]>
Commit | Line | Data |
---|---|---|
b75a7d8f A |
1 | |
2 | // | |
3 | // file: regexcmp.cpp | |
4 | // | |
46f4442e | 5 | // Copyright (C) 2002-2008 International Business Machines Corporation and others. |
b75a7d8f A |
6 | // All Rights Reserved. |
7 | // | |
8 | // This file contains the ICU regular expression compiler, which is responsible | |
9 | // for processing a regular expression pattern into the compiled form that | |
10 | // is used by the match finding engine. | |
11 | // | |
12 | ||
13 | #include "unicode/utypes.h" | |
14 | ||
15 | #if !UCONFIG_NO_REGULAR_EXPRESSIONS | |
16 | ||
17 | #include "unicode/unistr.h" | |
18 | #include "unicode/uniset.h" | |
19 | #include "unicode/uchar.h" | |
20 | #include "unicode/uchriter.h" | |
21 | #include "unicode/parsepos.h" | |
22 | #include "unicode/parseerr.h" | |
23 | #include "unicode/regex.h" | |
374ca955 | 24 | #include "util.h" |
b75a7d8f A |
25 | #include "cmemory.h" |
26 | #include "cstring.h" | |
27 | #include "uvectr32.h" | |
28 | #include "uassert.h" | |
29 | #include "ucln_in.h" | |
46f4442e | 30 | #include "uinvchar.h" |
b75a7d8f A |
31 | |
32 | #include "regeximp.h" | |
33 | #include "regexcst.h" // Contains state table for the regex pattern parser. | |
34 | // generated by a Perl script. | |
35 | #include "regexcmp.h" | |
36 | #include "regexst.h" | |
37 | ||
38 | ||
39 | ||
40 | U_NAMESPACE_BEGIN | |
41 | ||
42 | ||
73c04bcf | 43 | //------------------------------------------------------------------------------ |
b75a7d8f A |
44 | // |
45 | // Constructor. | |
46 | // | |
73c04bcf | 47 | //------------------------------------------------------------------------------ |
46f4442e A |
48 | RegexCompile::RegexCompile(RegexPattern *rxp, UErrorCode &status) : |
49 | fParenStack(status), fSetStack(status), fSetOpStack(status) | |
b75a7d8f A |
50 | { |
51 | fStatus = &status; | |
52 | ||
53 | fRXPat = rxp; | |
54 | fScanIndex = 0; | |
55 | fNextIndex = 0; | |
56 | fPeekChar = -1; | |
57 | fLineNum = 1; | |
58 | fCharNum = 0; | |
59 | fQuoteMode = FALSE; | |
60 | fInBackslashQuote = FALSE; | |
73c04bcf | 61 | fModeFlags = fRXPat->fFlags | 0x80000000; |
b75a7d8f A |
62 | fEOLComments = TRUE; |
63 | ||
64 | fMatchOpenParen = -1; | |
65 | fMatchCloseParen = -1; | |
66 | fStringOpStart = -1; | |
67 | ||
68 | if (U_SUCCESS(status) && U_FAILURE(rxp->fDeferredStatus)) { | |
69 | status = rxp->fDeferredStatus; | |
70 | } | |
71 | } | |
72 | ||
46f4442e A |
73 | static const UChar chAmp = 0x26; // '&' |
74 | static const UChar chDash = 0x2d; // '-' | |
b75a7d8f A |
75 | |
76 | ||
73c04bcf | 77 | //------------------------------------------------------------------------------ |
b75a7d8f A |
78 | // |
79 | // Destructor | |
80 | // | |
73c04bcf | 81 | //------------------------------------------------------------------------------ |
b75a7d8f A |
82 | RegexCompile::~RegexCompile() { |
83 | } | |
84 | ||
46f4442e A |
85 | static inline void addCategory(UnicodeSet *set, int32_t value, UErrorCode& ec) { |
86 | set->addAll(UnicodeSet().applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, value, ec)); | |
87 | } | |
88 | ||
73c04bcf | 89 | //------------------------------------------------------------------------------ |
b75a7d8f A |
90 | // |
91 | // Compile regex pattern. The state machine for rexexp pattern parsing is here. | |
92 | // The state tables are hand-written in the file regexcst.txt, | |
93 | // and converted to the form used here by a perl | |
94 | // script regexcst.pl | |
95 | // | |
73c04bcf | 96 | //------------------------------------------------------------------------------ |
b75a7d8f A |
97 | void RegexCompile::compile( |
98 | const UnicodeString &pat, // Source pat to be compiled. | |
99 | UParseError &pp, // Error position info | |
100 | UErrorCode &e) // Error Code | |
101 | { | |
102 | fStatus = &e; | |
103 | fParseErr = &pp; | |
104 | fStackPtr = 0; | |
105 | fStack[fStackPtr] = 0; | |
106 | ||
107 | if (U_FAILURE(*fStatus)) { | |
108 | return; | |
109 | } | |
110 | ||
111 | // There should be no pattern stuff in the RegexPattern object. They can not be reused. | |
112 | U_ASSERT(fRXPat->fPattern.length() == 0); | |
113 | ||
114 | // Prepare the RegexPattern object to receive the compiled pattern. | |
b75a7d8f A |
115 | fRXPat->fPattern = pat; |
116 | fRXPat->fStaticSets = RegexStaticSets::gStaticSets->fPropSets; | |
117 | fRXPat->fStaticSets8 = RegexStaticSets::gStaticSets->fPropSets8; | |
118 | ||
119 | ||
120 | // Initialize the pattern scanning state machine | |
121 | fPatternLength = pat.length(); | |
122 | uint16_t state = 1; | |
123 | const RegexTableEl *tableEl; | |
124 | nextChar(fC); // Fetch the first char from the pattern string. | |
125 | ||
126 | // | |
127 | // Main loop for the regex pattern parsing state machine. | |
128 | // Runs once per state transition. | |
129 | // Each time through optionally performs, depending on the state table, | |
130 | // - an advance to the the next pattern char | |
131 | // - an action to be performed. | |
132 | // - pushing or popping a state to/from the local state return stack. | |
133 | // file regexcst.txt is the source for the state table. The logic behind | |
134 | // recongizing the pattern syntax is there, not here. | |
135 | // | |
136 | for (;;) { | |
137 | // Bail out if anything has gone wrong. | |
138 | // Regex pattern parsing stops on the first error encountered. | |
139 | if (U_FAILURE(*fStatus)) { | |
140 | break; | |
141 | } | |
142 | ||
143 | U_ASSERT(state != 0); | |
144 | ||
145 | // Find the state table element that matches the input char from the pattern, or the | |
146 | // class of the input character. Start with the first table row for this | |
147 | // state, then linearly scan forward until we find a row that matches the | |
148 | // character. The last row for each state always matches all characters, so | |
149 | // the search will stop there, if not before. | |
150 | // | |
151 | tableEl = &gRuleParseStateTable[state]; | |
46f4442e | 152 | REGEX_SCAN_DEBUG_PRINTF(("char, line, col = (\'%c\', %d, %d) state=%s ", |
374ca955 | 153 | fC.fChar, fLineNum, fCharNum, RegexStateNames[state])); |
b75a7d8f A |
154 | |
155 | for (;;) { // loop through table rows belonging to this state, looking for one | |
156 | // that matches the current input char. | |
374ca955 | 157 | REGEX_SCAN_DEBUG_PRINTF((".")); |
b75a7d8f A |
158 | if (tableEl->fCharClass < 127 && fC.fQuoted == FALSE && tableEl->fCharClass == fC.fChar) { |
159 | // Table row specified an individual character, not a set, and | |
160 | // the input character is not quoted, and | |
161 | // the input character matched it. | |
162 | break; | |
163 | } | |
164 | if (tableEl->fCharClass == 255) { | |
165 | // Table row specified default, match anything character class. | |
166 | break; | |
167 | } | |
168 | if (tableEl->fCharClass == 254 && fC.fQuoted) { | |
169 | // Table row specified "quoted" and the char was quoted. | |
170 | break; | |
171 | } | |
172 | if (tableEl->fCharClass == 253 && fC.fChar == (UChar32)-1) { | |
173 | // Table row specified eof and we hit eof on the input. | |
174 | break; | |
175 | } | |
176 | ||
177 | if (tableEl->fCharClass >= 128 && tableEl->fCharClass < 240 && // Table specs a char class && | |
178 | fC.fQuoted == FALSE && // char is not escaped && | |
179 | fC.fChar != (UChar32)-1) { // char is not EOF | |
46f4442e | 180 | if (RegexStaticSets::gStaticSets->fRuleSets[tableEl->fCharClass-128].contains(fC.fChar)) { |
b75a7d8f A |
181 | // Table row specified a character class, or set of characters, |
182 | // and the current char matches it. | |
183 | break; | |
184 | } | |
185 | } | |
186 | ||
187 | // No match on this row, advance to the next row for this state, | |
188 | tableEl++; | |
189 | } | |
374ca955 | 190 | REGEX_SCAN_DEBUG_PRINTF(("\n")); |
b75a7d8f A |
191 | |
192 | // | |
193 | // We've found the row of the state table that matches the current input | |
194 | // character from the rules string. | |
195 | // Perform any action specified by this row in the state table. | |
46f4442e | 196 | if (doParseActions(tableEl->fAction) == FALSE) { |
b75a7d8f A |
197 | // Break out of the state machine loop if the |
198 | // the action signalled some kind of error, or | |
199 | // the action was to exit, occurs on normal end-of-rules-input. | |
200 | break; | |
201 | } | |
202 | ||
203 | if (tableEl->fPushState != 0) { | |
204 | fStackPtr++; | |
205 | if (fStackPtr >= kStackSize) { | |
206 | error(U_REGEX_INTERNAL_ERROR); | |
374ca955 | 207 | REGEX_SCAN_DEBUG_PRINTF(("RegexCompile::parse() - state stack overflow.\n")); |
b75a7d8f A |
208 | fStackPtr--; |
209 | } | |
210 | fStack[fStackPtr] = tableEl->fPushState; | |
211 | } | |
212 | ||
213 | // | |
214 | // NextChar. This is where characters are actually fetched from the pattern. | |
215 | // Happens under control of the 'n' tag in the state table. | |
216 | // | |
217 | if (tableEl->fNextChar) { | |
218 | nextChar(fC); | |
219 | } | |
220 | ||
221 | // Get the next state from the table entry, or from the | |
222 | // state stack if the next state was specified as "pop". | |
223 | if (tableEl->fNextState != 255) { | |
224 | state = tableEl->fNextState; | |
225 | } else { | |
226 | state = fStack[fStackPtr]; | |
227 | fStackPtr--; | |
228 | if (fStackPtr < 0) { | |
229 | // state stack underflow | |
230 | // This will occur if the user pattern has mis-matched parentheses, | |
231 | // with extra close parens. | |
46f4442e | 232 | // |
b75a7d8f A |
233 | fStackPtr++; |
234 | error(U_REGEX_MISMATCHED_PAREN); | |
235 | } | |
236 | } | |
237 | ||
238 | } | |
239 | ||
46f4442e A |
240 | if (U_FAILURE(*fStatus)) { |
241 | // Bail out if the pattern had errors. | |
242 | // Set stack cleanup: a successful compile would have left it empty, | |
243 | // but errors can leave temporary sets hanging around. | |
244 | while (!fSetStack.empty()) { | |
245 | delete (UnicodeSet *)fSetStack.pop(); | |
246 | } | |
247 | return; | |
248 | } | |
249 | ||
b75a7d8f A |
250 | // |
251 | // The pattern has now been read and processed, and the compiled code generated. | |
252 | // | |
253 | ||
254 | // Back-reference fixup | |
255 | // | |
256 | int32_t loc; | |
257 | for (loc=0; loc<fRXPat->fCompiledPat->size(); loc++) { | |
258 | int32_t op = fRXPat->fCompiledPat->elementAti(loc); | |
259 | int32_t opType = URX_TYPE(op); | |
260 | if (opType == URX_BACKREF || opType == URX_BACKREF_I) { | |
261 | int32_t where = URX_VAL(op); | |
262 | if (where > fRXPat->fGroupMap->size()) { | |
263 | error(U_REGEX_INVALID_BACK_REF); | |
264 | break; | |
265 | } | |
266 | where = fRXPat->fGroupMap->elementAti(where-1); | |
