]>
Commit | Line | Data |
---|---|---|
f3c0d7a5 A |
1 | // © 2016 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html | |
b75a7d8f A |
3 | /* |
4 | ****************************************************************************** | |
2ca993e8 | 5 | * Copyright (C) 1997-2015, International Business Machines |
b75a7d8f A |
6 | * Corporation and others. All Rights Reserved. |
7 | ****************************************************************************** | |
8 | * file name: nfrs.cpp | |
f3c0d7a5 | 9 | * encoding: UTF-8 |
b75a7d8f A |
10 | * tab size: 8 (not used) |
11 | * indentation:4 | |
12 | * | |
13 | * Modification history | |
14 | * Date Name Comments | |
15 | * 10/11/2001 Doug Ported from ICU4J | |
16 | */ | |
17 | ||
18 | #include "nfrs.h" | |
19 | ||
20 | #if U_HAVE_RBNF | |
21 | ||
22 | #include "unicode/uchar.h" | |
23 | #include "nfrule.h" | |
24 | #include "nfrlist.h" | |
4388f060 | 25 | #include "patternprops.h" |
f3c0d7a5 | 26 | #include "putilimp.h" |
b75a7d8f A |
27 | |
28 | #ifdef RBNF_DEBUG | |
29 | #include "cmemory.h" | |
30 | #endif | |
31 | ||
2ca993e8 A |
32 | enum { |
33 | /** -x */ | |
34 | NEGATIVE_RULE_INDEX = 0, | |
35 | /** x.x */ | |
36 | IMPROPER_FRACTION_RULE_INDEX = 1, | |
37 | /** 0.x */ | |
38 | PROPER_FRACTION_RULE_INDEX = 2, | |
39 | /** x.0 */ | |
40 | MASTER_RULE_INDEX = 3, | |
41 | /** Inf */ | |
42 | INFINITY_RULE_INDEX = 4, | |
43 | /** NaN */ | |
44 | NAN_RULE_INDEX = 5, | |
45 | NON_NUMERICAL_RULE_LENGTH = 6 | |
46 | }; | |
47 | ||
b75a7d8f A |
48 | U_NAMESPACE_BEGIN |
49 | ||
50 | #if 0 | |
51 | // euclid's algorithm works with doubles | |
52 | // note, doubles only get us up to one quadrillion or so, which | |
53 | // isn't as much range as we get with longs. We probably still | |
54 | // want either 64-bit math, or BigInteger. | |
55 | ||
56 | static int64_t | |
57 | util_lcm(int64_t x, int64_t y) | |
58 | { | |
59 | x.abs(); | |
60 | y.abs(); | |
61 | ||
62 | if (x == 0 || y == 0) { | |
63 | return 0; | |
64 | } else { | |
65 | do { | |
66 | if (x < y) { | |
67 | int64_t t = x; x = y; y = t; | |
68 | } | |
69 | x -= y * (x/y); | |
70 | } while (x != 0); | |
71 | ||
72 | return y; | |
73 | } | |
74 | } | |
75 | ||
76 | #else | |
77 | /** | |
78 | * Calculates the least common multiple of x and y. | |
79 | */ | |
80 | static int64_t | |
81 | util_lcm(int64_t x, int64_t y) | |
82 | { | |
83 | // binary gcd algorithm from Knuth, "The Art of Computer Programming," | |
84 | // vol. 2, 1st ed., pp. 298-299 | |
85 | int64_t x1 = x; | |
86 | int64_t y1 = y; | |
87 | ||
88 | int p2 = 0; | |
89 | while ((x1 & 1) == 0 && (y1 & 1) == 0) { | |
90 | ++p2; | |
91 | x1 >>= 1; | |
92 | y1 >>= 1; | |
93 | } | |
94 | ||
95 | int64_t t; | |
96 | if ((x1 & 1) == 1) { | |
97 | t = -y1; | |
98 | } else { | |
99 | t = x1; | |
100 | } | |
101 | ||
102 | while (t != 0) { | |
103 | while ((t & 1) == 0) { | |
104 | t = t >> 1; | |
105 | } | |
106 | if (t > 0) { | |
107 | x1 = t; | |
108 | } else { | |
109 | y1 = -t; | |
110 | } | |
111 | t = x1 - y1; | |
112 | } | |
113 | ||
114 | int64_t gcd = x1 << p2; | |
115 | ||
116 | // x * y == gcd(x, y) * lcm(x, y) | |
117 | return x / gcd * y; | |
118 | } | |
119 | #endif | |
120 | ||
121 | static const UChar gPercent = 0x0025; | |
122 | static const UChar gColon = 0x003a; | |
123 | static const UChar gSemicolon = 0x003b; | |
124 | static const UChar gLineFeed = 0x000a; | |
125 | ||
b75a7d8f A |
126 | static const UChar gPercentPercent[] = |
127 | { | |
128 | 0x25, 0x25, 0 | |
129 | }; /* "%%" */ | |
130 | ||
4388f060 A |
131 | static const UChar gNoparse[] = |
132 | { | |
133 | 0x40, 0x6E, 0x6F, 0x70, 0x61, 0x72, 0x73, 0x65, 0 | |
134 | }; /* "@noparse" */ | |
135 | ||
2ca993e8 | 136 | NFRuleSet::NFRuleSet(RuleBasedNumberFormat *_owner, UnicodeString* descriptions, int32_t index, UErrorCode& status) |
b75a7d8f A |
137 | : name() |
138 | , rules(0) | |
2ca993e8 A |
139 | , owner(_owner) |
140 | , fractionRules() | |
b75a7d8f A |
141 | , fIsFractionRuleSet(FALSE) |
142 | , fIsPublic(FALSE) | |
4388f060 | 143 | , fIsParseable(TRUE) |
b75a7d8f | 144 | { |
2ca993e8 A |
145 | for (int32_t i = 0; i < NON_NUMERICAL_RULE_LENGTH; ++i) { |
146 | nonNumericalRules[i] = NULL; | |
b75a7d8f A |
147 | } |
148 | ||
149 | if (U_FAILURE(status)) { | |
150 | return; | |
151 | } | |
152 | ||
153 | UnicodeString& description = descriptions[index]; // !!! make sure index is valid | |
154 | ||
374ca955 A |
155 | if (description.length() == 0) { |
156 | // throw new IllegalArgumentException("Empty rule set description"); | |
157 | status = U_PARSE_ERROR; | |
73c04bcf | 158 | return; |
374ca955 A |
159 | } |
160 | ||
b75a7d8f A |
161 | // if the description begins with a rule set name (the rule set |
162 | // name can be omitted in formatter descriptions that consist | |
