]>
Commit | Line | Data |
---|---|---|
f3c0d7a5 A |
1 | // © 2016 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html | |
73c04bcf A |
3 | /** |
4 | ******************************************************************************* | |
2ca993e8 | 5 | * Copyright (C) 2006-2016, International Business Machines Corporation |
51004dcb | 6 | * and others. All Rights Reserved. |
73c04bcf A |
7 | ******************************************************************************* |
8 | */ | |
9 | ||
10 | #include "unicode/utypes.h" | |
11 | ||
12 | #if !UCONFIG_NO_BREAK_ITERATION | |
13 | ||
14 | #include "brkeng.h" | |
15 | #include "dictbe.h" | |
16 | #include "unicode/uniset.h" | |
17 | #include "unicode/chariter.h" | |
18 | #include "unicode/ubrk.h" | |
b331163b | 19 | #include "uvectr32.h" |
73c04bcf | 20 | #include "uvector.h" |
51004dcb A |
21 | #include "uassert.h" |
22 | #include "unicode/normlzr.h" | |
23 | #include "cmemory.h" | |
24 | #include "dictionarydata.h" | |
73c04bcf A |
25 | |
26 | U_NAMESPACE_BEGIN | |
27 | ||
28 | /* | |
29 | ****************************************************************** | |
30 | */ | |
31 | ||
73c04bcf A |
32 | DictionaryBreakEngine::DictionaryBreakEngine(uint32_t breakTypes) { |
33 | fTypes = breakTypes; | |
34 | } | |
35 | ||
36 | DictionaryBreakEngine::~DictionaryBreakEngine() { | |
37 | } | |
38 | ||
39 | UBool | |
40 | DictionaryBreakEngine::handles(UChar32 c, int32_t breakType) const { | |
41 | return (breakType >= 0 && breakType < 32 && (((uint32_t)1 << breakType) & fTypes) | |
42 | && fSet.contains(c)); | |
43 | } | |
44 | ||
45 | int32_t | |
46 | DictionaryBreakEngine::findBreaks( UText *text, | |
47 | int32_t startPos, | |
48 | int32_t endPos, | |
49 | UBool reverse, | |
50 | int32_t breakType, | |
51 | UStack &foundBreaks ) const { | |
52 | int32_t result = 0; | |
53 | ||
54 | // Find the span of characters included in the set. | |
57a6839d A |
55 | // The span to break begins at the current position in the text, and |
56 | // extends towards the start or end of the text, depending on 'reverse'. | |
57 | ||
73c04bcf A |
58 | int32_t start = (int32_t)utext_getNativeIndex(text); |
59 | int32_t current; | |
60 | int32_t rangeStart; | |
61 | int32_t rangeEnd; | |
62 | UChar32 c = utext_current32(text); | |
63 | if (reverse) { | |
64 | UBool isDict = fSet.contains(c); | |
65 | while((current = (int32_t)utext_getNativeIndex(text)) > startPos && isDict) { | |
66 | c = utext_previous32(text); | |
67 | isDict = fSet.contains(c); | |
68 | } | |
b331163b A |
69 | if (current < startPos) { |
70 | rangeStart = startPos; | |
71 | } else { | |
72 | rangeStart = current; | |
73 | if (!isDict) { | |
74 | utext_next32(text); | |
2ca993e8 | 75 | rangeStart = (int32_t)utext_getNativeIndex(text); |
b331163b A |
76 | } |
77 | } | |
78 | // rangeEnd = start + 1; | |
79 | utext_setNativeIndex(text, start); | |
80 | utext_next32(text); | |
2ca993e8 | 81 | rangeEnd = (int32_t)utext_getNativeIndex(text); |
73c04bcf A |
82 | } |
83 | else { | |
84 | while((current = (int32_t)utext_getNativeIndex(text)) < endPos && fSet.contains(c)) { | |
85 | utext_next32(text); // TODO: recast loop for postincrement | |
86 | c = utext_current32(text); | |
87 | } | |
88 | rangeStart = start; | |
89 | rangeEnd = current; | |
90 | } | |
91 | if (breakType >= 0 && breakType < 32 && (((uint32_t)1 << breakType) & fTypes)) { | |
92 | result = divideUpDictionaryRange(text, rangeStart, rangeEnd, foundBreaks); | |
93 | utext_setNativeIndex(text, current); | |
94 | } | |
95 | ||
96 | return result; | |
97 | } | |
98 | ||
99 | void | |
46f4442e | 100 | DictionaryBreakEngine::setCharacters( const UnicodeSet &set ) { |
73c04bcf | 101 | fSet = set; |
46f4442e A |
102 | // Compact for caching |
103 | fSet.compact(); | |
73c04bcf A |
104 | } |
105 | ||
73c04bcf A |
106 | /* |
107 | ****************************************************************** | |
57a6839d | 108 | * PossibleWord |
73c04bcf A |
109 | */ |
110 | ||
57a6839d | 111 | // Helper class for improving readability of the Thai/Lao/Khmer word break |
73c04bcf A |
112 | // algorithm. The implementation is completely inline. |
113 | ||
114 | // List size, limited by the maximum number of words in the dictionary | |
115 | // that form a nested sequence. | |
b331163b | 116 | static const int32_t POSSIBLE_WORD_LIST_MAX = 20; |
73c04bcf A |
117 | |
118 | class PossibleWord { | |
51004dcb A |
119 | private: |
120 | // list of word candidate lengths, in increasing length order | |
b331163b | 121 | // TODO: bytes would be sufficient for word lengths. |
51004dcb A |
122 | int32_t count; // Count of candidates |
123 | int32_t prefix; // The longest match with a dictionary word | |
124 | int32_t offset; // Offset in the text of these candidates | |
b331163b A |
125 | int32_t mark; // The preferred candidate's offset |
126 | int32_t current; // The candidate we're currently looking at | |
127 | int32_t cuLengths[POSSIBLE_WORD_LIST_MAX]; // Word Lengths, in code units. | |
128 | int32_t cpLengths[POSSIBLE_WORD_LIST_MAX]; // Word Lengths, in code points. | |
51004dcb A |
129 | |
130 | public: | |
b331163b A |
131 | PossibleWord() : count(0), prefix(0), offset(-1), mark(0), current(0) {}; |
132 | ~PossibleWord() {}; | |
73c04bcf | 133 | |
51004dcb | 134 | // Fill the list of candidates if needed, select the longest, and return the number found |
b331163b | 135 | int32_t candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd ); |
73c04bcf | 136 | |
51004dcb A |
137 | // Select the currently marked candidate, point after it in the text, and invalidate self |
138 | int32_t acceptMarked( UText *text ); | |
73c04bcf | 139 | |
51004dcb A |
140 | // Back up from the current candidate to the next shorter one; return TRUE if that exists |
141 | // and point the text after it | |
142 | UBool backUp( UText *text ); | |
73c04bcf | 143 | |
51004dcb | 144 | // Return the longest prefix this candidate location shares with a dictionary word |
b331163b A |
145 | // Return value is in code points. |
146 | int32_t longestPrefix() { return prefix; }; | |
73c04bcf | 147 | |
51004dcb | 148 | // Mark the current candidate as the one we like |
b331163b A |
149 | void markCurrent() { mark = current; }; |
150 | ||
151 | // Get length in code points of the marked word. | |
152 | int32_t markedCPLength() { return cpLengths[mark]; }; | |
73c04bcf A |
153 | }; |
154 | ||
73c04bcf | 155 | |
b331163b | 156 | int32_t PossibleWord::candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd ) { |
73c04bcf A |
157 | // TODO: If getIndex is too slow, use offset < 0 and add discardAll() |
158 | int32_t start = (int32_t)utext_getNativeIndex(text); | |
159 | if (start != offset) { | |
160 | offset = start; | |
b331163b | 161 | count = dict->matches(text, rangeEnd-start, UPRV_LENGTHOF(cuLengths), cuLengths, cpLengths, NULL, &prefix); |
73c04bcf A |
162 | // Dictionary leaves text after longest prefix, not longest word. Back up. |
163 | if (count <= 0) { | |
164 | utext_setNativeIndex(text, start); | |
165 | } | |
166 | } | |
167 | if (count > 0) { | |
b331163b | 168 | utext_setNativeIndex(text, start+cuLengths[count-1]); |
73c04bcf A |
169 | } |
170 | current = count-1; | |
171 | mark = current; | |
172 | return count; | |
173 | } | |
174 | ||
b331163b | 175 | int32_t |
73c04bcf | 176 | PossibleWord::acceptMarked( UText *text ) { |
b331163b A |
177 | utext_setNativeIndex(text, offset + cuLengths[mark]); |
178 | return cuLengths[mark]; | |
73c04bcf A |
179 | } |
180 | ||
b331163b A |
181 | |
182 | UBool | |
73c04bcf A |
183 | PossibleWord::backUp( UText *text ) { |
184 | if (current > 0) { | |
b331163b | 185 | utext_setNativeIndex(text, offset + cuLengths[--current]); |
73c04bcf A |
186 | return TRUE; |
187 | } | |
188 | return FALSE; | |
189 | } | |
190 | ||
57a6839d A |
191 | /* |
192 | ****************************************************************** | |
193 | * ThaiBreakEngine | |
194 | */ | |
195 | ||