267 | op = URX_BUILD(opType, where); | |
268 | fRXPat->fCompiledPat->setElementAt(op, loc); | |
269 | } | |
270 | } | |
271 | ||
272 | ||
273 | // | |
274 | // Compute the number of digits requried for the largest capture group number. | |
275 | // | |
276 | fRXPat->fMaxCaptureDigits = 1; | |
277 | int32_t n = 10; | |
278 | for (;;) { | |
279 | if (n > fRXPat->fGroupMap->size()) { | |
280 | break; | |
281 | } | |
282 | fRXPat->fMaxCaptureDigits++; | |
283 | n *= 10; | |
284 | } | |
285 | ||
286 | // | |
287 | // The pattern's fFrameSize so far has accumulated the requirements for | |
288 | // storage for capture parentheses, counters, etc. that are encountered | |
289 | // in the pattern. Add space for the two variables that are always | |
290 | // present in the saved state: the input string position and the | |
291 | // position in the compiled pattern. | |
292 | // | |
293 | fRXPat->fFrameSize+=2; | |
294 | ||
295 | // | |
296 | // Get bounds for the minimum and maximum length of a string that this | |
297 | // pattern can match. Used to avoid looking for matches in strings that | |
298 | // are too short. | |
299 | // | |
300 | fRXPat->fMinMatchLen = minMatchLength(3, fRXPat->fCompiledPat->size()-1); | |
301 | ||
302 | // | |
303 | // Optimization passes | |
46f4442e A |
304 | // |
305 | matchStartType(); | |
b75a7d8f A |
306 | stripNOPs(); |
307 | ||
308 | // | |
309 | // Set up fast latin-1 range sets | |
310 | // | |
311 | int32_t numSets = fRXPat->fSets->size(); | |
312 | fRXPat->fSets8 = new Regex8BitSet[numSets]; | |
46f4442e A |
313 | // Null pointer check. |
314 | if (fRXPat->fSets8 == NULL) { | |
315 | e = *fStatus = U_MEMORY_ALLOCATION_ERROR; | |
316 | return; | |
317 | } | |
b75a7d8f A |
318 | int32_t i; |
319 | for (i=0; i<numSets; i++) { | |
320 | UnicodeSet *s = (UnicodeSet *)fRXPat->fSets->elementAt(i); | |
321 | fRXPat->fSets8[i].init(s); | |
322 | } | |
323 | ||
b75a7d8f A |
324 | } |
325 | ||
326 | ||
327 | ||
328 | ||
329 | ||
73c04bcf | 330 | //------------------------------------------------------------------------------ |
b75a7d8f A |
331 | // |
332 | // doParseAction Do some action during regex pattern parsing. | |
333 | // Called by the parse state machine. | |
334 | // | |
335 | // Generation of the match engine PCode happens here, or | |
336 | // in functions called from the parse actions defined here. | |
337 | // | |
338 | // | |
73c04bcf | 339 | //------------------------------------------------------------------------------ |
46f4442e | 340 | UBool RegexCompile::doParseActions(int32_t action) |
b75a7d8f A |
341 | { |
342 | UBool returnVal = TRUE; | |
343 | ||
344 | switch ((Regex_PatternParseAction)action) { | |
345 | ||
346 | case doPatStart: | |
347 | // Start of pattern compiles to: | |
348 | //0 SAVE 2 Fall back to position of FAIL | |
349 | //1 jmp 3 | |
350 | //2 FAIL Stop if we ever reach here. | |
351 | //3 NOP Dummy, so start of pattern looks the same as | |
352 | // the start of an ( grouping. | |
353 | //4 NOP Resreved, will be replaced by a save if there are | |
354 | // OR | operators at the top level | |
355 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_STATE_SAVE, 2), *fStatus); | |
356 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_JMP, 3), *fStatus); | |
357 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_FAIL, 0), *fStatus); | |
b75a7d8f | 358 | |
73c04bcf A |
359 | // Standard open nonCapture paren action emits the two NOPs and |
360 | // sets up the paren stack frame. | |
46f4442e | 361 | doParseActions(doOpenNonCaptureParen); |
b75a7d8f A |
362 | break; |
363 | ||
364 | case doPatFinish: | |
365 | // We've scanned to the end of the pattern | |
366 | // The end of pattern compiles to: | |
367 | // URX_END | |
368 | // which will stop the runtime match engine. | |
369 | // Encountering end of pattern also behaves like a close paren, | |
370 | // and forces fixups of the State Save at the beginning of the compiled pattern | |
371 | // and of any OR operations at the top level. | |
372 | // | |
373 | handleCloseParen(); | |
374 | if (fParenStack.size() > 0) { | |
375 | // Missing close paren in pattern. | |
376 | error(U_REGEX_MISMATCHED_PAREN); | |
377 | } | |
378 | ||
379 | // add the END operation to the compiled pattern. | |
380 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_END, 0), *fStatus); | |
381 | ||
382 | // Terminate the pattern compilation state machine. | |
383 | returnVal = FALSE; | |
384 | break; | |
385 | ||
386 | ||
387 | ||
388 | case doOrOperator: | |
389 | // Scanning a '|', as in (A|B) | |
390 | { | |
391 | // Insert a SAVE operation at the start of the pattern section preceding | |
392 | // this OR at this level. This SAVE will branch the match forward | |
393 | // to the right hand side of the OR in the event that the left hand | |
394 | // side fails to match and backtracks. Locate the position for the | |
395 | // save from the location on the top of the parentheses stack. | |
396 | int32_t savePosition = fParenStack.popi(); | |
397 | int32_t op = fRXPat->fCompiledPat->elementAti(savePosition); | |
398 | U_ASSERT(URX_TYPE(op) == URX_NOP); // original contents of reserved location | |
399 | op = URX_BUILD(URX_STATE_SAVE, fRXPat->fCompiledPat->size()+1); | |
400 | fRXPat->fCompiledPat->setElementAt(op, savePosition); | |
401 | ||
402 | // Append an JMP operation into the compiled pattern. The operand for | |
403 | // the JMP will eventually be the location following the ')' for the | |
404 | // group. This will be patched in later, when the ')' is encountered. | |
405 | op = URX_BUILD(URX_JMP, 0); | |
406 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
407 | ||
408 | // Push the position of the newly added JMP op onto the parentheses stack. | |
409 | // This registers if for fixup when this block's close paren is encountered. | |
410 | fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); | |
411 | ||
412 | // Append a NOP to the compiled pattern. This is the slot reserved | |
413 | // for a SAVE in the event that there is yet another '|' following | |
414 | // this one. | |
415 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus); | |
416 | fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); | |
417 | } | |
418 | break; | |
419 | ||
420 | ||
421 | case doOpenCaptureParen: | |
422 | // Open Paren. | |
423 | // Compile to a | |
424 | // - NOP, which later may be replaced by a save-state if the | |
425 | // parenthesized group gets a * quantifier, followed by | |
426 | // - START_CAPTURE n where n is stack frame offset to the capture group variables. | |
427 | // - NOP, which may later be replaced by a save-state if there | |
428 | // is an '|' alternation within the parens. | |
429 | // | |
430 | // Each capture group gets three slots in the save stack frame: | |
431 | // 0: Capture Group start position (in input string being matched.) | |
432 | // 1: Capture Group end positino. | |
433 | // 2: Start of Match-in-progress. | |
434 | // The first two locations are for a completed capture group, and are | |
435 | // referred to by back references and the like. | |
436 | // The third location stores the capture start position when an START_CAPTURE is | |
437 | // encountered. This will be promoted to a completed capture when (and if) the corresponding | |
438 | // END_CAPure is encountered. | |
439 | { | |
440 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus); | |
441 | int32_t varsLoc = fRXPat->fFrameSize; // Reserve three slots in match stack frame. | |
442 | fRXPat->fFrameSize += 3; | |
443 | int32_t cop = URX_BUILD(URX_START_CAPTURE, varsLoc); | |
444 | fRXPat->fCompiledPat->addElement(cop, *fStatus); | |
445 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus); | |
446 | ||
447 | // On the Parentheses stack, start a new frame and add the postions | |
448 | // of the two NOPs. Depending on what follows in the pattern, the | |
449 | // NOPs may be changed to SAVE_STATE or JMP ops, with a target | |
450 | // address of the end of the parenthesized group. | |
451 | fParenStack.push(fModeFlags, *fStatus); // Match mode state | |
452 | fParenStack.push(capturing, *fStatus); // Frame type. | |
453 | fParenStack.push(fRXPat->fCompiledPat->size()-3, *fStatus); // The first NOP location | |
454 | fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP loc | |
455 | ||
456 | // Save the mapping from group number to stack frame variable position. | |
457 | fRXPat->fGroupMap->addElement(varsLoc, *fStatus); | |
458 | } | |
459 | break; | |
460 | ||
461 | case doOpenNonCaptureParen: | |
462 | // Open non-caputuring (grouping only) Paren. | |
463 | // Compile to a | |
464 | // - NOP, which later may be replaced by a save-state if the | |
465 | // parenthesized group gets a * quantifier, followed by | |
466 | // - NOP, which may later be replaced by a save-state if there | |
467 | // is an '|' alternation within the parens. | |
468 | { | |
469 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus); | |
470 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus); | |
471 | ||
472 | // On the Parentheses stack, start a new frame and add the postions | |
473 | // of the two NOPs. | |
474 | fParenStack.push(fModeFlags, *fStatus); // Match mode state | |
475 | fParenStack.push(plain, *fStatus); // Begin a new frame. | |
476 | fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location | |
477 | fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP loc | |
478 | } | |
479 | break; | |
480 | ||
481 | ||
482 | case doOpenAtomicParen: | |
483 | // Open Atomic Paren. (?> | |
484 | // Compile to a | |
46f4442e | 485 | // - NOP, which later may be replaced if the parenthesized group |
b75a7d8f A |
486 | // has a quantifier, followed by |
487 | // - STO_SP save state stack position, so it can be restored at the ")" | |
488 | // - NOP, which may later be replaced by a save-state if there | |
489 | // is an '|' alternation within the parens. | |
490 | { | |
491 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus); | |
492 | int32_t varLoc = fRXPat->fDataSize; // Reserve a data location for saving the | |
493 | fRXPat->fDataSize += 1; // state stack ptr. | |
494 | int32_t stoOp = URX_BUILD(URX_STO_SP, varLoc); | |
495 | fRXPat->fCompiledPat->addElement(stoOp, *fStatus); | |
496 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus); | |
497 | ||
498 | // On the Parentheses stack, start a new frame and add the postions | |
499 | // of the two NOPs. Depending on what follows in the pattern, the | |
500 | // NOPs may be changed to SAVE_STATE or JMP ops, with a target | |
