]>
Commit | Line | Data |
---|---|---|
f3c0d7a5 A |
1 | // © 2016 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html | |
73c04bcf | 3 | /******************************************************************** |
57a6839d | 4 | * COPYRIGHT: |
2ca993e8 | 5 | * Copyright (c) 2005-2016, International Business Machines Corporation and |
73c04bcf A |
6 | * others. All Rights Reserved. |
7 | ********************************************************************/ | |
8 | /************************************************************************ | |
9 | * Tests for the UText and UTextIterator text abstraction classses | |
10 | * | |
11 | ************************************************************************/ | |
12 | ||
73c04bcf A |
13 | #include <string.h> |
14 | #include <stdio.h> | |
15 | #include <stdlib.h> | |
729e4ab9 A |
16 | #include "unicode/utypes.h" |
17 | #include "unicode/utext.h" | |
18 | #include "unicode/utf8.h" | |
19 | #include "unicode/ustring.h" | |
20 | #include "unicode/uchriter.h" | |
2ca993e8 A |
21 | #include "cmemory.h" |
22 | #include "cstr.h" | |
73c04bcf A |
23 | #include "utxttest.h" |
24 | ||
25 | static UBool gFailed = FALSE; | |
26 | static int gTestNum = 0; | |
27 | ||
28 | // Forward decl | |
29 | UText *openFragmentedUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status); | |
30 | ||
31 | #define TEST_ASSERT(x) \ | |
32 | { if ((x)==FALSE) {errln("Test #%d failure in file %s at line %d\n", gTestNum, __FILE__, __LINE__);\ | |
33 | gFailed = TRUE;\ | |
34 | }} | |
35 | ||
36 | ||
37 | #define TEST_SUCCESS(status) \ | |
38 | { if (U_FAILURE(status)) {errln("Test #%d failure in file %s at line %d. Error = \"%s\"\n", \ | |
39 | gTestNum, __FILE__, __LINE__, u_errorName(status)); \ | |
40 | gFailed = TRUE;\ | |
41 | }} | |
42 | ||
43 | UTextTest::UTextTest() { | |
44 | } | |
45 | ||
46 | UTextTest::~UTextTest() { | |
47 | } | |
48 | ||
49 | ||
50 | void | |
51 | UTextTest::runIndexedTest(int32_t index, UBool exec, | |
52 | const char* &name, char* /*par*/) { | |
53 | switch (index) { | |
54 | case 0: name = "TextTest"; | |
55 | if (exec) TextTest(); break; | |
56 | case 1: name = "ErrorTest"; | |
57 | if (exec) ErrorTest(); break; | |
58 | case 2: name = "FreezeTest"; | |
59 | if (exec) FreezeTest(); break; | |
46f4442e A |
60 | case 3: name = "Ticket5560"; |
61 | if (exec) Ticket5560(); break; | |
62 | case 4: name = "Ticket6847"; | |
63 | if (exec) Ticket6847(); break; | |
57a6839d A |
64 | case 5: name = "Ticket10562"; |
65 | if (exec) Ticket10562(); break; | |
b331163b A |
66 | case 6: name = "Ticket10983"; |
67 | if (exec) Ticket10983(); break; | |
2ca993e8 A |
68 | case 7: name = "Ticket12130"; |
69 | if (exec) Ticket12130(); break; | |
f59164e3 A |
70 | case 8: name = "Ticket12888"; |
71 | if (exec) Ticket12888(); break; | |
73c04bcf A |
72 | default: name = ""; break; |
73 | } | |
74 | } | |
75 | ||
76 | // | |
77 | // Quick and dirty random number generator. | |
78 | // (don't use library so that results are portable. | |
79 | static uint32_t m_seed = 1; | |
80 | static uint32_t m_rand() | |
81 | { | |
82 | m_seed = m_seed * 1103515245 + 12345; | |
83 | return (uint32_t)(m_seed/65536) % 32768; | |
84 | } | |
85 | ||
86 | ||
87 | // | |
88 | // TextTest() | |
89 | // | |
90 | // Top Level function for UText testing. | |
91 | // Specifies the strings to be tested, with the acutal testing itself | |
92 | // being carried out in another function, TestString(). | |
93 | // | |
94 | void UTextTest::TextTest() { | |
95 | int32_t i, j; | |
96 | ||
97 | TestString("abcd\\U00010001xyz"); | |
98 | TestString(""); | |
99 | ||
100 | // Supplementary chars at start or end | |
101 | TestString("\\U00010001"); | |
102 | TestString("abc\\U00010001"); | |
103 | TestString("\\U00010001abc"); | |
104 | ||
105 | // Test simple strings of lengths 1 to 60, looking for glitches at buffer boundaries | |
106 | UnicodeString s; | |
107 | for (i=1; i<60; i++) { | |
108 | s.truncate(0); | |
109 | for (j=0; j<i; j++) { | |
110 | if (j+0x30 == 0x5c) { | |
111 | // backslash. Needs to be escaped | |
112 | s.append((UChar)0x5c); | |
113 | } | |
114 | s.append(UChar(j+0x30)); | |
115 | } | |
116 | TestString(s); | |
117 | } | |
118 | ||
119 | // Test strings with odd-aligned supplementary chars, | |
120 | // looking for glitches at buffer boundaries | |
121 | for (i=1; i<60; i++) { | |
122 | s.truncate(0); | |
123 | s.append((UChar)0x41); | |
124 | for (j=0; j<i; j++) { | |
125 | s.append(UChar32(j+0x11000)); | |
126 | } | |
127 | TestString(s); | |
128 | } | |
129 | ||
130 | // String of chars of randomly varying size in utf-8 representation. | |
131 | // Exercise the mapping, and the varying sized buffer. | |
132 | // | |
133 | s.truncate(0); | |
134 | UChar32 c1 = 0; | |
135 | UChar32 c2 = 0x100; | |
136 | UChar32 c3 = 0xa000; | |
137 | UChar32 c4 = 0x11000; | |
138 | for (i=0; i<1000; i++) { | |
139 | int len8 = m_rand()%4 + 1; | |
140 | switch (len8) { | |
57a6839d | 141 | case 1: |
73c04bcf A |
142 | c1 = (c1+1)%0x80; |
143 | // don't put 0 into string (0 terminated strings for some tests) | |
144 | // don't put '\', will cause unescape() to fail. | |
145 | if (c1==0x5c || c1==0) { | |
146 | c1++; | |
147 | } | |
148 | s.append(c1); | |
149 | break; | |
150 | case 2: | |
151 | s.append(c2++); | |
152 | break; | |
153 | case 3: | |
154 | s.append(c3++); | |
155 | break; | |
156 | case 4: | |
157 | s.append(c4++); | |
158 | break; | |
159 | } | |
160 | } | |
161 | TestString(s); | |
162 | } | |
163 | ||
164 | ||
165 | // | |
166 | // TestString() Run a suite of UText tests on a string. | |
167 | // The test string is unescaped before use. | |
168 | // | |
169 | void UTextTest::TestString(const UnicodeString &s) { | |
170 | int32_t i; | |
171 | int32_t j; | |
172 | UChar32 c; | |
173 | int32_t cpCount = 0; | |
174 | UErrorCode status = U_ZERO_ERROR; | |
175 | UText *ut = NULL; | |
176 | int32_t saLen; | |
177 | ||
178 | UnicodeString sa = s.unescape(); | |
179 | saLen = sa.length(); | |
180 | ||
181 | // | |
182 | // Build up a mapping between code points and UTF-16 code unit indexes. | |
183 | // | |
184 | m *cpMap = new m[sa.length() + 1]; | |
185 | j = 0; | |
186 | for (i=0; i<sa.length(); i=sa.moveIndex32(i, 1)) { | |
187 | c = sa.char32At(i); | |
188 | cpMap[j].nativeIdx = i; | |
189 | cpMap[j].cp = c; | |
190 | j++; | |
191 | cpCount++; | |
192 | } | |
57a6839d | 193 | cpMap[j].nativeIdx = i; // position following the last char in utf-16 string. |
73c04bcf A |
194 | |
195 | ||
196 | // UChar * test, null terminated | |
197 | status = U_ZERO_ERROR; | |
198 | UChar *buf = new UChar[saLen+1]; | |
199 | sa.extract(buf, saLen+1, status); | |
200 | TEST_SUCCESS(status); | |
201 | ut = utext_openUChars(NULL, buf, -1, &status); | |
202 | TEST_SUCCESS(status); | |
203 | TestAccess(sa, ut, cpCount, cpMap); | |
204 | utext_close(ut); | |
205 | delete [] buf; | |
206 | ||
207 | // UChar * test, with length | |
208 | status = U_ZERO_ERROR; | |
209 | buf = new UChar[saLen+1]; | |
210 | sa.extract(buf, saLen+1, status); | |
211 | TEST_SUCCESS(status); | |
212 | ut = utext_openUChars(NULL, buf, saLen, &status); | |
213 | TEST_SUCCESS(status); | |
214 | TestAccess(sa, ut, cpCount, cpMap); | |
215 | utext_close(ut); | |
216 | delete [] buf; | |
217 | ||
218 | ||
219 | // UnicodeString test | |
220 | status = U_ZERO_ERROR; | |
221 | ut = utext_openUnicodeString(NULL, &sa, &status); | |
222 | TEST_SUCCESS(status); | |
223 | TestAccess(sa, ut, cpCount, cpMap); | |
224 | TestCMR(sa, ut, cpCount, cpMap, cpMap); | |
225 | utext_close(ut); | |
226 | ||
227 | ||
228 | // Const UnicodeString test | |
229 | status = U_ZERO_ERROR; | |
230 | ut = utext_openConstUnicodeString(NULL, &sa, &status); | |
231 | TEST_SUCCESS(status); | |
232 | TestAccess(sa, ut, cpCount, cpMap); | |
233 | utext_close(ut); | |
234 | ||
235 | ||
236 | // Replaceable test. (UnicodeString inherits Replaceable) | |
237 | status = U_ZERO_ERROR; | |
238 | ut = utext_openReplaceable(NULL, &sa, &status); | |
