
80 | */ | |
81 | static const int32_t PRIMES[] = { | |
82 | 7, 13, 31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381, 32749, | |
83 | 65521, 131071, 262139, 524287, 1048573, 2097143, 4194301, 8388593, | |
84 | 16777213, 33554393, 67108859, 134217689, 268435399, 536870909, | |
85 | 1073741789, 2147483647 /*, 4294967291 */ | |
86 | }; | |
87 | ||
88 | #define PRIMES_LENGTH UPRV_LENGTHOF(PRIMES) | |
89 | #define DEFAULT_PRIME_INDEX 4 | |
90 | ||
91 | /* These ratios are tuned to the PRIMES array such that a resize | |
92 | * places the table back into the zone of non-resizing. That is, | |
93 | * after a call to _uhash_rehash(), a subsequent call to | |
94 | * _uhash_rehash() should do nothing (should not churn). This is only | |
95 | * a potential problem with U_GROW_AND_SHRINK. | |
96 | */ | |
97 | static const float RESIZE_POLICY_RATIO_TABLE[6] = { | |
98 | /* low, high water ratio */ | |
99 | 0.0F, 0.5F, /* U_GROW: Grow on demand, do not shrink */ | |
100 | 0.1F, 0.5F, /* U_GROW_AND_SHRINK: Grow and shrink on demand */ | |
101 | 0.0F, 1.0F /* U_FIXED: Never change size */ | |
102 | }; | |
103 | ||
104 | /* | |
105 | Invariants for hashcode values: | |
106 | ||
107 | * DELETED < 0 | |
108 | * EMPTY < 0 | |
109 | * Real hashes >= 0 | |
110 | ||
111 | Hashcodes may not start out this way, but internally they are | |
112 | adjusted so that they are always positive. We assume 32-bit | |
113 | hashcodes; adjust these constants for other hashcode sizes. | |
114 | */ | |
115 | #define HASH_DELETED ((int32_t) 0x80000000) | |
116 | #define HASH_EMPTY ((int32_t) HASH_DELETED + 1) | |
117 | ||
118 | #define IS_EMPTY_OR_DELETED(x) ((x) < 0) | |
119 | ||
120 | /* This macro expects a UHashTok.pointer as its keypointer and | |
121 | valuepointer parameters */ | |
122 | #define HASH_DELETE_KEY_VALUE(hash, keypointer, valuepointer) \ | |
123 | if (hash->keyDeleter != NULL && keypointer != NULL) { \ | |
124 | (*hash->keyDeleter)(keypointer); \ | |
125 | } \ | |
126 | if (hash->valueDeleter != NULL && valuepointer != NULL) { \ | |
127 | (*hash->valueDeleter)(valuepointer); \ | |
128 | } | |
129 | ||
130 | /* | |
131 | * Constants for hinting whether a key or value is an integer | |
132 | * or a pointer. If a hint bit is zero, then the associated | |
133 | * token is assumed to be an integer. | |
134 | */ | |
135 | #define HINT_KEY_POINTER (1) | |
136 | #define HINT_VALUE_POINTER (2) | |
137 | ||
138 | /******************************************************************** | |
139 | * PRIVATE Implementation | |
140 | ********************************************************************/ | |
141 | ||
142 | static UHashTok | |
143 | _uhash_setElement(UHashtable *hash, UHashElement* e, | |
144 | int32_t hashcode, | |
145 | UHashTok key, UHashTok value, int8_t hint) { | |
146 | ||
147 | UHashTok oldValue = e->value; | |
148 | if (hash->keyDeleter != NULL && e->key.pointer != NULL && | |
149 | e->key.pointer != key.pointer) { /* Avoid double deletion */ | |
150 | (*hash->keyDeleter)(e->key.pointer); | |
151 | } | |
152 | if (hash->valueDeleter != NULL) { | |
153 | if (oldValue.pointer != NULL && | |
154 | oldValue.pointer != value.pointer) { /* Avoid double deletion */ | |
155 | (*hash->valueDeleter)(oldValue.pointer); | |
156 | } | |
157 | oldValue.pointer = NULL; | |
158 | } | |
159 | /* Compilers should copy the UHashTok union correctly, but even if | |
160 | * they do, memory heap tools (e.g. BoundsChecker) can get | |
161 | * confused when a pointer is cloaked in a union and then copied. | |
162 | * TO ALLEVIATE THIS, we use hints (based on what API the user is | |
163 | * calling) to copy pointers when we know the user thinks | |
164 | * something is a pointer. */ | |
165 | if (hint & HINT_KEY_POINTER) { | |
166 | e->key.pointer = key.pointer; | |
167 | } else { | |
168 | e->key = key; | |
169 | } | |
170 | if (hint & HINT_VALUE_POINTER) { | |
171 | e->value.pointer = value.pointer; | |
172 | } else { | |
173 | e->value = value; | |
174 | } | |
175 | e->hashcode = hashcode; | |
176 | return oldValue; | |
177 | } | |
178 | ||
179 | /** | |
180 | * Assumes that the given element is not empty or deleted. | |