73c04bcf | 196 | // How many words in a row are "good enough"? |
b331163b | 197 | static const int32_t THAI_LOOKAHEAD = 3; |
73c04bcf A |
198 | |
199 | // Will not combine a non-word with a preceding dictionary word longer than this | |
b331163b | 200 | static const int32_t THAI_ROOT_COMBINE_THRESHOLD = 3; |
73c04bcf A |
201 | |
202 | // Will not combine a non-word that shares at least this much prefix with a | |
203 | // dictionary word, with a preceding word | |
b331163b | 204 | static const int32_t THAI_PREFIX_COMBINE_THRESHOLD = 3; |
73c04bcf A |
205 | |
206 | // Ellision character | |
b331163b | 207 | static const int32_t THAI_PAIYANNOI = 0x0E2F; |
73c04bcf A |
208 | |
209 | // Repeat character | |
b331163b | 210 | static const int32_t THAI_MAIYAMOK = 0x0E46; |
73c04bcf A |
211 | |
212 | // Minimum word size | |
b331163b | 213 | static const int32_t THAI_MIN_WORD = 2; |
73c04bcf A |
214 | |
215 | // Minimum number of characters for two words | |
b331163b | 216 | static const int32_t THAI_MIN_WORD_SPAN = THAI_MIN_WORD * 2; |
73c04bcf | 217 | |
51004dcb | 218 | ThaiBreakEngine::ThaiBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status) |
73c04bcf A |
219 | : DictionaryBreakEngine((1<<UBRK_WORD) | (1<<UBRK_LINE)), |
220 | fDictionary(adoptDictionary) | |
221 | { | |
222 | fThaiWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Thai:]&[:LineBreak=SA:]]"), status); | |
223 | if (U_SUCCESS(status)) { | |
224 | setCharacters(fThaiWordSet); | |
225 | } | |
226 | fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Thai:]&[:LineBreak=SA:]&[:M:]]"), status); | |
46f4442e | 227 | fMarkSet.add(0x0020); |
73c04bcf A |
228 | fEndWordSet = fThaiWordSet; |
229 | fEndWordSet.remove(0x0E31); // MAI HAN-AKAT | |
230 | fEndWordSet.remove(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI | |
231 | fBeginWordSet.add(0x0E01, 0x0E2E); // KO KAI through HO NOKHUK | |
232 | fBeginWordSet.add(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI | |
233 | fSuffixSet.add(THAI_PAIYANNOI); | |
234 | fSuffixSet.add(THAI_MAIYAMOK); | |
46f4442e A |
235 | |
236 | // Compact for caching. | |
237 | fMarkSet.compact(); | |
238 | fEndWordSet.compact(); | |
239 | fBeginWordSet.compact(); | |
240 | fSuffixSet.compact(); | |
73c04bcf A |
241 | } |
242 | ||
243 | ThaiBreakEngine::~ThaiBreakEngine() { | |
244 | delete fDictionary; | |
245 | } | |
246 | ||
247 | int32_t | |
248 | ThaiBreakEngine::divideUpDictionaryRange( UText *text, | |
249 | int32_t rangeStart, | |
250 | int32_t rangeEnd, | |
251 | UStack &foundBreaks ) const { | |
b331163b A |
252 | utext_setNativeIndex(text, rangeStart); |
253 | utext_moveIndex32(text, THAI_MIN_WORD_SPAN); | |
254 | if (utext_getNativeIndex(text) >= rangeEnd) { | |
73c04bcf A |
255 | return 0; // Not enough characters for two words |
256 | } | |
b331163b A |
257 | utext_setNativeIndex(text, rangeStart); |
258 | ||
73c04bcf A |
259 | |
260 | uint32_t wordsFound = 0; | |
b331163b A |
261 | int32_t cpWordLength = 0; // Word Length in Code Points. |
262 | int32_t cuWordLength = 0; // Word length in code units (UText native indexing) | |
73c04bcf A |
263 | int32_t current; |
264 | UErrorCode status = U_ZERO_ERROR; | |
265 | PossibleWord words[THAI_LOOKAHEAD]; | |
73c04bcf A |
266 | |
267 | utext_setNativeIndex(text, rangeStart); | |
268 | ||
269 | while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) { | |
b331163b A |
270 | cpWordLength = 0; |
271 | cuWordLength = 0; | |
73c04bcf A |
272 | |
273 | // Look for candidate words at the current position | |
b331163b | 274 | int32_t candidates = words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
73c04bcf A |
275 | |
276 | // If we found exactly one, use that | |
277 | if (candidates == 1) { | |
b331163b A |
278 | cuWordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text); |
279 | cpWordLength = words[wordsFound % THAI_LOOKAHEAD].markedCPLength(); | |
73c04bcf A |
280 | wordsFound += 1; |
281 | } | |
73c04bcf A |
282 | // If there was more than one, see which one can take us forward the most words |
283 | else if (candidates > 1) { | |
284 | // If we're already at the end of the range, we're done | |
285 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { | |
286 | goto foundBest; | |
287 | } | |
288 | do { | |
b331163b | 289 | int32_t wordsMatched = 1; |
51004dcb | 290 | if (words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { |
73c04bcf A |
291 | if (wordsMatched < 2) { |
292 | // Followed by another dictionary word; mark first word as a good candidate | |
293 | words[wordsFound%THAI_LOOKAHEAD].markCurrent(); | |
294 | wordsMatched = 2; | |
295 | } | |
296 | ||
297 | // If we're already at the end of the range, we're done | |
298 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { | |
299 | goto foundBest; | |
300 | } | |
301 | ||
302 | // See if any of the possible second words is followed by a third word | |
303 | do { | |
304 | // If we find a third word, stop right away | |
51004dcb A |
305 | if (words[(wordsFound + 2) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { |
306 | words[wordsFound % THAI_LOOKAHEAD].markCurrent(); | |
73c04bcf A |
307 | goto foundBest; |
308 | } | |
309 | } | |
51004dcb | 310 | while (words[(wordsFound + 1) % THAI_LOOKAHEAD].backUp(text)); |
73c04bcf A |
311 | } |
312 | } | |
51004dcb | 313 | while (words[wordsFound % THAI_LOOKAHEAD].backUp(text)); |
73c04bcf | 314 | foundBest: |
b331163b A |
315 | // Set UText position to after the accepted word. |
316 | cuWordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text); | |
317 | cpWordLength = words[wordsFound % THAI_LOOKAHEAD].markedCPLength(); | |
73c04bcf A |
318 | wordsFound += 1; |
319 | } | |
320 | ||
321 | // We come here after having either found a word or not. We look ahead to the | |
b331163b | 322 | // next word. If it's not a dictionary word, we will combine it with the word we |
73c04bcf A |
323 | // just found (if there is one), but only if the preceding word does not exceed |
324 | // the threshold. | |
325 | // The text iterator should now be positioned at the end of the word we found. | |
b331163b A |
326 | |
327 | UChar32 uc = 0; | |
328 | if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < THAI_ROOT_COMBINE_THRESHOLD) { | |
73c04bcf A |
329 | // if it is a dictionary word, do nothing. If it isn't, then if there is |
330 | // no preceding word, or the non-word shares less than the minimum threshold | |
331 | // of characters with a dictionary word, then scan to resynchronize | |
51004dcb | 332 | if (words[wordsFound % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 |
b331163b | 333 | && (cuWordLength == 0 |
73c04bcf A |
334 | || words[wordsFound%THAI_LOOKAHEAD].longestPrefix() < THAI_PREFIX_COMBINE_THRESHOLD)) { |
335 | // Look for a plausible word boundary | |
b331163b A |
336 | int32_t remaining = rangeEnd - (current+cuWordLength); |
337 | UChar32 pc; | |
73c04bcf | 338 | int32_t chars = 0; |
46f4442e | 339 | for (;;) { |
2ca993e8 | 340 | int32_t pcIndex = (int32_t)utext_getNativeIndex(text); |
b331163b | 341 | pc = utext_next32(text); |
2ca993e8 | 342 | int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex; |
b331163b A |
343 | chars += pcSize; |
344 | remaining -= pcSize; | |
345 | if (remaining <= 0) { | |
73c04bcf A |
346 | break; |
347 | } | |
b331163b | 348 | uc = utext_current32(text); |
73c04bcf A |
349 | if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { |
350 | // Maybe. See if it's in the dictionary. | |
351 | // NOTE: In the original Apple code, checked that the next | |
352 | // two characters after uc were not 0x0E4C THANTHAKHAT before | |
353 | // checking the dictionary. That is just a performance filter, | |
354 | // but it's not clear it's faster than checking the trie. | |
b331163b A |
355 | int32_t candidates = words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
356 | utext_setNativeIndex(text, current + cuWordLength + chars); | |
73c04bcf A |
357 | if (candidates > 0) { |
358 | break; | |
359 | } | |