239 | TEST_SUCCESS(status); | |
240 | TestAccess(sa, ut, cpCount, cpMap); | |
241 | TestCMR(sa, ut, cpCount, cpMap, cpMap); | |
242 | utext_close(ut); | |
243 | ||
244 | // Character Iterator Tests | |
245 | status = U_ZERO_ERROR; | |
246 | const UChar *cbuf = sa.getBuffer(); | |
247 | CharacterIterator *ci = new UCharCharacterIterator(cbuf, saLen, status); | |
248 | TEST_SUCCESS(status); | |
249 | ut = utext_openCharacterIterator(NULL, ci, &status); | |
250 | TEST_SUCCESS(status); | |
251 | TestAccess(sa, ut, cpCount, cpMap); | |
252 | utext_close(ut); | |
253 | delete ci; | |
57a6839d | 254 | |
73c04bcf A |
255 | |
256 | // Fragmented UnicodeString (Chunk size of one) | |
257 | // | |
258 | status = U_ZERO_ERROR; | |
259 | ut = openFragmentedUnicodeString(NULL, &sa, &status); | |
260 | TEST_SUCCESS(status); | |
261 | TestAccess(sa, ut, cpCount, cpMap); | |
262 | utext_close(ut); | |
263 | ||
264 | // | |
265 | // UTF-8 test | |
266 | // | |
267 | ||
268 | // Convert the test string from UnicodeString to (char *) in utf-8 format | |
269 | int32_t u8Len = sa.extract(0, sa.length(), NULL, 0, "utf-8"); | |
270 | char *u8String = new char[u8Len + 1]; | |
271 | sa.extract(0, sa.length(), u8String, u8Len+1, "utf-8"); | |
272 | ||
273 | // Build up the map of code point indices in the utf-8 string | |
274 | m * u8Map = new m[sa.length() + 1]; | |
275 | i = 0; // native utf-8 index | |
276 | for (j=0; j<cpCount ; j++) { // code point number | |
277 | u8Map[j].nativeIdx = i; | |
278 | U8_NEXT(u8String, i, u8Len, c) | |
279 | u8Map[j].cp = c; | |
280 | } | |
281 | u8Map[cpCount].nativeIdx = u8Len; // position following the last char in utf-8 string. | |
282 | ||
283 | // Do the test itself | |
284 | status = U_ZERO_ERROR; | |
285 | ut = utext_openUTF8(NULL, u8String, -1, &status); | |
286 | TEST_SUCCESS(status); | |
287 | TestAccess(sa, ut, cpCount, u8Map); | |
288 | utext_close(ut); | |
289 | ||
290 | ||
291 | ||
729e4ab9 A |
292 | delete []cpMap; |
293 | delete []u8Map; | |
294 | delete []u8String; | |
73c04bcf A |
295 | } |
296 | ||
297 | // TestCMR test Copy, Move and Replace operations. | |
298 | // us UnicodeString containing the test text. | |
299 | // ut UText containing the same test text. | |
300 | // cpCount number of code points in the test text. | |
301 | // nativeMap Mapping from code points to native indexes for the UText. | |
302 | // u16Map Mapping from code points to UTF-16 indexes, for use with the UnicodeString. | |
303 | // | |
304 | // This function runs a whole series of opertions on each incoming UText. | |
305 | // The UText is deep-cloned prior to each operation, so that the original UText remains unchanged. | |
57a6839d | 306 | // |
73c04bcf A |
307 | void UTextTest::TestCMR(const UnicodeString &us, UText *ut, int cpCount, m *nativeMap, m *u16Map) { |
308 | TEST_ASSERT(utext_isWritable(ut) == TRUE); | |
309 | ||
310 | int srcLengthType; // Loop variables for selecting the postion and length | |
311 | int srcPosType; // of the block to operate on within the source text. | |
57a6839d | 312 | int destPosType; |
73c04bcf A |
313 | |
314 | int srcIndex = 0; // Code Point indexes of the block to operate on for | |
315 | int srcLength = 0; // a specific test. | |
316 | ||
317 | int destIndex = 0; // Code point index of the destination for a copy/move test. | |
318 | ||
319 | int32_t nativeStart = 0; // Native unit indexes for a test. | |
320 | int32_t nativeLimit = 0; | |
321 | int32_t nativeDest = 0; | |
322 | ||
323 | int32_t u16Start = 0; // UTF-16 indexes for a test. | |
324 | int32_t u16Limit = 0; // used when performing the same operation in a Unicode String | |
325 | int32_t u16Dest = 0; | |
326 | ||
327 | // Iterate over a whole series of source index, length and a target indexes. | |
328 | // This is done with code point indexes; these will be later translated to native | |
329 | // indexes using the cpMap. | |
330 | for (srcLengthType=1; srcLengthType<=3; srcLengthType++) { | |
331 | switch (srcLengthType) { | |
332 | case 1: srcLength = 1; break; | |
333 | case 2: srcLength = 5; break; | |
334 | case 3: srcLength = cpCount / 3; | |
335 | } | |
336 | for (srcPosType=1; srcPosType<=5; srcPosType++) { | |
337 | switch (srcPosType) { | |
338 | case 1: srcIndex = 0; break; | |
339 | case 2: srcIndex = 1; break; | |
340 | case 3: srcIndex = cpCount - srcLength; break; | |
341 | case 4: srcIndex = cpCount - srcLength - 1; break; | |
342 | case 5: srcIndex = cpCount / 2; break; | |
343 | } | |
344 | if (srcIndex < 0 || srcIndex + srcLength > cpCount) { | |
57a6839d | 345 | // filter out bogus test cases - |
73c04bcf A |
346 | // those with a source range that falls of an edge of the string. |
347 | continue; | |
348 | } | |
349 | ||
350 | // | |
351 | // Copy and move tests. | |
352 | // iterate over a variety of destination positions. | |
353 | // | |
354 | for (destPosType=1; destPosType<=4; destPosType++) { | |
355 | switch (destPosType) { | |
356 | case 1: destIndex = 0; break; | |
357 | case 2: destIndex = 1; break; | |
358 | case 3: destIndex = srcIndex - 1; break; | |
359 | case 4: destIndex = srcIndex + srcLength + 1; break; | |
360 | case 5: destIndex = cpCount-1; break; | |
361 | case 6: destIndex = cpCount; break; | |
362 | } | |
363 | if (destIndex<0 || destIndex>cpCount) { | |
364 | // filter out bogus test cases. | |
365 | continue; | |
366 | } | |
367 | ||
368 | nativeStart = nativeMap[srcIndex].nativeIdx; | |
369 | nativeLimit = nativeMap[srcIndex+srcLength].nativeIdx; | |
370 | nativeDest = nativeMap[destIndex].nativeIdx; | |
371 | ||
372 | u16Start = u16Map[srcIndex].nativeIdx; | |
373 | u16Limit = u16Map[srcIndex+srcLength].nativeIdx; | |
374 | u16Dest = u16Map[destIndex].nativeIdx; | |
375 | ||
376 | gFailed = FALSE; | |
377 | TestCopyMove(us, ut, FALSE, | |
378 | nativeStart, nativeLimit, nativeDest, | |
379 | u16Start, u16Limit, u16Dest); | |
380 | ||
381 | TestCopyMove(us, ut, TRUE, | |
382 | nativeStart, nativeLimit, nativeDest, | |
383 | u16Start, u16Limit, u16Dest); | |
384 | ||
385 | if (gFailed) { | |
386 | return; | |
387 | } | |
388 | } | |
389 | ||
390 | // | |
391 | // Replace tests. | |
392 | // | |
393 | UnicodeString fullRepString("This is an arbitrary string that will be used as replacement text"); | |
394 | for (int32_t replStrLen=0; replStrLen<20; replStrLen++) { | |
395 | UnicodeString repStr(fullRepString, 0, replStrLen); | |
396 | TestReplace(us, ut, | |
397 | nativeStart, nativeLimit, | |
398 | u16Start, u16Limit, | |
399 | repStr); | |
400 | if (gFailed) { | |
401 | return; | |
402 | } | |
403 | } | |
404 | ||
405 | } | |
406 | } | |
407 | ||
408 | } | |
409 | ||
410 | // | |
411 | // TestCopyMove run a single test case for utext_copy. | |
412 | // Test cases are created in TestCMR and dispatched here for execution. | |
413 | // | |
414 | void UTextTest::TestCopyMove(const UnicodeString &us, UText *ut, UBool move, | |
415 | int32_t nativeStart, int32_t nativeLimit, int32_t nativeDest, | |
57a6839d | 416 | int32_t u16Start, int32_t u16Limit, int32_t u16Dest) |
73c04bcf A |
417 | { |
418 | UErrorCode status = U_ZERO_ERROR; | |
419 | UText *targetUT = NULL; | |
420 | gTestNum++; | |
421 | gFailed = FALSE; | |
422 | ||
423 | // | |
424 | // clone the UText. The test will be run in the cloned copy | |
425 | // so that we don't alter the original. | |
426 | // | |
427 | targetUT = utext_clone(NULL, ut, TRUE, FALSE, &status); | |
428 | TEST_SUCCESS(status); | |
429 | UnicodeString targetUS(us); // And copy the reference string. | |
430 | ||
431 | // do the test operation first in the reference | |
432 | targetUS.copy(u16Start, u16Limit, u16Dest); | |
433 | if (move) { | |
434 | // delete out the source range. | |
435 | if (u16Limit < u16Dest) { | |
436 | targetUS.removeBetween(u16Start, u16Limit); | |
437 | } else { | |
438 | int32_t amtCopied = u16Limit - u16Start; | |
439 | targetUS.removeBetween(u16Start+amtCopied, u16Limit+amtCopied); | |
440 | } | |
441 | } | |
442 | ||
443 | // Do the same operation in the UText under test | |