181 | */ | |
182 | static UHashTok | |
183 | _uhash_internalRemoveElement(UHashtable *hash, UHashElement* e) { | |
184 | UHashTok empty; | |
185 | U_ASSERT(!IS_EMPTY_OR_DELETED(e->hashcode)); | |
186 | --hash->count; | |
187 | empty.pointer = NULL; empty.integer = 0; | |
188 | return _uhash_setElement(hash, e, HASH_DELETED, empty, empty, 0); | |
189 | } | |
190 | ||
191 | static void | |
192 | _uhash_internalSetResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) { | |
193 | U_ASSERT(hash != NULL); | |
194 | U_ASSERT(((int32_t)policy) >= 0); | |
195 | U_ASSERT(((int32_t)policy) < 3); | |
196 | hash->lowWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2]; | |
197 | hash->highWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2 + 1]; | |
198 | } | |
199 | ||
200 | /** | |
201 | * Allocate internal data array of a size determined by the given | |
202 | * prime index. If the index is out of range it is pinned into range. | |
203 | * If the allocation fails the status is set to | |
204 | * U_MEMORY_ALLOCATION_ERROR and all array storage is freed. In | |
205 | * either case the previous array pointer is overwritten. | |
206 | * | |
207 | * Caller must ensure primeIndex is in range 0..PRIME_LENGTH-1. | |
208 | */ | |
209 | static void | |
210 | _uhash_allocate(UHashtable *hash, | |
211 | int32_t primeIndex, | |
212 | UErrorCode *status) { | |
213 | ||
214 | UHashElement *p, *limit; | |
215 | UHashTok emptytok; | |
216 | ||
217 | if (U_FAILURE(*status)) return; | |
218 | ||
219 | U_ASSERT(primeIndex >= 0 && primeIndex < PRIMES_LENGTH); | |
220 | ||
221 | hash->primeIndex = static_cast<int8_t>(primeIndex); | |
222 | hash->length = PRIMES[primeIndex]; | |
223 | ||
224 | p = hash->elements = (UHashElement*) | |
225 | uprv_malloc(sizeof(UHashElement) * hash->length); | |
226 | ||
227 | if (hash->elements == NULL) { | |
228 | *status = U_MEMORY_ALLOCATION_ERROR; | |
229 | return; | |
230 | } | |
231 | ||
232 | emptytok.pointer = NULL; /* Only one of these two is needed */ | |
233 | emptytok.integer = 0; /* but we don't know which one. */ | |
234 | ||
235 | limit = p + hash->length; | |
236 | while (p < limit) { | |
237 | p->key = emptytok; | |
238 | p->value = emptytok; | |
239 | p->hashcode = HASH_EMPTY; | |
240 | ++p; | |
241 | } | |
242 | ||
243 | hash->count = 0; | |
244 | hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio); | |
245 | hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio); | |
246 | } | |
247 | ||
248 | static UHashtable* | |
249 | _uhash_init(UHashtable *result, | |
250 | UHashFunction *keyHash, | |
251 | UKeyComparator *keyComp, | |
252 | UValueComparator *valueComp, | |
253 | int32_t primeIndex, | |
254 | UErrorCode *status) | |
255 | { | |
256 | if (U_FAILURE(*status)) return NULL; | |
257 | U_ASSERT(keyHash != NULL); | |
258 | U_ASSERT(keyComp != NULL); | |
259 | ||
260 | result->keyHasher = keyHash; | |
261 | result->keyComparator = keyComp; | |
262 | result->valueComparator = valueComp; | |
263 | result->keyDeleter = NULL; | |
264 | result->valueDeleter = NULL; | |
265 | result->allocated = FALSE; | |
266 | _uhash_internalSetResizePolicy(result, U_GROW); | |
267 | ||
268 | _uhash_allocate(result, primeIndex, status); | |
269 | ||
270 | if (U_FAILURE(*status)) { | |
271 | return NULL; | |
272 | } | |
273 | ||
274 | return result; | |
275 | } | |
276 | ||
277 | static UHashtable* | |
278 | _uhash_create(UHashFunction *keyHash, | |
279 | UKeyComparator *keyComp, | |
280 | UValueComparator *valueComp, | |
281 | int32_t primeIndex, | |
282 | UErrorCode *status) { | |
283 | UHashtable *result; | |
284 | ||
285 | if (U_FAILURE(*status)) return NULL; | |
286 | ||
287 | result = (UHashtable*) uprv_malloc(sizeof(UHashtable)); | |
288 | if (result == NULL) { | |
289 | *status = U_MEMORY_ALLOCATION_ERROR; | |
290 | return NULL; | |
291 | } | |
292 | ||
293 | _uhash_init(result, keyHash, keyComp, valueComp, primeIndex, status); | |
294 | result->allocated = TRUE; | |
295 | ||
296 | if (U_FAILURE(*status)) { | |
297 | uprv_free(result); | |
298 | return NULL; | |
299 | } | |
300 | ||
301 | return result; | |