163 | // of only one rule set), copy it out into our "name" member | |
164 | // and delete it from the description | |
165 | if (description.charAt(0) == gPercent) { | |
166 | int32_t pos = description.indexOf(gColon); | |
167 | if (pos == -1) { | |
168 | // throw new IllegalArgumentException("Rule set name doesn't end in colon"); | |
169 | status = U_PARSE_ERROR; | |
170 | } else { | |
171 | name.setTo(description, 0, pos); | |
4388f060 | 172 | while (pos < description.length() && PatternProps::isWhiteSpace(description.charAt(++pos))) { |
b75a7d8f A |
173 | } |
174 | description.remove(0, pos); | |
175 | } | |
176 | } else { | |
374ca955 | 177 | name.setTo(UNICODE_STRING_SIMPLE("%default")); |
b75a7d8f A |
178 | } |
179 | ||
180 | if (description.length() == 0) { | |
181 | // throw new IllegalArgumentException("Empty rule set description"); | |
182 | status = U_PARSE_ERROR; | |
183 | } | |
184 | ||
4388f060 A |
185 | fIsPublic = name.indexOf(gPercentPercent, 2, 0) != 0; |
186 | ||
187 | if ( name.endsWith(gNoparse,8) ) { | |
188 | fIsParseable = FALSE; | |
189 | name.truncate(name.length()-8); // remove the @noparse from the name | |
190 | } | |
b75a7d8f A |
191 | |
192 | // all of the other members of NFRuleSet are initialized | |
193 | // by parseRules() | |
194 | } | |
195 | ||
196 | void | |
2ca993e8 | 197 | NFRuleSet::parseRules(UnicodeString& description, UErrorCode& status) |
b75a7d8f A |
198 | { |
199 | // start by creating a Vector whose elements are Strings containing | |
200 | // the descriptions of the rules (one rule per element). The rules | |
201 | // are separated by semicolons (there's no escape facility: ALL | |
202 | // semicolons are rule delimiters) | |
203 | ||
204 | if (U_FAILURE(status)) { | |
205 | return; | |
206 | } | |
207 | ||
4388f060 A |
208 | // ensure we are starting with an empty rule list |
209 | rules.deleteAll(); | |
210 | ||
b75a7d8f A |
211 | // dlf - the original code kept a separate description array for no reason, |
212 | // so I got rid of it. The loop was too complex so I simplified it. | |
213 | ||
214 | UnicodeString currentDescription; | |
215 | int32_t oldP = 0; | |
216 | while (oldP < description.length()) { | |
217 | int32_t p = description.indexOf(gSemicolon, oldP); | |
218 | if (p == -1) { | |
219 | p = description.length(); | |
220 | } | |
221 | currentDescription.setTo(description, oldP, p - oldP); | |
222 | NFRule::makeRules(currentDescription, this, rules.last(), owner, rules, status); | |
223 | oldP = p + 1; | |
224 | } | |
225 | ||
226 | // for rules that didn't specify a base value, their base values | |
227 | // were initialized to 0. Make another pass through the list and | |
228 | // set all those rules' base values. We also remove any special | |
229 | // rules from the list and put them into their own member variables | |
230 | int64_t defaultBaseValue = 0; | |
231 | ||
232 | // (this isn't a for loop because we might be deleting items from | |
233 | // the vector-- we want to make sure we only increment i when | |
234 | // we _didn't_ delete aything from the vector) | |
2ca993e8 A |
235 | int32_t rulesSize = rules.size(); |
236 | for (int32_t i = 0; i < rulesSize; i++) { | |
b75a7d8f | 237 | NFRule* rule = rules[i]; |
2ca993e8 | 238 | int64_t baseValue = rule->getBaseValue(); |
b75a7d8f | 239 | |
2ca993e8 | 240 | if (baseValue == 0) { |
b75a7d8f A |
241 | // if the rule's base value is 0, fill in a default |
242 | // base value (this will be 1 plus the preceding | |
243 | // rule's base value for regular rule sets, and the | |
244 | // same as the preceding rule's base value in fraction | |
245 | // rule sets) | |
374ca955 | 246 | rule->setBaseValue(defaultBaseValue, status); |
2ca993e8 A |
247 | } |
248 | else { | |
b75a7d8f A |
249 | // if it's a regular rule that already knows its base value, |
250 | // check to make sure the rules are in order, and update | |
251 | // the default base value for the next rule | |
2ca993e8 | 252 | if (baseValue < defaultBaseValue) { |
b75a7d8f A |
253 | // throw new IllegalArgumentException("Rules are not in order"); |
254 | status = U_PARSE_ERROR; | |
255 | return; | |
256 | } | |
2ca993e8 A |
257 | defaultBaseValue = baseValue; |
258 | } | |
259 | if (!fIsFractionRuleSet) { | |
260 | ++defaultBaseValue; | |
261 | } | |
262 | } | |
263 | } | |
264 | ||
265 | /** | |
266 | * Set one of the non-numerical rules. | |
267 | * @param rule The rule to set. | |
268 | */ | |
269 | void NFRuleSet::setNonNumericalRule(NFRule *rule) { | |
270 | int64_t baseValue = rule->getBaseValue(); | |
271 | if (baseValue == NFRule::kNegativeNumberRule) { | |
272 | delete nonNumericalRules[NEGATIVE_RULE_INDEX]; | |
273 | nonNumericalRules[NEGATIVE_RULE_INDEX] = rule; | |
274 | } | |
275 | else if (baseValue == NFRule::kImproperFractionRule) { | |