360 | } | |
73c04bcf A |
361 | } |
362 | ||
363 | // Bump the word count if there wasn't already one | |
b331163b | 364 | if (cuWordLength <= 0) { |
73c04bcf A |
365 | wordsFound += 1; |
366 | } | |
367 | ||
368 | // Update the length with the passed-over characters | |
b331163b | 369 | cuWordLength += chars; |
73c04bcf A |
370 | } |
371 | else { | |
372 | // Back up to where we were for next iteration | |
b331163b | 373 | utext_setNativeIndex(text, current+cuWordLength); |
73c04bcf A |
374 | } |
375 | } | |
376 | ||
377 | // Never stop before a combining mark. | |
378 | int32_t currPos; | |
379 | while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { | |
380 | utext_next32(text); | |
b331163b | 381 | cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos; |
73c04bcf A |
382 | } |
383 | ||
384 | // Look ahead for possible suffixes if a dictionary word does not follow. | |
385 | // We do this in code rather than using a rule so that the heuristic | |
386 | // resynch continues to function. For example, one of the suffix characters | |
387 | // could be a typo in the middle of a word. | |
b331163b | 388 | if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cuWordLength > 0) { |
73c04bcf A |
389 | if (words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 |
390 | && fSuffixSet.contains(uc = utext_current32(text))) { | |
391 | if (uc == THAI_PAIYANNOI) { | |
392 | if (!fSuffixSet.contains(utext_previous32(text))) { | |
393 | // Skip over previous end and PAIYANNOI | |
394 | utext_next32(text); | |
2ca993e8 | 395 | int32_t paiyannoiIndex = (int32_t)utext_getNativeIndex(text); |
73c04bcf | 396 | utext_next32(text); |
2ca993e8 | 397 | cuWordLength += (int32_t)utext_getNativeIndex(text) - paiyannoiIndex; // Add PAIYANNOI to word |
73c04bcf A |
398 | uc = utext_current32(text); // Fetch next character |
399 | } | |
400 | else { | |
401 | // Restore prior position | |
402 | utext_next32(text); | |
403 | } | |
404 | } | |
405 | if (uc == THAI_MAIYAMOK) { | |
406 | if (utext_previous32(text) != THAI_MAIYAMOK) { | |
407 | // Skip over previous end and MAIYAMOK | |
408 | utext_next32(text); | |
2ca993e8 | 409 | int32_t maiyamokIndex = (int32_t)utext_getNativeIndex(text); |
73c04bcf | 410 | utext_next32(text); |
2ca993e8 | 411 | cuWordLength += (int32_t)utext_getNativeIndex(text) - maiyamokIndex; // Add MAIYAMOK to word |
73c04bcf A |
412 | } |
413 | else { | |
414 | // Restore prior position | |
415 | utext_next32(text); | |
416 | } | |
417 | } | |
418 | } | |
419 | else { | |
b331163b | 420 | utext_setNativeIndex(text, current+cuWordLength); |
73c04bcf A |
421 | } |
422 | } | |
4388f060 A |
423 | |
424 | // Did we find a word on this iteration? If so, push it on the break stack | |
b331163b A |
425 | if (cuWordLength > 0) { |
426 | foundBreaks.push((current+cuWordLength), status); | |
4388f060 A |
427 | } |
428 | } | |
429 | ||
430 | // Don't return a break for the end of the dictionary range if there is one there. | |
431 | if (foundBreaks.peeki() >= rangeEnd) { | |
432 | (void) foundBreaks.popi(); | |
433 | wordsFound -= 1; | |
434 | } | |
435 | ||
436 | return wordsFound; | |
437 | } | |
438 | ||
57a6839d A |
439 | /* |
440 | ****************************************************************** | |
441 | * LaoBreakEngine | |
442 | */ | |
443 | ||
444 | // How many words in a row are "good enough"? | |
b331163b | 445 | static const int32_t LAO_LOOKAHEAD = 3; |
57a6839d A |
446 | |
447 | // Will not combine a non-word with a preceding dictionary word longer than this | |
b331163b | 448 | static const int32_t LAO_ROOT_COMBINE_THRESHOLD = 3; |
57a6839d A |
449 | |
450 | // Will not combine a non-word that shares at least this much prefix with a | |
451 | // dictionary word, with a preceding word | |
b331163b | 452 | static const int32_t LAO_PREFIX_COMBINE_THRESHOLD = 3; |
57a6839d A |
453 | |
454 | // Minimum word size | |
b331163b | 455 | static const int32_t LAO_MIN_WORD = 2; |
57a6839d A |
456 | |
457 | // Minimum number of characters for two words | |
b331163b | 458 | static const int32_t LAO_MIN_WORD_SPAN = LAO_MIN_WORD * 2; |
57a6839d A |
459 | |
460 | LaoBreakEngine::LaoBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status) | |
461 | : DictionaryBreakEngine((1<<UBRK_WORD) | (1<<UBRK_LINE)), | |
462 | fDictionary(adoptDictionary) | |
463 | { | |
464 | fLaoWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Laoo:]&[:LineBreak=SA:]]"), status); | |
465 | if (U_SUCCESS(status)) { | |
466 | setCharacters(fLaoWordSet); | |
467 | } | |
468 | fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Laoo:]&[:LineBreak=SA:]&[:M:]]"), status); | |
469 | fMarkSet.add(0x0020); | |
470 | fEndWordSet = fLaoWordSet; | |
471 | fEndWordSet.remove(0x0EC0, 0x0EC4); // prefix vowels | |
472 | fBeginWordSet.add(0x0E81, 0x0EAE); // basic consonants (including holes for corresponding Thai characters) | |
473 | fBeginWordSet.add(0x0EDC, 0x0EDD); // digraph consonants (no Thai equivalent) | |
474 | fBeginWordSet.add(0x0EC0, 0x0EC4); // prefix vowels | |
475 | ||
476 | // Compact for caching. | |
477 | fMarkSet.compact(); | |
478 | fEndWordSet.compact(); | |
479 | fBeginWordSet.compact(); | |
480 | } | |
481 | ||
482 | LaoBreakEngine::~LaoBreakEngine() { | |
483 | delete fDictionary; | |
484 | } | |
485 | ||
486 | int32_t | |
487 | LaoBreakEngine::divideUpDictionaryRange( UText *text, | |
488 | int32_t rangeStart, | |
489 | int32_t rangeEnd, | |
490 | UStack &foundBreaks ) const { | |
491 | if ((rangeEnd - rangeStart) < LAO_MIN_WORD_SPAN) { | |
492 | return 0; // Not enough characters for two words | |
493 | } | |
494 | ||
495 | uint32_t wordsFound = 0; | |
b331163b A |
496 | int32_t cpWordLength = 0; |
497 | int32_t cuWordLength = 0; | |
57a6839d A |
498 | int32_t current; |
499 | UErrorCode status = U_ZERO_ERROR; | |
500 | PossibleWord words[LAO_LOOKAHEAD]; | |
57a6839d A |
501 | |
502 | utext_setNativeIndex(text, rangeStart); | |
503 | ||
504 | while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) { | |
b331163b A |
505 | cuWordLength = 0; |
506 | cpWordLength = 0; | |
57a6839d A |
507 | |
508 | // Look for candidate words at the current position | |
b331163b | 509 | int32_t candidates = words[wordsFound%LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
57a6839d A |
510 | |
511 | // If we found exactly one, use that | |
512 | if (candidates == 1) { | |
b331163b A |
513 | cuWordLength = words[wordsFound % LAO_LOOKAHEAD].acceptMarked(text); |
514 | cpWordLength = words[wordsFound % LAO_LOOKAHEAD].markedCPLength(); | |
57a6839d A |
515 | wordsFound += 1; |
516 | } | |
517 | // If there was more than one, see which one can take us forward the most words | |
518 | else if (candidates > 1) { | |
519 | // If we're already at the end of the range, we're done | |
b331163b | 520 | if (utext_getNativeIndex(text) >= rangeEnd) { |
57a6839d A |
521 | goto foundBest; |
522 | } | |
523 | do { | |
b331163b | 524 | int32_t wordsMatched = 1; |
57a6839d A |
525 | if (words[(wordsFound + 1) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { |
526 | if (wordsMatched < 2) { | |
527 | // Followed by another dictionary word; mark first word as a good candidate | |
528 | words[wordsFound%LAO_LOOKAHEAD].markCurrent(); | |
529 | wordsMatched = 2; | |
530 | } | |
531 | ||
532 | // If we're already at the end of the range, we're done | |
533 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { | |
534 | goto foundBest; | |
535 | } | |
536 | ||
537 | // See if any of the possible second words is followed by a third word | |
538 | do { | |
539 | // If we find a third word, stop right away | |
540 | if (words[(wordsFound + 2) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { | |
541 | words[wordsFound % LAO_LOOKAHEAD].markCurrent(); | |
542 | goto foundBest; | |
543 | } | |
544 | } | |
545 | while (words[(wordsFound + 1) % LAO_LOOKAHEAD].backUp(text)); | |
546 | } | |
547 | } | |
548 | while (words[wordsFound % LAO_LOOKAHEAD].backUp(text)); | |