302 | } | |
303 | ||
304 | /** | |
305 | * Look for a key in the table, or if no such key exists, the first | |
306 | * empty slot matching the given hashcode. Keys are compared using | |
307 | * the keyComparator function. | |
308 | * | |
309 | * First find the start position, which is the hashcode modulo | |
310 | * the length. Test it to see if it is: | |
311 | * | |
312 | * a. identical: First check the hash values for a quick check, | |
313 | * then compare keys for equality using keyComparator. | |
314 | * b. deleted | |
315 | * c. empty | |
316 | * | |
317 | * Stop if it is identical or empty, otherwise continue by adding a | |
318 | * "jump" value (moduloing by the length again to keep it within | |
319 | * range) and retesting. For efficiency, there need enough empty | |
320 | * values so that the searchs stop within a reasonable amount of time. | |
321 | * This can be changed by changing the high/low water marks. | |
322 | * | |
323 | * In theory, this function can return NULL, if it is full (no empty | |
324 | * or deleted slots) and if no matching key is found. In practice, we | |
325 | * prevent this elsewhere (in uhash_put) by making sure the last slot | |
326 | * in the table is never filled. | |
327 | * | |
328 | * The size of the table should be prime for this algorithm to work; | |
329 | * otherwise we are not guaranteed that the jump value (the secondary | |
330 | * hash) is relatively prime to the table length. | |
331 | */ | |
332 | static UHashElement* | |
333 | _uhash_find(const UHashtable *hash, UHashTok key, | |
334 | int32_t hashcode) { | |
335 | ||
336 | int32_t firstDeleted = -1; /* assume invalid index */ | |
337 | int32_t theIndex, startIndex; | |
338 | int32_t jump = 0; /* lazy evaluate */ | |
339 | int32_t tableHash; | |
340 | UHashElement *elements = hash->elements; | |
341 | ||
342 | hashcode &= 0x7FFFFFFF; /* must be positive */ | |
343 | startIndex = theIndex = (hashcode ^ 0x4000000) % hash->length; | |
344 | ||
345 | do { | |
346 | tableHash = elements[theIndex].hashcode; | |
347 | if (tableHash == hashcode) { /* quick check */ | |
348 | if ((*hash->keyComparator)(key, elements[theIndex].key)) { | |
349 | return &(elements[theIndex]); | |
350 | } | |
351 | } else if (!IS_EMPTY_OR_DELETED(tableHash)) { | |
352 | /* We have hit a slot which contains a key-value pair, | |
353 | * but for which the hash code does not match. Keep | |
354 | * looking. | |
355 | */ | |
356 | } else if (tableHash == HASH_EMPTY) { /* empty, end o' the line */ | |
357 | break; | |
358 | } else if (firstDeleted < 0) { /* remember first deleted */ | |
359 | firstDeleted = theIndex; | |
360 | } | |
361 | if (jump == 0) { /* lazy compute jump */ | |
362 | /* The jump value must be relatively prime to the table | |
363 | * length. As long as the length is prime, then any value | |
364 | * 1..length-1 will be relatively prime to it. | |
365 | */ | |
366 | jump = (hashcode % (hash->length - 1)) + 1; | |
367 | } | |
368 | theIndex = (theIndex + jump) % hash->length; | |
369 | } while (theIndex != startIndex); | |
370 | ||
371 | if (firstDeleted >= 0) { | |
372 | theIndex = firstDeleted; /* reset if had deleted slot */ | |
373 | } else if (tableHash != HASH_EMPTY) { | |
374 | /* We get to this point if the hashtable is full (no empty or | |
375 | * deleted slots), and we've failed to find a match. THIS | |
376 | * WILL NEVER HAPPEN as long as uhash_put() makes sure that | |
377 | * count is always < length. | |
378 | */ | |
379 | UPRV_UNREACHABLE; | |
380 | } | |
381 | return &(elements[theIndex]); | |
382 | } | |
383 | ||
384 | /** | |
385 | * Attempt to grow or shrink the data arrays in order to make the | |
386 | * count fit between the high and low water marks. hash_put() and | |
387 | * hash_remove() call this method when the count exceeds the high or | |
388 | * low water marks. This method may do nothing, if memory allocation | |
389 | * fails, or if the count is already in range, or if the length is | |
390 | * already at the low or high limit. In any case, upon return the | |
391 | * arrays will be valid. | |
392 | */ | |
393 | static void | |