276 | setBestFractionRule(IMPROPER_FRACTION_RULE_INDEX, rule, TRUE); | |
277 | } | |
278 | else if (baseValue == NFRule::kProperFractionRule) { | |
279 | setBestFractionRule(PROPER_FRACTION_RULE_INDEX, rule, TRUE); | |
280 | } | |
281 | else if (baseValue == NFRule::kMasterRule) { | |
282 | setBestFractionRule(MASTER_RULE_INDEX, rule, TRUE); | |
283 | } | |
284 | else if (baseValue == NFRule::kInfinityRule) { | |
285 | delete nonNumericalRules[INFINITY_RULE_INDEX]; | |
286 | nonNumericalRules[INFINITY_RULE_INDEX] = rule; | |
287 | } | |
288 | else if (baseValue == NFRule::kNaNRule) { | |
289 | delete nonNumericalRules[NAN_RULE_INDEX]; | |
290 | nonNumericalRules[NAN_RULE_INDEX] = rule; | |
291 | } | |
292 | } | |
293 | ||
294 | /** | |
295 | * Determine the best fraction rule to use. Rules matching the decimal point from | |
296 | * DecimalFormatSymbols become the main set of rules to use. | |
297 | * @param originalIndex The index into nonNumericalRules | |
298 | * @param newRule The new rule to consider | |
299 | * @param rememberRule Should the new rule be added to fractionRules. | |
300 | */ | |
301 | void NFRuleSet::setBestFractionRule(int32_t originalIndex, NFRule *newRule, UBool rememberRule) { | |
302 | if (rememberRule) { | |
303 | fractionRules.add(newRule); | |
304 | } | |
305 | NFRule *bestResult = nonNumericalRules[originalIndex]; | |
306 | if (bestResult == NULL) { | |
307 | nonNumericalRules[originalIndex] = newRule; | |
308 | } | |
309 | else { | |
310 | // We have more than one. Which one is better? | |
311 | const DecimalFormatSymbols *decimalFormatSymbols = owner->getDecimalFormatSymbols(); | |
312 | if (decimalFormatSymbols->getSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol).charAt(0) | |
313 | == newRule->getDecimalPoint()) | |
314 | { | |
315 | nonNumericalRules[originalIndex] = newRule; | |
b75a7d8f | 316 | } |
2ca993e8 | 317 | // else leave it alone |
b75a7d8f A |
318 | } |
319 | } | |
320 | ||
321 | NFRuleSet::~NFRuleSet() | |
322 | { | |
2ca993e8 A |
323 | for (int i = 0; i < NON_NUMERICAL_RULE_LENGTH; i++) { |
324 | if (i != IMPROPER_FRACTION_RULE_INDEX | |
325 | && i != PROPER_FRACTION_RULE_INDEX | |
326 | && i != MASTER_RULE_INDEX) | |
327 | { | |
328 | delete nonNumericalRules[i]; | |
329 | } | |
330 | // else it will be deleted via NFRuleList fractionRules | |
331 | } | |
b75a7d8f A |
332 | } |
333 | ||
374ca955 | 334 | static UBool |
b75a7d8f A |
335 | util_equalRules(const NFRule* rule1, const NFRule* rule2) |
336 | { | |
337 | if (rule1) { | |
338 | if (rule2) { | |
339 | return *rule1 == *rule2; | |
340 | } | |
341 | } else if (!rule2) { | |
342 | return TRUE; | |
343 | } | |
344 | return FALSE; | |
345 | } | |
346 | ||
347 | UBool | |
348 | NFRuleSet::operator==(const NFRuleSet& rhs) const | |
349 | { | |
350 | if (rules.size() == rhs.rules.size() && | |
351 | fIsFractionRuleSet == rhs.fIsFractionRuleSet && | |
2ca993e8 A |
352 | name == rhs.name) { |
353 | ||
354 | // ...then compare the non-numerical rule lists... | |
355 | for (int i = 0; i < NON_NUMERICAL_RULE_LENGTH; i++) { | |
356 | if (!util_equalRules(nonNumericalRules[i], rhs.nonNumericalRules[i])) { | |
357 | return FALSE; | |
358 | } | |
359 | } | |
b75a7d8f | 360 | |
2ca993e8 | 361 | // ...then compare the rule lists... |
b75a7d8f A |
362 | for (uint32_t i = 0; i < rules.size(); ++i) { |
363 | if (*rules[i] != *rhs.rules[i]) { | |
364 | return FALSE; | |
365 | } | |
366 | } | |
367 | return TRUE; | |
368 | } | |
369 | return FALSE; | |
370 | } | |
371 | ||
2ca993e8 A |
372 | void |
373 | NFRuleSet::setDecimalFormatSymbols(const DecimalFormatSymbols &newSymbols, UErrorCode& status) { | |
374 | for (uint32_t i = 0; i < rules.size(); ++i) { | |
375 | rules[i]->setDecimalFormatSymbols(newSymbols, status); | |
376 | } | |
377 | // Switch the fraction rules to mirror the DecimalFormatSymbols. | |
378 | for (int32_t nonNumericalIdx = IMPROPER_FRACTION_RULE_INDEX; nonNumericalIdx <= MASTER_RULE_INDEX; nonNumericalIdx++) { | |
379 | if (nonNumericalRules[nonNumericalIdx]) { | |
380 | for (uint32_t fIdx = 0; fIdx < fractionRules.size(); fIdx++) { | |
381 | NFRule *fractionRule = fractionRules[fIdx]; | |
382 | if (nonNumericalRules[nonNumericalIdx]->getBaseValue() == fractionRule->getBaseValue()) { | |
383 | setBestFractionRule(nonNumericalIdx, fractionRule, FALSE); | |
384 | } | |
385 | } | |
386 | } | |
387 | } | |
388 | ||
389 | for (uint32_t nnrIdx = 0; nnrIdx < NON_NUMERICAL_RULE_LENGTH; nnrIdx++) { | |
390 | NFRule *rule = nonNumericalRules[nnrIdx]; | |
391 | if (rule) { | |
392 | rule->setDecimalFormatSymbols(newSymbols, status); | |
393 | } | |
394 | } | |
395 | } | |
396 | ||
397 | #define RECURSION_LIMIT 64 | |
374ca955 | 398 | |
b75a7d8f | 399 | void |
2ca993e8 | 400 | NFRuleSet::format(int64_t number, UnicodeString& toAppendTo, int32_t pos, int32_t recursionCount, UErrorCode& status) const |