549 | foundBest: | |
b331163b A |
550 | cuWordLength = words[wordsFound % LAO_LOOKAHEAD].acceptMarked(text); |
551 | cpWordLength = words[wordsFound % LAO_LOOKAHEAD].markedCPLength(); | |
57a6839d A |
552 | wordsFound += 1; |
553 | } | |
554 | ||
555 | // We come here after having either found a word or not. We look ahead to the | |
556 | // next word. If it's not a dictionary word, we will combine it withe the word we | |
557 | // just found (if there is one), but only if the preceding word does not exceed | |
558 | // the threshold. | |
559 | // The text iterator should now be positioned at the end of the word we found. | |
b331163b | 560 | if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < LAO_ROOT_COMBINE_THRESHOLD) { |
57a6839d A |
561 | // if it is a dictionary word, do nothing. If it isn't, then if there is |
562 | // no preceding word, or the non-word shares less than the minimum threshold | |
563 | // of characters with a dictionary word, then scan to resynchronize | |
564 | if (words[wordsFound % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 | |
b331163b | 565 | && (cuWordLength == 0 |
57a6839d A |
566 | || words[wordsFound%LAO_LOOKAHEAD].longestPrefix() < LAO_PREFIX_COMBINE_THRESHOLD)) { |
567 | // Look for a plausible word boundary | |
b331163b A |
568 | int32_t remaining = rangeEnd - (current + cuWordLength); |
569 | UChar32 pc; | |
570 | UChar32 uc; | |
57a6839d A |
571 | int32_t chars = 0; |
572 | for (;;) { | |
2ca993e8 | 573 | int32_t pcIndex = (int32_t)utext_getNativeIndex(text); |
b331163b | 574 | pc = utext_next32(text); |
2ca993e8 | 575 | int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex; |
b331163b A |
576 | chars += pcSize; |
577 | remaining -= pcSize; | |
578 | if (remaining <= 0) { | |
57a6839d A |
579 | break; |
580 | } | |
b331163b | 581 | uc = utext_current32(text); |
57a6839d A |
582 | if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { |
583 | // Maybe. See if it's in the dictionary. | |
b331163b A |
584 | // TODO: this looks iffy; compare with old code. |
585 | int32_t candidates = words[(wordsFound + 1) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); | |
586 | utext_setNativeIndex(text, current + cuWordLength + chars); | |
57a6839d A |
587 | if (candidates > 0) { |
588 | break; | |
589 | } | |
590 | } | |
57a6839d A |
591 | } |
592 | ||
593 | // Bump the word count if there wasn't already one | |
b331163b | 594 | if (cuWordLength <= 0) { |
57a6839d A |
595 | wordsFound += 1; |
596 | } | |
597 | ||
598 | // Update the length with the passed-over characters | |
b331163b | 599 | cuWordLength += chars; |
57a6839d A |
600 | } |
601 | else { | |
602 | // Back up to where we were for next iteration | |
b331163b | 603 | utext_setNativeIndex(text, current + cuWordLength); |
57a6839d A |
604 | } |
605 | } | |
606 | ||
607 | // Never stop before a combining mark. | |
608 | int32_t currPos; | |
609 | while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { | |
610 | utext_next32(text); | |
b331163b | 611 | cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos; |
57a6839d A |
612 | } |
613 | ||
614 | // Look ahead for possible suffixes if a dictionary word does not follow. | |
615 | // We do this in code rather than using a rule so that the heuristic | |
616 | // resynch continues to function. For example, one of the suffix characters | |
617 | // could be a typo in the middle of a word. | |
618 | // NOT CURRENTLY APPLICABLE TO LAO | |
619 | ||
620 | // Did we find a word on this iteration? If so, push it on the break stack | |
b331163b A |
621 | if (cuWordLength > 0) { |
622 | foundBreaks.push((current+cuWordLength), status); | |
623 | } | |
624 | } | |
625 | ||
626 | // Don't return a break for the end of the dictionary range if there is one there. | |
627 | if (foundBreaks.peeki() >= rangeEnd) { | |
628 | (void) foundBreaks.popi(); | |
629 | wordsFound -= 1; | |
630 | } | |
631 | ||
632 | return wordsFound; | |
633 | } | |
634 | ||
635 | /* | |
636 | ****************************************************************** | |
637 | * BurmeseBreakEngine | |
638 | */ | |
639 | ||
640 | // How many words in a row are "good enough"? | |
641 | static const int32_t BURMESE_LOOKAHEAD = 3; | |
642 | ||
643 | // Will not combine a non-word with a preceding dictionary word longer than this | |
644 | static const int32_t BURMESE_ROOT_COMBINE_THRESHOLD = 3; | |
645 | ||
646 | // Will not combine a non-word that shares at least this much prefix with a | |
647 | // dictionary word, with a preceding word | |
648 | static const int32_t BURMESE_PREFIX_COMBINE_THRESHOLD = 3; | |
649 | ||
650 | // Minimum word size | |
651 | static const int32_t BURMESE_MIN_WORD = 2; | |
652 | ||
653 | // Minimum number of characters for two words | |
654 | static const int32_t BURMESE_MIN_WORD_SPAN = BURMESE_MIN_WORD * 2; | |
655 | ||
656 | BurmeseBreakEngine::BurmeseBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status) | |
657 | : DictionaryBreakEngine((1<<UBRK_WORD) | (1<<UBRK_LINE)), | |
658 | fDictionary(adoptDictionary) | |
659 | { | |
660 | fBurmeseWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Mymr:]&[:LineBreak=SA:]]"), status); | |
661 | if (U_SUCCESS(status)) { | |
662 | setCharacters(fBurmeseWordSet); | |
663 | } | |
664 | fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Mymr:]&[:LineBreak=SA:]&[:M:]]"), status); | |
665 | fMarkSet.add(0x0020); | |
666 | fEndWordSet = fBurmeseWordSet; | |
667 | fBeginWordSet.add(0x1000, 0x102A); // basic consonants and independent vowels | |
668 | ||
669 | // Compact for caching. | |
670 | fMarkSet.compact(); | |
671 | fEndWordSet.compact(); | |
672 | fBeginWordSet.compact(); | |
673 | } | |
674 | ||
675 | BurmeseBreakEngine::~BurmeseBreakEngine() { | |
676 | delete fDictionary; | |
677 | } | |
678 | ||
679 | int32_t | |
680 | BurmeseBreakEngine::divideUpDictionaryRange( UText *text, | |
681 | int32_t rangeStart, | |
682 | int32_t rangeEnd, | |
683 | UStack &foundBreaks ) const { | |
684 | if ((rangeEnd - rangeStart) < BURMESE_MIN_WORD_SPAN) { | |
685 | return 0; // Not enough characters for two words | |
686 | } | |
687 | ||
688 | uint32_t wordsFound = 0; | |
689 | int32_t cpWordLength = 0; | |
690 | int32_t cuWordLength = 0; | |
691 | int32_t current; | |
692 | UErrorCode status = U_ZERO_ERROR; | |
693 | PossibleWord words[BURMESE_LOOKAHEAD]; | |
694 | ||
695 | utext_setNativeIndex(text, rangeStart); | |
696 | ||
697 | while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) { | |
698 | cuWordLength = 0; | |
699 | cpWordLength = 0; | |
700 | ||
701 | // Look for candidate words at the current position | |
702 | int32_t candidates = words[wordsFound%BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); | |
703 | ||
704 | // If we found exactly one, use that | |
705 | if (candidates == 1) { | |
706 | cuWordLength = words[wordsFound % BURMESE_LOOKAHEAD].acceptMarked(text); | |
707 | cpWordLength = words[wordsFound % BURMESE_LOOKAHEAD].markedCPLength(); | |
708 | wordsFound += 1; | |
709 | } | |
710 | // If there was more than one, see which one can take us forward the most words | |
711 | else if (candidates > 1) { | |
712 | // If we're already at the end of the range, we're done | |
713 | if (utext_getNativeIndex(text) >= rangeEnd) { | |
714 | goto foundBest; | |
715 | } | |
716 | do { | |
717 | int32_t wordsMatched = 1; | |
718 | if (words[(wordsFound + 1) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { | |
719 | if (wordsMatched < 2) { | |
720 | // Followed by another dictionary word; mark first word as a good candidate | |
721 | words[wordsFound%BURMESE_LOOKAHEAD].markCurrent(); | |
722 | wordsMatched = 2; | |
723 | } | |
724 | ||
725 | // If we're already at the end of the range, we're done | |
726 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { | |
727 | goto foundBest; | |
728 | } | |
729 | ||
730 | // See if any of the possible second words is followed by a third word | |
731 | do { | |