394 | _uhash_rehash(UHashtable *hash, UErrorCode *status) { | |
395 | ||
396 | UHashElement *old = hash->elements; | |
397 | int32_t oldLength = hash->length; | |
398 | int32_t newPrimeIndex = hash->primeIndex; | |
399 | int32_t i; | |
400 | ||
401 | if (hash->count > hash->highWaterMark) { | |
402 | if (++newPrimeIndex >= PRIMES_LENGTH) { | |
403 | return; | |
404 | } | |
405 | } else if (hash->count < hash->lowWaterMark) { | |
406 | if (--newPrimeIndex < 0) { | |
407 | return; | |
408 | } | |
409 | } else { | |
410 | return; | |
411 | } | |
412 | ||
413 | _uhash_allocate(hash, newPrimeIndex, status); | |
414 | ||
415 | if (U_FAILURE(*status)) { | |
416 | hash->elements = old; | |
417 | hash->length = oldLength; | |
418 | return; | |
419 | } | |
420 | ||
421 | for (i = oldLength - 1; i >= 0; --i) { | |
422 | if (!IS_EMPTY_OR_DELETED(old[i].hashcode)) { | |
423 | UHashElement *e = _uhash_find(hash, old[i].key, old[i].hashcode); | |
424 | U_ASSERT(e != NULL); | |
425 | U_ASSERT(e->hashcode == HASH_EMPTY); | |
426 | e->key = old[i].key; | |
427 | e->value = old[i].value; | |
428 | e->hashcode = old[i].hashcode; | |
429 | ++hash->count; | |
430 | } | |
431 | } | |
432 | ||
433 | uprv_free(old); | |
434 | } | |
435 | ||
436 | static UHashTok | |
437 | _uhash_remove(UHashtable *hash, | |
438 | UHashTok key) { | |
439 | /* First find the position of the key in the table. If the object | |
440 | * has not been removed already, remove it. If the user wanted | |
441 | * keys deleted, then delete it also. We have to put a special | |
442 | * hashcode in that position that means that something has been | |
443 | * deleted, since when we do a find, we have to continue PAST any | |
444 | * deleted values. | |
445 | */ | |
446 | UHashTok result; | |
447 | UHashElement* e = _uhash_find(hash, key, hash->keyHasher(key)); | |
448 | U_ASSERT(e != NULL); | |
449 | result.pointer = NULL; | |
450 | result.integer = 0; | |
451 | if (!IS_EMPTY_OR_DELETED(e->hashcode)) { | |
452 | result = _uhash_internalRemoveElement(hash, e); | |
453 | if (hash->count < hash->lowWaterMark) { | |
454 | UErrorCode status = U_ZERO_ERROR; | |
455 | _uhash_rehash(hash, &status); | |
456 | } | |
457 | } | |
458 | return result; | |
459 | } | |
460 | ||
461 | static UHashTok | |
462 | _uhash_put(UHashtable *hash, | |
463 | UHashTok key, | |
464 | UHashTok value, | |
465 | int8_t hint, | |
466 | UErrorCode *status) { | |
467 | ||
468 | /* Put finds the position in the table for the new value. If the | |
469 | * key is already in the table, it is deleted, if there is a | |
470 | * non-NULL keyDeleter. Then the key, the hash and the value are | |
471 | * all put at the position in their respective arrays. | |
472 | */ | |
473 | int32_t hashcode; | |
474 | UHashElement* e; | |
475 | UHashTok emptytok; | |
476 | ||
477 | if (U_FAILURE(*status)) { | |
478 | goto err; | |
479 | } | |
480 | U_ASSERT(hash != NULL); | |
481 | /* Cannot always check pointer here or iSeries sees NULL every time. */ | |
482 | if ((hint & HINT_VALUE_POINTER) && value.pointer == NULL) { | |
483 | /* Disallow storage of NULL values, since NULL is returned by | |
484 | * get() to indicate an absent key. Storing NULL == removing. | |
485 | */ | |
486 | return _uhash_remove(hash, key); | |
487 | } | |
488 | if (hash->count > hash->highWaterMark) { | |
489 | _uhash_rehash(hash, status); | |
490 | if (U_FAILURE(*status)) { | |
491 | goto err; | |
492 | } | |
493 | } | |
494 | ||
495 | hashcode = (*hash->keyHasher)(key); | |
496 | e = _uhash_find(hash, key, hashcode); | |
497 | U_ASSERT(e != NULL); | |
498 | ||
499 | if (IS_EMPTY_OR_DELETED(e->hashcode)) { | |
500 | /* Important: We must never actually fill the table up. If we | |
501 | * do so, then _uhash_find() will return NULL, and we'll have | |
502 | * to check for NULL after every call to _uhash_find(). To | |
503 | * avoid this we make sure there is always at least one empty | |
504 | * or deleted slot in the table. This only is a problem if we | |
505 | * are out of memory and rehash isn't working. | |
506 | */ | |
507 | ++hash->count; | |
508 | if (hash->count == hash->length) { | |