501 | // address of the end of the parenthesized group. | |
502 | fParenStack.push(fModeFlags, *fStatus); // Match mode state | |
503 | fParenStack.push(atomic, *fStatus); // Frame type. | |
504 | fParenStack.push(fRXPat->fCompiledPat->size()-3, *fStatus); // The first NOP | |
505 | fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP | |
506 | } | |
507 | break; | |
508 | ||
509 | ||
510 | case doOpenLookAhead: | |
511 | // Positive Look-ahead (?= stuff ) | |
46f4442e A |
512 | // |
513 | // Note: Addition of transparent input regions, with the need to | |
514 | // restore the original regions when failing out of a lookahead | |
515 | // block, complicated this sequence. Some conbined opcodes | |
516 | // might make sense - or might not, lookahead aren't that common. | |
517 | // | |
518 | // Caution: min match length optimization knows about this | |
519 | // sequence; don't change without making updates there too. | |
520 | // | |
b75a7d8f | 521 | // Compiles to |
46f4442e A |
522 | // 1 START_LA dataLoc Saves SP, Input Pos |
523 | // 2. STATE_SAVE 4 on failure of lookahead, goto 4 | |
524 | // 3 JMP 6 continue ... | |
525 | // | |
526 | // 4. LA_END Look Ahead failed. Restore regions. | |
527 | // 5. BACKTRACK and back track again. | |
528 | // | |
529 | // 6. NOP reserved for use by quantifiers on the block. | |
b75a7d8f A |
530 | // Look-ahead can't have quantifiers, but paren stack |
531 | // compile time conventions require the slot anyhow. | |
46f4442e A |
532 | // 7. NOP may be replaced if there is are '|' ops in the block. |
533 | // 8. code for parenthesized stuff. | |
534 | // 9. LA_END | |
535 | // | |
b75a7d8f A |
536 | // Two data slots are reserved, for saving the stack ptr and the input position. |
537 | { | |
538 | int32_t dataLoc = fRXPat->fDataSize; | |
46f4442e | 539 | fRXPat->fDataSize += 2; |
b75a7d8f A |
540 | int32_t op = URX_BUILD(URX_LA_START, dataLoc); |
541 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
542 | ||
46f4442e A |
543 | op = URX_BUILD(URX_STATE_SAVE, fRXPat->fCompiledPat->size()+ 2); |
544 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
545 | ||
546 | op = URX_BUILD(URX_JMP, fRXPat->fCompiledPat->size()+ 3); | |
547 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
548 | ||
549 | op = URX_BUILD(URX_LA_END, dataLoc); | |
550 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
551 | ||
552 | op = URX_BUILD(URX_BACKTRACK, 0); | |
553 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
554 | ||
b75a7d8f A |
555 | op = URX_BUILD(URX_NOP, 0); |
556 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
557 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
558 | ||
559 | // On the Parentheses stack, start a new frame and add the postions | |
46f4442e | 560 | // of the NOPs. |
b75a7d8f A |
561 | fParenStack.push(fModeFlags, *fStatus); // Match mode state |
562 | fParenStack.push(lookAhead, *fStatus); // Frame type. | |
563 | fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location | |
564 | fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP location | |
565 | } | |
566 | break; | |
567 | ||
568 | case doOpenLookAheadNeg: | |
569 | // Negated Lookahead. (?! stuff ) | |
570 | // Compiles to | |
571 | // 1. START_LA dataloc | |
572 | // 2. SAVE_STATE 7 // Fail within look-ahead block restores to this state, | |
573 | // // which continues with the match. | |
574 | // 3. NOP // Std. Open Paren sequence, for possible '|' | |
575 | // 4. code for parenthesized stuff. | |
576 | // 5. END_LA // Cut back stack, remove saved state from step 2. | |
46f4442e A |
577 | // 6. BACKTRACK // code in block succeeded, so neg. lookahead fails. |
578 | // 7. END_LA // Restore match region, in case look-ahead was using | |
579 | // an alternate (transparent) region. | |
b75a7d8f A |
580 | { |
581 | int32_t dataLoc = fRXPat->fDataSize; | |
46f4442e | 582 | fRXPat->fDataSize += 2; |
b75a7d8f A |
583 | int32_t op = URX_BUILD(URX_LA_START, dataLoc); |
584 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
585 | ||
586 | op = URX_BUILD(URX_STATE_SAVE, 0); // dest address will be patched later. | |
587 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
588 | ||
589 | op = URX_BUILD(URX_NOP, 0); | |
590 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
591 | ||
592 | // On the Parentheses stack, start a new frame and add the postions | |
46f4442e | 593 | // of the StateSave and NOP. |
b75a7d8f | 594 | fParenStack.push(fModeFlags, *fStatus); // Match mode state |
46f4442e | 595 | fParenStack.push(negLookAhead, *fStatus); // Frame type |
b75a7d8f A |
596 | fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The STATE_SAVE location |
597 | fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP location | |
46f4442e | 598 | |
b75a7d8f A |
599 | // Instructions #5 and #6 will be added when the ')' is encountered. |
600 | } | |
601 | break; | |
602 | ||
603 | case doOpenLookBehind: | |
604 | { | |
605 | // Compile a (?<= look-behind open paren. | |
606 | // | |
607 | // Compiles to | |
608 | // 0 URX_LB_START dataLoc | |
609 | // 1 URX_LB_CONT dataLoc | |
610 | // 2 MinMatchLen | |
611 | // 3 MaxMatchLen | |
612 | // 4 URX_NOP Standard '(' boilerplate. | |
613 | // 5 URX_NOP Reserved slot for use with '|' ops within (block). | |
614 | // 6 <code for LookBehind expression> | |
615 | // 7 URX_LB_END dataLoc # Check match len, restore input len | |
616 | // 8 URX_LA_END dataLoc # Restore stack, input pos | |
617 | // | |
618 | // Allocate a block of matcher data, to contain (when running a match) | |
619 | // 0: Stack ptr on entry | |
620 | // 1: Input Index on entry | |
621 | // 2: Start index of match current match attempt. | |
46f4442e | 622 | // 3: Original Input String len. |
b75a7d8f A |
623 | |
624 | // Allocate data space | |
625 | int32_t dataLoc = fRXPat->fDataSize; | |
46f4442e A |
626 | fRXPat->fDataSize += 4; |
627 | ||
b75a7d8f A |
628 | // Emit URX_LB_START |
629 | int32_t op = URX_BUILD(URX_LB_START, dataLoc); | |
630 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
46f4442e | 631 | |
b75a7d8f A |
632 | // Emit URX_LB_CONT |
633 | op = URX_BUILD(URX_LB_CONT, dataLoc); | |
634 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
635 | fRXPat->fCompiledPat->addElement(0, *fStatus); // MinMatchLength. To be filled later. | |
636 | fRXPat->fCompiledPat->addElement(0, *fStatus); // MaxMatchLength. To be filled later. | |
46f4442e | 637 | |
b75a7d8f A |
638 | // Emit the NOP |
639 | op = URX_BUILD(URX_NOP, 0); | |
640 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
641 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
46f4442e | 642 | |
b75a7d8f | 643 | // On the Parentheses stack, start a new frame and add the postions |
46f4442e | 644 | // of the URX_LB_CONT and the NOP. |
b75a7d8f A |
645 | fParenStack.push(fModeFlags, *fStatus); // Match mode state |
646 | fParenStack.push(lookBehind, *fStatus); // Frame type | |
647 | fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location | |
648 | fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The 2nd NOP location | |
46f4442e | 649 | |
b75a7d8f A |
650 | // The final two instructions will be added when the ')' is encountered. |
651 | } | |
652 | ||
653 | break; | |
654 | ||
655 | case doOpenLookBehindNeg: | |
656 | { | |
657 | // Compile a (?<! negated look-behind open paren. | |
658 | // | |
659 | // Compiles to | |
660 | // 0 URX_LB_START dataLoc # Save entry stack, input len | |
661 | // 1 URX_LBN_CONT dataLoc # Iterate possible match positions | |
662 | // 2 MinMatchLen | |
663 | // 3 MaxMatchLen | |
664 | // 4 continueLoc (9) | |
665 | // 5 URX_NOP Standard '(' boilerplate. | |
666 | // 6 URX_NOP Reserved slot for use with '|' ops within (block). | |
667 | // 7 <code for LookBehind expression> | |
668 | // 8 URX_LBN_END dataLoc # Check match len, cause a FAIL | |
669 | // 9 ... | |
670 | // | |
671 | // Allocate a block of matcher data, to contain (when running a match) | |
672 | // 0: Stack ptr on entry | |
673 | // 1: Input Index on entry | |
674 | // 2: Start index of match current match attempt. | |
46f4442e | 675 | // 3: Original Input String len. |
b75a7d8f A |
676 | |
677 | // Allocate data space | |
678 | int32_t dataLoc = fRXPat->fDataSize; | |
46f4442e A |
679 | fRXPat->fDataSize += 4; |
680 | ||
b75a7d8f A |
681 | // Emit URX_LB_START |
682 | int32_t op = URX_BUILD(URX_LB_START, dataLoc); | |
683 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
46f4442e | 684 | |
b75a7d8f A |
685 | // Emit URX_LBN_CONT |
686 | op = URX_BUILD(URX_LBN_CONT, dataLoc); | |
687 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
688 | fRXPat->fCompiledPat->addElement(0, *fStatus); // MinMatchLength. To be filled later. | |
689 | fRXPat->fCompiledPat->addElement(0, *fStatus); // MaxMatchLength. To be filled later. | |
690 | fRXPat->fCompiledPat->addElement(0, *fStatus); // Continue Loc. To be filled later. | |
46f4442e | 691 | |
b75a7d8f A |
692 | // Emit the NOP |
693 | op = URX_BUILD(URX_NOP, 0); | |
694 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
695 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
46f4442e | 696 | |
b75a7d8f | 697 | // On the Parentheses stack, start a new frame and add the postions |
46f4442e | 698 | // of the URX_LB_CONT and the NOP. |
b75a7d8f A |
699 | fParenStack.push(fModeFlags, *fStatus); // Match mode state |
700 | fParenStack.push(lookBehindN, *fStatus); // Frame type | |
701 | fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location | |
702 | fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The 2nd NOP location | |
46f4442e | 703 | |
b75a7d8f A |
704 | // The final two instructions will be added when the ')' is encountered. |
705 | } | |
706 | break; | |
707 | ||
708 | case doConditionalExpr: | |
709 | // Conditionals such as (?(1)a:b) | |
710 | case doPerlInline: | |
711 | // Perl inline-condtionals. (?{perl code}a|b) We're not perl, no way to do them. | |
712 | error(U_REGEX_UNIMPLEMENTED); | |
713 | break; | |
714 | ||
715 | ||
716 | case doCloseParen: | |
717 | handleCloseParen(); | |
718 | if (fParenStack.size() <= 0) { | |
719 | // Extra close paren, or missing open paren. | |
720 | error(U_REGEX_MISMATCHED_PAREN); | |
721 | } | |
722 | break; | |
723 | ||
724 | case doNOP: | |
725 | break; | |
726 | ||
727 | ||
728 | case doBadOpenParenType: | |
729 | case doRuleError: | |
730 | error(U_REGEX_RULE_SYNTAX); | |
731 | break; | |
732 | ||
733 | ||
734 | case doMismatchedParenErr: | |
735 | error(U_REGEX_MISMATCHED_PAREN); | |
736 | break; | |
737 | ||
738 | case doPlus: | |
739 | // Normal '+' compiles to | |
740 | // 1. stuff to be repeated (already built) | |