732 | // If we find a third word, stop right away | |
733 | if (words[(wordsFound + 2) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { | |
734 | words[wordsFound % BURMESE_LOOKAHEAD].markCurrent(); | |
735 | goto foundBest; | |
736 | } | |
737 | } | |
738 | while (words[(wordsFound + 1) % BURMESE_LOOKAHEAD].backUp(text)); | |
739 | } | |
740 | } | |
741 | while (words[wordsFound % BURMESE_LOOKAHEAD].backUp(text)); | |
742 | foundBest: | |
743 | cuWordLength = words[wordsFound % BURMESE_LOOKAHEAD].acceptMarked(text); | |
744 | cpWordLength = words[wordsFound % BURMESE_LOOKAHEAD].markedCPLength(); | |
745 | wordsFound += 1; | |
746 | } | |
747 | ||
748 | // We come here after having either found a word or not. We look ahead to the | |
749 | // next word. If it's not a dictionary word, we will combine it withe the word we | |
750 | // just found (if there is one), but only if the preceding word does not exceed | |
751 | // the threshold. | |
752 | // The text iterator should now be positioned at the end of the word we found. | |
753 | if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < BURMESE_ROOT_COMBINE_THRESHOLD) { | |
754 | // if it is a dictionary word, do nothing. If it isn't, then if there is | |
755 | // no preceding word, or the non-word shares less than the minimum threshold | |
756 | // of characters with a dictionary word, then scan to resynchronize | |
757 | if (words[wordsFound % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 | |
758 | && (cuWordLength == 0 | |
759 | || words[wordsFound%BURMESE_LOOKAHEAD].longestPrefix() < BURMESE_PREFIX_COMBINE_THRESHOLD)) { | |
760 | // Look for a plausible word boundary | |
761 | int32_t remaining = rangeEnd - (current + cuWordLength); | |
762 | UChar32 pc; | |
763 | UChar32 uc; | |
764 | int32_t chars = 0; | |
765 | for (;;) { | |
2ca993e8 | 766 | int32_t pcIndex = (int32_t)utext_getNativeIndex(text); |
b331163b | 767 | pc = utext_next32(text); |
2ca993e8 | 768 | int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex; |
b331163b A |
769 | chars += pcSize; |
770 | remaining -= pcSize; | |
771 | if (remaining <= 0) { | |
772 | break; | |
773 | } | |
774 | uc = utext_current32(text); | |
775 | if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { | |
776 | // Maybe. See if it's in the dictionary. | |
777 | // TODO: this looks iffy; compare with old code. | |
778 | int32_t candidates = words[(wordsFound + 1) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); | |
779 | utext_setNativeIndex(text, current + cuWordLength + chars); | |
780 | if (candidates > 0) { | |
781 | break; | |
782 | } | |
783 | } | |
784 | } | |
785 | ||
786 | // Bump the word count if there wasn't already one | |
787 | if (cuWordLength <= 0) { | |
788 | wordsFound += 1; | |
789 | } | |
790 | ||
791 | // Update the length with the passed-over characters | |
792 | cuWordLength += chars; | |
793 | } | |
794 | else { | |
795 | // Back up to where we were for next iteration | |
796 | utext_setNativeIndex(text, current + cuWordLength); | |
797 | } | |
798 | } | |
799 | ||
800 | // Never stop before a combining mark. | |
801 | int32_t currPos; | |
802 | while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { | |
803 | utext_next32(text); | |
804 | cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos; | |
805 | } | |
806 | ||
807 | // Look ahead for possible suffixes if a dictionary word does not follow. | |
808 | // We do this in code rather than using a rule so that the heuristic | |
809 | // resynch continues to function. For example, one of the suffix characters | |
810 | // could be a typo in the middle of a word. | |
811 | // NOT CURRENTLY APPLICABLE TO BURMESE | |
812 | ||
813 | // Did we find a word on this iteration? If so, push it on the break stack | |
814 | if (cuWordLength > 0) { | |
815 | foundBreaks.push((current+cuWordLength), status); | |
57a6839d A |
816 | } |
817 | } | |
818 | ||
819 | // Don't return a break for the end of the dictionary range if there is one there. | |
820 | if (foundBreaks.peeki() >= rangeEnd) { | |
821 | (void) foundBreaks.popi(); | |
822 | wordsFound -= 1; | |
823 | } | |
824 | ||
825 | return wordsFound; | |
826 | } | |
827 | ||
828 | /* | |
829 | ****************************************************************** | |
830 | * KhmerBreakEngine | |
831 | */ | |
832 | ||
4388f060 | 833 | // How many words in a row are "good enough"? |
b331163b | 834 | static const int32_t KHMER_LOOKAHEAD = 3; |
4388f060 A |
835 | |
836 | // Will not combine a non-word with a preceding dictionary word longer than this | |
b331163b | 837 | static const int32_t KHMER_ROOT_COMBINE_THRESHOLD = 3; |
4388f060 A |
838 | |
839 | // Will not combine a non-word that shares at least this much prefix with a | |
840 | // dictionary word, with a preceding word | |
b331163b | 841 | static const int32_t KHMER_PREFIX_COMBINE_THRESHOLD = 3; |
4388f060 A |
842 | |
843 | // Minimum word size | |
b331163b | 844 | static const int32_t KHMER_MIN_WORD = 2; |
4388f060 A |
845 | |
846 | // Minimum number of characters for two words | |
b331163b | 847 | static const int32_t KHMER_MIN_WORD_SPAN = KHMER_MIN_WORD * 2; |
4388f060 | 848 | |
51004dcb A |
849 | KhmerBreakEngine::KhmerBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status) |
850 | : DictionaryBreakEngine((1 << UBRK_WORD) | (1 << UBRK_LINE)), | |
4388f060 A |
851 | fDictionary(adoptDictionary) |
852 | { | |
853 | fKhmerWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Khmr:]&[:LineBreak=SA:]]"), status); | |
854 | if (U_SUCCESS(status)) { | |
855 | setCharacters(fKhmerWordSet); | |
856 | } | |
857 | fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Khmr:]&[:LineBreak=SA:]&[:M:]]"), status); | |
858 | fMarkSet.add(0x0020); | |
859 | fEndWordSet = fKhmerWordSet; | |
860 | fBeginWordSet.add(0x1780, 0x17B3); | |
861 | //fBeginWordSet.add(0x17A3, 0x17A4); // deprecated vowels | |
862 | //fEndWordSet.remove(0x17A5, 0x17A9); // Khmer independent vowels that can't end a word | |
863 | //fEndWordSet.remove(0x17B2); // Khmer independent vowel that can't end a word | |
864 | fEndWordSet.remove(0x17D2); // KHMER SIGN COENG that combines some following characters | |
865 | //fEndWordSet.remove(0x17B6, 0x17C5); // Remove dependent vowels | |
866 | // fEndWordSet.remove(0x0E31); // MAI HAN-AKAT | |
867 | // fEndWordSet.remove(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI | |
868 | // fBeginWordSet.add(0x0E01, 0x0E2E); // KO KAI through HO NOKHUK | |
869 | // fBeginWordSet.add(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI | |
870 | // fSuffixSet.add(THAI_PAIYANNOI); | |
871 | // fSuffixSet.add(THAI_MAIYAMOK); | |
872 | ||
873 | // Compact for caching. | |
874 | fMarkSet.compact(); | |
875 | fEndWordSet.compact(); | |
876 | fBeginWordSet.compact(); | |
877 | // fSuffixSet.compact(); | |
878 | } | |
879 | ||
880 | KhmerBreakEngine::~KhmerBreakEngine() { | |
881 | delete fDictionary; | |
882 | } | |
883 | ||
884 | int32_t | |
885 | KhmerBreakEngine::divideUpDictionaryRange( UText *text, | |
886 | int32_t rangeStart, | |
887 | int32_t rangeEnd, | |
888 | UStack &foundBreaks ) const { | |
889 | if ((rangeEnd - rangeStart) < KHMER_MIN_WORD_SPAN) { | |
890 | return 0; // Not enough characters for two words | |
891 | } | |
892 | ||
893 | uint32_t wordsFound = 0; | |
b331163b A |
894 | int32_t cpWordLength = 0; |
895 | int32_t cuWordLength = 0; | |
4388f060 A |
896 | int32_t current; |
897 | UErrorCode status = U_ZERO_ERROR; | |
898 | PossibleWord words[KHMER_LOOKAHEAD]; | |
4388f060 A |
899 | |
900 | utext_setNativeIndex(text, rangeStart); | |
901 | ||
902 | while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) { | |
b331163b A |
903 | cuWordLength = 0; |
904 | cpWordLength = 0; | |
4388f060 A |
905 | |
906 | // Look for candidate words at the current position | |
b331163b | 907 | int32_t candidates = words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
4388f060 A |
908 | |
909 | // If we found exactly one, use that | |