b75a7d8f | 401 | { |
2ca993e8 A |
402 | if (recursionCount >= RECURSION_LIMIT) { |
403 | // stop recursion | |
404 | status = U_INVALID_STATE_ERROR; | |
405 | return; | |
406 | } | |
407 | const NFRule *rule = findNormalRule(number); | |
374ca955 | 408 | if (rule) { // else error, but can't report it |
2ca993e8 | 409 | rule->doFormat(number, toAppendTo, pos, ++recursionCount, status); |
374ca955 | 410 | } |
b75a7d8f A |
411 | } |
412 | ||
413 | void | |
2ca993e8 | 414 | NFRuleSet::format(double number, UnicodeString& toAppendTo, int32_t pos, int32_t recursionCount, UErrorCode& status) const |
b75a7d8f | 415 | { |
2ca993e8 A |
416 | if (recursionCount >= RECURSION_LIMIT) { |
417 | // stop recursion | |
418 | status = U_INVALID_STATE_ERROR; | |
419 | return; | |
420 | } | |
421 | const NFRule *rule = findDoubleRule(number); | |
374ca955 | 422 | if (rule) { // else error, but can't report it |
2ca993e8 | 423 | rule->doFormat(number, toAppendTo, pos, ++recursionCount, status); |
374ca955 | 424 | } |
b75a7d8f A |
425 | } |
426 | ||
2ca993e8 | 427 | const NFRule* |
b75a7d8f A |
428 | NFRuleSet::findDoubleRule(double number) const |
429 | { | |
430 | // if this is a fraction rule set, use findFractionRuleSetRule() | |
431 | if (isFractionRuleSet()) { | |
432 | return findFractionRuleSetRule(number); | |
433 | } | |
434 | ||
2ca993e8 A |
435 | if (uprv_isNaN(number)) { |
436 | const NFRule *rule = nonNumericalRules[NAN_RULE_INDEX]; | |
437 | if (!rule) { | |
438 | rule = owner->getDefaultNaNRule(); | |
439 | } | |
440 | return rule; | |
441 | } | |
442 | ||
b75a7d8f A |
443 | // if the number is negative, return the negative number rule |
444 | // (if there isn't a negative-number rule, we pretend it's a | |
445 | // positive number) | |
446 | if (number < 0) { | |
2ca993e8 A |
447 | if (nonNumericalRules[NEGATIVE_RULE_INDEX]) { |
448 | return nonNumericalRules[NEGATIVE_RULE_INDEX]; | |
b75a7d8f A |
449 | } else { |
450 | number = -number; | |
451 | } | |
452 | } | |
453 | ||
2ca993e8 A |
454 | if (uprv_isInfinite(number)) { |
455 | const NFRule *rule = nonNumericalRules[INFINITY_RULE_INDEX]; | |
456 | if (!rule) { | |
457 | rule = owner->getDefaultInfinityRule(); | |
458 | } | |
459 | return rule; | |
460 | } | |
461 | ||
b75a7d8f A |
462 | // if the number isn't an integer, we use one of the fraction rules... |
463 | if (number != uprv_floor(number)) { | |
464 | // if the number is between 0 and 1, return the proper | |
465 | // fraction rule | |
2ca993e8 A |
466 | if (number < 1 && nonNumericalRules[PROPER_FRACTION_RULE_INDEX]) { |
467 | return nonNumericalRules[PROPER_FRACTION_RULE_INDEX]; | |
b75a7d8f A |
468 | } |
469 | // otherwise, return the improper fraction rule | |
2ca993e8 A |
470 | else if (nonNumericalRules[IMPROPER_FRACTION_RULE_INDEX]) { |
471 | return nonNumericalRules[IMPROPER_FRACTION_RULE_INDEX]; | |
b75a7d8f A |
472 | } |
473 | } | |
474 | ||
475 | // if there's a master rule, use it to format the number | |
2ca993e8 A |
476 | if (nonNumericalRules[MASTER_RULE_INDEX]) { |
477 | return nonNumericalRules[MASTER_RULE_INDEX]; | |
729e4ab9 A |
478 | } |
479 | ||
b75a7d8f A |
480 | // and if we haven't yet returned a rule, use findNormalRule() |
481 | // to find the applicable rule | |
482 | int64_t r = util64_fromDouble(number + 0.5); | |
483 | return findNormalRule(r); | |
484 | } | |
485 | ||
2ca993e8 | 486 | const NFRule * |
b75a7d8f A |
487 | NFRuleSet::findNormalRule(int64_t number) const |
488 | { | |
489 | // if this is a fraction rule set, use findFractionRuleSetRule() | |
490 | // to find the rule (we should only go into this clause if the | |
491 | // value is 0) | |
492 | if (fIsFractionRuleSet) { | |
493 | return findFractionRuleSetRule((double)number); | |
494 | } | |
495 | ||
496 | // if the number is negative, return the negative-number rule | |
497 | // (if there isn't one, pretend the number is positive) | |
498 | if (number < 0) { | |
2ca993e8 A |
499 | if (nonNumericalRules[NEGATIVE_RULE_INDEX]) { |
500 | return nonNumericalRules[NEGATIVE_RULE_INDEX]; | |
b75a7d8f A |
501 | } else { |
502 | number = -number; | |
503 | } | |
504 | } | |
505 | ||
506 | // we have to repeat the preceding two checks, even though we | |
507 | // do them in findRule(), because the version of format() that | |
508 | // takes a long bypasses findRule() and goes straight to this | |
509 | // function. This function does skip the fraction rules since | |
510 | // we know the value is an integer (it also skips the master | |
511 | // rule, since it's considered a fraction rule. Skipping the | |
512 | // master rule in this function is also how we avoid infinite | |
513 | // recursion) | |
514 | ||
515 | // {dlf} unfortunately this fails if there are no rules except | |