444 | utext_copy(targetUT, nativeStart, nativeLimit, nativeDest, move, &status); | |
445 | if (nativeDest > nativeStart && nativeDest < nativeLimit) { | |
446 | TEST_ASSERT(status == U_INDEX_OUTOFBOUNDS_ERROR); | |
447 | } else { | |
448 | TEST_SUCCESS(status); | |
449 | ||
450 | // Compare the results of the two parallel tests | |
451 | int32_t usi = 0; // UnicodeString postion, utf-16 index. | |
452 | int64_t uti = 0; // UText position, native index. | |
57a6839d | 453 | int32_t cpi; // char32 position (code point index) |
73c04bcf A |
454 | UChar32 usc; // code point from Unicode String |
455 | UChar32 utc; // code point from UText | |
456 | utext_setNativeIndex(targetUT, 0); | |
457 | for (cpi=0; ; cpi++) { | |
458 | usc = targetUS.char32At(usi); | |
459 | utc = utext_next32(targetUT); | |
460 | if (utc < 0) { | |
461 | break; | |
462 | } | |
463 | TEST_ASSERT(uti == usi); | |
464 | TEST_ASSERT(utc == usc); | |
465 | usi = targetUS.moveIndex32(usi, 1); | |
466 | uti = utext_getNativeIndex(targetUT); | |
467 | if (gFailed) { | |
468 | goto cleanupAndReturn; | |
469 | } | |
470 | } | |
471 | int64_t expectedNativeLength = utext_nativeLength(ut); | |
472 | if (move == FALSE) { | |
473 | expectedNativeLength += nativeLimit - nativeStart; | |
474 | } | |
475 | uti = utext_getNativeIndex(targetUT); | |
476 | TEST_ASSERT(uti == expectedNativeLength); | |
477 | } | |
478 | ||
479 | cleanupAndReturn: | |
480 | utext_close(targetUT); | |
481 | } | |
57a6839d | 482 | |
73c04bcf A |
483 | |
484 | // | |
485 | // TestReplace Test a single Replace operation. | |
486 | // | |
487 | void UTextTest::TestReplace( | |
57a6839d | 488 | const UnicodeString &us, // reference UnicodeString in which to do the replace |
73c04bcf | 489 | UText *ut, // UnicodeText object under test. |
57a6839d | 490 | int32_t nativeStart, // Range to be replaced, in UText native units. |
73c04bcf A |
491 | int32_t nativeLimit, |
492 | int32_t u16Start, // Range to be replaced, in UTF-16 units | |
493 | int32_t u16Limit, // for use in the reference UnicodeString. | |
494 | const UnicodeString &repStr) // The replacement string | |
495 | { | |
496 | UErrorCode status = U_ZERO_ERROR; | |
497 | UText *targetUT = NULL; | |
498 | gTestNum++; | |
499 | gFailed = FALSE; | |
500 | ||
501 | // | |
502 | // clone the target UText. The test will be run in the cloned copy | |
503 | // so that we don't alter the original. | |
504 | // | |
505 | targetUT = utext_clone(NULL, ut, TRUE, FALSE, &status); | |
506 | TEST_SUCCESS(status); | |
507 | UnicodeString targetUS(us); // And copy the reference string. | |
508 | ||
509 | // | |
57a6839d | 510 | // Do the replace operation in the Unicode String, to |
73c04bcf A |
511 | // produce a reference result. |
512 | // | |
513 | targetUS.replace(u16Start, u16Limit-u16Start, repStr); | |
514 | ||
515 | // | |
516 | // Do the replace on the UText under test | |
517 | // | |
518 | const UChar *rs = repStr.getBuffer(); | |
519 | int32_t rsLen = repStr.length(); | |
520 | int32_t actualDelta = utext_replace(targetUT, nativeStart, nativeLimit, rs, rsLen, &status); | |
521 | int32_t expectedDelta = repStr.length() - (nativeLimit - nativeStart); | |
522 | TEST_ASSERT(actualDelta == expectedDelta); | |
523 | ||
524 | // | |
525 | // Compare the results | |
526 | // | |
527 | int32_t usi = 0; // UnicodeString postion, utf-16 index. | |
528 | int64_t uti = 0; // UText position, native index. | |
57a6839d | 529 | int32_t cpi; // char32 position (code point index) |
73c04bcf A |
530 | UChar32 usc; // code point from Unicode String |
531 | UChar32 utc; // code point from UText | |
532 | int64_t expectedNativeLength = 0; | |
533 | utext_setNativeIndex(targetUT, 0); | |
534 | for (cpi=0; ; cpi++) { | |
535 | usc = targetUS.char32At(usi); | |
536 | utc = utext_next32(targetUT); | |
537 | if (utc < 0) { | |
538 | break; | |
539 | } | |
540 | TEST_ASSERT(uti == usi); | |
541 | TEST_ASSERT(utc == usc); | |
542 | usi = targetUS.moveIndex32(usi, 1); | |
543 | uti = utext_getNativeIndex(targetUT); | |
544 | if (gFailed) { | |
545 | goto cleanupAndReturn; | |
546 | } | |
547 | } | |
548 | expectedNativeLength = utext_nativeLength(ut) + expectedDelta; | |
549 | uti = utext_getNativeIndex(targetUT); | |
550 | TEST_ASSERT(uti == expectedNativeLength); | |
551 | ||
552 | cleanupAndReturn: | |
553 | utext_close(targetUT); | |
554 | } | |
555 | ||
556 | // | |
46f4442e | 557 | // TestAccess Test the read only access functions on a UText, including cloning. |
73c04bcf A |
558 | // The text is accessed in a variety of ways, and compared with |
559 | // the reference UnicodeString. | |
560 | // | |
561 | void UTextTest::TestAccess(const UnicodeString &us, UText *ut, int cpCount, m *cpMap) { | |
46f4442e A |
562 | // Run the standard tests on the caller-supplied UText. |
563 | TestAccessNoClone(us, ut, cpCount, cpMap); | |
564 | ||
565 | // Re-run tests on a shallow clone. | |
566 | utext_setNativeIndex(ut, 0); | |
567 | UErrorCode status = U_ZERO_ERROR; | |
568 | UText *shallowClone = utext_clone(NULL, ut, FALSE /*deep*/, FALSE /*readOnly*/, &status); | |
569 | TEST_SUCCESS(status); | |
570 | TestAccessNoClone(us, shallowClone, cpCount, cpMap); | |
571 | ||
572 | // | |
573 | // Rerun again on a deep clone. | |
574 | // Note that text providers are not required to provide deep cloning, | |
575 | // so unsupported errors are ignored. | |
576 | // | |
577 | status = U_ZERO_ERROR; | |
578 | utext_setNativeIndex(shallowClone, 0); | |
579 | UText *deepClone = utext_clone(NULL, shallowClone, TRUE, FALSE, &status); | |
580 | utext_close(shallowClone); | |
581 | if (status != U_UNSUPPORTED_ERROR) { | |
582 | TEST_SUCCESS(status); | |
583 | TestAccessNoClone(us, deepClone, cpCount, cpMap); | |
584 | } | |
585 | utext_close(deepClone); | |
586 | } | |
57a6839d | 587 | |
46f4442e A |
588 | |
589 | // | |
590 | // TestAccessNoClone() Test the read only access functions on a UText. | |
591 | // The text is accessed in a variety of ways, and compared with | |
592 | // the reference UnicodeString. | |
593 | // | |
594 | void UTextTest::TestAccessNoClone(const UnicodeString &us, UText *ut, int cpCount, m *cpMap) { | |
73c04bcf A |
595 | UErrorCode status = U_ZERO_ERROR; |
596 | gTestNum++; | |
597 | ||
598 | // | |
599 | // Check the length from the UText | |
600 | // | |
601 | int64_t expectedLen = cpMap[cpCount].nativeIdx; | |
602 | int64_t utlen = utext_nativeLength(ut); | |
603 | TEST_ASSERT(expectedLen == utlen); | |
604 | ||
605 | // | |
606 | // Iterate forwards, verify that we get the correct code points | |
607 | // at the correct native offsets. | |
608 | // | |
609 | int i = 0; | |
610 | int64_t index; | |
611 | int64_t expectedIndex = 0; | |
612 | int64_t foundIndex = 0; | |
613 | UChar32 expectedC; | |
614 | UChar32 foundC; | |
615 | int64_t len; | |
616 | ||
617 | for (i=0; i<cpCount; i++) { | |
618 | expectedIndex = cpMap[i].nativeIdx; | |
619 | foundIndex = utext_getNativeIndex(ut); | |
620 | TEST_ASSERT(expectedIndex == foundIndex); | |
621 | expectedC = cpMap[i].cp; | |
57a6839d | 622 | foundC = utext_next32(ut); |
73c04bcf A |
623 | TEST_ASSERT(expectedC == foundC); |
624 | foundIndex = utext_getPreviousNativeIndex(ut); | |
625 | TEST_ASSERT(expectedIndex == foundIndex); | |
626 | if (gFailed) { | |
627 | return; | |
628 | } | |
629 | } | |
630 | foundC = utext_next32(ut); | |
631 | TEST_ASSERT(foundC == U_SENTINEL); | |
57a6839d | 632 | |
73c04bcf A |
633 | // Repeat above, using macros |
634 | utext_setNativeIndex(ut, 0); | |
635 | for (i=0; i<cpCount; i++) { | |
636 | expectedIndex = cpMap[i].nativeIdx; | |
637 | foundIndex = UTEXT_GETNATIVEINDEX(ut); | |
638 | TEST_ASSERT(expectedIndex == foundIndex); | |
639 | expectedC = cpMap[i].cp; | |
57a6839d | 640 | foundC = UTEXT_NEXT32(ut); |
73c04bcf A |
641 | TEST_ASSERT(expectedC == foundC); |
642 | if (gFailed) { | |
643 | return; | |
644 | } | |
645 | } | |
646 | foundC = UTEXT_NEXT32(ut); | |
647 | TEST_ASSERT(foundC == U_SENTINEL); | |
648 | ||
649 | // | |