910 | if (candidates == 1) { | |
b331163b A |
911 | cuWordLength = words[wordsFound % KHMER_LOOKAHEAD].acceptMarked(text); |
912 | cpWordLength = words[wordsFound % KHMER_LOOKAHEAD].markedCPLength(); | |
4388f060 A |
913 | wordsFound += 1; |
914 | } | |
915 | ||
916 | // If there was more than one, see which one can take us forward the most words | |
917 | else if (candidates > 1) { | |
918 | // If we're already at the end of the range, we're done | |
919 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { | |
920 | goto foundBest; | |
921 | } | |
922 | do { | |
b331163b | 923 | int32_t wordsMatched = 1; |
51004dcb | 924 | if (words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { |
4388f060 A |
925 | if (wordsMatched < 2) { |
926 | // Followed by another dictionary word; mark first word as a good candidate | |
51004dcb | 927 | words[wordsFound % KHMER_LOOKAHEAD].markCurrent(); |
4388f060 A |
928 | wordsMatched = 2; |
929 | } | |
930 | ||
931 | // If we're already at the end of the range, we're done | |
932 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { | |
933 | goto foundBest; | |
934 | } | |
935 | ||
936 | // See if any of the possible second words is followed by a third word | |
937 | do { | |
938 | // If we find a third word, stop right away | |
51004dcb A |
939 | if (words[(wordsFound + 2) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { |
940 | words[wordsFound % KHMER_LOOKAHEAD].markCurrent(); | |
4388f060 A |
941 | goto foundBest; |
942 | } | |
943 | } | |
51004dcb | 944 | while (words[(wordsFound + 1) % KHMER_LOOKAHEAD].backUp(text)); |
4388f060 A |
945 | } |
946 | } | |
51004dcb | 947 | while (words[wordsFound % KHMER_LOOKAHEAD].backUp(text)); |
4388f060 | 948 | foundBest: |
b331163b A |
949 | cuWordLength = words[wordsFound % KHMER_LOOKAHEAD].acceptMarked(text); |
950 | cpWordLength = words[wordsFound % KHMER_LOOKAHEAD].markedCPLength(); | |
4388f060 A |
951 | wordsFound += 1; |
952 | } | |
953 | ||
954 | // We come here after having either found a word or not. We look ahead to the | |
955 | // next word. If it's not a dictionary word, we will combine it with the word we | |
956 | // just found (if there is one), but only if the preceding word does not exceed | |
957 | // the threshold. | |
958 | // The text iterator should now be positioned at the end of the word we found. | |
b331163b | 959 | if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < KHMER_ROOT_COMBINE_THRESHOLD) { |
4388f060 A |
960 | // if it is a dictionary word, do nothing. If it isn't, then if there is |
961 | // no preceding word, or the non-word shares less than the minimum threshold | |
962 | // of characters with a dictionary word, then scan to resynchronize | |
51004dcb | 963 | if (words[wordsFound % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 |
b331163b | 964 | && (cuWordLength == 0 |
51004dcb | 965 | || words[wordsFound % KHMER_LOOKAHEAD].longestPrefix() < KHMER_PREFIX_COMBINE_THRESHOLD)) { |
4388f060 | 966 | // Look for a plausible word boundary |
b331163b A |
967 | int32_t remaining = rangeEnd - (current+cuWordLength); |
968 | UChar32 pc; | |
969 | UChar32 uc; | |
4388f060 A |
970 | int32_t chars = 0; |
971 | for (;;) { | |
2ca993e8 | 972 | int32_t pcIndex = (int32_t)utext_getNativeIndex(text); |
b331163b | 973 | pc = utext_next32(text); |
2ca993e8 | 974 | int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex; |
b331163b A |
975 | chars += pcSize; |
976 | remaining -= pcSize; | |
977 | if (remaining <= 0) { | |
4388f060 A |
978 | break; |
979 | } | |
b331163b | 980 | uc = utext_current32(text); |
4388f060 A |
981 | if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { |
982 | // Maybe. See if it's in the dictionary. | |
b331163b A |
983 | int32_t candidates = words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
984 | utext_setNativeIndex(text, current+cuWordLength+chars); | |
4388f060 A |
985 | if (candidates > 0) { |
986 | break; | |
987 | } | |
988 | } | |
4388f060 A |
989 | } |
990 | ||
991 | // Bump the word count if there wasn't already one | |
b331163b | 992 | if (cuWordLength <= 0) { |
4388f060 A |
993 | wordsFound += 1; |
994 | } | |
995 | ||
996 | // Update the length with the passed-over characters | |
b331163b | 997 | cuWordLength += chars; |
4388f060 A |
998 | } |
999 | else { | |
1000 | // Back up to where we were for next iteration | |
b331163b | 1001 | utext_setNativeIndex(text, current+cuWordLength); |
4388f060 A |
1002 | } |
1003 | } | |
1004 | ||
1005 | // Never stop before a combining mark. | |
1006 | int32_t currPos; | |
1007 | while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { | |
1008 | utext_next32(text); | |
b331163b | 1009 | cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos; |
4388f060 A |
1010 | } |
1011 | ||
1012 | // Look ahead for possible suffixes if a dictionary word does not follow. | |
1013 | // We do this in code rather than using a rule so that the heuristic | |
1014 | // resynch continues to function. For example, one of the suffix characters | |
1015 | // could be a typo in the middle of a word. | |
1016 | // if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength > 0) { | |
1017 | // if (words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 | |
1018 | // && fSuffixSet.contains(uc = utext_current32(text))) { | |
1019 | // if (uc == KHMER_PAIYANNOI) { | |
1020 | // if (!fSuffixSet.contains(utext_previous32(text))) { | |
1021 | // // Skip over previous end and PAIYANNOI | |
1022 | // utext_next32(text); | |
1023 | // utext_next32(text); | |
1024 | // wordLength += 1; // Add PAIYANNOI to word | |
1025 | // uc = utext_current32(text); // Fetch next character | |
1026 | // } | |
1027 | // else { | |
1028 | // // Restore prior position | |
1029 | // utext_next32(text); | |
1030 | // } | |
1031 | // } | |
1032 | // if (uc == KHMER_MAIYAMOK) { | |
1033 | // if (utext_previous32(text) != KHMER_MAIYAMOK) { | |
1034 | // // Skip over previous end and MAIYAMOK | |
1035 | // utext_next32(text); | |
1036 | // utext_next32(text); | |
1037 | // wordLength += 1; // Add MAIYAMOK to word | |
1038 | // } | |
1039 | // else { | |
1040 | // // Restore prior position | |
1041 | // utext_next32(text); | |
1042 | // } | |
1043 | // } | |
1044 | // } | |
1045 | // else { | |
1046 | // utext_setNativeIndex(text, current+wordLength); | |
1047 | // } | |
1048 | // } | |
1049 | ||
73c04bcf | 1050 | // Did we find a word on this iteration? If so, push it on the break stack |
b331163b A |
1051 | if (cuWordLength > 0) { |
1052 | foundBreaks.push((current+cuWordLength), status); | |
73c04bcf A |
1053 | } |
1054 | } | |
1055 | ||
1056 | // Don't return a break for the end of the dictionary range if there is one there. | |
1057 | if (foundBreaks.peeki() >= rangeEnd) { | |
1058 | (void) foundBreaks.popi(); | |
1059 | wordsFound -= 1; | |
1060 | } | |
1061 | ||
1062 | return wordsFound; | |
1063 | } | |
1064 | ||
51004dcb A |
1065 | #if !UCONFIG_NO_NORMALIZATION |
1066 | /* | |
1067 | ****************************************************************** | |
1068 | * CjkBreakEngine | |
1069 | */ | |
1070 | static const uint32_t kuint32max = 0xFFFFFFFF; | |
1071 | CjkBreakEngine::CjkBreakEngine(DictionaryMatcher *adoptDictionary, LanguageType type, UErrorCode &status) | |
1072 | : DictionaryBreakEngine(1 << UBRK_WORD), fDictionary(adoptDictionary) { | |
1073 | // Korean dictionary only includes Hangul syllables | |
1074 | fHangulWordSet.applyPattern(UNICODE_STRING_SIMPLE("[\\uac00-\\ud7a3]"), status); | |
1075 | fHanWordSet.applyPattern(UNICODE_STRING_SIMPLE("[:Han:]"), status); | |
1076 | fKatakanaWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Katakana:]\\uff9e\\uff9f]"), status); | |
1077 | fHiraganaWordSet.applyPattern(UNICODE_STRING_SIMPLE("[:Hiragana:]"), status); | |
b331163b | 1078 | nfkcNorm2 = Normalizer2::getNFKCInstance(status); |
51004dcb A |
1079 | |
1080 | if (U_SUCCESS(status)) { | |
1081 | // handle Korean and Japanese/Chinese using different dictionaries | |