741 | // 2. jmp-sav 1 | |
742 | // 3. ... | |
743 | // | |
744 | // Or, if the item to be repeated can match a zero length string, | |
745 | // 1. STO_INP_LOC data-loc | |
746 | // 2. body of stuff to be repeated | |
747 | // 3. JMP_SAV_X 2 | |
748 | // 4. ... | |
749 | ||
750 | // | |
751 | // Or, if the item to be repeated is simple | |
752 | // 1. Item to be repeated. | |
753 | // 2. LOOP_SR_I set number (assuming repeated item is a set ref) | |
754 | // 3. LOOP_C stack location | |
755 | { | |
756 | int32_t topLoc = blockTopLoc(FALSE); // location of item #1 | |
757 | int32_t frameLoc; | |
758 | ||
759 | // Check for simple constructs, which may get special optimized code. | |
760 | if (topLoc == fRXPat->fCompiledPat->size() - 1) { | |
761 | int32_t repeatedOp = fRXPat->fCompiledPat->elementAti(topLoc); | |
762 | ||
763 | if (URX_TYPE(repeatedOp) == URX_SETREF) { | |
764 | // Emit optimized code for [char set]+ | |
765 | int32_t loopOpI = URX_BUILD(URX_LOOP_SR_I, URX_VAL(repeatedOp)); | |
766 | fRXPat->fCompiledPat->addElement(loopOpI, *fStatus); | |
767 | frameLoc = fRXPat->fFrameSize; | |
768 | fRXPat->fFrameSize++; | |
769 | int32_t loopOpC = URX_BUILD(URX_LOOP_C, frameLoc); | |
770 | fRXPat->fCompiledPat->addElement(loopOpC, *fStatus); | |
771 | break; | |
772 | } | |
773 | ||
774 | if (URX_TYPE(repeatedOp) == URX_DOTANY || | |
46f4442e A |
775 | URX_TYPE(repeatedOp) == URX_DOTANY_ALL || |
776 | URX_TYPE(repeatedOp) == URX_DOTANY_UNIX) { | |
b75a7d8f A |
777 | // Emit Optimized code for .+ operations. |
778 | int32_t loopOpI = URX_BUILD(URX_LOOP_DOT_I, 0); | |
779 | if (URX_TYPE(repeatedOp) == URX_DOTANY_ALL) { | |
46f4442e | 780 | // URX_LOOP_DOT_I operand is a flag indicating ". matches any" mode. |
b75a7d8f A |
781 | loopOpI |= 1; |
782 | } | |
46f4442e A |
783 | if (fModeFlags & UREGEX_UNIX_LINES) { |
784 | loopOpI |= 2; | |
785 | } | |
b75a7d8f A |
786 | fRXPat->fCompiledPat->addElement(loopOpI, *fStatus); |
787 | frameLoc = fRXPat->fFrameSize; | |
788 | fRXPat->fFrameSize++; | |
789 | int32_t loopOpC = URX_BUILD(URX_LOOP_C, frameLoc); | |
790 | fRXPat->fCompiledPat->addElement(loopOpC, *fStatus); | |
791 | break; | |
792 | } | |
793 | ||
794 | } | |
795 | ||
796 | // General case. | |
797 | ||
798 | // Check for minimum match length of zero, which requires | |
799 | // extra loop-breaking code. | |
800 | if (minMatchLength(topLoc, fRXPat->fCompiledPat->size()-1) == 0) { | |
801 | // Zero length match is possible. | |
802 | // Emit the code sequence that can handle it. | |
803 | insertOp(topLoc); | |
804 | frameLoc = fRXPat->fFrameSize; | |
805 | fRXPat->fFrameSize++; | |
806 | ||
807 | int32_t op = URX_BUILD(URX_STO_INP_LOC, frameLoc); | |
808 | fRXPat->fCompiledPat->setElementAt(op, topLoc); | |
809 | ||
810 | op = URX_BUILD(URX_JMP_SAV_X, topLoc+1); | |
811 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
812 | } else { | |
813 | // Simpler code when the repeated body must match something non-empty | |
814 | int32_t jmpOp = URX_BUILD(URX_JMP_SAV, topLoc); | |
815 | fRXPat->fCompiledPat->addElement(jmpOp, *fStatus); | |
816 | } | |
817 | } | |
818 | break; | |
819 | ||
820 | case doNGPlus: | |
821 | // Non-greedy '+?' compiles to | |
822 | // 1. stuff to be repeated (already built) | |
823 | // 2. state-save 1 | |
824 | // 3. ... | |
825 | { | |
826 | int32_t topLoc = blockTopLoc(FALSE); | |
827 | int32_t saveStateOp = URX_BUILD(URX_STATE_SAVE, topLoc); | |
828 | fRXPat->fCompiledPat->addElement(saveStateOp, *fStatus); | |
829 | } | |
830 | break; | |
831 | ||
832 | ||
833 | case doOpt: | |
834 | // Normal (greedy) ? quantifier. | |
835 | // Compiles to | |
836 | // 1. state save 3 | |
837 | // 2. body of optional block | |
838 | // 3. ... | |
839 | // Insert the state save into the compiled pattern, and we're done. | |
840 | { | |
841 | int32_t saveStateLoc = blockTopLoc(TRUE); | |
842 | int32_t saveStateOp = URX_BUILD(URX_STATE_SAVE, fRXPat->fCompiledPat->size()); | |
843 | fRXPat->fCompiledPat->setElementAt(saveStateOp, saveStateLoc); | |
844 | } | |
845 | break; | |
846 | ||
847 | case doNGOpt: | |
848 | // Non-greedy ?? quantifier | |
849 | // compiles to | |
850 | // 1. jmp 4 | |
851 | // 2. body of optional block | |
852 | // 3 jmp 5 | |
853 | // 4. state save 2 | |
854 | // 5 ... | |
855 | // This code is less than ideal, with two jmps instead of one, because we can only | |
856 | // insert one instruction at the top of the block being iterated. | |
857 | { | |
858 | int32_t jmp1_loc = blockTopLoc(TRUE); | |
859 | int32_t jmp2_loc = fRXPat->fCompiledPat->size(); | |
860 | ||
861 | int32_t jmp1_op = URX_BUILD(URX_JMP, jmp2_loc+1); | |
862 | fRXPat->fCompiledPat->setElementAt(jmp1_op, jmp1_loc); | |
863 | ||
864 | int32_t jmp2_op = URX_BUILD(URX_JMP, jmp2_loc+2); | |
865 | fRXPat->fCompiledPat->addElement(jmp2_op, *fStatus); | |
866 | ||
867 | int32_t save_op = URX_BUILD(URX_STATE_SAVE, jmp1_loc+1); | |
868 | fRXPat->fCompiledPat->addElement(save_op, *fStatus); | |
869 | } | |
870 | break; | |
871 | ||
872 | ||
873 | case doStar: | |
874 | // Normal (greedy) * quantifier. | |
875 | // Compiles to | |
876 | // 1. STATE_SAVE 4 | |
877 | // 2. body of stuff being iterated over | |
878 | // 3. JMP_SAV 2 | |
879 | // 4. ... | |
880 | // | |
881 | // Or, if the body is a simple [Set], | |
882 | // 1. LOOP_SR_I set number | |
883 | // 2. LOOP_C stack location | |
884 | // ... | |
885 | // | |
46f4442e | 886 | // Or if this is a .* |
b75a7d8f A |
887 | // 1. LOOP_DOT_I (. matches all mode flag) |
888 | // 2. LOOP_C stack location | |
889 | // | |
890 | // Or, if the body can match a zero-length string, to inhibit infinite loops, | |
891 | // 1. STATE_SAVE 5 | |
892 | // 2. STO_INP_LOC data-loc | |
893 | // 3. body of stuff | |
894 | // 4. JMP_SAV_X 2 | |
895 | // 5. ... | |
896 | { | |
897 | // location of item #1, the STATE_SAVE | |
898 | int32_t topLoc = blockTopLoc(FALSE); | |
899 | int32_t dataLoc = -1; | |
900 | ||
901 | // Check for simple *, where the construct being repeated | |
902 | // compiled to single opcode, and might be optimizable. | |
903 | if (topLoc == fRXPat->fCompiledPat->size() - 1) { | |
904 | int32_t repeatedOp = fRXPat->fCompiledPat->elementAti(topLoc); | |
905 | ||
906 | if (URX_TYPE(repeatedOp) == URX_SETREF) { | |
46f4442e | 907 | // Emit optimized code for a [char set]* |
b75a7d8f A |
908 | int32_t loopOpI = URX_BUILD(URX_LOOP_SR_I, URX_VAL(repeatedOp)); |
909 | fRXPat->fCompiledPat->setElementAt(loopOpI, topLoc); | |
910 | dataLoc = fRXPat->fFrameSize; | |
911 | fRXPat->fFrameSize++; | |
912 | int32_t loopOpC = URX_BUILD(URX_LOOP_C, dataLoc); | |
913 | fRXPat->fCompiledPat->addElement(loopOpC, *fStatus); | |
914 | break; | |
915 | } | |
916 | ||
917 | if (URX_TYPE(repeatedOp) == URX_DOTANY || | |
46f4442e A |
918 | URX_TYPE(repeatedOp) == URX_DOTANY_ALL || |
919 | URX_TYPE(repeatedOp) == URX_DOTANY_UNIX) { | |
b75a7d8f A |
920 | // Emit Optimized code for .* operations. |
921 | int32_t loopOpI = URX_BUILD(URX_LOOP_DOT_I, 0); | |
922 | if (URX_TYPE(repeatedOp) == URX_DOTANY_ALL) { | |
923 | // URX_LOOP_DOT_I operand is a flag indicating . matches any mode. | |
924 | loopOpI |= 1; | |
925 | } | |
46f4442e A |
926 | if ((fModeFlags & UREGEX_UNIX_LINES) != 0) { |
927 | loopOpI |= 2; | |
928 | } | |
b75a7d8f A |
929 | fRXPat->fCompiledPat->setElementAt(loopOpI, topLoc); |
930 | dataLoc = fRXPat->fFrameSize; | |
931 | fRXPat->fFrameSize++; | |
932 | int32_t loopOpC = URX_BUILD(URX_LOOP_C, dataLoc); | |
933 | fRXPat->fCompiledPat->addElement(loopOpC, *fStatus); | |
934 | break; | |
935 | } | |
936 | } | |
937 | ||
938 | // Emit general case code for this * | |
939 | // The optimizations did not apply. | |
940 | ||
941 | int32_t saveStateLoc = blockTopLoc(TRUE); | |
942 | int32_t jmpOp = URX_BUILD(URX_JMP_SAV, saveStateLoc+1); | |
943 | ||
944 | // Check for minimum match length of zero, which requires | |
945 | // extra loop-breaking code. | |
946 | if (minMatchLength(saveStateLoc, fRXPat->fCompiledPat->size()-1) == 0) { | |
947 | insertOp(saveStateLoc); | |
948 | dataLoc = fRXPat->fFrameSize; | |
949 | fRXPat->fFrameSize++; | |
950 | ||
951 | int32_t op = URX_BUILD(URX_STO_INP_LOC, dataLoc); | |
952 | fRXPat->fCompiledPat->setElementAt(op, saveStateLoc+1); | |
953 | jmpOp = URX_BUILD(URX_JMP_SAV_X, saveStateLoc+2); | |
954 | } | |
46f4442e | 955 | |
b75a7d8f A |
956 | // Locate the position in the compiled pattern where the match will continue |
957 | // after completing the *. (4 or 5 in the comment above) | |
958 | int32_t continueLoc = fRXPat->fCompiledPat->size()+1; | |
959 | ||
960 | // Put together the save state op store it into the compiled code. | |
961 | int32_t saveStateOp = URX_BUILD(URX_STATE_SAVE, continueLoc); | |
962 | fRXPat->fCompiledPat->setElementAt(saveStateOp, saveStateLoc); | |
963 | ||
964 | // Append the URX_JMP_SAV or URX_JMPX operation to the compiled pattern. | |
965 | fRXPat->fCompiledPat->addElement(jmpOp, *fStatus); | |
966 | } | |
967 | break; | |
968 | ||
969 | case doNGStar: | |
970 | // Non-greedy *? quantifier | |
971 | // compiles to | |
972 | // 1. JMP 3 | |
973 | // 2. body of stuff being iterated over | |
974 | // 3. STATE_SAVE 2 | |
975 | // 4 ... | |
976 | { | |
977 | int32_t jmpLoc = blockTopLoc(TRUE); // loc 1. | |
978 | int32_t saveLoc = fRXPat->fCompiledPat->size(); // loc 3. | |
979 | int32_t jmpOp = URX_BUILD(URX_JMP, saveLoc); | |
980 | int32_t stateSaveOp = URX_BUILD(URX_STATE_SAVE, jmpLoc+1); | |
981 | fRXPat->fCompiledPat->setElementAt(jmpOp, jmpLoc); | |
982 | fRXPat->fCompiledPat->addElement(stateSaveOp, *fStatus); | |
983 | } | |
984 | break; | |
985 | ||
986 | ||
987 | case doIntervalInit: | |
988 | // The '{' opening an interval quantifier was just scanned. | |
989 | // Init the counter varaiables that will accumulate the values as the digits | |
990 | // are scanned. | |
991 | fIntervalLow = 0; | |
992 | fIntervalUpper = -1; | |
993 | break; | |
994 | ||
995 | case doIntevalLowerDigit: | |
996 | // Scanned a digit from the lower value of an {lower,upper} interval | |
997 | { | |
998 | int32_t digitValue = u_charDigitValue(fC.fChar); | |
999 | U_ASSERT(digitValue >= 0); | |
1000 | fIntervalLow = fIntervalLow*10 + digitValue; | |
1001 | if (fIntervalLow < 0) { | |
1002 | error(U_REGEX_NUMBER_TOO_BIG); | |
1003 | } | |
1004 | } | |
1005 | break; | |
1006 | ||
1007 | case doIntervalUpperDigit: | |
1008 | // Scanned a digit from the upper value of an {lower,upper} interval | |
1009 | { | |
1010 | if (fIntervalUpper < 0) { | |
1011 | fIntervalUpper = 0; | |
1012 | } | |
1013 | int32_t digitValue = u_charDigitValue(fC.fChar); | |