650 | // Forward iteration (above) should have left index at the | |
651 | // end of the input, which should == length(). | |
652 | // | |
653 | len = utext_nativeLength(ut); | |
654 | foundIndex = utext_getNativeIndex(ut); | |
655 | TEST_ASSERT(len == foundIndex); | |
656 | ||
657 | // | |
658 | // Iterate backwards over entire test string | |
659 | // | |
660 | len = utext_getNativeIndex(ut); | |
661 | utext_setNativeIndex(ut, len); | |
662 | for (i=cpCount-1; i>=0; i--) { | |
663 | expectedC = cpMap[i].cp; | |
664 | expectedIndex = cpMap[i].nativeIdx; | |
665 | int64_t prevIndex = utext_getPreviousNativeIndex(ut); | |
666 | foundC = utext_previous32(ut); | |
667 | foundIndex = utext_getNativeIndex(ut); | |
668 | TEST_ASSERT(expectedIndex == foundIndex); | |
669 | TEST_ASSERT(expectedC == foundC); | |
670 | TEST_ASSERT(prevIndex == foundIndex); | |
671 | if (gFailed) { | |
672 | return; | |
673 | } | |
674 | } | |
675 | ||
676 | // | |
677 | // Backwards iteration, above, should have left our iterator | |
678 | // position at zero, and continued backwards iterationshould fail. | |
679 | // | |
680 | foundIndex = utext_getNativeIndex(ut); | |
681 | TEST_ASSERT(foundIndex == 0); | |
682 | foundIndex = utext_getPreviousNativeIndex(ut); | |
683 | TEST_ASSERT(foundIndex == 0); | |
684 | ||
685 | ||
686 | foundC = utext_previous32(ut); | |
687 | TEST_ASSERT(foundC == U_SENTINEL); | |
688 | foundIndex = utext_getNativeIndex(ut); | |
689 | TEST_ASSERT(foundIndex == 0); | |
690 | foundIndex = utext_getPreviousNativeIndex(ut); | |
691 | TEST_ASSERT(foundIndex == 0); | |
692 | ||
693 | ||
694 | // And again, with the macros | |
695 | utext_setNativeIndex(ut, len); | |
696 | for (i=cpCount-1; i>=0; i--) { | |
697 | expectedC = cpMap[i].cp; | |
698 | expectedIndex = cpMap[i].nativeIdx; | |
699 | foundC = UTEXT_PREVIOUS32(ut); | |
700 | foundIndex = UTEXT_GETNATIVEINDEX(ut); | |
701 | TEST_ASSERT(expectedIndex == foundIndex); | |
702 | TEST_ASSERT(expectedC == foundC); | |
703 | if (gFailed) { | |
704 | return; | |
705 | } | |
706 | } | |
707 | ||
708 | // | |
709 | // Backwards iteration, above, should have left our iterator | |
710 | // position at zero, and continued backwards iterationshould fail. | |
711 | // | |
712 | foundIndex = UTEXT_GETNATIVEINDEX(ut); | |
713 | TEST_ASSERT(foundIndex == 0); | |
714 | ||
715 | foundC = UTEXT_PREVIOUS32(ut); | |
716 | TEST_ASSERT(foundC == U_SENTINEL); | |
717 | foundIndex = UTEXT_GETNATIVEINDEX(ut); | |
718 | TEST_ASSERT(foundIndex == 0); | |
719 | if (gFailed) { | |
720 | return; | |
721 | } | |
722 | ||
723 | // | |
724 | // next32From(), prevous32From(), Iterate in a somewhat random order. | |
725 | // | |
726 | int cpIndex = 0; | |
727 | for (i=0; i<cpCount; i++) { | |
728 | cpIndex = (cpIndex + 9973) % cpCount; | |
729 | index = cpMap[cpIndex].nativeIdx; | |
730 | expectedC = cpMap[cpIndex].cp; | |
731 | foundC = utext_next32From(ut, index); | |
732 | TEST_ASSERT(expectedC == foundC); | |
733 | if (gFailed) { | |
734 | return; | |
735 | } | |
736 | } | |
737 | ||
738 | cpIndex = 0; | |
739 | for (i=0; i<cpCount; i++) { | |
740 | cpIndex = (cpIndex + 9973) % cpCount; | |
741 | index = cpMap[cpIndex+1].nativeIdx; | |
742 | expectedC = cpMap[cpIndex].cp; | |
743 | foundC = utext_previous32From(ut, index); | |
744 | TEST_ASSERT(expectedC == foundC); | |
745 | if (gFailed) { | |
746 | return; | |
747 | } | |
748 | } | |
749 | ||
750 | ||
751 | // | |
752 | // moveIndex(int32_t delta); | |
753 | // | |
754 | ||
755 | // Walk through frontwards, incrementing by one | |
756 | utext_setNativeIndex(ut, 0); | |
757 | for (i=1; i<=cpCount; i++) { | |
758 | utext_moveIndex32(ut, 1); | |
759 | index = utext_getNativeIndex(ut); | |
760 | expectedIndex = cpMap[i].nativeIdx; | |
761 | TEST_ASSERT(expectedIndex == index); | |
762 | index = UTEXT_GETNATIVEINDEX(ut); | |
763 | TEST_ASSERT(expectedIndex == index); | |
764 | } | |
765 | ||
766 | // Walk through frontwards, incrementing by two | |
767 | utext_setNativeIndex(ut, 0); | |
768 | for (i=2; i<cpCount; i+=2) { | |
769 | utext_moveIndex32(ut, 2); | |
770 | index = utext_getNativeIndex(ut); | |
771 | expectedIndex = cpMap[i].nativeIdx; | |
772 | TEST_ASSERT(expectedIndex == index); | |
773 | index = UTEXT_GETNATIVEINDEX(ut); | |
774 | TEST_ASSERT(expectedIndex == index); | |
775 | } | |
776 | ||
777 | // walk through the string backwards, decrementing by one. | |
778 | i = cpMap[cpCount].nativeIdx; | |
779 | utext_setNativeIndex(ut, i); | |
780 | for (i=cpCount; i>=0; i--) { | |
781 | expectedIndex = cpMap[i].nativeIdx; | |
782 | index = utext_getNativeIndex(ut); | |
783 | TEST_ASSERT(expectedIndex == index); | |
784 | index = UTEXT_GETNATIVEINDEX(ut); | |
785 | TEST_ASSERT(expectedIndex == index); | |
786 | utext_moveIndex32(ut, -1); | |
787 | } | |
788 | ||
789 | ||
790 | // walk through backwards, decrementing by three | |
791 | i = cpMap[cpCount].nativeIdx; | |
792 | utext_setNativeIndex(ut, i); | |
793 | for (i=cpCount; i>=0; i-=3) { | |
794 | expectedIndex = cpMap[i].nativeIdx; | |
795 | index = utext_getNativeIndex(ut); | |
796 | TEST_ASSERT(expectedIndex == index); | |
797 | index = UTEXT_GETNATIVEINDEX(ut); | |
798 | TEST_ASSERT(expectedIndex == index); | |
799 | utext_moveIndex32(ut, -3); | |
800 | } | |
801 | ||
802 | ||
803 | // | |
804 | // Extract | |
805 | // | |
806 | int bufSize = us.length() + 10; | |
807 | UChar *buf = new UChar[bufSize]; | |
808 | status = U_ZERO_ERROR; | |
809 | expectedLen = us.length(); | |
810 | len = utext_extract(ut, 0, utlen, buf, bufSize, &status); | |
811 | TEST_SUCCESS(status); | |
812 | TEST_ASSERT(len == expectedLen); | |
813 | int compareResult = us.compare(buf, -1); | |
814 | TEST_ASSERT(compareResult == 0); | |
815 | ||
816 | status = U_ZERO_ERROR; | |
817 | len = utext_extract(ut, 0, utlen, NULL, 0, &status); | |
818 | if (utlen == 0) { | |
819 | TEST_ASSERT(status == U_STRING_NOT_TERMINATED_WARNING); | |
820 | } else { | |
821 | TEST_ASSERT(status == U_BUFFER_OVERFLOW_ERROR); | |
822 | } | |
823 | TEST_ASSERT(len == expectedLen); | |
824 | ||
825 | status = U_ZERO_ERROR; | |
826 | u_memset(buf, 0x5555, bufSize); | |
827 | len = utext_extract(ut, 0, utlen, buf, 1, &status); | |
828 | if (us.length() == 0) { | |
829 | TEST_SUCCESS(status); | |
830 | TEST_ASSERT(buf[0] == 0); | |
831 | } else { | |
832 | // Buf len == 1, extracting a single 16 bit value. | |
833 | // If the data char is supplementary, it doesn't matter whether the buffer remains unchanged, | |
834 | // or whether the lead surrogate of the pair is extracted. | |
835 | // It's a buffer overflow error in either case. | |
836 | TEST_ASSERT(buf[0] == us.charAt(0) || | |
729e4ab9 | 837 | (buf[0] == 0x5555 && U_IS_SUPPLEMENTARY(us.char32At(0)))); |
73c04bcf A |
838 | TEST_ASSERT(buf[1] == 0x5555); |
839 | if (us.length() == 1) { | |
840 | TEST_ASSERT(status == U_STRING_NOT_TERMINATED_WARNING); | |
841 | } else { | |
842 | TEST_ASSERT(status == U_BUFFER_OVERFLOW_ERROR); | |
843 | } | |
844 | } | |
845 | ||
846 | delete []buf; | |
847 | } | |
848 | ||
73c04bcf A |
849 | // |
850 | // ErrorTest() Check various error and edge cases. | |
851 | // | |
57a6839d | 852 | void UTextTest::ErrorTest() |
73c04bcf A |
853 | { |
854 | // Close of an unitialized UText. Shouldn't blow up. | |
855 | { | |
57a6839d | 856 | UText ut; |
73c04bcf A |
857 | memset(&ut, 0, sizeof(UText)); |
858 | utext_close(&ut); | |
859 | utext_close(NULL); | |
860 | } | |
861 | ||
862 | // Double-close of a UText. Shouldn't blow up. UText should still be usable. | |
863 | { | |
864 | UErrorCode status = U_ZERO_ERROR; | |
865 | UText ut = UTEXT_INITIALIZER; | |
866 | UnicodeString s("Hello, World"); | |
867 | UText *ut2 = utext_openUnicodeString(&ut, &s, &status); | |
868 | TEST_SUCCESS(status); | |
869 | TEST_ASSERT(ut2 == &ut); | |
870 | ||
871 | UText *ut3 = utext_close(&ut); | |
872 | TEST_ASSERT(ut3 == &ut); | |
873 | ||
874 | UText *ut4 = utext_close(&ut); | |
875 | TEST_ASSERT(ut4 == &ut); | |
876 | ||