1082 | if (type == kKorean) { | |
1083 | setCharacters(fHangulWordSet); | |
1084 | } else { //Chinese and Japanese | |
1085 | UnicodeSet cjSet; | |
1086 | cjSet.addAll(fHanWordSet); | |
1087 | cjSet.addAll(fKatakanaWordSet); | |
1088 | cjSet.addAll(fHiraganaWordSet); | |
57a6839d A |
1089 | cjSet.add(0xFF70); // HALFWIDTH KATAKANA-HIRAGANA PROLONGED SOUND MARK |
1090 | cjSet.add(0x30FC); // KATAKANA-HIRAGANA PROLONGED SOUND MARK | |
51004dcb A |
1091 | setCharacters(cjSet); |
1092 | } | |
1093 | } | |
1094 | } | |
1095 | ||
1096 | CjkBreakEngine::~CjkBreakEngine(){ | |
1097 | delete fDictionary; | |
1098 | } | |
1099 | ||
1100 | // The katakanaCost values below are based on the length frequencies of all | |
1101 | // katakana phrases in the dictionary | |
b331163b A |
1102 | static const int32_t kMaxKatakanaLength = 8; |
1103 | static const int32_t kMaxKatakanaGroupLength = 20; | |
51004dcb A |
1104 | static const uint32_t maxSnlp = 255; |
1105 | ||
b331163b | 1106 | static inline uint32_t getKatakanaCost(int32_t wordLength){ |
51004dcb A |
1107 | //TODO: fill array with actual values from dictionary! |
1108 | static const uint32_t katakanaCost[kMaxKatakanaLength + 1] | |
1109 | = {8192, 984, 408, 240, 204, 252, 300, 372, 480}; | |
1110 | return (wordLength > kMaxKatakanaLength) ? 8192 : katakanaCost[wordLength]; | |
1111 | } | |
1112 | ||
1113 | static inline bool isKatakana(uint16_t value) { | |
1114 | return (value >= 0x30A1u && value <= 0x30FEu && value != 0x30FBu) || | |
1115 | (value >= 0xFF66u && value <= 0xFF9fu); | |
1116 | } | |
1117 | ||
51004dcb | 1118 | |
b331163b A |
1119 | // Function for accessing internal utext flags. |
1120 | // Replicates an internal UText function. | |
51004dcb | 1121 | |
b331163b A |
1122 | static inline int32_t utext_i32_flag(int32_t bitIndex) { |
1123 | return (int32_t)1 << bitIndex; | |
1124 | } | |
51004dcb | 1125 | |
b331163b | 1126 | |
51004dcb A |
1127 | /* |
1128 | * @param text A UText representing the text | |
1129 | * @param rangeStart The start of the range of dictionary characters | |
1130 | * @param rangeEnd The end of the range of dictionary characters | |
1131 | * @param foundBreaks Output of C array of int32_t break positions, or 0 | |
1132 | * @return The number of breaks found | |
1133 | */ | |
1134 | int32_t | |
b331163b | 1135 | CjkBreakEngine::divideUpDictionaryRange( UText *inText, |
51004dcb A |
1136 | int32_t rangeStart, |
1137 | int32_t rangeEnd, | |
1138 | UStack &foundBreaks ) const { | |
1139 | if (rangeStart >= rangeEnd) { | |
1140 | return 0; | |
1141 | } | |
1142 | ||
2ca993e8 A |
1143 | // UnicodeString version of input UText, NFKC normalized if necessary. |
1144 | UnicodeString inString; | |
b331163b A |
1145 | |
1146 | // inputMap[inStringIndex] = corresponding native index from UText inText. | |
1147 | // If NULL then mapping is 1:1 | |
2ca993e8 | 1148 | LocalPointer<UVector32> inputMap; |
b331163b A |
1149 | |
1150 | UErrorCode status = U_ZERO_ERROR; | |
51004dcb | 1151 | |
51004dcb | 1152 | |
b331163b A |
1153 | // if UText has the input string as one contiguous UTF-16 chunk |
1154 | if ((inText->providerProperties & utext_i32_flag(UTEXT_PROVIDER_STABLE_CHUNKS)) && | |
1155 | inText->chunkNativeStart <= rangeStart && | |
1156 | inText->chunkNativeLimit >= rangeEnd && | |
1157 | inText->nativeIndexingLimit >= rangeEnd - inText->chunkNativeStart) { | |
2ca993e8 A |
1158 | |
1159 | // Input UText is in one contiguous UTF-16 chunk. | |
1160 | // Use Read-only aliasing UnicodeString. | |
1161 | inString.setTo(FALSE, | |
1162 | inText->chunkContents + rangeStart - inText->chunkNativeStart, | |
1163 | rangeEnd - rangeStart); | |
b331163b A |
1164 | } else { |
1165 | // Copy the text from the original inText (UText) to inString (UnicodeString). | |
1166 | // Create a map from UnicodeString indices -> UText offsets. | |
1167 | utext_setNativeIndex(inText, rangeStart); | |
1168 | int32_t limit = rangeEnd; | |
1169 | U_ASSERT(limit <= utext_nativeLength(inText)); | |
1170 | if (limit > utext_nativeLength(inText)) { | |
2ca993e8 A |
1171 | limit = (int32_t)utext_nativeLength(inText); |
1172 | } | |
1173 | inputMap.adoptInsteadAndCheckErrorCode(new UVector32(status), status); | |
1174 | if (U_FAILURE(status)) { | |
1175 | return 0; | |
b331163b | 1176 | } |
b331163b | 1177 | while (utext_getNativeIndex(inText) < limit) { |
2ca993e8 | 1178 | int32_t nativePosition = (int32_t)utext_getNativeIndex(inText); |
b331163b A |
1179 | UChar32 c = utext_next32(inText); |
1180 | U_ASSERT(c != U_SENTINEL); | |
2ca993e8 A |
1181 | inString.append(c); |
1182 | while (inputMap->size() < inString.length()) { | |
b331163b A |
1183 | inputMap->addElement(nativePosition, status); |
1184 | } | |
51004dcb | 1185 | } |
b331163b | 1186 | inputMap->addElement(limit, status); |
51004dcb | 1187 | } |
b331163b A |
1188 | |
1189 | ||
2ca993e8 A |
1190 | if (!nfkcNorm2->isNormalized(inString, status)) { |
1191 | UnicodeString normalizedInput; | |
b331163b | 1192 | // normalizedMap[normalizedInput position] == original UText position. |
2ca993e8 | 1193 | LocalPointer<UVector32> normalizedMap(new UVector32(status), status); |
51004dcb A |
1194 | if (U_FAILURE(status)) { |
1195 | return 0; | |
1196 | } | |
b331163b A |
1197 | |
1198 | UnicodeString fragment; | |
1199 | UnicodeString normalizedFragment; | |
2ca993e8 | 1200 | for (int32_t srcI = 0; srcI < inString.length();) { // Once per normalization chunk |
b331163b A |
1201 | fragment.remove(); |
1202 | int32_t fragmentStartI = srcI; | |
2ca993e8 | 1203 | UChar32 c = inString.char32At(srcI); |
b331163b A |
1204 | for (;;) { |
1205 | fragment.append(c); | |
2ca993e8 A |
1206 | srcI = inString.moveIndex32(srcI, 1); |
1207 | if (srcI == inString.length()) { | |
b331163b A |
1208 | break; |
1209 | } | |
2ca993e8 | 1210 | c = inString.char32At(srcI); |
b331163b A |
1211 | if (nfkcNorm2->hasBoundaryBefore(c)) { |
1212 | break; | |
1213 | } | |
1214 | } | |
1215 | nfkcNorm2->normalize(fragment, normalizedFragment, status); | |
2ca993e8 | 1216 | normalizedInput.append(normalizedFragment); |
b331163b A |
1217 | |
1218 | // Map every position in the normalized chunk to the start of the chunk | |
1219 | // in the original input. | |
2ca993e8 A |
1220 | int32_t fragmentOriginalStart = inputMap.isValid() ? |
1221 | inputMap->elementAti(fragmentStartI) : fragmentStartI+rangeStart; | |
1222 | while (normalizedMap->size() < normalizedInput.length()) { | |
b331163b A |
1223 | normalizedMap->addElement(fragmentOriginalStart, status); |
1224 | if (U_FAILURE(status)) { | |
1225 | break; | |
1226 | } | |
1227 | } | |
51004dcb | 1228 | } |
2ca993e8 A |
1229 | U_ASSERT(normalizedMap->size() == normalizedInput.length()); |
1230 | int32_t nativeEnd = inputMap.isValid() ? | |
1231 | inputMap->elementAti(inString.length()) : inString.length()+rangeStart; | |
b331163b A |
1232 | normalizedMap->addElement(nativeEnd, status); |
1233 | ||
2ca993e8 A |
1234 | inputMap.moveFrom(normalizedMap); |
1235 | inString.moveFrom(normalizedInput); | |
51004dcb A |
1236 | } |
1237 | ||
2ca993e8 A |
1238 | int32_t numCodePts = inString.countChar32(); |
1239 | if (numCodePts != inString.length()) { | |
b331163b A |
1240 | // There are supplementary characters in the input. |
1241 | // The dictionary will produce boundary positions in terms of code point indexes, | |
1242 | // not in terms of code unit string indexes. | |
1243 | // Use the inputMap mechanism to take care of this in addition to indexing differences | |
1244 | // from normalization and/or UTF-8 input. | |
2ca993e8 | 1245 | UBool hadExistingMap = inputMap.isValid(); |
b331163b | 1246 | if (!hadExistingMap) { |
2ca993e8 A |
1247 | inputMap.adoptInsteadAndCheckErrorCode(new UVector32(status), status); |
1248 | if (U_FAILURE(status)) { | |
1249 | return 0; | |
1250 | } | |
b331163b A |
1251 | } |
1252 | int32_t cpIdx = 0; | |
2ca993e8 | 1253 | for (int32_t cuIdx = 0; ; cuIdx = inString.moveIndex32(cuIdx, 1)) { |