516 | // special rules. If there are no rules, use the master rule. | |
517 | ||
518 | // binary-search the rule list for the applicable rule | |
519 | // (a rule is used for all values from its base value to | |
520 | // the next rule's base value) | |
521 | int32_t hi = rules.size(); | |
522 | if (hi > 0) { | |
523 | int32_t lo = 0; | |
524 | ||
525 | while (lo < hi) { | |
526 | int32_t mid = (lo + hi) / 2; | |
527 | if (rules[mid]->getBaseValue() == number) { | |
528 | return rules[mid]; | |
529 | } | |
530 | else if (rules[mid]->getBaseValue() > number) { | |
531 | hi = mid; | |
532 | } | |
533 | else { | |
534 | lo = mid + 1; | |
535 | } | |
536 | } | |
374ca955 A |
537 | if (hi == 0) { // bad rule set, minimum base > 0 |
538 | return NULL; // want to throw exception here | |
539 | } | |
540 | ||
b75a7d8f A |
541 | NFRule *result = rules[hi - 1]; |
542 | ||
543 | // use shouldRollBack() to see whether we need to invoke the | |
544 | // rollback rule (see shouldRollBack()'s documentation for | |
545 | // an explanation of the rollback rule). If we do, roll back | |
546 | // one rule and return that one instead of the one we'd normally | |
547 | // return | |
f3c0d7a5 | 548 | if (result->shouldRollBack(number)) { |
374ca955 A |
549 | if (hi == 1) { // bad rule set, no prior rule to rollback to from this base |
550 | return NULL; | |
551 | } | |
b75a7d8f A |
552 | result = rules[hi - 2]; |
553 | } | |
554 | return result; | |
555 | } | |
556 | // else use the master rule | |
2ca993e8 | 557 | return nonNumericalRules[MASTER_RULE_INDEX]; |
b75a7d8f A |
558 | } |
559 | ||
560 | /** | |
561 | * If this rule is a fraction rule set, this function is used by | |
562 | * findRule() to select the most appropriate rule for formatting | |
563 | * the number. Basically, the base value of each rule in the rule | |
564 | * set is treated as the denominator of a fraction. Whichever | |
565 | * denominator can produce the fraction closest in value to the | |
566 | * number passed in is the result. If there's a tie, the earlier | |
567 | * one in the list wins. (If there are two rules in a row with the | |
568 | * same base value, the first one is used when the numerator of the | |
569 | * fraction would be 1, and the second rule is used the rest of the | |
570 | * time. | |
571 | * @param number The number being formatted (which will always be | |
572 | * a number between 0 and 1) | |
573 | * @return The rule to use to format this number | |
574 | */ | |
2ca993e8 | 575 | const NFRule* |
b75a7d8f A |
576 | NFRuleSet::findFractionRuleSetRule(double number) const |
577 | { | |
578 | // the obvious way to do this (multiply the value being formatted | |
579 | // by each rule's base value until you get an integral result) | |
580 | // doesn't work because of rounding error. This method is more | |
581 | // accurate | |
582 | ||
583 | // find the least common multiple of the rules' base values | |
584 | // and multiply this by the number being formatted. This is | |
585 | // all the precision we need, and we can do all of the rest | |
586 | // of the math using integer arithmetic | |
587 | int64_t leastCommonMultiple = rules[0]->getBaseValue(); | |
588 | int64_t numerator; | |
589 | { | |
590 | for (uint32_t i = 1; i < rules.size(); ++i) { | |
591 | leastCommonMultiple = util_lcm(leastCommonMultiple, rules[i]->getBaseValue()); | |
592 | } | |
593 | numerator = util64_fromDouble(number * (double)leastCommonMultiple + 0.5); | |
594 | } | |
595 | // for each rule, do the following... | |
596 | int64_t tempDifference; | |
597 | int64_t difference = util64_fromDouble(uprv_maxMantissa()); | |
598 | int32_t winner = 0; | |
599 | for (uint32_t i = 0; i < rules.size(); ++i) { | |
600 | // "numerator" is the numerator of the fraction if the | |
601 | // denominator is the LCD. The numerator if the rule's | |
602 | // base value is the denominator is "numerator" times the | |
603 | // base value divided bythe LCD. Here we check to see if | |
604 | // that's an integer, and if not, how close it is to being | |
605 | // an integer. | |
606 | tempDifference = numerator * rules[i]->getBaseValue() % leastCommonMultiple; | |
607 | ||
608 | ||
609 | // normalize the result of the above calculation: we want | |
610 | // the numerator's distance from the CLOSEST multiple | |
611 | // of the LCD | |
612 | if (leastCommonMultiple - tempDifference < tempDifference) { | |
613 | tempDifference = leastCommonMultiple - tempDifference; | |
614 | } | |
615 | ||
616 | // if this is as close as we've come, keep track of how close | |
617 | // that is, and the line number of the rule that did it. If | |
618 | // we've scored a direct hit, we don't have to look at any more | |
619 | // rules | |
620 | if (tempDifference < difference) { | |
621 | difference = tempDifference; | |