1014 | U_ASSERT(digitValue >= 0); | |
1015 | fIntervalUpper = fIntervalUpper*10 + digitValue; | |
374ca955 | 1016 | if (fIntervalUpper < 0) { |
b75a7d8f A |
1017 | error(U_REGEX_NUMBER_TOO_BIG); |
1018 | } | |
1019 | } | |
1020 | break; | |
1021 | ||
1022 | case doIntervalSame: | |
1023 | // Scanned a single value interval like {27}. Upper = Lower. | |
1024 | fIntervalUpper = fIntervalLow; | |
1025 | break; | |
1026 | ||
1027 | case doInterval: | |
1028 | // Finished scanning a normal {lower,upper} interval. Generate the code for it. | |
1029 | if (compileInlineInterval() == FALSE) { | |
1030 | compileInterval(URX_CTR_INIT, URX_CTR_LOOP); | |
1031 | } | |
1032 | break; | |
1033 | ||
1034 | case doPossessiveInterval: | |
1035 | // Finished scanning a Possessive {lower,upper}+ interval. Generate the code for it. | |
1036 | { | |
1037 | // Remember the loc for the top of the block being looped over. | |
46f4442e A |
1038 | // (Can not reserve a slot in the compiled pattern at this time, because |
1039 | // compileInterval needs to reserve also, and blockTopLoc can only reserve | |
b75a7d8f A |
1040 | // once per block.) |
1041 | int32_t topLoc = blockTopLoc(FALSE); | |
1042 | ||
1043 | // Produce normal looping code. | |
1044 | compileInterval(URX_CTR_INIT, URX_CTR_LOOP); | |
1045 | ||
1046 | // Surround the just-emitted normal looping code with a STO_SP ... LD_SP | |
1047 | // just as if the loop was inclosed in atomic parentheses. | |
1048 | ||
1049 | // First the STO_SP before the start of the loop | |
1050 | insertOp(topLoc); | |
1051 | int32_t varLoc = fRXPat->fDataSize; // Reserve a data location for saving the | |
1052 | fRXPat->fDataSize += 1; // state stack ptr. | |
1053 | int32_t op = URX_BUILD(URX_STO_SP, varLoc); | |
1054 | fRXPat->fCompiledPat->setElementAt(op, topLoc); | |
1055 | ||
1056 | int32_t loopOp = fRXPat->fCompiledPat->popi(); | |
1057 | U_ASSERT(URX_TYPE(loopOp) == URX_CTR_LOOP && URX_VAL(loopOp) == topLoc); | |
1058 | loopOp++; // point LoopOp after the just-inserted STO_SP | |
1059 | fRXPat->fCompiledPat->push(loopOp, *fStatus); | |
1060 | ||
1061 | // Then the LD_SP after the end of the loop | |
1062 | op = URX_BUILD(URX_LD_SP, varLoc); | |
1063 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
1064 | } | |
1065 | ||
1066 | break; | |
1067 | ||
1068 | case doNGInterval: | |
1069 | // Finished scanning a non-greedy {lower,upper}? interval. Generate the code for it. | |
1070 | compileInterval(URX_CTR_INIT_NG, URX_CTR_LOOP_NG); | |
1071 | break; | |
1072 | ||
1073 | case doIntervalError: | |
1074 | error(U_REGEX_BAD_INTERVAL); | |
1075 | break; | |
1076 | ||
1077 | case doLiteralChar: | |
46f4442e | 1078 | // We've just scanned a "normal" character from the pattern, |
b75a7d8f A |
1079 | literalChar(fC.fChar); |
1080 | break; | |
1081 | ||
1082 | ||
46f4442e A |
1083 | case doEscapedLiteralChar: |
1084 | // We've just scanned an backslashed escaped character with no | |
1085 | // special meaning. It represents itself. | |
1086 | if ((fModeFlags & UREGEX_ERROR_ON_UNKNOWN_ESCAPES) != 0 && | |
1087 | ((fC.fChar >= 0x41 && fC.fChar<= 0x5A) || // in [A-Z] | |
1088 | (fC.fChar >= 0x61 && fC.fChar <= 0x7a))) { // in [a-z] | |
1089 | error(U_REGEX_BAD_ESCAPE_SEQUENCE); | |
1090 | } | |
1091 | literalChar(fC.fChar); | |
1092 | break; | |
1093 | ||
b75a7d8f A |
1094 | |
1095 | case doDotAny: | |
1096 | // scanned a ".", match any single character. | |
1097 | { | |
1098 | int32_t op; | |
1099 | if (fModeFlags & UREGEX_DOTALL) { | |
1100 | op = URX_BUILD(URX_DOTANY_ALL, 0); | |
46f4442e A |
1101 | } else if (fModeFlags & UREGEX_UNIX_LINES) { |
1102 | op = URX_BUILD(URX_DOTANY_UNIX, 0); | |
b75a7d8f A |
1103 | } else { |
1104 | op = URX_BUILD(URX_DOTANY, 0); | |
1105 | } | |
1106 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
1107 | } | |
1108 | break; | |
1109 | ||
46f4442e | 1110 | case doCaret: |
b75a7d8f | 1111 | { |
46f4442e A |
1112 | int32_t op = 0; |
1113 | if ( (fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) { | |
1114 | op = URX_CARET; | |
1115 | } else if ((fModeFlags & UREGEX_MULTILINE) != 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) { | |
1116 | op = URX_CARET_M; | |
1117 | } else if ((fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) != 0) { | |
1118 | op = URX_CARET; // Only testing true start of input. | |
1119 | } else if ((fModeFlags & UREGEX_MULTILINE) != 0 && (fModeFlags & UREGEX_UNIX_LINES) != 0) { | |
1120 | op = URX_CARET_M_UNIX; | |
1121 | } | |
b75a7d8f A |
1122 | fRXPat->fCompiledPat->addElement(URX_BUILD(op, 0), *fStatus); |
1123 | } | |
1124 | break; | |
1125 | ||
46f4442e | 1126 | case doDollar: |
b75a7d8f | 1127 | { |
46f4442e A |
1128 | int32_t op = 0; |
1129 | if ( (fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) { | |
1130 | op = URX_DOLLAR; | |
1131 | } else if ((fModeFlags & UREGEX_MULTILINE) != 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) { | |
1132 | op = URX_DOLLAR_M; | |
1133 | } else if ((fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) != 0) { | |
1134 | op = URX_DOLLAR_D; | |
1135 | } else if ((fModeFlags & UREGEX_MULTILINE) != 0 && (fModeFlags & UREGEX_UNIX_LINES) != 0) { | |
1136 | op = URX_DOLLAR_MD; | |
1137 | } | |
b75a7d8f A |
1138 | fRXPat->fCompiledPat->addElement(URX_BUILD(op, 0), *fStatus); |
1139 | } | |
1140 | break; | |
1141 | ||
1142 | case doBackslashA: | |
1143 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_CARET, 0), *fStatus); | |
1144 | break; | |
1145 | ||
1146 | case doBackslashB: | |
374ca955 A |
1147 | { |
1148 | #if UCONFIG_NO_BREAK_ITERATION==1 | |
1149 | if (fModeFlags & UREGEX_UWORD) { | |
1150 | error(U_UNSUPPORTED_ERROR); | |
1151 | } | |
1152 | #endif | |
1153 | int32_t op = (fModeFlags & UREGEX_UWORD)? URX_BACKSLASH_BU : URX_BACKSLASH_B; | |
1154 | fRXPat->fCompiledPat->addElement(URX_BUILD(op, 1), *fStatus); | |
1155 | } | |
b75a7d8f A |
1156 | break; |
1157 | ||
1158 | case doBackslashb: | |
374ca955 A |
1159 | { |
1160 | #if UCONFIG_NO_BREAK_ITERATION==1 | |
1161 | if (fModeFlags & UREGEX_UWORD) { | |
1162 | error(U_UNSUPPORTED_ERROR); | |
1163 | } | |
1164 | #endif | |
1165 | int32_t op = (fModeFlags & UREGEX_UWORD)? URX_BACKSLASH_BU : URX_BACKSLASH_B; | |
1166 | fRXPat->fCompiledPat->addElement(URX_BUILD(op, 0), *fStatus); | |
1167 | } | |
b75a7d8f A |
1168 | break; |
1169 | ||
1170 | case doBackslashD: | |
1171 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_D, 1), *fStatus); | |
1172 | break; | |
1173 | ||
1174 | case doBackslashd: | |
1175 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_D, 0), *fStatus); | |
1176 | break; | |
1177 | ||
1178 | case doBackslashG: | |
1179 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_G, 0), *fStatus); | |
1180 | break; | |
1181 | ||
1182 | case doBackslashS: | |
1183 | fRXPat->fCompiledPat->addElement( | |
1184 | URX_BUILD(URX_STAT_SETREF_N, URX_ISSPACE_SET), *fStatus); | |
1185 | break; | |
1186 | ||
1187 | case doBackslashs: | |
1188 | fRXPat->fCompiledPat->addElement( | |
1189 | URX_BUILD(URX_STATIC_SETREF, URX_ISSPACE_SET), *fStatus); | |
1190 | break; | |
1191 | ||
1192 | case doBackslashW: | |
1193 | fRXPat->fCompiledPat->addElement( | |
1194 | URX_BUILD(URX_STAT_SETREF_N, URX_ISWORD_SET), *fStatus); | |
1195 | break; | |
1196 | ||
1197 | case doBackslashw: | |
1198 | fRXPat->fCompiledPat->addElement( | |
1199 | URX_BUILD(URX_STATIC_SETREF, URX_ISWORD_SET), *fStatus); | |
1200 | break; | |
1201 | ||
1202 | case doBackslashX: | |
1203 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_X, 0), *fStatus); | |
1204 | break; | |
1205 | ||
1206 | ||
1207 | case doBackslashZ: | |
1208 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_DOLLAR, 0), *fStatus); | |
1209 | break; | |
1210 | ||
1211 | case doBackslashz: | |
1212 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_Z, 0), *fStatus); | |
1213 | break; | |
1214 | ||
1215 | case doEscapeError: | |
1216 | error(U_REGEX_BAD_ESCAPE_SEQUENCE); | |
1217 | break; | |
1218 | ||
1219 | case doExit: | |
1220 | returnVal = FALSE; | |
1221 | break; | |
1222 | ||
1223 | case doProperty: | |
1224 | { | |
1225 | UnicodeSet *theSet = scanProp(); | |
1226 | compileSet(theSet); | |
1227 | } | |
1228 | break; | |
1229 | ||
46f4442e | 1230 | case doNamedChar: |
b75a7d8f | 1231 | { |
46f4442e A |
1232 | UChar32 c = scanNamedChar(); |
1233 | literalChar(c); | |
b75a7d8f A |
1234 | } |
1235 | break; | |
46f4442e | 1236 | |
b75a7d8f A |
1237 | |
1238 | case doBackRef: | |
1239 | // BackReference. Somewhat unusual in that the front-end can not completely parse | |
1240 | // the regular expression, because the number of digits to be consumed | |
1241 | // depends on the number of capture groups that have been defined. So | |
1242 | // we have to do it here instead. | |
1243 | { | |
1244 | int32_t numCaptureGroups = fRXPat->fGroupMap->size(); | |
1245 | int32_t groupNum = 0; | |
1246 | UChar32 c = fC.fChar; | |
1247 | ||
1248 | for (;;) { | |
1249 | // Loop once per digit, for max allowed number of digits in a back reference. | |
1250 | int32_t digit = u_charDigitValue(c); | |
1251 | groupNum = groupNum * 10 + digit; | |
1252 | if (groupNum >= numCaptureGroups) { | |
1253 | break; | |
1254 | } | |
1255 | c = peekCharLL(); | |
46f4442e | 1256 | if (RegexStaticSets::gStaticSets->fRuleDigitsAlias->contains(c) == FALSE) { |
b75a7d8f A |
1257 | break; |
1258 | } | |
1259 | nextCharLL(); | |
1260 | } | |
1261 | ||
1262 | // Scan of the back reference in the source regexp is complete. Now generate | |
46f4442e | 1263 | // the compiled code for it. |
b75a7d8f A |
1264 | // Because capture groups can be forward-referenced by back-references, |
1265 | // we fill the operand with the capture group number. At the end | |
374ca955 | 1266 | // of compilation, it will be changed to the variable's location. |
b75a7d8f A |
1267 | U_ASSERT(groupNum > 0); |
1268 | int32_t op; | |
1269 | if (fModeFlags & UREGEX_CASE_INSENSITIVE) { | |
1270 | op = URX_BUILD(URX_BACKREF_I, groupNum); | |
1271 | } else { | |
1272 | op = URX_BUILD(URX_BACKREF, groupNum); | |
1273 | } | |
1274 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
1275 | } | |
1276 | break; | |
1277 | ||
1278 | ||
b75a7d8f A |
1279 | case doPossessivePlus: |
1280 | // Possessive ++ quantifier. | |
1281 | // Compiles to | |
1282 | // 1. STO_SP | |
1283 | // 2. body of stuff being iterated over | |
1284 | // 3. STATE_SAVE 5 | |
1285 | // 4. JMP 2 | |
1286 | // 5. LD_SP | |
1287 | // 6. ... | |
1288 | // | |
1289 | // Note: TODO: This is pretty inefficient. A mass of saved state is built up | |
46f4442e | 1290 | // then unconditionally discarded. Perhaps introduce a new opcode. Ticket 6056 |