509 | /* Don't allow count to reach length */ | |
510 | --hash->count; | |
511 | *status = U_MEMORY_ALLOCATION_ERROR; | |
512 | goto err; | |
513 | } | |
514 | } | |
515 | ||
516 | /* We must in all cases handle storage properly. If there was an | |
517 | * old key, then it must be deleted (if the deleter != NULL). | |
518 | * Make hashcodes stored in table positive. | |
519 | */ | |
520 | return _uhash_setElement(hash, e, hashcode & 0x7FFFFFFF, key, value, hint); | |
521 | ||
522 | err: | |
523 | /* If the deleters are non-NULL, this method adopts its key and/or | |
524 | * value arguments, and we must be sure to delete the key and/or | |
525 | * value in all cases, even upon failure. | |
526 | */ | |
527 | HASH_DELETE_KEY_VALUE(hash, key.pointer, value.pointer); | |
528 | emptytok.pointer = NULL; emptytok.integer = 0; | |
529 | return emptytok; | |
530 | } | |
531 | ||
532 | ||
533 | /******************************************************************** | |
534 | * PUBLIC API | |
535 | ********************************************************************/ | |
536 | ||
537 | U_CAPI UHashtable* U_EXPORT2 | |
538 | uhash_open(UHashFunction *keyHash, | |
539 | UKeyComparator *keyComp, | |
540 | UValueComparator *valueComp, | |
541 | UErrorCode *status) { | |
542 | ||
543 | return _uhash_create(keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status); | |
544 | } | |
545 | ||
546 | U_CAPI UHashtable* U_EXPORT2 | |
547 | uhash_openSize(UHashFunction *keyHash, | |
548 | UKeyComparator *keyComp, | |
549 | UValueComparator *valueComp, | |
550 | int32_t size, | |
551 | UErrorCode *status) { | |
552 | ||
553 | /* Find the smallest index i for which PRIMES[i] >= size. */ | |
554 | int32_t i = 0; | |
555 | while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) { | |
556 | ++i; | |
557 | } | |
558 | ||
559 | return _uhash_create(keyHash, keyComp, valueComp, i, status); | |
560 | } | |
561 | ||
562 | U_CAPI UHashtable* U_EXPORT2 | |
563 | uhash_init(UHashtable *fillinResult, | |
564 | UHashFunction *keyHash, | |
565 | UKeyComparator *keyComp, | |
566 | UValueComparator *valueComp, | |
567 | UErrorCode *status) { | |
568 | ||
569 | return _uhash_init(fillinResult, keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status); | |
570 | } | |
571 | ||
572 | U_CAPI UHashtable* U_EXPORT2 | |
573 | uhash_initSize(UHashtable *fillinResult, | |
574 | UHashFunction *keyHash, | |
575 | UKeyComparator *keyComp, | |
576 | UValueComparator *valueComp, | |
577 | int32_t size, | |
578 | UErrorCode *status) { | |
579 | ||
580 | // Find the smallest index i for which PRIMES[i] >= size. | |
581 | int32_t i = 0; | |
582 | while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) { | |
583 | ++i; | |
584 | } | |
585 | return _uhash_init(fillinResult, keyHash, keyComp, valueComp, i, status); | |
586 | } | |
587 | ||
588 | U_CAPI void U_EXPORT2 | |
589 | uhash_close(UHashtable *hash) { | |
590 | if (hash == NULL) { | |
591 | return; | |
592 | } | |
593 | if (hash->elements != NULL) { | |
594 | if (hash->keyDeleter != NULL || hash->valueDeleter != NULL) { | |
595 | int32_t pos=UHASH_FIRST; | |
596 | UHashElement *e; | |
597 | while ((e = (UHashElement*) uhash_nextElement(hash, &pos)) != NULL) { | |
598 | HASH_DELETE_KEY_VALUE(hash, e->key.pointer, e->value.pointer); | |
599 | } | |
600 | } | |
601 | uprv_free(hash->elements); | |
602 | hash->elements = NULL; | |
603 | } | |
604 | if (hash->allocated) { | |
605 | uprv_free(hash); | |
606 | } | |
607 | } | |
608 | ||
609 | U_CAPI UHashFunction *U_EXPORT2 | |
610 | uhash_setKeyHasher(UHashtable *hash, UHashFunction *fn) { | |
611 | UHashFunction *result = hash->keyHasher; | |
612 | hash->keyHasher = fn; | |
613 | return result; | |
614 | } | |
615 | ||
616 | U_CAPI UKeyComparator *U_EXPORT2 | |
617 | uhash_setKeyComparator(UHashtable *hash, UKeyComparator *fn) { | |
618 | UKeyComparator *result = hash->keyComparator; | |
619 | hash->keyComparator = fn; | |
620 | return result; | |
621 | } | |
622 | U_CAPI UValueComparator *U_EXPORT2 | |
623 | uhash_setValueComparator(UHashtable *hash, UValueComparator *fn){ | |
624 | UValueComparator *result = hash->valueComparator; | |