622 | winner = i; | |
623 | if (difference == 0) { | |
624 | break; | |
625 | } | |
626 | } | |
627 | } | |
628 | ||
629 | // if we have two successive rules that both have the winning base | |
630 | // value, then the first one (the one we found above) is used if | |
631 | // the numerator of the fraction is 1 and the second one is used if | |
632 | // the numerator of the fraction is anything else (this lets us | |
633 | // do things like "one third"/"two thirds" without haveing to define | |
634 | // a whole bunch of extra rule sets) | |
635 | if ((unsigned)(winner + 1) < rules.size() && | |
636 | rules[winner + 1]->getBaseValue() == rules[winner]->getBaseValue()) { | |
637 | double n = ((double)rules[winner]->getBaseValue()) * number; | |
638 | if (n < 0.5 || n >= 2) { | |
639 | ++winner; | |
640 | } | |
641 | } | |
642 | ||
643 | // finally, return the winning rule | |
644 | return rules[winner]; | |
645 | } | |
646 | ||
647 | /** | |
648 | * Parses a string. Matches the string to be parsed against each | |
649 | * of its rules (with a base value less than upperBound) and returns | |
650 | * the value produced by the rule that matched the most charcters | |
651 | * in the source string. | |
652 | * @param text The string to parse | |
653 | * @param parsePosition The initial position is ignored and assumed | |
654 | * to be 0. On exit, this object has been updated to point to the | |
655 | * first character position this rule set didn't consume. | |
656 | * @param upperBound Limits the rules that can be allowed to match. | |
657 | * Only rules whose base values are strictly less than upperBound | |
658 | * are considered. | |
659 | * @return The numerical result of parsing this string. This will | |
660 | * be the matching rule's base value, composed appropriately with | |
661 | * the results of matching any of its substitutions. The object | |
662 | * will be an instance of Long if it's an integral value; otherwise, | |
663 | * it will be an instance of Double. This function always returns | |
664 | * a valid object: If nothing matched the input string at all, | |
665 | * this function returns new Long(0), and the parse position is | |
666 | * left unchanged. | |
667 | */ | |
668 | #ifdef RBNF_DEBUG | |
669 | #include <stdio.h> | |
670 | ||
671 | static void dumpUS(FILE* f, const UnicodeString& us) { | |
672 | int len = us.length(); | |
673 | char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1]; | |
46f4442e A |
674 | if (buf != NULL) { |
675 | us.extract(0, len, buf); | |
676 | buf[len] = 0; | |
677 | fprintf(f, "%s", buf); | |
678 | uprv_free(buf); //delete[] buf; | |
679 | } | |
b75a7d8f A |
680 | } |
681 | #endif | |
682 | ||
683 | UBool | |
0f5d89e8 | 684 | NFRuleSet::parse(const UnicodeString& text, ParsePosition& pos, double upperBound, uint32_t nonNumericalExecutedRuleMask, Formattable& result, UBool lenient) const |
b75a7d8f A |
685 | { |
686 | // try matching each rule in the rule set against the text being | |
687 | // parsed. Whichever one matches the most characters is the one | |
688 | // that determines the value we return. | |
689 | ||
690 | result.setLong(0); | |
691 | ||
692 | // dump out if there's no text to parse | |
693 | if (text.length() == 0) { | |
694 | return 0; | |
695 | } | |
696 | ||
697 | ParsePosition highWaterMark; | |
698 | ParsePosition workingPos = pos; | |
699 | ||
700 | #ifdef RBNF_DEBUG | |
701 | fprintf(stderr, "<nfrs> %x '", this); | |
702 | dumpUS(stderr, name); | |
703 | fprintf(stderr, "' text '"); | |
704 | dumpUS(stderr, text); | |
705 | fprintf(stderr, "'\n"); | |
706 | fprintf(stderr, " parse negative: %d\n", this, negativeNumberRule != 0); | |
707 | #endif | |
2ca993e8 A |
708 | // Try each of the negative rules, fraction rules, infinity rules and NaN rules |
709 | for (int i = 0; i < NON_NUMERICAL_RULE_LENGTH; i++) { | |
0f5d89e8 A |
710 | if (nonNumericalRules[i] && ((nonNumericalExecutedRuleMask >> i) & 1) == 0) { |
711 | // Mark this rule as being executed so that we don't try to execute it again. | |
712 | nonNumericalExecutedRuleMask |= 1 << i; | |
713 | ||
2ca993e8 | 714 | Formattable tempResult; |
0f5d89e8 | 715 | UBool success = nonNumericalRules[i]->doParse(text, workingPos, 0, upperBound, nonNumericalExecutedRuleMask, tempResult, lenient || isDecimalFormatRuleParseable() ); |
2ca993e8 A |
716 | if (success && (workingPos.getIndex() > highWaterMark.getIndex())) { |
717 | result = tempResult; | |
718 | highWaterMark = workingPos; | |
b75a7d8f | 719 | } |
2ca993e8 | 720 | workingPos = pos; |
b75a7d8f A |
721 | } |
722 | } | |
723 | #ifdef RBNF_DEBUG | |
724 | fprintf(stderr, "<nfrs> continue other with text '"); | |
725 | dumpUS(stderr, text); | |
726 | fprintf(stderr, "' hwm: %d\n", highWaterMark.getIndex()); | |
727 | #endif | |
728 | ||