b75a7d8f A |
1291 | // |
1292 | { | |
1293 | // Emit the STO_SP | |
1294 | int32_t topLoc = blockTopLoc(TRUE); | |
1295 | int32_t stoLoc = fRXPat->fDataSize; | |
1296 | fRXPat->fDataSize++; // Reserve the data location for storing save stack ptr. | |
1297 | int32_t op = URX_BUILD(URX_STO_SP, stoLoc); | |
1298 | fRXPat->fCompiledPat->setElementAt(op, topLoc); | |
1299 | ||
1300 | // Emit the STATE_SAVE | |
1301 | op = URX_BUILD(URX_STATE_SAVE, fRXPat->fCompiledPat->size()+2); | |
1302 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
46f4442e | 1303 | |
b75a7d8f A |
1304 | // Emit the JMP |
1305 | op = URX_BUILD(URX_JMP, topLoc+1); | |
1306 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
1307 | ||
1308 | // Emit the LD_SP | |
1309 | op = URX_BUILD(URX_LD_SP, stoLoc); | |
1310 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
1311 | } | |
1312 | break; | |
1313 | ||
1314 | case doPossessiveStar: | |
1315 | // Possessive *+ quantifier. | |
1316 | // Compiles to | |
1317 | // 1. STO_SP loc | |
1318 | // 2. STATE_SAVE 5 | |
1319 | // 3. body of stuff being iterated over | |
1320 | // 4. JMP 2 | |
1321 | // 5. LD_SP loc | |
1322 | // 6 ... | |
1323 | // TODO: do something to cut back the state stack each time through the loop. | |
1324 | { | |
1325 | // Reserve two slots at the top of the block. | |
1326 | int32_t topLoc = blockTopLoc(TRUE); | |
1327 | insertOp(topLoc); | |
1328 | ||
1329 | // emit STO_SP loc | |
1330 | int32_t stoLoc = fRXPat->fDataSize; | |
1331 | fRXPat->fDataSize++; // Reserve the data location for storing save stack ptr. | |
1332 | int32_t op = URX_BUILD(URX_STO_SP, stoLoc); | |
1333 | fRXPat->fCompiledPat->setElementAt(op, topLoc); | |
1334 | ||
1335 | // Emit the SAVE_STATE 5 | |
1336 | int32_t L7 = fRXPat->fCompiledPat->size()+1; | |
1337 | op = URX_BUILD(URX_STATE_SAVE, L7); | |
1338 | fRXPat->fCompiledPat->setElementAt(op, topLoc+1); | |
1339 | ||
46f4442e | 1340 | // Append the JMP operation. |
b75a7d8f A |
1341 | op = URX_BUILD(URX_JMP, topLoc+1); |
1342 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
1343 | ||
1344 | // Emit the LD_SP loc | |
1345 | op = URX_BUILD(URX_LD_SP, stoLoc); | |
1346 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
1347 | } | |
1348 | break; | |
1349 | ||
1350 | case doPossessiveOpt: | |
1351 | // Possessive ?+ quantifier. | |
1352 | // Compiles to | |
1353 | // 1. STO_SP loc | |
1354 | // 2. SAVE_STATE 5 | |
1355 | // 3. body of optional block | |
1356 | // 4. LD_SP loc | |
1357 | // 5. ... | |
1358 | // | |
1359 | { | |
1360 | // Reserve two slots at the top of the block. | |
1361 | int32_t topLoc = blockTopLoc(TRUE); | |
1362 | insertOp(topLoc); | |
1363 | ||
1364 | // Emit the STO_SP | |
1365 | int32_t stoLoc = fRXPat->fDataSize; | |
1366 | fRXPat->fDataSize++; // Reserve the data location for storing save stack ptr. | |
1367 | int32_t op = URX_BUILD(URX_STO_SP, stoLoc); | |
1368 | fRXPat->fCompiledPat->setElementAt(op, topLoc); | |
1369 | ||
1370 | // Emit the SAVE_STATE | |
1371 | int32_t continueLoc = fRXPat->fCompiledPat->size()+1; | |
1372 | op = URX_BUILD(URX_STATE_SAVE, continueLoc); | |
1373 | fRXPat->fCompiledPat->setElementAt(op, topLoc+1); | |
1374 | ||
1375 | // Emit the LD_SP | |
1376 | op = URX_BUILD(URX_LD_SP, stoLoc); | |
1377 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
1378 | } | |
1379 | break; | |
1380 | ||
1381 | ||
1382 | case doBeginMatchMode: | |
1383 | fNewModeFlags = fModeFlags; | |
1384 | fSetModeFlag = TRUE; | |
1385 | break; | |
1386 | ||
1387 | case doMatchMode: // (?i) and similar | |
1388 | { | |
1389 | int32_t bit = 0; | |
1390 | switch (fC.fChar) { | |
1391 | case 0x69: /* 'i' */ bit = UREGEX_CASE_INSENSITIVE; break; | |
46f4442e | 1392 | case 0x64: /* 'd' */ bit = UREGEX_UNIX_LINES; break; |
b75a7d8f A |
1393 | case 0x6d: /* 'm' */ bit = UREGEX_MULTILINE; break; |
1394 | case 0x73: /* 's' */ bit = UREGEX_DOTALL; break; | |
46f4442e | 1395 | case 0x75: /* 'u' */ bit = 0; /* Unicode casing */ break; |
374ca955 | 1396 | case 0x77: /* 'w' */ bit = UREGEX_UWORD; break; |
b75a7d8f A |
1397 | case 0x78: /* 'x' */ bit = UREGEX_COMMENTS; break; |
1398 | case 0x2d: /* '-' */ fSetModeFlag = FALSE; break; | |
1399 | default: | |
1400 | U_ASSERT(FALSE); // Should never happen. Other chars are filtered out | |
1401 | // by the scanner. | |
1402 | } | |
1403 | if (fSetModeFlag) { | |
1404 | fNewModeFlags |= bit; | |
1405 | } else { | |
1406 | fNewModeFlags &= ~bit; | |
1407 | } | |
1408 | } | |
1409 | break; | |
1410 | ||
1411 | case doSetMatchMode: | |
1412 | // We've got a (?i) or similar. The match mode is being changed, but | |
1413 | // the change is not scoped to a parenthesized block. | |
73c04bcf | 1414 | U_ASSERT(fNewModeFlags < 0); |
b75a7d8f A |
1415 | fModeFlags = fNewModeFlags; |
1416 | ||
1417 | // Prevent any string from spanning across the change of match mode. | |
46f4442e A |
1418 | // Otherwise the pattern "abc(?i)def" would make a single string of "abcdef" |
1419 | fixLiterals(); | |
b75a7d8f A |
1420 | break; |
1421 | ||
1422 | ||
1423 | case doMatchModeParen: | |
1424 | // We've got a (?i: or similar. Begin a parenthesized block, save old | |
1425 | // mode flags so they can be restored at the close of the block. | |
1426 | // | |
1427 | // Compile to a | |
1428 | // - NOP, which later may be replaced by a save-state if the | |
1429 | // parenthesized group gets a * quantifier, followed by | |
1430 | // - NOP, which may later be replaced by a save-state if there | |
1431 | // is an '|' alternation within the parens. | |
1432 | { | |
1433 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus); | |
1434 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus); | |
1435 | ||
1436 | // On the Parentheses stack, start a new frame and add the postions | |
1437 | // of the two NOPs (a normal non-capturing () frame, except for the | |
1438 | // saving of the orignal mode flags.) | |
1439 | fParenStack.push(fModeFlags, *fStatus); | |
1440 | fParenStack.push(flags, *fStatus); // Frame Marker | |
1441 | fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP | |
1442 | fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP | |
1443 | ||
1444 | // Set the current mode flags to the new values. | |
73c04bcf | 1445 | U_ASSERT(fNewModeFlags < 0); |
b75a7d8f A |
1446 | fModeFlags = fNewModeFlags; |
1447 | } | |
1448 | break; | |
1449 | ||
374ca955 A |
1450 | case doBadModeFlag: |
1451 | error(U_REGEX_INVALID_FLAG); | |
1452 | break; | |
1453 | ||
b75a7d8f A |
1454 | case doSuppressComments: |
1455 | // We have just scanned a '(?'. We now need to prevent the character scanner from | |
1456 | // treating a '#' as a to-the-end-of-line comment. | |
1457 | // (This Perl compatibility just gets uglier and uglier to do...) | |
1458 | fEOLComments = FALSE; | |
1459 | break; | |
1460 | ||
1461 | ||
46f4442e A |
1462 | case doSetAddAmp: |
1463 | { | |
1464 | UnicodeSet *set = (UnicodeSet *)fSetStack.peek(); | |
1465 | set->add(chAmp); | |
1466 | } | |
1467 | break; | |
1468 | ||
1469 | case doSetAddDash: | |
1470 | { | |
1471 | UnicodeSet *set = (UnicodeSet *)fSetStack.peek(); | |
1472 | set->add(chDash); | |
1473 | } | |
1474 | break; | |
1475 | ||
1476 | case doSetBackslash_s: | |
1477 | { | |
1478 | UnicodeSet *set = (UnicodeSet *)fSetStack.peek(); | |
1479 | set->addAll(*RegexStaticSets::gStaticSets->fPropSets[URX_ISSPACE_SET]); | |
1480 | break; | |
1481 | } | |
1482 | ||
1483 | case doSetBackslash_S: | |
1484 | { | |
1485 | UnicodeSet *set = (UnicodeSet *)fSetStack.peek(); | |
1486 | UnicodeSet SSet(*RegexStaticSets::gStaticSets->fPropSets[URX_ISSPACE_SET]); | |
1487 | SSet.complement(); | |
1488 | set->addAll(SSet); | |
1489 | break; | |
1490 | } | |
1491 | ||
1492 | case doSetBackslash_d: | |
1493 | { | |
1494 | UnicodeSet *set = (UnicodeSet *)fSetStack.peek(); | |
1495 | // TODO - make a static set, ticket 6058. | |
1496 | addCategory(set, U_GC_ND_MASK, *fStatus); | |
1497 | break; | |
1498 | } | |
1499 | ||
1500 | case doSetBackslash_D: | |
1501 | { | |
1502 | UnicodeSet *set = (UnicodeSet *)fSetStack.peek(); | |
1503 | UnicodeSet digits; | |
1504 | // TODO - make a static set, ticket 6058. | |
1505 | digits.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, U_GC_ND_MASK, *fStatus); | |
1506 | digits.complement(); | |
1507 | set->addAll(digits); | |
1508 | break; | |
1509 | } | |
1510 | ||
1511 | case doSetBackslash_w: | |
1512 | { | |
1513 | UnicodeSet *set = (UnicodeSet *)fSetStack.peek(); | |
1514 | set->addAll(*RegexStaticSets::gStaticSets->fPropSets[URX_ISWORD_SET]); | |
1515 | break; | |
1516 | } | |
1517 | ||
1518 | case doSetBackslash_W: | |
1519 | { | |
1520 | UnicodeSet *set = (UnicodeSet *)fSetStack.peek(); | |
1521 | UnicodeSet SSet(*RegexStaticSets::gStaticSets->fPropSets[URX_ISWORD_SET]); | |
1522 | SSet.complement(); | |
1523 | set->addAll(SSet); | |
1524 | break; | |
1525 | } | |
1526 | ||
1527 | case doSetBegin: | |
1528 | fSetStack.push(new UnicodeSet(), *fStatus); | |
1529 | fSetOpStack.push(setStart, *fStatus); | |
1530 | if ((fModeFlags & UREGEX_CASE_INSENSITIVE) != 0) { | |
1531 | fSetOpStack.push(setCaseClose, *fStatus); | |
1532 | } | |
1533 | break; | |
1534 | ||
1535 | case doSetBeginDifference1: | |
1536 | // We have scanned something like [[abc]-[ | |
1537 | // Set up a new UnicodeSet for the set beginning with the just-scanned '[' | |
1538 | // Push a Difference operator, which will cause the new set to be subtracted from what | |
1539 | // went before once it is created. | |
1540 | setPushOp(setDifference1); | |
1541 | fSetOpStack.push(setStart, *fStatus); | |
1542 | if ((fModeFlags & UREGEX_CASE_INSENSITIVE) != 0) { | |
1543 | fSetOpStack.push(setCaseClose, *fStatus); | |
1544 | } | |
1545 | break; | |
1546 | ||
1547 | case doSetBeginIntersection1: | |
1548 | // We have scanned something like [[abc]&[ | |
1549 | // Need both the '&' operator and the open '[' operator. | |
1550 | setPushOp(setIntersection1); | |
1551 | fSetOpStack.push(setStart, *fStatus); | |
1552 | if ((fModeFlags & UREGEX_CASE_INSENSITIVE) != 0) { | |
1553 | fSetOpStack.push(setCaseClose, *fStatus); | |
1554 | } | |
1555 | break; | |
1556 | ||
1557 | case doSetBeginUnion: | |
1558 | // We have scanned something like [[abc][ | |
1559 | // Need to handle the union operation explicitly [[abc] | [ | |
1560 | setPushOp(setUnion); | |
1561 | fSetOpStack.push(setStart, *fStatus); | |
1562 | if ((fModeFlags & UREGEX_CASE_INSENSITIVE) != 0) { | |
1563 | fSetOpStack.push(setCaseClose, *fStatus); | |
1564 | } | |
1565 | break; | |
1566 | ||
1567 | case doSetDifference2: | |