625 | hash->valueComparator = fn; | |
626 | return result; | |
627 | } | |
628 | ||
629 | U_CAPI UObjectDeleter *U_EXPORT2 | |
630 | uhash_setKeyDeleter(UHashtable *hash, UObjectDeleter *fn) { | |
631 | UObjectDeleter *result = hash->keyDeleter; | |
632 | hash->keyDeleter = fn; | |
633 | return result; | |
634 | } | |
635 | ||
636 | U_CAPI UObjectDeleter *U_EXPORT2 | |
637 | uhash_setValueDeleter(UHashtable *hash, UObjectDeleter *fn) { | |
638 | UObjectDeleter *result = hash->valueDeleter; | |
639 | hash->valueDeleter = fn; | |
640 | return result; | |
641 | } | |
642 | ||
643 | U_CAPI void U_EXPORT2 | |
644 | uhash_setResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) { | |
645 | UErrorCode status = U_ZERO_ERROR; | |
646 | _uhash_internalSetResizePolicy(hash, policy); | |
647 | hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio); | |
648 | hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio); | |
649 | _uhash_rehash(hash, &status); | |
650 | } | |
651 | ||
652 | U_CAPI int32_t U_EXPORT2 | |
653 | uhash_count(const UHashtable *hash) { | |
654 | return hash->count; | |
655 | } | |
656 | ||
657 | U_CAPI void* U_EXPORT2 | |
658 | uhash_get(const UHashtable *hash, | |
659 | const void* key) { | |
660 | UHashTok keyholder; | |
661 | keyholder.pointer = (void*) key; | |
662 | return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer; | |
663 | } | |
664 | ||
665 | U_CAPI void* U_EXPORT2 | |
666 | uhash_iget(const UHashtable *hash, | |
667 | int32_t key) { | |
668 | UHashTok keyholder; | |
669 | keyholder.integer = key; | |
670 | return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer; | |
671 | } | |
672 | ||
673 | U_CAPI int32_t U_EXPORT2 | |
674 | uhash_geti(const UHashtable *hash, | |
675 | const void* key) { | |
676 | UHashTok keyholder; | |
677 | keyholder.pointer = (void*) key; | |
678 | return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer; | |
679 | } | |
680 | ||
681 | U_CAPI int32_t U_EXPORT2 | |
682 | uhash_igeti(const UHashtable *hash, | |
683 | int32_t key) { | |
684 | UHashTok keyholder; | |
685 | keyholder.integer = key; | |
686 | return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer; | |
687 | } | |
688 | ||
689 | U_CAPI void* U_EXPORT2 | |
690 | uhash_put(UHashtable *hash, | |
691 | void* key, | |
692 | void* value, | |
693 | UErrorCode *status) { | |
694 | UHashTok keyholder, valueholder; | |
695 | keyholder.pointer = key; | |
696 | valueholder.pointer = value; | |
697 | return _uhash_put(hash, keyholder, valueholder, | |
698 | HINT_KEY_POINTER | HINT_VALUE_POINTER, | |
699 | status).pointer; | |
700 | } | |
701 | ||
702 | U_CAPI void* U_EXPORT2 | |
703 | uhash_iput(UHashtable *hash, | |
704 | int32_t key, | |
705 | void* value, | |
706 | UErrorCode *status) { | |
707 | UHashTok keyholder, valueholder; | |
708 | keyholder.integer = key; | |
709 | valueholder.pointer = value; | |
710 | return _uhash_put(hash, keyholder, valueholder, | |
711 | HINT_VALUE_POINTER, | |
712 | status).pointer; | |
713 | } | |
714 | ||
715 | U_CAPI int32_t U_EXPORT2 | |
716 | uhash_puti(UHashtable *hash, | |
717 | void* key, | |
718 | int32_t value, | |
719 | UErrorCode *status) { | |
720 | UHashTok keyholder, valueholder; | |
721 | keyholder.pointer = key; | |
722 | valueholder.integer = value; | |
723 | return _uhash_put(hash, keyholder, valueholder, | |
724 | HINT_KEY_POINTER, | |
725 | status).integer; | |
726 | } | |
727 | ||
728 | ||
729 | U_CAPI int32_t U_EXPORT2 | |
730 | uhash_iputi(UHashtable *hash, | |
731 | int32_t key, | |
732 | int32_t value, | |
733 | UErrorCode *status) { | |
734 | UHashTok keyholder, valueholder; | |
735 | keyholder.integer = key; | |
736 | valueholder.integer = value; | |
737 | return _uhash_put(hash, keyholder, valueholder, | |
738 | 0, /* neither is a ptr */ | |
739 | status).integer; | |
740 | } | |
741 | ||
742 | U_CAPI void* U_EXPORT2 | |
743 | uhash_remove(UHashtable *hash, | |
744 | const void* key) { | |
745 | UHashTok keyholder; | |
746 | keyholder.pointer = (void*) key; | |
747 | return _uhash_remove(hash, keyholder).pointer; | |
748 | } | |
749 | ||
750 | U_CAPI void* U_EXPORT2 | |