877 | utext_openUnicodeString(&ut, &s, &status); | |
878 | TEST_SUCCESS(status); | |
879 | utext_close(&ut); | |
880 | } | |
881 | ||
882 | // Re-use of a UText, chaining through each of the types of UText | |
883 | // (If it doesn't blow up, and doesn't leak, it's probably working fine) | |
884 | { | |
885 | UErrorCode status = U_ZERO_ERROR; | |
886 | UText ut = UTEXT_INITIALIZER; | |
887 | UText *utp; | |
888 | UnicodeString s1("Hello, World"); | |
889 | UChar s2[] = {(UChar)0x41, (UChar)0x42, (UChar)0}; | |
890 | const char *s3 = "\x66\x67\x68"; | |
891 | ||
892 | utp = utext_openUnicodeString(&ut, &s1, &status); | |
893 | TEST_SUCCESS(status); | |
894 | TEST_ASSERT(utp == &ut); | |
895 | ||
896 | utp = utext_openConstUnicodeString(&ut, &s1, &status); | |
897 | TEST_SUCCESS(status); | |
898 | TEST_ASSERT(utp == &ut); | |
899 | ||
900 | utp = utext_openUTF8(&ut, s3, -1, &status); | |
901 | TEST_SUCCESS(status); | |
902 | TEST_ASSERT(utp == &ut); | |
903 | ||
904 | utp = utext_openUChars(&ut, s2, -1, &status); | |
905 | TEST_SUCCESS(status); | |
906 | TEST_ASSERT(utp == &ut); | |
907 | ||
908 | utp = utext_close(&ut); | |
909 | TEST_ASSERT(utp == &ut); | |
910 | ||
911 | utp = utext_openUnicodeString(&ut, &s1, &status); | |
912 | TEST_SUCCESS(status); | |
913 | TEST_ASSERT(utp == &ut); | |
914 | } | |
915 | ||
729e4ab9 A |
916 | // Invalid parameters on open |
917 | // | |
918 | { | |
919 | UErrorCode status = U_ZERO_ERROR; | |
920 | UText ut = UTEXT_INITIALIZER; | |
57a6839d | 921 | |
729e4ab9 A |
922 | utext_openUChars(&ut, NULL, 5, &status); |
923 | TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR); | |
924 | ||
925 | status = U_ZERO_ERROR; | |
926 | utext_openUChars(&ut, NULL, -1, &status); | |
927 | TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR); | |
928 | ||
929 | status = U_ZERO_ERROR; | |
930 | utext_openUTF8(&ut, NULL, 4, &status); | |
931 | TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR); | |
932 | ||
933 | status = U_ZERO_ERROR; | |
934 | utext_openUTF8(&ut, NULL, -1, &status); | |
935 | TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR); | |
936 | } | |
937 | ||
73c04bcf A |
938 | // |
939 | // UTF-8 with malformed sequences. | |
940 | // These should come through as the Unicode replacement char, \ufffd | |
941 | // | |
942 | { | |
943 | UErrorCode status = U_ZERO_ERROR; | |
944 | UText *ut = NULL; | |
57a6839d | 945 | const char *badUTF8 = "\x41\x81\x42\xf0\x81\x81\x43"; |
73c04bcf A |
946 | UChar32 c; |
947 | ||
948 | ut = utext_openUTF8(NULL, badUTF8, -1, &status); | |
949 | TEST_SUCCESS(status); | |
950 | c = utext_char32At(ut, 1); | |
951 | TEST_ASSERT(c == 0xfffd); | |
952 | c = utext_char32At(ut, 3); | |
953 | TEST_ASSERT(c == 0xfffd); | |
954 | c = utext_char32At(ut, 5); | |
955 | TEST_ASSERT(c == 0xfffd); | |
956 | c = utext_char32At(ut, 6); | |
957 | TEST_ASSERT(c == 0x43); | |
958 | ||
959 | UChar buf[10]; | |
960 | int n = utext_extract(ut, 0, 9, buf, 10, &status); | |
961 | TEST_SUCCESS(status); | |
962 | TEST_ASSERT(n==5); | |
963 | TEST_ASSERT(buf[1] == 0xfffd); | |
964 | TEST_ASSERT(buf[3] == 0xfffd); | |
965 | TEST_ASSERT(buf[2] == 0x42); | |
966 | utext_close(ut); | |
967 | } | |
968 | ||
969 | ||
970 | // | |
971 | // isLengthExpensive - does it make the exptected transitions after | |
972 | // getting the length of a nul terminated string? | |
973 | // | |
974 | { | |
975 | UErrorCode status = U_ZERO_ERROR; | |
976 | UnicodeString sa("Hello, this is a string"); | |
977 | UBool isExpensive; | |
978 | ||
979 | UChar sb[100]; | |
980 | memset(sb, 0x20, sizeof(sb)); | |
981 | sb[99] = 0; | |
982 | ||
983 | UText *uta = utext_openUnicodeString(NULL, &sa, &status); | |
984 | TEST_SUCCESS(status); | |
985 | isExpensive = utext_isLengthExpensive(uta); | |
986 | TEST_ASSERT(isExpensive == FALSE); | |
987 | utext_close(uta); | |
988 | ||
989 | UText *utb = utext_openUChars(NULL, sb, -1, &status); | |
990 | TEST_SUCCESS(status); | |
991 | isExpensive = utext_isLengthExpensive(utb); | |
992 | TEST_ASSERT(isExpensive == TRUE); | |
993 | int64_t len = utext_nativeLength(utb); | |
994 | TEST_ASSERT(len == 99); | |
995 | isExpensive = utext_isLengthExpensive(utb); | |
996 | TEST_ASSERT(isExpensive == FALSE); | |
997 | utext_close(utb); | |
998 | } | |
999 | ||
1000 | // | |
1001 | // Index to positions not on code point boundaries. | |
1002 | // | |
1003 | { | |
1004 | const char *u8str = "\xc8\x81\xe1\x82\x83\xf1\x84\x85\x86"; | |
1005 | int32_t startMap[] = { 0, 0, 2, 2, 2, 5, 5, 5, 5, 9, 9}; | |
1006 | int32_t nextMap[] = { 2, 2, 5, 5, 5, 9, 9, 9, 9, 9, 9}; | |
1007 | int32_t prevMap[] = { 0, 0, 0, 0, 0, 2, 2, 2, 2, 5, 5}; | |
57a6839d A |
1008 | UChar32 c32Map[] = {0x201, 0x201, 0x1083, 0x1083, 0x1083, 0x044146, 0x044146, 0x044146, 0x044146, -1, -1}; |
1009 | UChar32 pr32Map[] = { -1, -1, 0x201, 0x201, 0x201, 0x1083, 0x1083, 0x1083, 0x1083, 0x044146, 0x044146}; | |
73c04bcf A |
1010 | |
1011 | // extractLen is the size, in UChars, of what will be extracted between index and index+1. | |
1012 | // is zero when both index positions lie within the same code point. | |
1013 | int32_t exLen[] = { 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0}; | |
1014 | ||
1015 | ||
1016 | UErrorCode status = U_ZERO_ERROR; | |
1017 | UText *ut = utext_openUTF8(NULL, u8str, -1, &status); | |
1018 | TEST_SUCCESS(status); | |
1019 | ||
1020 | // Check setIndex | |
1021 | int32_t i; | |
2ca993e8 | 1022 | int32_t startMapLimit = UPRV_LENGTHOF(startMap); |
73c04bcf A |
1023 | for (i=0; i<startMapLimit; i++) { |
1024 | utext_setNativeIndex(ut, i); | |
1025 | int64_t cpIndex = utext_getNativeIndex(ut); | |
1026 | TEST_ASSERT(cpIndex == startMap[i]); | |
1027 | cpIndex = UTEXT_GETNATIVEINDEX(ut); | |
1028 | TEST_ASSERT(cpIndex == startMap[i]); | |
1029 | } | |
1030 | ||
1031 | // Check char32At | |
1032 | for (i=0; i<startMapLimit; i++) { | |
1033 | UChar32 c32 = utext_char32At(ut, i); | |
1034 | TEST_ASSERT(c32 == c32Map[i]); | |
1035 | int64_t cpIndex = utext_getNativeIndex(ut); | |
1036 | TEST_ASSERT(cpIndex == startMap[i]); | |
1037 | } | |
1038 | ||
1039 | // Check utext_next32From | |
1040 | for (i=0; i<startMapLimit; i++) { | |
1041 | UChar32 c32 = utext_next32From(ut, i); | |
1042 | TEST_ASSERT(c32 == c32Map[i]); | |
1043 | int64_t cpIndex = utext_getNativeIndex(ut); | |
1044 | TEST_ASSERT(cpIndex == nextMap[i]); | |
1045 | } | |
57a6839d | 1046 | |
73c04bcf A |
1047 | // check utext_previous32From |
1048 | for (i=0; i<startMapLimit; i++) { | |
1049 | gTestNum++; | |
1050 | UChar32 c32 = utext_previous32From(ut, i); | |
1051 | TEST_ASSERT(c32 == pr32Map[i]); | |
1052 | int64_t cpIndex = utext_getNativeIndex(ut); | |
1053 | TEST_ASSERT(cpIndex == prevMap[i]); | |
1054 | } | |
1055 | ||
1056 | // check Extract | |
1057 | // Extract from i to i+1, which may be zero or one code points, | |
1058 | // depending on whether the indices straddle a cp boundary. | |
1059 | for (i=0; i<startMapLimit; i++) { | |
1060 | UChar buf[3]; | |
1061 | status = U_ZERO_ERROR; | |
1062 | int32_t extractedLen = utext_extract(ut, i, i+1, buf, 3, &status); | |
1063 | TEST_SUCCESS(status); | |
1064 | TEST_ASSERT(extractedLen == exLen[i]); | |
1065 | if (extractedLen > 0) { | |
1066 | UChar32 c32; | |
46f4442e A |
1067 | /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */ |
1068 | U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32); | |
73c04bcf A |
1069 | TEST_ASSERT(c32 == c32Map[i]); |
1070 | } | |
1071 | } | |
1072 | ||
1073 | utext_close(ut); | |
1074 | } | |
1075 | ||
1076 | ||
1077 | { // Similar test, with utf16 instead of utf8 | |
1078 | // TODO: merge the common parts of these tests. | |
57a6839d | 1079 | |
46f4442e | 1080 | UnicodeString u16str("\\u1000\\U00011000\\u2000\\U00022000", -1, US_INV); |
73c04bcf A |
1081 | int32_t startMap[] ={ 0, 1, 1, 3, 4, 4, 6, 6}; |
1082 | int32_t nextMap[] = { 1, 3, 3, 4, 6, 6, 6, 6}; | |
1083 | int32_t prevMap[] = { 0, 0, 0, 1, 3, 3, 4, 4}; | |
57a6839d A |
1084 | UChar32 c32Map[] = {0x1000, 0x11000, 0x11000, 0x2000, 0x22000, 0x22000, -1, -1}; |