1568 | // We have scanned something like [abc-- | |
1569 | // Consider this to unambiguously be a set difference operator. | |
1570 | setPushOp(setDifference2); | |
1571 | break; | |
1572 | ||
1573 | case doSetEnd: | |
1574 | // Have encountered the ']' that closes a set. | |
1575 | // Force the evaluation of any pending operations within this set, | |
1576 | // leave the completed set on the top of the set stack. | |
1577 | { | |
1578 | setEval(setEnd); | |
1579 | int32_t setOp = fSetOpStack.popi(); | |
1580 | U_ASSERT(setOp==setStart); | |
1581 | break; | |
1582 | } | |
1583 | ||
1584 | case doSetFinish: | |
1585 | { | |
1586 | // Finished a complete set expression, including all nested sets. | |
1587 | // The close bracket has already triggered clearing out pending set operators, | |
1588 | // the operator stack should be empty and the operand stack should have just | |
1589 | // one entry, the result set. | |
1590 | U_ASSERT(fSetOpStack.empty()); | |
1591 | UnicodeSet *theSet = (UnicodeSet *)fSetStack.pop(); | |
1592 | U_ASSERT(fSetStack.empty()); | |
1593 | compileSet(theSet); | |
1594 | break; | |
1595 | } | |
1596 | ||
1597 | case doSetIntersection2: | |
1598 | // Have scanned something like [abc&& | |
1599 | setPushOp(setIntersection2); | |
1600 | break; | |
1601 | ||
1602 | case doSetLiteral: | |
1603 | // Union the just-scanned literal character into the set being built. | |
1604 | // This operation is the highest precedence set operation, so we can always do | |
1605 | // it immediately, without waiting to see what follows. It is necessary to perform | |
1606 | // any pending '-' or '&' operation first, because these have the same precedence | |
1607 | // as union-ing in a literal' | |
1608 | { | |
1609 | setEval(setUnion); | |
1610 | UnicodeSet *s = (UnicodeSet *)fSetStack.peek(); | |
1611 | s->add(fC.fChar); | |
1612 | fLastSetLiteral = fC.fChar; | |
1613 | break; | |
1614 | } | |
1615 | ||
1616 | case doSetLiteralEscaped: | |
1617 | // A back-slash escaped literal character was encountered. | |
1618 | // Processing is the same as with setLiteral, above, with the addition of | |
1619 | // the optional check for errors on escaped ASCII letters. | |
1620 | { | |
1621 | if ((fModeFlags & UREGEX_ERROR_ON_UNKNOWN_ESCAPES) != 0 && | |
1622 | ((fC.fChar >= 0x41 && fC.fChar<= 0x5A) || // in [A-Z] | |
1623 | (fC.fChar >= 0x61 && fC.fChar <= 0x7a))) { // in [a-z] | |
1624 | error(U_REGEX_BAD_ESCAPE_SEQUENCE); | |
1625 | } | |
1626 | setEval(setUnion); | |
1627 | UnicodeSet *s = (UnicodeSet *)fSetStack.peek(); | |
1628 | s->add(fC.fChar); | |
1629 | fLastSetLiteral = fC.fChar; | |
1630 | break; | |
1631 | } | |
1632 | ||
1633 | case doSetNamedChar: | |
1634 | // Scanning a \N{UNICODE CHARACTER NAME} | |
1635 | // Aside from the source of the character, the processing is identical to doSetLiteral, | |
1636 | // above. | |
1637 | { | |
1638 | UChar32 c = scanNamedChar(); | |
1639 | setEval(setUnion); | |
1640 | UnicodeSet *s = (UnicodeSet *)fSetStack.peek(); | |
1641 | s->add(c); | |
1642 | fLastSetLiteral = c; | |
1643 | break; | |
1644 | } | |
1645 | ||
1646 | case doSetNamedRange: | |
1647 | // We have scanned literal-\N{CHAR NAME}. Add the range to the set. | |
1648 | // The left character is already in the set, and is saved in fLastSetLiteral. | |
1649 | // The right side needs to be picked up, the scan is at the 'N'. | |
1650 | // Lower Limit > Upper limit being an error matches both Java | |
1651 | // and ICU UnicodeSet behavior. | |
1652 | { | |
1653 | UChar32 c = scanNamedChar(); | |
1654 | if (U_SUCCESS(*fStatus) && fLastSetLiteral > c) { | |
1655 | error(U_REGEX_INVALID_RANGE); | |
1656 | } | |
1657 | UnicodeSet *s = (UnicodeSet *)fSetStack.peek(); | |
1658 | s->add(fLastSetLiteral, c); | |
1659 | fLastSetLiteral = c; | |
1660 | break; | |
1661 | } | |
1662 | ||
1663 | ||
1664 | case doSetNegate: | |
1665 | // Scanned a '^' at the start of a set. | |
1666 | // Push the negation operator onto the set op stack. | |
1667 | // A twist for case-insensitive matching: | |
1668 | // the case closure operation must happen _before_ negation. | |
1669 | // But the case closure operation will already be on the stack if it's required. | |
1670 | // This requires checking for case closure, and swapping the stack order | |
1671 | // if it is present. | |
1672 | { | |
1673 | int32_t tosOp = fSetOpStack.peeki(); | |
1674 | if (tosOp == setCaseClose) { | |
1675 | fSetOpStack.popi(); | |
1676 | fSetOpStack.push(setNegation, *fStatus); | |
1677 | fSetOpStack.push(setCaseClose, *fStatus); | |
1678 | } else { | |
1679 | fSetOpStack.push(setNegation, *fStatus); | |
1680 | } | |
1681 | } | |
1682 | break; | |
1683 | ||
1684 | case doSetNoCloseError: | |
1685 | error(U_REGEX_MISSING_CLOSE_BRACKET); | |
1686 | break; | |
1687 | ||
1688 | case doSetOpError: | |
1689 | error(U_REGEX_RULE_SYNTAX); // -- or && at the end of a set. Illegal. | |
1690 | break; | |
1691 | ||
1692 | case doSetPosixProp: | |
1693 | { | |
1694 | UnicodeSet *s = scanPosixProp(); | |
1695 | if (s != NULL) { | |
1696 | UnicodeSet *tos = (UnicodeSet *)fSetStack.peek(); | |
1697 | tos->addAll(*s); | |
1698 | delete s; | |
1699 | } // else error. scanProp() reported the error status already. | |
1700 | } | |
1701 | break; | |
1702 | ||
1703 | case doSetProp: | |
1704 | // Scanned a \p \P within [brackets]. | |
1705 | { | |
1706 | UnicodeSet *s = scanProp(); | |
1707 | if (s != NULL) { | |
1708 | UnicodeSet *tos = (UnicodeSet *)fSetStack.peek(); | |
1709 | tos->addAll(*s); | |
1710 | delete s; | |
1711 | } // else error. scanProp() reported the error status already. | |
1712 | } | |
1713 | break; | |
1714 | ||
1715 | ||
1716 | case doSetRange: | |
1717 | // We have scanned literal-literal. Add the range to the set. | |
1718 | // The left character is already in the set, and is saved in fLastSetLiteral. | |
1719 | // The right side is the current character. | |
1720 | // Lower Limit > Upper limit being an error matches both Java | |
1721 | // and ICU UnicodeSet behavior. | |
1722 | { | |
1723 | if (fLastSetLiteral > fC.fChar) { | |
1724 | error(U_REGEX_INVALID_RANGE); | |
1725 | } | |
1726 | UnicodeSet *s = (UnicodeSet *)fSetStack.peek(); | |
1727 | s->add(fLastSetLiteral, fC.fChar); | |
1728 | break; | |
1729 | } | |
1730 | ||
b75a7d8f A |
1731 | |
1732 | default: | |
1733 | U_ASSERT(FALSE); | |
1734 | error(U_REGEX_INTERNAL_ERROR); | |
1735 | break; | |
1736 | } | |
1737 | ||
1738 | if (U_FAILURE(*fStatus)) { | |
1739 | returnVal = FALSE; | |
1740 | } | |
1741 | ||
1742 | return returnVal; | |
73c04bcf | 1743 | } |
b75a7d8f A |
1744 | |
1745 | ||
1746 | ||
1747 | //------------------------------------------------------------------------------ | |
1748 | // | |
1749 | // literalChar We've encountered a literal character from the pattern, | |
1750 | // or an escape sequence that reduces to a character. | |
1751 | // Add it to the string containing all literal chars/strings from | |
1752 | // the pattern. | |
1753 | // If we are in a pattern string already, add the new char to it. | |
1754 | // If we aren't in a pattern string, begin one now. | |
1755 | // | |
1756 | //------------------------------------------------------------------------------ | |
1757 | void RegexCompile::literalChar(UChar32 c) { | |
1758 | int32_t op; // An operation in the compiled pattern. | |
1759 | int32_t opType; | |
1760 | int32_t patternLoc; // A position in the compiled pattern. | |
1761 | int32_t stringLen; | |
1762 | ||
1763 | ||
1764 | // If the last thing compiled into the pattern was not a literal char, | |
1765 | // force this new literal char to begin a new string, and not append to the previous. | |
1766 | op = fRXPat->fCompiledPat->lastElementi(); | |
1767 | opType = URX_TYPE(op); | |
1768 | if (!(opType == URX_STRING_LEN || opType == URX_ONECHAR || opType == URX_ONECHAR_I)) { | |
1769 | fixLiterals(); | |
1770 | } | |
1771 | ||
1772 | if (fStringOpStart == -1) { | |
1773 | // First char of a string in the pattern. | |
1774 | // Emit a OneChar op into the compiled pattern. | |
1775 | emitONE_CHAR(c); | |
1776 | ||
1777 | // Also add it to the string pool, in case we get a second adjacent literal | |
1778 | // and want to change form ONE_CHAR to STRING | |
1779 | fStringOpStart = fRXPat->fLiteralText.length(); | |
1780 | fRXPat->fLiteralText.append(c); | |
1781 | return; | |
1782 | } | |
46f4442e | 1783 | |
b75a7d8f A |
1784 | // We are adding onto an existing string |
1785 | fRXPat->fLiteralText.append(c); | |
1786 | ||
1787 | op = fRXPat->fCompiledPat->lastElementi(); | |
1788 | opType = URX_TYPE(op); | |
1789 | U_ASSERT(opType == URX_ONECHAR || opType == URX_ONECHAR_I || opType == URX_STRING_LEN); | |
1790 | ||
46f4442e | 1791 | // If the most recently emitted op is a URX_ONECHAR, |
b75a7d8f A |
1792 | if (opType == URX_ONECHAR || opType == URX_ONECHAR_I) { |
1793 | if (U16_IS_TRAIL(c) && U16_IS_LEAD(URX_VAL(op))) { | |
1794 | // The most recently emitted op is a ONECHAR that was the first half | |
1795 | // of a surrogate pair. Update the ONECHAR's operand to be the | |
1796 | // supplementary code point resulting from both halves of the pair. | |
1797 | c = U16_GET_SUPPLEMENTARY(URX_VAL(op), c); | |
1798 | op = URX_BUILD(opType, c); | |
1799 | patternLoc = fRXPat->fCompiledPat->size() - 1; | |
1800 | fRXPat->fCompiledPat->setElementAt(op, patternLoc); | |
1801 | return; | |
1802 | } | |
46f4442e | 1803 | |
b75a7d8f A |
1804 | // The most recently emitted op is a ONECHAR. |
1805 | // We've now received another adjacent char. Change the ONECHAR op | |
1806 | // to a string op. | |
1807 | if (fModeFlags & UREGEX_CASE_INSENSITIVE) { | |
1808 | op = URX_BUILD(URX_STRING_I, fStringOpStart); | |
1809 | } else { | |
1810 | op = URX_BUILD(URX_STRING, fStringOpStart); | |
1811 | } | |
1812 | patternLoc = fRXPat->fCompiledPat->size() - 1; | |
1813 | fRXPat->fCompiledPat->setElementAt(op, patternLoc); | |
1814 | op = URX_BUILD(URX_STRING_LEN, 0); | |
1815 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
1816 | } | |
46f4442e | 1817 | |
b75a7d8f A |
1818 | // The pattern contains a URX_SRING / URX_STRING_LEN. Update the |
1819 | // string length to reflect the new char we just added to the string. | |
1820 | stringLen = fRXPat->fLiteralText.length() - fStringOpStart; | |
1821 | op = URX_BUILD(URX_STRING_LEN, stringLen); | |
1822 | patternLoc = fRXPat->fCompiledPat->size() - 1; | |
1823 | fRXPat->fCompiledPat->setElementAt(op, patternLoc); | |
1824 | } | |
1825 | ||
1826 | ||
1827 | ||
1828 | //------------------------------------------------------------------------------ | |
1829 | // | |