751 | uhash_iremove(UHashtable *hash, | |
752 | int32_t key) { | |
753 | UHashTok keyholder; | |
754 | keyholder.integer = key; | |
755 | return _uhash_remove(hash, keyholder).pointer; | |
756 | } | |
757 | ||
758 | U_CAPI int32_t U_EXPORT2 | |
759 | uhash_removei(UHashtable *hash, | |
760 | const void* key) { | |
761 | UHashTok keyholder; | |
762 | keyholder.pointer = (void*) key; | |
763 | return _uhash_remove(hash, keyholder).integer; | |
764 | } | |
765 | ||
766 | U_CAPI int32_t U_EXPORT2 | |
767 | uhash_iremovei(UHashtable *hash, | |
768 | int32_t key) { | |
769 | UHashTok keyholder; | |
770 | keyholder.integer = key; | |
771 | return _uhash_remove(hash, keyholder).integer; | |
772 | } | |
773 | ||
774 | U_CAPI void U_EXPORT2 | |
775 | uhash_removeAll(UHashtable *hash) { | |
776 | int32_t pos = UHASH_FIRST; | |
777 | const UHashElement *e; | |
778 | U_ASSERT(hash != NULL); | |
779 | if (hash->count != 0) { | |
780 | while ((e = uhash_nextElement(hash, &pos)) != NULL) { | |
781 | uhash_removeElement(hash, e); | |
782 | } | |
783 | } | |
784 | U_ASSERT(hash->count == 0); | |
785 | } | |
786 | ||
787 | U_CAPI const UHashElement* U_EXPORT2 | |
788 | uhash_find(const UHashtable *hash, const void* key) { | |
789 | UHashTok keyholder; | |
790 | const UHashElement *e; | |
791 | keyholder.pointer = (void*) key; | |
792 | e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder)); | |
793 | return IS_EMPTY_OR_DELETED(e->hashcode) ? NULL : e; | |
794 | } | |
795 | ||
796 | U_CAPI const UHashElement* U_EXPORT2 | |
797 | uhash_nextElement(const UHashtable *hash, int32_t *pos) { | |
798 | /* Walk through the array until we find an element that is not | |
799 | * EMPTY and not DELETED. | |
800 | */ | |
801 | int32_t i; | |
802 | U_ASSERT(hash != NULL); | |
803 | for (i = *pos + 1; i < hash->length; ++i) { | |
804 | if (!IS_EMPTY_OR_DELETED(hash->elements[i].hashcode)) { | |
805 | *pos = i; | |
806 | return &(hash->elements[i]); | |
807 | } | |
808 | } | |
809 | ||
810 | /* No more elements */ | |
811 | return NULL; | |
812 | } | |
813 | ||
814 | U_CAPI void* U_EXPORT2 | |
815 | uhash_removeElement(UHashtable *hash, const UHashElement* e) { | |
816 | U_ASSERT(hash != NULL); | |
817 | U_ASSERT(e != NULL); | |
818 | if (!IS_EMPTY_OR_DELETED(e->hashcode)) { | |
819 | UHashElement *nce = (UHashElement *)e; | |
820 | return _uhash_internalRemoveElement(hash, nce).pointer; | |
821 | } | |
822 | return NULL; | |
823 | } | |
824 | ||
825 | /******************************************************************** | |
826 | * UHashTok convenience | |
827 | ********************************************************************/ | |
828 | ||
829 | /** | |
830 | * Return a UHashTok for an integer. | |
831 | */ | |
832 | /*U_CAPI UHashTok U_EXPORT2 | |
833 | uhash_toki(int32_t i) { | |
834 | UHashTok tok; | |
835 | tok.integer = i; | |
836 | return tok; | |
837 | }*/ | |
838 | ||
839 | /** | |
840 | * Return a UHashTok for a pointer. | |
841 | */ | |
842 | /*U_CAPI UHashTok U_EXPORT2 | |
843 | uhash_tokp(void* p) { | |
844 | UHashTok tok; | |
845 | tok.pointer = p; | |
846 | return tok; | |
847 | }*/ | |
848 | ||
849 | /******************************************************************** | |
850 | * PUBLIC Key Hash Functions | |
851 | ********************************************************************/ | |
852 | ||
853 | U_CAPI int32_t U_EXPORT2 | |
854 | uhash_hashUChars(const UHashTok key) { | |
855 | const UChar *s = (const UChar *)key.pointer; | |
856 | return s == NULL ? 0 : ustr_hashUCharsN(s, u_strlen(s)); | |
857 | } | |
858 | ||
859 | U_CAPI int32_t U_EXPORT2 | |
860 | uhash_hashChars(const UHashTok key) { | |
861 | const char *s = (const char *)key.pointer; | |
862 | return s == NULL ? 0 : static_cast<int32_t>(ustr_hashCharsN(s, static_cast<int32_t>(uprv_strlen(s)))); | |
863 | } | |
864 | ||
865 | U_CAPI int32_t U_EXPORT2 | |
866 | uhash_hashIChars(const UHashTok key) { | |
867 | const char *s = (const char *)key.pointer; | |
868 | return s == NULL ? 0 : ustr_hashICharsN(s, static_cast<int32_t>(uprv_strlen(s))); | |
869 | } | |
870 | ||
871 | U_CAPI UBool U_EXPORT2 | |