729 | // finally, go through the regular rules one at a time. We start | |
730 | // at the end of the list because we want to try matching the most | |
731 | // sigificant rule first (this helps ensure that we parse | |
732 | // "five thousand three hundred six" as | |
733 | // "(five thousand) (three hundred) (six)" rather than | |
734 | // "((five thousand three) hundred) (six)"). Skip rules whose | |
735 | // base values are higher than the upper bound (again, this helps | |
736 | // limit ambiguity by making sure the rules that match a rule's | |
737 | // are less significant than the rule containing the substitutions)/ | |
738 | { | |
739 | int64_t ub = util64_fromDouble(upperBound); | |
740 | #ifdef RBNF_DEBUG | |
741 | { | |
742 | char ubstr[64]; | |
743 | util64_toa(ub, ubstr, 64); | |
744 | char ubstrhex[64]; | |
745 | util64_toa(ub, ubstrhex, 64, 16); | |
746 | fprintf(stderr, "ub: %g, i64: %s (%s)\n", upperBound, ubstr, ubstrhex); | |
747 | } | |
748 | #endif | |
749 | for (int32_t i = rules.size(); --i >= 0 && highWaterMark.getIndex() < text.length();) { | |
750 | if ((!fIsFractionRuleSet) && (rules[i]->getBaseValue() >= ub)) { | |
751 | continue; | |
752 | } | |
753 | Formattable tempResult; | |
0f5d89e8 | 754 | UBool success = rules[i]->doParse(text, workingPos, fIsFractionRuleSet, upperBound, nonNumericalExecutedRuleMask, tempResult); |
b75a7d8f A |
755 | if (success && workingPos.getIndex() > highWaterMark.getIndex()) { |
756 | result = tempResult; | |
757 | highWaterMark = workingPos; | |
758 | } | |
759 | workingPos = pos; | |
760 | } | |
761 | } | |
762 | #ifdef RBNF_DEBUG | |
763 | fprintf(stderr, "<nfrs> exit\n"); | |
764 | #endif | |
765 | // finally, update the parse postion we were passed to point to the | |
766 | // first character we didn't use, and return the result that | |
767 | // corresponds to that string of characters | |
768 | pos = highWaterMark; | |
769 | ||
770 | return 1; | |
771 | } | |
772 | ||
773 | void | |
774 | NFRuleSet::appendRules(UnicodeString& result) const | |
775 | { | |
2ca993e8 A |
776 | uint32_t i; |
777 | ||
b75a7d8f A |
778 | // the rule set name goes first... |
779 | result.append(name); | |
780 | result.append(gColon); | |
781 | result.append(gLineFeed); | |
782 | ||
783 | // followed by the regular rules... | |
2ca993e8 | 784 | for (i = 0; i < rules.size(); i++) { |
73c04bcf | 785 | rules[i]->_appendRuleText(result); |
b75a7d8f A |
786 | result.append(gLineFeed); |
787 | } | |
788 | ||
789 | // followed by the special rules (if they exist) | |
2ca993e8 A |
790 | for (i = 0; i < NON_NUMERICAL_RULE_LENGTH; ++i) { |
791 | NFRule *rule = nonNumericalRules[i]; | |
792 | if (nonNumericalRules[i]) { | |
793 | if (rule->getBaseValue() == NFRule::kImproperFractionRule | |
794 | || rule->getBaseValue() == NFRule::kProperFractionRule | |
795 | || rule->getBaseValue() == NFRule::kMasterRule) | |
796 | { | |
797 | for (uint32_t fIdx = 0; fIdx < fractionRules.size(); fIdx++) { | |
798 | NFRule *fractionRule = fractionRules[fIdx]; | |
799 | if (fractionRule->getBaseValue() == rule->getBaseValue()) { | |
800 | fractionRule->_appendRuleText(result); | |
801 | result.append(gLineFeed); | |
802 | } | |
803 | } | |
804 | } | |
805 | else { | |
806 | rule->_appendRuleText(result); | |
b75a7d8f A |
807 | result.append(gLineFeed); |
808 | } | |
809 | } | |
810 | } | |
811 | } | |
812 | ||
813 | // utility functions | |
814 | ||
815 | int64_t util64_fromDouble(double d) { | |
816 | int64_t result = 0; | |
817 | if (!uprv_isNaN(d)) { | |
818 | double mant = uprv_maxMantissa(); | |
819 | if (d < -mant) { | |
820 | d = -mant; | |
821 | } else if (d > mant) { | |
822 | d = mant; | |
823 | } | |
824 | UBool neg = d < 0; | |
825 | if (neg) { | |
826 | d = -d; | |
827 | } | |
828 | result = (int64_t)uprv_floor(d); | |
829 | if (neg) { | |
830 | result = -result; | |
831 | } | |
832 | } | |
833 | return result; | |
834 | } | |
835 | ||
0f5d89e8 | 836 | uint64_t util64_pow(uint32_t base, uint16_t exponent) { |
f3c0d7a5 | 837 | if (base == 0) { |
b75a7d8f | 838 | return 0; |
b75a7d8f | 839 | } |
0f5d89e8 A |
840 | uint64_t result = 1; |
841 | uint64_t pow = base; | |
842 | while (true) { | |
843 | if ((exponent & 1) == 1) { | |
844 | result *= pow; | |
845 | } | |
846 | exponent >>= 1; | |
847 | if (exponent == 0) { | |
848 | break; | |
849 | } | |
850 | pow *= pow; | |
851 | } | |
f3c0d7a5 | 852 | return result; |
b75a7d8f A |
853 | } |
854 | ||
855 | static const uint8_t asciiDigits[] = { | |
856 | 0x30u, 0x31u, 0x32u, 0x33u, 0x34u, 0x35u, 0x36u, 0x37u, | |
857 | 0x38u, 0x39u, 0x61u, 0x62u, 0x63u, 0x64u, 0x65u, 0x66u, | |
858 | 0x67u, 0x68u, 0x69u, 0x6au, 0x6bu, 0x6cu, 0x6du, 0x6eu, | |
859 | 0x6fu, 0x70u, 0x71u, 0x72u, 0x73u, 0x74u, 0x75u, 0x76u, | |
860 | 0x77u, 0x78u, 0x79u, 0x7au, | |
861 | }; | |