1085 | UChar32 pr32Map[] = { -1, 0x1000, 0x1000, 0x11000, 0x2000, 0x2000, 0x22000, 0x22000}; | |
73c04bcf A |
1086 | int32_t exLen[] = { 1, 0, 2, 1, 0, 2, 0, 0,}; |
1087 | ||
1088 | u16str = u16str.unescape(); | |
1089 | UErrorCode status = U_ZERO_ERROR; | |
1090 | UText *ut = utext_openUnicodeString(NULL, &u16str, &status); | |
1091 | TEST_SUCCESS(status); | |
1092 | ||
2ca993e8 | 1093 | int32_t startMapLimit = UPRV_LENGTHOF(startMap); |
73c04bcf A |
1094 | int i; |
1095 | for (i=0; i<startMapLimit; i++) { | |
1096 | utext_setNativeIndex(ut, i); | |
1097 | int64_t cpIndex = utext_getNativeIndex(ut); | |
1098 | TEST_ASSERT(cpIndex == startMap[i]); | |
1099 | } | |
1100 | ||
1101 | // Check char32At | |
1102 | for (i=0; i<startMapLimit; i++) { | |
1103 | UChar32 c32 = utext_char32At(ut, i); | |
1104 | TEST_ASSERT(c32 == c32Map[i]); | |
1105 | int64_t cpIndex = utext_getNativeIndex(ut); | |
1106 | TEST_ASSERT(cpIndex == startMap[i]); | |
1107 | } | |
1108 | ||
1109 | // Check utext_next32From | |
1110 | for (i=0; i<startMapLimit; i++) { | |
1111 | UChar32 c32 = utext_next32From(ut, i); | |
1112 | TEST_ASSERT(c32 == c32Map[i]); | |
1113 | int64_t cpIndex = utext_getNativeIndex(ut); | |
1114 | TEST_ASSERT(cpIndex == nextMap[i]); | |
1115 | } | |
57a6839d | 1116 | |
73c04bcf A |
1117 | // check utext_previous32From |
1118 | for (i=0; i<startMapLimit; i++) { | |
1119 | UChar32 c32 = utext_previous32From(ut, i); | |
1120 | TEST_ASSERT(c32 == pr32Map[i]); | |
1121 | int64_t cpIndex = utext_getNativeIndex(ut); | |
1122 | TEST_ASSERT(cpIndex == prevMap[i]); | |
1123 | } | |
1124 | ||
1125 | // check Extract | |
1126 | // Extract from i to i+1, which may be zero or one code points, | |
1127 | // depending on whether the indices straddle a cp boundary. | |
1128 | for (i=0; i<startMapLimit; i++) { | |
1129 | UChar buf[3]; | |
1130 | status = U_ZERO_ERROR; | |
1131 | int32_t extractedLen = utext_extract(ut, i, i+1, buf, 3, &status); | |
1132 | TEST_SUCCESS(status); | |
1133 | TEST_ASSERT(extractedLen == exLen[i]); | |
1134 | if (extractedLen > 0) { | |
1135 | UChar32 c32; | |
46f4442e A |
1136 | /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */ |
1137 | U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32); | |
73c04bcf A |
1138 | TEST_ASSERT(c32 == c32Map[i]); |
1139 | } | |
1140 | } | |
1141 | ||
1142 | utext_close(ut); | |
1143 | } | |
1144 | ||
1145 | { // Similar test, with UText over Replaceable | |
1146 | // TODO: merge the common parts of these tests. | |
57a6839d | 1147 | |
46f4442e | 1148 | UnicodeString u16str("\\u1000\\U00011000\\u2000\\U00022000", -1, US_INV); |
73c04bcf A |
1149 | int32_t startMap[] ={ 0, 1, 1, 3, 4, 4, 6, 6}; |
1150 | int32_t nextMap[] = { 1, 3, 3, 4, 6, 6, 6, 6}; | |
1151 | int32_t prevMap[] = { 0, 0, 0, 1, 3, 3, 4, 4}; | |
57a6839d A |
1152 | UChar32 c32Map[] = {0x1000, 0x11000, 0x11000, 0x2000, 0x22000, 0x22000, -1, -1}; |
1153 | UChar32 pr32Map[] = { -1, 0x1000, 0x1000, 0x11000, 0x2000, 0x2000, 0x22000, 0x22000}; | |
73c04bcf A |
1154 | int32_t exLen[] = { 1, 0, 2, 1, 0, 2, 0, 0,}; |
1155 | ||
1156 | u16str = u16str.unescape(); | |
1157 | UErrorCode status = U_ZERO_ERROR; | |
1158 | UText *ut = utext_openReplaceable(NULL, &u16str, &status); | |
1159 | TEST_SUCCESS(status); | |
1160 | ||
2ca993e8 | 1161 | int32_t startMapLimit = UPRV_LENGTHOF(startMap); |
73c04bcf A |
1162 | int i; |
1163 | for (i=0; i<startMapLimit; i++) { | |
1164 | utext_setNativeIndex(ut, i); | |
1165 | int64_t cpIndex = utext_getNativeIndex(ut); | |
1166 | TEST_ASSERT(cpIndex == startMap[i]); | |
1167 | } | |
1168 | ||
1169 | // Check char32At | |
1170 | for (i=0; i<startMapLimit; i++) { | |
1171 | UChar32 c32 = utext_char32At(ut, i); | |
1172 | TEST_ASSERT(c32 == c32Map[i]); | |
1173 | int64_t cpIndex = utext_getNativeIndex(ut); | |
1174 | TEST_ASSERT(cpIndex == startMap[i]); | |
1175 | } | |
1176 | ||
1177 | // Check utext_next32From | |
1178 | for (i=0; i<startMapLimit; i++) { | |
1179 | UChar32 c32 = utext_next32From(ut, i); | |
1180 | TEST_ASSERT(c32 == c32Map[i]); | |
1181 | int64_t cpIndex = utext_getNativeIndex(ut); | |
1182 | TEST_ASSERT(cpIndex == nextMap[i]); | |
1183 | } | |
57a6839d | 1184 | |
73c04bcf A |
1185 | // check utext_previous32From |
1186 | for (i=0; i<startMapLimit; i++) { | |
1187 | UChar32 c32 = utext_previous32From(ut, i); | |
1188 | TEST_ASSERT(c32 == pr32Map[i]); | |
1189 | int64_t cpIndex = utext_getNativeIndex(ut); | |
1190 | TEST_ASSERT(cpIndex == prevMap[i]); | |
1191 | } | |
1192 | ||
1193 | // check Extract | |
1194 | // Extract from i to i+1, which may be zero or one code points, | |
1195 | // depending on whether the indices straddle a cp boundary. | |
1196 | for (i=0; i<startMapLimit; i++) { | |
1197 | UChar buf[3]; | |
1198 | status = U_ZERO_ERROR; | |
1199 | int32_t extractedLen = utext_extract(ut, i, i+1, buf, 3, &status); | |
1200 | TEST_SUCCESS(status); | |
1201 | TEST_ASSERT(extractedLen == exLen[i]); | |
1202 | if (extractedLen > 0) { | |
1203 | UChar32 c32; | |
46f4442e A |
1204 | /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */ |
1205 | U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32); | |
73c04bcf A |
1206 | TEST_ASSERT(c32 == c32Map[i]); |
1207 | } | |
1208 | } | |
1209 | ||
1210 | utext_close(ut); | |
1211 | } | |
1212 | } | |
1213 | ||
1214 | ||
1215 | void UTextTest::FreezeTest() { | |
1216 | // Check isWritable() and freeze() behavior. | |
1217 | // | |
1218 | ||
1219 | UnicodeString ustr("Hello, World."); | |
57a6839d | 1220 | const char u8str[] = {char(0x31), (char)0x32, (char)0x33, 0}; |
73c04bcf A |
1221 | const UChar u16str[] = {(UChar)0x31, (UChar)0x32, (UChar)0x44, 0}; |
1222 | ||
1223 | UErrorCode status = U_ZERO_ERROR; | |
1224 | UText *ut = NULL; | |
1225 | UText *ut2 = NULL; | |
1226 | ||
1227 | ut = utext_openUTF8(ut, u8str, -1, &status); | |
1228 | TEST_SUCCESS(status); | |
1229 | UBool writable = utext_isWritable(ut); | |
1230 | TEST_ASSERT(writable == FALSE); | |
1231 | utext_copy(ut, 1, 2, 0, TRUE, &status); | |
1232 | TEST_ASSERT(status == U_NO_WRITE_PERMISSION); | |
1233 | ||
1234 | status = U_ZERO_ERROR; | |
1235 | ut = utext_openUChars(ut, u16str, -1, &status); | |
1236 | TEST_SUCCESS(status); | |
1237 | writable = utext_isWritable(ut); | |
1238 | TEST_ASSERT(writable == FALSE); | |
1239 | utext_copy(ut, 1, 2, 0, TRUE, &status); | |
1240 | TEST_ASSERT(status == U_NO_WRITE_PERMISSION); | |
1241 | ||
1242 | status = U_ZERO_ERROR; | |
1243 | ut = utext_openUnicodeString(ut, &ustr, &status); | |
1244 | TEST_SUCCESS(status); | |
1245 | writable = utext_isWritable(ut); | |
1246 | TEST_ASSERT(writable == TRUE); | |
1247 | utext_freeze(ut); | |
1248 | writable = utext_isWritable(ut); | |
1249 | TEST_ASSERT(writable == FALSE); | |
1250 | utext_copy(ut, 1, 2, 0, TRUE, &status); | |
1251 | TEST_ASSERT(status == U_NO_WRITE_PERMISSION); | |
57a6839d | 1252 | |
73c04bcf A |
1253 | status = U_ZERO_ERROR; |
1254 | ut = utext_openUnicodeString(ut, &ustr, &status); | |
1255 | TEST_SUCCESS(status); | |
1256 | ut2 = utext_clone(ut2, ut, FALSE, FALSE, &status); // clone with readonly = false | |
1257 | TEST_SUCCESS(status); | |
1258 | writable = utext_isWritable(ut2); | |
1259 | TEST_ASSERT(writable == TRUE); | |
1260 | ut2 = utext_clone(ut2, ut, FALSE, TRUE, &status); // clone with readonly = true | |
1261 | TEST_SUCCESS(status); | |
1262 | writable = utext_isWritable(ut2); | |
1263 | TEST_ASSERT(writable == FALSE); | |
1264 | utext_copy(ut2, 1, 2, 0, TRUE, &status); | |
1265 | TEST_ASSERT(status == U_NO_WRITE_PERMISSION); | |
1266 | ||
1267 | status = U_ZERO_ERROR; | |
1268 | ut = utext_openConstUnicodeString(ut, (const UnicodeString *)&ustr, &status); | |
1269 | TEST_SUCCESS(status); | |
1270 | writable = utext_isWritable(ut); | |
1271 | TEST_ASSERT(writable == FALSE); | |
1272 | utext_copy(ut, 1, 2, 0, TRUE, &status); | |
1273 | TEST_ASSERT(status == U_NO_WRITE_PERMISSION); | |
1274 | ||
1275 | // Deep Clone of a frozen UText should re-enable writing in the copy. | |