872 | uhash_equals(const UHashtable* hash1, const UHashtable* hash2){ | |
873 | int32_t count1, count2, pos, i; | |
874 | ||
875 | if(hash1==hash2){ | |
876 | return TRUE; | |
877 | } | |
878 | ||
879 | /* | |
880 | * Make sure that we are comparing 2 valid hashes of the same type | |
881 | * with valid comparison functions. | |
882 | * Without valid comparison functions, a binary comparison | |
883 | * of the hash values will yield random results on machines | |
884 | * with 64-bit pointers and 32-bit integer hashes. | |
885 | * A valueComparator is normally optional. | |
886 | */ | |
887 | if (hash1==NULL || hash2==NULL || | |
888 | hash1->keyComparator != hash2->keyComparator || | |
889 | hash1->valueComparator != hash2->valueComparator || | |
890 | hash1->valueComparator == NULL) | |
891 | { | |
892 | /* | |
893 | Normally we would return an error here about incompatible hash tables, | |
894 | but we return FALSE instead. | |
895 | */ | |
896 | return FALSE; | |
897 | } | |
898 | ||
899 | count1 = uhash_count(hash1); | |
900 | count2 = uhash_count(hash2); | |
901 | if(count1!=count2){ | |
902 | return FALSE; | |
903 | } | |
904 | ||
905 | pos=UHASH_FIRST; | |
906 | for(i=0; i<count1; i++){ | |
907 | const UHashElement* elem1 = uhash_nextElement(hash1, &pos); | |
908 | const UHashTok key1 = elem1->key; | |
909 | const UHashTok val1 = elem1->value; | |
910 | /* here the keys are not compared, instead the key form hash1 is used to fetch | |
911 | * value from hash2. If the hashes are equal then then both hashes should | |
912 | * contain equal values for the same key! | |
913 | */ | |
914 | const UHashElement* elem2 = _uhash_find(hash2, key1, hash2->keyHasher(key1)); | |
915 | const UHashTok val2 = elem2->value; | |
916 | if(hash1->valueComparator(val1, val2)==FALSE){ | |
917 | return FALSE; | |
918 | } | |
919 | } | |
920 | return TRUE; | |
921 | } | |
922 | ||
923 | /******************************************************************** | |
924 | * PUBLIC Comparator Functions | |
925 | ********************************************************************/ | |
926 | ||
927 | U_CAPI UBool U_EXPORT2 | |
928 | uhash_compareUChars(const UHashTok key1, const UHashTok key2) { | |
929 | const UChar *p1 = (const UChar*) key1.pointer; | |
930 | const UChar *p2 = (const UChar*) key2.pointer; | |
931 | if (p1 == p2) { | |
932 | return TRUE; | |
933 | } | |
934 | if (p1 == NULL || p2 == NULL) { | |
935 | return FALSE; | |
936 | } | |
937 | while (*p1 != 0 && *p1 == *p2) { | |
938 | ++p1; | |
939 | ++p2; | |
940 | } | |
941 | return (UBool)(*p1 == *p2); | |
942 | } | |
943 | ||
944 | U_CAPI UBool U_EXPORT2 | |
945 | uhash_compareChars(const UHashTok key1, const UHashTok key2) { | |
946 | const char *p1 = (const char*) key1.pointer; | |
947 | const char *p2 = (const char*) key2.pointer; | |
948 | if (p1 == p2) { | |
949 | return TRUE; | |
950 | } | |
951 | if (p1 == NULL || p2 == NULL) { | |
952 | return FALSE; | |
953 | } | |
954 | while (*p1 != 0 && *p1 == *p2) { | |
955 | ++p1; | |
956 | ++p2; | |
957 | } | |
958 | return (UBool)(*p1 == *p2); | |
959 | } | |
960 | ||
961 | U_CAPI UBool U_EXPORT2 | |
962 | uhash_compareIChars(const UHashTok key1, const UHashTok key2) { | |
963 | const char *p1 = (const char*) key1.pointer; | |
964 | const char *p2 = (const char*) key2.pointer; | |
965 | if (p1 == p2) { | |
966 | return TRUE; | |
967 | } | |
968 | if (p1 == NULL || p2 == NULL) { | |
969 | return FALSE; | |
970 | } | |
971 | while (*p1 != 0 && uprv_tolower(*p1) == uprv_tolower(*p2)) { | |
972 | ++p1; | |
973 | ++p2; | |
974 | } | |
975 | return (UBool)(*p1 == *p2); | |
976 | } | |
977 | ||
978 | /******************************************************************** | |
979 | * PUBLIC int32_t Support Functions | |
980 | ********************************************************************/ | |
981 | ||
982 | U_CAPI int32_t U_EXPORT2 | |
983 | uhash_hashLong(const UHashTok key) { | |
984 | return key.integer; | |
985 | } | |
986 | ||
987 | U_CAPI UBool U_EXPORT2 | |
988 | uhash_compareLong(const UHashTok key1, const UHashTok key2) { | |
989 | return (UBool)(key1.integer == key2.integer); | |
990 | } |