862 | ||
863 | static const UChar kUMinus = (UChar)0x002d; | |
864 | ||
73c04bcf | 865 | #ifdef RBNF_DEBUG |
b75a7d8f A |
866 | static const char kMinus = '-'; |
867 | ||
868 | static const uint8_t digitInfo[] = { | |
869 | 0, 0, 0, 0, 0, 0, 0, 0, | |
870 | 0, 0, 0, 0, 0, 0, 0, 0, | |
871 | 0, 0, 0, 0, 0, 0, 0, 0, | |
872 | 0, 0, 0, 0, 0, 0, 0, 0, | |
873 | 0, 0, 0, 0, 0, 0, 0, 0, | |
874 | 0, 0, 0, 0, 0, 0, 0, 0, | |
875 | 0x80u, 0x81u, 0x82u, 0x83u, 0x84u, 0x85u, 0x86u, 0x87u, | |
876 | 0x88u, 0x89u, 0, 0, 0, 0, 0, 0, | |
877 | 0, 0x8au, 0x8bu, 0x8cu, 0x8du, 0x8eu, 0x8fu, 0x90u, | |
878 | 0x91u, 0x92u, 0x93u, 0x94u, 0x95u, 0x96u, 0x97u, 0x98u, | |
879 | 0x99u, 0x9au, 0x9bu, 0x9cu, 0x9du, 0x9eu, 0x9fu, 0xa0u, | |
880 | 0xa1u, 0xa2u, 0xa3u, 0, 0, 0, 0, 0, | |
881 | 0, 0x8au, 0x8bu, 0x8cu, 0x8du, 0x8eu, 0x8fu, 0x90u, | |
882 | 0x91u, 0x92u, 0x93u, 0x94u, 0x95u, 0x96u, 0x97u, 0x98u, | |
883 | 0x99u, 0x9au, 0x9bu, 0x9cu, 0x9du, 0x9eu, 0x9fu, 0xa0u, | |
884 | 0xa1u, 0xa2u, 0xa3u, 0, 0, 0, 0, 0, | |
885 | }; | |
886 | ||
b75a7d8f A |
887 | int64_t util64_atoi(const char* str, uint32_t radix) |
888 | { | |
889 | if (radix > 36) { | |
890 | radix = 36; | |
891 | } else if (radix < 2) { | |
892 | radix = 2; | |
893 | } | |
894 | int64_t lradix = radix; | |
895 | ||
896 | int neg = 0; | |
897 | if (*str == kMinus) { | |
898 | ++str; | |
899 | neg = 1; | |
900 | } | |
901 | int64_t result = 0; | |
902 | uint8_t b; | |
903 | while ((b = digitInfo[*str++]) && ((b &= 0x7f) < radix)) { | |
904 | result *= lradix; | |
905 | result += (int32_t)b; | |
906 | } | |
907 | if (neg) { | |
908 | result = -result; | |
909 | } | |
910 | return result; | |
911 | } | |
b75a7d8f A |
912 | |
913 | int64_t util64_utoi(const UChar* str, uint32_t radix) | |
914 | { | |
915 | if (radix > 36) { | |
916 | radix = 36; | |
917 | } else if (radix < 2) { | |
918 | radix = 2; | |
919 | } | |
920 | int64_t lradix = radix; | |
921 | ||
922 | int neg = 0; | |
923 | if (*str == kUMinus) { | |
924 | ++str; | |
925 | neg = 1; | |
926 | } | |
927 | int64_t result = 0; | |
928 | UChar c; | |
929 | uint8_t b; | |
930 | while (((c = *str++) < 0x0080) && (b = digitInfo[c]) && ((b &= 0x7f) < radix)) { | |
931 | result *= lradix; | |
932 | result += (int32_t)b; | |
933 | } | |
934 | if (neg) { | |
935 | result = -result; | |
936 | } | |
937 | return result; | |
938 | } | |
939 | ||
b75a7d8f A |
940 | uint32_t util64_toa(int64_t w, char* buf, uint32_t len, uint32_t radix, UBool raw) |
941 | { | |
942 | if (radix > 36) { | |
943 | radix = 36; | |
944 | } else if (radix < 2) { | |
945 | radix = 2; | |
946 | } | |
947 | int64_t base = radix; | |
948 | ||
949 | char* p = buf; | |
950 | if (len && (w < 0) && (radix == 10) && !raw) { | |
951 | w = -w; | |
952 | *p++ = kMinus; | |
953 | --len; | |
954 | } else if (len && (w == 0)) { | |
955 | *p++ = (char)raw ? 0 : asciiDigits[0]; | |
956 | --len; | |
957 | } | |
958 | ||
959 | while (len && w != 0) { | |
960 | int64_t n = w / base; | |
961 | int64_t m = n * base; | |
962 | int32_t d = (int32_t)(w-m); | |
963 | *p++ = raw ? (char)d : asciiDigits[d]; | |
964 | w = n; | |
965 | --len; | |
966 | } | |
967 | if (len) { | |
968 | *p = 0; // null terminate if room for caller convenience | |
969 | } | |
970 | ||
971 | len = p - buf; | |
972 | if (*buf == kMinus) { | |
973 | ++buf; | |
974 | } | |
975 | while (--p > buf) { | |
976 | char c = *p; | |
977 | *p = *buf; | |
978 | *buf = c; | |
979 | ++buf; | |
980 | } | |
981 | ||
982 | return len; | |
983 | } | |
984 | #endif | |
985 | ||
986 | uint32_t util64_tou(int64_t w, UChar* buf, uint32_t len, uint32_t radix, UBool raw) | |
987 | { | |
988 | if (radix > 36) { | |
989 | radix = 36; | |
990 | } else if (radix < 2) { | |
991 | radix = 2; | |
992 | } | |
993 | int64_t base = radix; | |
994 | ||
995 | UChar* p = buf; | |
996 | if (len && (w < 0) && (radix == 10) && !raw) { | |
997 | w = -w; | |
998 | *p++ = kUMinus; | |
999 | --len; | |
1000 | } else if (len && (w == 0)) { | |
1001 | *p++ = (UChar)raw ? 0 : asciiDigits[0]; | |
1002 | --len; | |
1003 | } | |
1004 | ||
1005 | while (len && (w != 0)) { | |
1006 | int64_t n = w / base; | |
1007 | int64_t m = n * base; | |
1008 | int32_t d = (int32_t)(w-m); | |
1009 | *p++ = (UChar)(raw ? d : asciiDigits[d]); | |
1010 | w = n; | |
1011 | --len; | |
1012 | } | |
1013 | if (len) { | |
1014 | *p = 0; // null terminate if room for caller convenience | |
1015 | } | |
1016 | ||
1017 | len = (uint32_t)(p - buf); | |
1018 | if (*buf == kUMinus) { | |
1019 | ++buf; | |
1020 | } | |
1021 | while (--p > buf) { | |
1022 | UChar c = *p; | |
1023 | *p = *buf; | |
1024 | *buf = c; | |
1025 | ++buf; | |
1026 | } | |
1027 | ||
1028 | return len; | |
1029 | } | |
1030 | ||
1031 | ||
1032 | U_NAMESPACE_END | |
1033 | ||
1034 | /* U_HAVE_RBNF */ | |
1035 | #endif |