b331163b A |
1254 | U_ASSERT(cuIdx >= cpIdx); |
1255 | if (hadExistingMap) { | |
1256 | inputMap->setElementAt(inputMap->elementAti(cuIdx), cpIdx); | |
1257 | } else { | |
1258 | inputMap->addElement(cuIdx+rangeStart, status); | |
1259 | } | |
1260 | cpIdx++; | |
2ca993e8 | 1261 | if (cuIdx == inString.length()) { |
b331163b A |
1262 | break; |
1263 | } | |
1264 | } | |
51004dcb | 1265 | } |
b331163b | 1266 | |
51004dcb | 1267 | // bestSnlp[i] is the snlp of the best segmentation of the first i |
b331163b A |
1268 | // code points in the range to be matched. |
1269 | UVector32 bestSnlp(numCodePts + 1, status); | |
1270 | bestSnlp.addElement(0, status); | |
1271 | for(int32_t i = 1; i <= numCodePts; i++) { | |
1272 | bestSnlp.addElement(kuint32max, status); | |
51004dcb A |
1273 | } |
1274 | ||
b331163b A |
1275 | |
1276 | // prev[i] is the index of the last CJK code point in the previous word in | |
51004dcb | 1277 | // the best segmentation of the first i characters. |
b331163b A |
1278 | UVector32 prev(numCodePts + 1, status); |
1279 | for(int32_t i = 0; i <= numCodePts; i++){ | |
1280 | prev.addElement(-1, status); | |
51004dcb A |
1281 | } |
1282 | ||
b331163b A |
1283 | const int32_t maxWordSize = 20; |
1284 | UVector32 values(numCodePts, status); | |
1285 | values.setSize(numCodePts); | |
1286 | UVector32 lengths(numCodePts, status); | |
1287 | lengths.setSize(numCodePts); | |
1288 | ||
1289 | UText fu = UTEXT_INITIALIZER; | |
2ca993e8 | 1290 | utext_openUnicodeString(&fu, &inString, &status); |
51004dcb A |
1291 | |
1292 | // Dynamic programming to find the best segmentation. | |
b331163b A |
1293 | |
1294 | // In outer loop, i is the code point index, | |
1295 | // ix is the corresponding string (code unit) index. | |
1296 | // They differ when the string contains supplementary characters. | |
1297 | int32_t ix = 0; | |
f3c0d7a5 | 1298 | bool is_prev_katakana = false; |
2ca993e8 | 1299 | for (int32_t i = 0; i < numCodePts; ++i, ix = inString.moveIndex32(ix, 1)) { |
b331163b | 1300 | if ((uint32_t)bestSnlp.elementAti(i) == kuint32max) { |
51004dcb | 1301 | continue; |
b331163b | 1302 | } |
51004dcb A |
1303 | |
1304 | int32_t count; | |
b331163b A |
1305 | utext_setNativeIndex(&fu, ix); |
1306 | count = fDictionary->matches(&fu, maxWordSize, numCodePts, | |
1307 | NULL, lengths.getBuffer(), values.getBuffer(), NULL); | |
1308 | // Note: lengths is filled with code point lengths | |
1309 | // The NULL parameter is the ignored code unit lengths. | |
51004dcb A |
1310 | |
1311 | // if there are no single character matches found in the dictionary | |
f3c0d7a5 | 1312 | // starting with this character, treat character as a 1-character word |
51004dcb A |
1313 | // with the highest value possible, i.e. the least likely to occur. |
1314 | // Exclude Korean characters from this treatment, as they should be left | |
1315 | // together by default. | |
b331163b | 1316 | if ((count == 0 || lengths.elementAti(0) != 1) && |
2ca993e8 | 1317 | !fHangulWordSet.contains(inString.char32At(ix))) { |
b331163b A |
1318 | values.setElementAt(maxSnlp, count); // 255 |
1319 | lengths.setElementAt(1, count++); | |
51004dcb A |
1320 | } |
1321 | ||
b331163b A |
1322 | for (int32_t j = 0; j < count; j++) { |
1323 | uint32_t newSnlp = (uint32_t)bestSnlp.elementAti(i) + (uint32_t)values.elementAti(j); | |
1324 | int32_t ln_j_i = lengths.elementAti(j) + i; | |
1325 | if (newSnlp < (uint32_t)bestSnlp.elementAti(ln_j_i)) { | |
1326 | bestSnlp.setElementAt(newSnlp, ln_j_i); | |
1327 | prev.setElementAt(i, ln_j_i); | |
51004dcb A |
1328 | } |
1329 | } | |
1330 | ||
1331 | // In Japanese, | |
1332 | // Katakana word in single character is pretty rare. So we apply | |
1333 | // the following heuristic to Katakana: any continuous run of Katakana | |
1334 | // characters is considered a candidate word with a default cost | |
1335 | // specified in the katakanaCost table according to its length. | |
b331163b | 1336 | |
2ca993e8 | 1337 | bool is_katakana = isKatakana(inString.char32At(ix)); |
b331163b | 1338 | int32_t katakanaRunLength = 1; |
51004dcb | 1339 | if (!is_prev_katakana && is_katakana) { |
2ca993e8 | 1340 | int32_t j = inString.moveIndex32(ix, 1); |
51004dcb | 1341 | // Find the end of the continuous run of Katakana characters |
2ca993e8 A |
1342 | while (j < inString.length() && katakanaRunLength < kMaxKatakanaGroupLength && |
1343 | isKatakana(inString.char32At(j))) { | |
1344 | j = inString.moveIndex32(j, 1); | |
b331163b | 1345 | katakanaRunLength++; |
51004dcb | 1346 | } |
b331163b A |
1347 | if (katakanaRunLength < kMaxKatakanaGroupLength) { |
1348 | uint32_t newSnlp = bestSnlp.elementAti(i) + getKatakanaCost(katakanaRunLength); | |
1349 | if (newSnlp < (uint32_t)bestSnlp.elementAti(j)) { | |
1350 | bestSnlp.setElementAt(newSnlp, j); | |
1351 | prev.setElementAt(i, i+katakanaRunLength); // prev[j] = i; | |
51004dcb A |
1352 | } |
1353 | } | |
1354 | } | |
1355 | is_prev_katakana = is_katakana; | |
1356 | } | |
b331163b | 1357 | utext_close(&fu); |
51004dcb A |
1358 | |
1359 | // Start pushing the optimal offset index into t_boundary (t for tentative). | |
b331163b | 1360 | // prev[numCodePts] is guaranteed to be meaningful. |
51004dcb | 1361 | // We'll first push in the reverse order, i.e., |
b331163b A |
1362 | // t_boundary[0] = numCodePts, and afterwards do a swap. |
1363 | UVector32 t_boundary(numCodePts+1, status); | |
51004dcb | 1364 | |
b331163b | 1365 | int32_t numBreaks = 0; |
51004dcb | 1366 | // No segmentation found, set boundary to end of range |
b331163b A |
1367 | if ((uint32_t)bestSnlp.elementAti(numCodePts) == kuint32max) { |
1368 | t_boundary.addElement(numCodePts, status); | |
1369 | numBreaks++; | |
51004dcb | 1370 | } else { |
b331163b A |
1371 | for (int32_t i = numCodePts; i > 0; i = prev.elementAti(i)) { |
1372 | t_boundary.addElement(i, status); | |
1373 | numBreaks++; | |
51004dcb | 1374 | } |
b331163b | 1375 | U_ASSERT(prev.elementAti(t_boundary.elementAti(numBreaks - 1)) == 0); |
51004dcb A |
1376 | } |
1377 | ||
b331163b | 1378 | // Add a break for the start of the dictionary range if there is not one |
51004dcb A |
1379 | // there already. |
1380 | if (foundBreaks.size() == 0 || foundBreaks.peeki() < rangeStart) { | |
b331163b A |
1381 | t_boundary.addElement(0, status); |
1382 | numBreaks++; | |
51004dcb A |
1383 | } |
1384 | ||
b331163b A |
1385 | // Now that we're done, convert positions in t_boundary[] (indices in |
1386 | // the normalized input string) back to indices in the original input UText | |
1387 | // while reversing t_boundary and pushing values to foundBreaks. | |
f3c0d7a5 A |
1388 | int32_t prevCPPos = -1; |
1389 | int32_t prevUTextPos = -1; | |
b331163b A |
1390 | for (int32_t i = numBreaks-1; i >= 0; i--) { |
1391 | int32_t cpPos = t_boundary.elementAti(i); | |
f3c0d7a5 | 1392 | U_ASSERT(cpPos > prevCPPos); |
2ca993e8 | 1393 | int32_t utextPos = inputMap.isValid() ? inputMap->elementAti(cpPos) : cpPos + rangeStart; |
f3c0d7a5 A |
1394 | U_ASSERT(utextPos >= prevUTextPos); |
1395 | if (utextPos > prevUTextPos) { | |
1396 | // Boundaries are added to foundBreaks output in ascending order. | |
1397 | U_ASSERT(foundBreaks.size() == 0 || foundBreaks.peeki() < utextPos); | |
1398 | foundBreaks.push(utextPos, status); | |
1399 | } else { | |
1400 | // Normalization expanded the input text, the dictionary found a boundary | |
1401 | // within the expansion, giving two boundaries with the same index in the | |
1402 | // original text. Ignore the second. See ticket #12918. | |
1403 | --numBreaks; | |
1404 | } | |
1405 | prevCPPos = cpPos; | |
1406 | prevUTextPos = utextPos; | |
51004dcb A |
1407 | } |
1408 | ||
2ca993e8 A |
1409 | // inString goes out of scope |
1410 | // inputMap goes out of scope | |
51004dcb A |
1411 | return numBreaks; |
1412 | } | |
1413 | #endif | |
1414 | ||
73c04bcf A |
1415 | U_NAMESPACE_END |
1416 | ||
1417 | #endif /* #if !UCONFIG_NO_BREAK_ITERATION */ | |
51004dcb | 1418 |