1276 | status = U_ZERO_ERROR; | |
1277 | ut = utext_openUnicodeString(ut, &ustr, &status); | |
1278 | TEST_SUCCESS(status); | |
1279 | utext_freeze(ut); | |
1280 | ut2 = utext_clone(ut2, ut, TRUE, FALSE, &status); // deep clone | |
1281 | TEST_SUCCESS(status); | |
1282 | writable = utext_isWritable(ut2); | |
1283 | TEST_ASSERT(writable == TRUE); | |
1284 | ||
1285 | ||
1286 | // Deep clone of a frozen UText, where the base type is intrinsically non-writable, | |
1287 | // should NOT enable writing in the copy. | |
1288 | status = U_ZERO_ERROR; | |
1289 | ut = utext_openUChars(ut, u16str, -1, &status); | |
1290 | TEST_SUCCESS(status); | |
1291 | utext_freeze(ut); | |
1292 | ut2 = utext_clone(ut2, ut, TRUE, FALSE, &status); // deep clone | |
1293 | TEST_SUCCESS(status); | |
1294 | writable = utext_isWritable(ut2); | |
1295 | TEST_ASSERT(writable == FALSE); | |
1296 | ||
1297 | // cleanup | |
1298 | utext_close(ut); | |
1299 | utext_close(ut2); | |
1300 | } | |
1301 | ||
1302 | ||
1303 | // | |
1304 | // Fragmented UText | |
1305 | // A UText type that works with a chunk size of 1. | |
1306 | // Intended to test for edge cases. | |
1307 | // Input comes from a UnicodeString. | |
1308 | // | |
1309 | // ut.b the character. Put into both halves. | |
1310 | // | |
1311 | ||
1312 | U_CDECL_BEGIN | |
1313 | static UBool U_CALLCONV | |
1314 | fragTextAccess(UText *ut, int64_t index, UBool forward) { | |
1315 | const UnicodeString *us = (const UnicodeString *)ut->context; | |
1316 | UChar c; | |
1317 | int32_t length = us->length(); | |
1318 | if (forward && index>=0 && index<length) { | |
1319 | c = us->charAt((int32_t)index); | |
1320 | ut->b = c | c<<16; | |
1321 | ut->chunkOffset = 0; | |
1322 | ut->chunkLength = 1; | |
1323 | ut->chunkNativeStart = index; | |
1324 | ut->chunkNativeLimit = index+1; | |
1325 | return true; | |
1326 | } | |
1327 | if (!forward && index>0 && index <=length) { | |
1328 | c = us->charAt((int32_t)index-1); | |
1329 | ut->b = c | c<<16; | |
1330 | ut->chunkOffset = 1; | |
1331 | ut->chunkLength = 1; | |
1332 | ut->chunkNativeStart = index-1; | |
1333 | ut->chunkNativeLimit = index; | |
1334 | return true; | |
57a6839d | 1335 | } |
73c04bcf A |
1336 | ut->b = 0; |
1337 | ut->chunkOffset = 0; | |
1338 | ut->chunkLength = 0; | |
1339 | if (index <= 0) { | |
1340 | ut->chunkNativeStart = 0; | |
1341 | ut->chunkNativeLimit = 0; | |
1342 | } else { | |
1343 | ut->chunkNativeStart = length; | |
1344 | ut->chunkNativeLimit = length; | |
1345 | } | |
1346 | return false; | |
1347 | } | |
73c04bcf A |
1348 | |
1349 | // Function table to be used with this fragmented text provider. | |
1350 | // Initialized in the open function. | |
46f4442e A |
1351 | static UTextFuncs fragmentFuncs; |
1352 | ||
1353 | // Clone function for fragmented text provider. | |
1354 | // Didn't really want to provide this, but it's easier to provide it than to keep it | |
1355 | // out of the tests. | |
1356 | // | |
1357 | UText * | |
1358 | cloneFragmentedUnicodeString(UText *dest, const UText *src, UBool deep, UErrorCode *status) { | |
1359 | if (U_FAILURE(*status)) { | |
1360 | return NULL; | |
1361 | } | |
1362 | if (deep) { | |
1363 | *status = U_UNSUPPORTED_ERROR; | |
1364 | return NULL; | |
1365 | } | |
1366 | dest = utext_openUnicodeString(dest, (UnicodeString *)src->context, status); | |
1367 | utext_setNativeIndex(dest, utext_getNativeIndex(src)); | |
1368 | return dest; | |
1369 | } | |
1370 | ||
1371 | U_CDECL_END | |
73c04bcf A |
1372 | |
1373 | // Open function for the fragmented text provider. | |
1374 | UText * | |
1375 | openFragmentedUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status) { | |
1376 | ut = utext_openUnicodeString(ut, s, status); | |
1377 | if (U_FAILURE(*status)) { | |
1378 | return ut; | |
1379 | } | |
1380 | ||
1381 | // Copy of the function table from the stock UnicodeString UText, | |
1382 | // and replace the entry for the access function. | |
1383 | memcpy(&fragmentFuncs, ut->pFuncs, sizeof(fragmentFuncs)); | |
1384 | fragmentFuncs.access = fragTextAccess; | |
46f4442e | 1385 | fragmentFuncs.clone = cloneFragmentedUnicodeString; |
73c04bcf A |
1386 | ut->pFuncs = &fragmentFuncs; |
1387 | ||
1388 | ut->chunkContents = (UChar *)&ut->b; | |
1389 | ut->pFuncs->access(ut, 0, TRUE); | |
1390 | return ut; | |
1391 | } | |
1392 | ||
46f4442e A |
1393 | // Regression test for Ticket 5560 |
1394 | // Clone fails to update chunkContentPointer in the cloned copy. | |
1395 | // This is only an issue for UText types that work in a local buffer, | |
1396 | // (UTF-8 wrapper, for example) | |
1397 | // | |
1398 | // The test: | |
1399 | // 1. Create an inital UText | |
1400 | // 2. Deep clone it. Contents should match original. | |
1401 | // 3. Reset original to something different. | |
57a6839d | 1402 | // 4. Check that clone contents did not change. |
46f4442e A |
1403 | // |
1404 | void UTextTest::Ticket5560() { | |
1405 | /* The following two strings are in UTF-8 even on EBCDIC platforms. */ | |
1406 | static const char s1[] = {0x41,0x42,0x43,0x44,0x45,0x46,0}; /* "ABCDEF" */ | |
1407 | static const char s2[] = {0x31,0x32,0x33,0x34,0x35,0x36,0}; /* "123456" */ | |
1408 | UErrorCode status = U_ZERO_ERROR; | |
1409 | ||
1410 | UText ut1 = UTEXT_INITIALIZER; | |
1411 | UText ut2 = UTEXT_INITIALIZER; | |
1412 | ||
1413 | utext_openUTF8(&ut1, s1, -1, &status); | |
1414 | UChar c = utext_next32(&ut1); | |
1415 | TEST_ASSERT(c == 0x41); // c == 'A' | |
1416 | ||
1417 | utext_clone(&ut2, &ut1, TRUE, FALSE, &status); | |
1418 | TEST_SUCCESS(status); | |
1419 | c = utext_next32(&ut2); | |
1420 | TEST_ASSERT(c == 0x42); // c == 'B' | |
1421 | c = utext_next32(&ut1); | |
1422 | TEST_ASSERT(c == 0x42); // c == 'B' | |
1423 | ||
1424 | utext_openUTF8(&ut1, s2, -1, &status); | |
1425 | c = utext_next32(&ut1); | |
1426 | TEST_ASSERT(c == 0x31); // c == '1' | |
1427 | c = utext_next32(&ut2); | |
1428 | TEST_ASSERT(c == 0x43); // c == 'C' | |
1429 | ||
1430 | utext_close(&ut1); | |
1431 | utext_close(&ut2); | |
1432 | } | |
1433 | ||
1434 | ||
1435 | // Test for Ticket 6847 | |
1436 | // | |
1437 | void UTextTest::Ticket6847() { | |
1438 | const int STRLEN = 90; | |
1439 | UChar s[STRLEN+1]; | |
1440 | u_memset(s, 0x41, STRLEN); | |
1441 | s[STRLEN] = 0; | |
1442 | ||
1443 | UErrorCode status = U_ZERO_ERROR; | |
1444 | UText *ut = utext_openUChars(NULL, s, -1, &status); | |
1445 | ||
1446 | utext_setNativeIndex(ut, 0); | |
1447 | int32_t count = 0; | |
1448 | UChar32 c = 0; | |
4388f060 | 1449 | int64_t nativeIndex = UTEXT_GETNATIVEINDEX(ut); |
46f4442e A |
1450 | TEST_ASSERT(nativeIndex == 0); |
1451 | while ((c = utext_next32(ut)) != U_SENTINEL) { | |
1452 | TEST_ASSERT(c == 0x41); | |
1453 | TEST_ASSERT(count < STRLEN); | |
1454 | if (count >= STRLEN) { | |
1455 | break; | |
1456 | } | |
1457 | count++; | |
1458 | nativeIndex = UTEXT_GETNATIVEINDEX(ut); | |
1459 | TEST_ASSERT(nativeIndex == count); | |
1460 | } | |
1461 | TEST_ASSERT(count == STRLEN); | |
1462 | nativeIndex = UTEXT_GETNATIVEINDEX(ut); | |
1463 | TEST_ASSERT(nativeIndex == STRLEN); | |
1464 | utext_close(ut); | |
1465 | } | |
73c04bcf | 1466 | |
57a6839d A |
1467 | |
1468 | void UTextTest::Ticket10562() { | |
1469 | // Note: failures show as a heap error when the test is run under valgrind. | |
1470 | UErrorCode status = U_ZERO_ERROR; | |
1471 | ||
1472 | const char *utf8_string = "\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41"; | |
1473 | UText *utf8Text = utext_openUTF8(NULL, utf8_string, -1, &status); | |
1474 | TEST_SUCCESS(status); | |
1475 | UText *deepClone = utext_clone(NULL, utf8Text, TRUE, FALSE, &status); | |
1476 | TEST_SUCCESS(status); | |
1477 | UText *shallowClone = utext_clone(NULL, deepClone, FALSE, FALSE, &status); | |
1478 | TEST_SUCCESS(status); | |
1479 | utext_close(shallowClone); | |
1480 | utext_close(deepClone); | |
1481 | utext_close(utf8Text); | |
1482 | ||
1483 | status = U_ZERO_ERROR; | |
1484 | UnicodeString usString("Hello, World."); | |
1485 | UText *usText = utext_openUnicodeString(NULL, &usString, &status); | |
1486 | TEST_SUCCESS(status); | |
1487 | UText *usDeepClone = utext_clone(NULL, usText, TRUE, FALSE, &status); | |
1488 | TEST_SUCCESS(status); | |
1489 | UText *usShallowClone = utext_clone(NULL, usDeepClone, FALSE, FALSE, &status); | |
1490 | TEST_SUCCESS(status); | |
1491 | utext_close(usShallowClone); | |
1492 | utext_close(usDeepClone); | |
1493 | utext_close(usText); | |
1494 | } | |
1495 | ||
b331163b A |
1496 | |
1497 | void UTextTest::Ticket10983() { | |
1498 | // Note: failure shows as a seg fault when the defect is present. | |
1499 | ||
1500 | UErrorCode status = U_ZERO_ERROR; | |
1501 | UnicodeString s("Hello, World"); | |
1502 | UText *ut = utext_openConstUnicodeString(NULL, &s, &status); | |
1503 | TEST_SUCCESS(status); | |
1504 | ||
1505 | status = U_INVALID_STATE_ERROR; | |
1506 | UText *cloned = utext_clone(NULL, ut, TRUE, TRUE, &status); | |
1507 | TEST_ASSERT(cloned == NULL); | |
1508 | TEST_ASSERT(status == U_INVALID_STATE_ERROR); | |
1509 | ||
1510 | utext_close(ut); | |
1511 | } | |
2ca993e8 A |
1512 | |
1513 | // Ticket 12130 - extract on a UText wrapping a null terminated UChar * string | |
1514 | // leaves the iteration position set incorrectly when the | |
1515 | // actual string length is not yet known. | |
1516 | // | |
1517 | // The test text needs to be long enough that UText defers getting the length. | |
1518 | ||
1519 | void UTextTest::Ticket12130() { | |
1520 | UErrorCode status = U_ZERO_ERROR; | |
1521 | ||
1522 | const char *text8 = | |
1523 | "Fundamentally, computers just deal with numbers. They store letters and other characters " | |
1524 | "by assigning a number for each one. Before Unicode was invented, there were hundreds " | |
1525 | "of different encoding systems for assigning these numbers. No single encoding could " | |
1526 | "contain enough characters: for example, the European Union alone requires several " | |
1527 | "different encodings to cover all its languages. Even for a single language like " | |
1528 | "English no single encoding was adequate for all the letters, punctuation, and technical " | |
1529 | "symbols in common use."; | |
1530 | ||
1531 | UnicodeString str(text8); | |
1532 | const UChar *ustr = str.getTerminatedBuffer(); | |
1533 | UText ut = UTEXT_INITIALIZER; | |
1534 | utext_openUChars(&ut, ustr, -1, &status); | |
1535 | UChar extractBuffer[50]; | |
1536 | ||
1537 | for (int32_t startIdx = 0; startIdx<str.length(); ++startIdx) { | |
1538 | int32_t endIdx = startIdx + 20; | |
1539 | ||
1540 | u_memset(extractBuffer, 0, UPRV_LENGTHOF(extractBuffer)); | |
1541 | utext_extract(&ut, startIdx, endIdx, extractBuffer, UPRV_LENGTHOF(extractBuffer), &status); | |
1542 | if (U_FAILURE(status)) { | |
1543 | errln("%s:%d %s", __FILE__, __LINE__, u_errorName(status)); | |
1544 | return; | |
1545 | } | |
1546 | int64_t ni = utext_getNativeIndex(&ut); | |
1547 | int64_t expectedni = startIdx + 20; | |
1548 | if (expectedni > str.length()) { | |
1549 | expectedni = str.length(); | |
1550 | } | |
1551 | if (expectedni != ni) { | |
1552 | errln("%s:%d utext_getNativeIndex() expected %d, got %d", __FILE__, __LINE__, expectedni, ni); | |
1553 | } | |
1554 | if (0 != str.tempSubString(startIdx, 20).compare(extractBuffer)) { | |
1555 | errln("%s:%d utext_extract() failed. expected \"%s\", got \"%s\"", | |
1556 | __FILE__, __LINE__, CStr(str.tempSubString(startIdx, 20))(), CStr(UnicodeString(extractBuffer))()); | |
1557 | } | |
1558 | } | |
1559 | utext_close(&ut); | |
1560 | ||
1561 | // Similar utext extract, this time with the string length provided to the UText in advance, | |
1562 | // and a buffer of larger than required capacity. | |
1563 | ||
1564 | utext_openUChars(&ut, ustr, str.length(), &status); | |
1565 | for (int32_t startIdx = 0; startIdx<str.length(); ++startIdx) { | |
1566 | int32_t endIdx = startIdx + 20; | |
1567 | u_memset(extractBuffer, 0, UPRV_LENGTHOF(extractBuffer)); | |
1568 | utext_extract(&ut, startIdx, endIdx, extractBuffer, UPRV_LENGTHOF(extractBuffer), &status); | |
1569 | if (U_FAILURE(status)) { | |
1570 | errln("%s:%d %s", __FILE__, __LINE__, u_errorName(status)); | |
1571 | return; | |
1572 | } | |
1573 | int64_t ni = utext_getNativeIndex(&ut); | |
1574 | int64_t expectedni = startIdx + 20; | |
1575 | if (expectedni > str.length()) { | |
1576 | expectedni = str.length(); | |
1577 | } | |
1578 | if (expectedni != ni) { | |
1579 | errln("%s:%d utext_getNativeIndex() expected %d, got %d", __FILE__, __LINE__, expectedni, ni); | |
1580 | } | |
1581 | if (0 != str.tempSubString(startIdx, 20).compare(extractBuffer)) { | |
1582 | errln("%s:%d utext_extract() failed. expected \"%s\", got \"%s\"", | |
1583 | __FILE__, __LINE__, CStr(str.tempSubString(startIdx, 20))(), CStr(UnicodeString(extractBuffer))()); | |
1584 | } | |
1585 | } | |
1586 | utext_close(&ut); | |
1587 | } | |
f59164e3 A |
1588 | |
1589 | // Ticket 12888: bad handling of illegal utf-8 containing many instances of the archaic, now illegal, | |
1590 | // six byte utf-8 forms. Original implementation had an assumption that | |
1591 | // there would be at most three utf-8 bytes per UTF-16 code unit. | |
1592 | // The five and six byte sequences map to a single replacement character. | |
1593 | ||
1594 | void UTextTest::Ticket12888() { | |
1595 | const char *badString = | |
1596 | "\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80" | |
1597 | "\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80" | |
1598 | "\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80" | |
1599 | "\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80" | |
1600 | "\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80" | |
1601 | "\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80" | |
1602 | "\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80" | |
1603 | "\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80" | |
1604 | "\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80" | |
1605 | "\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80" | |
1606 | "\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80" | |
1607 | "\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80" | |
1608 | "\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80" | |
1609 | "\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80" | |
1610 | "\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80" | |
1611 | "\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80" | |
1612 | "\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80" | |
1613 | "\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80" | |
1614 | "\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80" | |
1615 | "\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80\xfd\x80\x80\x80\x80\x80"; | |
1616 | ||
1617 | UErrorCode status = U_ZERO_ERROR; | |
1618 | LocalUTextPointer ut(utext_openUTF8(NULL, badString, -1, &status)); | |
1619 | TEST_SUCCESS(status); | |
1620 | for (;;) { | |
1621 | UChar32 c = utext_next32(ut.getAlias()); | |
1622 | if (c == U_SENTINEL) { | |
1623 | break; | |
1624 | } | |
1625 | } | |
1626 | int32_t endIdx = utext_getNativeIndex(ut.getAlias()); | |
1627 | if (endIdx != (int32_t)strlen(badString)) { | |
1628 | errln("%s:%d expected=%d, actual=%d", __FILE__, __LINE__, strlen(badString), endIdx); | |
1629 | return; | |
1630 | } | |
1631 | ||
1632 | for (int32_t prevIndex = endIdx; prevIndex>0;) { | |
1633 | UChar32 c = utext_previous32(ut.getAlias()); | |
1634 | int32_t currentIndex = utext_getNativeIndex(ut.getAlias()); | |
1635 | if (c != 0xfffd) { | |
1636 | errln("%s:%d (expected, actual, index) = (%d, %d, %d)\n", | |
1637 | __FILE__, __LINE__, 0xfffd, c, currentIndex); | |
1638 | break; | |
1639 | } | |
1640 | if (currentIndex != prevIndex - 6) { | |
1641 | errln("%s:%d: wrong index. Expected, actual = %d, %d", | |
1642 | __FILE__, __LINE__, prevIndex - 6, currentIndex); | |
1643 | break; | |
1644 | } | |
1645 | prevIndex = currentIndex; | |
1646 | } | |
1647 | } |