1830 | // emitONE_CHAR emit a ONE_CHAR op into the generated code. | |
1831 | // Choose cased or uncased version, depending on the | |
1832 | // match mode and whether the character itself is cased. | |
1833 | // | |
1834 | //------------------------------------------------------------------------------ | |
1835 | void RegexCompile::emitONE_CHAR(UChar32 c) { | |
1836 | int32_t op; | |
1837 | if ((fModeFlags & UREGEX_CASE_INSENSITIVE) && | |
1838 | u_hasBinaryProperty(c, UCHAR_CASE_SENSITIVE)) { | |
1839 | // We have a cased character, and are in case insensitive matching mode. | |
1840 | c = u_foldCase(c, U_FOLD_CASE_DEFAULT); | |
1841 | op = URX_BUILD(URX_ONECHAR_I, c); | |
1842 | } else { | |
1843 | // Uncased char, or case sensitive match mode. | |
1844 | // Either way, just generate a literal compare of the char. | |
1845 | op = URX_BUILD(URX_ONECHAR, c); | |
1846 | } | |
1847 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
1848 | } | |
1849 | ||
1850 | ||
1851 | //------------------------------------------------------------------------------ | |
1852 | // | |
1853 | // fixLiterals When compiling something that can follow a literal | |
1854 | // string in a pattern, we need to "fix" any preceding | |
1855 | // string, which will cause any subsequent literals to | |
1856 | // begin a new string, rather than appending to the | |
1857 | // old one. | |
1858 | // | |
1859 | // Optionally, split the last char of the string off into | |
1860 | // a single "ONE_CHAR" operation, so that quantifiers can | |
1861 | // apply to that char alone. Example: abc* | |
1862 | // The * must apply to the 'c' only. | |
1863 | // | |
1864 | //------------------------------------------------------------------------------ | |
1865 | void RegexCompile::fixLiterals(UBool split) { | |
1866 | int32_t stringStart = fStringOpStart; // start index of the current literal string | |
1867 | int32_t op; // An op from/for the compiled pattern. | |
1868 | int32_t opType; // An opcode type from the compiled pattern. | |
1869 | int32_t stringLastCharIdx; | |
1870 | UChar32 lastChar; | |
1871 | int32_t stringNextToLastCharIdx; | |
1872 | UChar32 nextToLastChar; | |
1873 | int32_t stringLen; | |
1874 | ||
46f4442e | 1875 | fStringOpStart = -1; |
b75a7d8f A |
1876 | if (!split) { |
1877 | return; | |
1878 | } | |
1879 | ||
1880 | // Split: We need to ensure that the last item in the compiled pattern does | |
1881 | // not refer to a literal string of more than one char. If it does, | |
1882 | // separate the last char from the rest of the string. | |
1883 | ||
1884 | // If the last operation from the compiled pattern is not a string, | |
46f4442e | 1885 | // nothing needs to be done |
b75a7d8f A |
1886 | op = fRXPat->fCompiledPat->lastElementi(); |
1887 | opType = URX_TYPE(op); | |
1888 | if (opType != URX_STRING_LEN) { | |
1889 | return; | |
1890 | } | |
1891 | stringLen = URX_VAL(op); | |
1892 | ||
1893 | // | |
1894 | // Find the position of the last code point in the string (might be a surrogate pair) | |
1895 | // | |
1896 | stringLastCharIdx = fRXPat->fLiteralText.length(); | |
1897 | stringLastCharIdx = fRXPat->fLiteralText.moveIndex32(stringLastCharIdx, -1); | |
1898 | lastChar = fRXPat->fLiteralText.char32At(stringLastCharIdx); | |
1899 | ||
1900 | // The string should always be at least two code points long, meaning that there | |
1901 | // should be something before the last char position that we just found. | |
1902 | U_ASSERT(stringLastCharIdx > stringStart); | |
1903 | stringNextToLastCharIdx = fRXPat->fLiteralText.moveIndex32(stringLastCharIdx, -1); | |
1904 | U_ASSERT(stringNextToLastCharIdx >= stringStart); | |
1905 | nextToLastChar = fRXPat->fLiteralText.char32At(stringNextToLastCharIdx); | |
1906 | ||
1907 | if (stringNextToLastCharIdx > stringStart) { | |
1908 | // The length of string remaining after removing one char is two or more. | |
1909 | // Leave the string in the compiled pattern, shorten it by one char, | |
1910 | // and append a URX_ONECHAR op for the last char. | |
1911 | stringLen -= (fRXPat->fLiteralText.length() - stringLastCharIdx); | |
1912 | op = URX_BUILD(URX_STRING_LEN, stringLen); | |
1913 | fRXPat->fCompiledPat->setElementAt(op, fRXPat->fCompiledPat->size() -1); | |
1914 | emitONE_CHAR(lastChar); | |
1915 | } else { | |
1916 | // The original string consisted of exactly two characters. Replace | |
1917 | // the existing compiled URX_STRING/URX_STRING_LEN ops with a pair | |
1918 | // of URX_ONECHARs. | |
1919 | fRXPat->fCompiledPat->setSize(fRXPat->fCompiledPat->size() -2); | |
1920 | emitONE_CHAR(nextToLastChar); | |
1921 | emitONE_CHAR(lastChar); | |
1922 | } | |
1923 | } | |
1924 | ||
1925 | ||
1926 | ||
1927 | ||
1928 | ||
1929 | ||
1930 | //------------------------------------------------------------------------------ | |
1931 | // | |
1932 | // insertOp() Insert a slot for a new opcode into the already | |
1933 | // compiled pattern code. | |
1934 | // | |
1935 | // Fill the slot with a NOP. Our caller will replace it | |
1936 | // with what they really wanted. | |
1937 | // | |
1938 | //------------------------------------------------------------------------------ | |
1939 | void RegexCompile::insertOp(int32_t where) { | |
1940 | UVector32 *code = fRXPat->fCompiledPat; | |
1941 | U_ASSERT(where>0 && where < code->size()); | |
1942 | ||
1943 | int32_t nop = URX_BUILD(URX_NOP, 0); | |
1944 | code->insertElementAt(nop, where, *fStatus); | |
1945 | ||
1946 | // Walk through the pattern, looking for any ops with targets that | |
1947 | // were moved down by the insert. Fix them. | |
1948 | int32_t loc; | |
1949 | for (loc=0; loc<code->size(); loc++) { | |
1950 | int32_t op = code->elementAti(loc); | |
1951 | int32_t opType = URX_TYPE(op); | |
1952 | int32_t opValue = URX_VAL(op); | |
1953 | if ((opType == URX_JMP || | |
1954 | opType == URX_JMPX || | |
1955 | opType == URX_STATE_SAVE || | |
1956 | opType == URX_CTR_LOOP || | |
1957 | opType == URX_CTR_LOOP_NG || | |
1958 | opType == URX_JMP_SAV || | |
1959 | opType == URX_RELOC_OPRND) && opValue > where) { | |
1960 | // Target location for this opcode is after the insertion point and | |
1961 | // needs to be incremented to adjust for the insertion. | |
1962 | opValue++; | |
1963 | op = URX_BUILD(opType, opValue); | |
1964 | code->setElementAt(op, loc); | |
1965 | } | |
1966 | } | |
1967 | ||
1968 | // Now fix up the parentheses stack. All positive values in it are locations in | |
1969 | // the compiled pattern. (Negative values are frame boundaries, and don't need fixing.) | |
1970 | for (loc=0; loc<fParenStack.size(); loc++) { | |
1971 | int32_t x = fParenStack.elementAti(loc); | |
73c04bcf | 1972 | U_ASSERT(x < code->size()); |
b75a7d8f A |
1973 | if (x>where) { |
1974 | x++; | |
1975 | fParenStack.setElementAt(x, loc); | |
1976 | } | |
1977 | } | |
1978 | ||
1979 | if (fMatchCloseParen > where) { | |
1980 | fMatchCloseParen++; | |
1981 | } | |
1982 | if (fMatchOpenParen > where) { | |
1983 | fMatchOpenParen++; | |
1984 | } | |
1985 | } | |
1986 | ||
1987 | ||
1988 | ||
1989 | //------------------------------------------------------------------------------ | |
1990 | // | |
1991 | // blockTopLoc() Find or create a location in the compiled pattern | |
1992 | // at the start of the operation or block that has | |
1993 | // just been compiled. Needed when a quantifier (* or | |
1994 | // whatever) appears, and we need to add an operation | |
1995 | // at the start of the thing being quantified. | |
1996 | // | |
1997 | // (Parenthesized Blocks) have a slot with a NOP that | |
1998 | // is reserved for this purpose. .* or similar don't | |
1999 | // and a slot needs to be added. | |
2000 | // | |
2001 | // parameter reserveLoc : TRUE - ensure that there is space to add an opcode | |
2002 | // at the returned location. | |
46f4442e | 2003 | // FALSE - just return the address, |
b75a7d8f A |
2004 | // do not reserve a location there. |
2005 | // | |
2006 | //------------------------------------------------------------------------------ | |
2007 | int32_t RegexCompile::blockTopLoc(UBool reserveLoc) { | |
2008 | int32_t theLoc; | |
2009 | if (fRXPat->fCompiledPat->size() == fMatchCloseParen) | |
2010 | { | |
2011 | // The item just processed is a parenthesized block. | |
2012 | theLoc = fMatchOpenParen; // A slot is already reserved for us. | |
2013 | U_ASSERT(theLoc > 0); | |
374ca955 | 2014 | U_ASSERT(URX_TYPE(((uint32_t)fRXPat->fCompiledPat->elementAti(theLoc))) == URX_NOP); |
b75a7d8f A |
2015 | } |
2016 | else { | |
2017 | // Item just compiled is a single thing, a ".", or a single char, or a set reference. | |
2018 | // No slot for STATE_SAVE was pre-reserved in the compiled code. | |
2019 | // We need to make space now. | |
2020 | fixLiterals(TRUE); // If last item was a string, separate the last char. | |
2021 | theLoc = fRXPat->fCompiledPat->size()-1; | |
2022 | if (reserveLoc) { | |
374ca955 | 2023 | /*int32_t opAtTheLoc = fRXPat->fCompiledPat->elementAti(theLoc);*/ |
b75a7d8f A |
2024 | int32_t nop = URX_BUILD(URX_NOP, 0); |
2025 | fRXPat->fCompiledPat->insertElementAt(nop, theLoc, *fStatus); | |
2026 | } | |
2027 | } | |
2028 | return theLoc; | |
2029 | } | |
2030 | ||
2031 | ||
2032 | ||
2033 | //------------------------------------------------------------------------------ | |
2034 | // | |
2035 | // handleCloseParen When compiling a close paren, we need to go back | |
2036 | // and fix up any JMP or SAVE operations within the | |
2037 | // parenthesized block that need to target the end | |
2038 | // of the block. The locations of these are kept on | |
2039 | // the paretheses stack. | |
2040 | // | |
2041 | // This function is called both when encountering a | |
2042 | // real ) and at the end of the pattern. | |
2043 | // | |
73c04bcf | 2044 | //------------------------------------------------------------------------------ |
b75a7d8f A |
2045 | void RegexCompile::handleCloseParen() { |
2046 | int32_t patIdx; | |
2047 | int32_t patOp; | |
2048 | if (fParenStack.size() <= 0) { | |
2049 | error(U_REGEX_MISMATCHED_PAREN); | |
2050 | return; | |
2051 | } | |
2052 | ||
2053 | // Force any literal chars that may follow the close paren to start a new string, | |
2054 | // and not attach to any preceding it. | |
2055 | fixLiterals(FALSE); | |
2056 | ||
2057 | // Fixup any operations within the just-closed parenthesized group | |
2058 | // that need to reference the end of the (block). | |
2059 | // (The first one popped from the stack is an unused slot for | |
2060 | // alternation (OR) state save, but applying the fixup to it does no harm.) | |
2061 | for (;;) { | |
2062 | patIdx = fParenStack.popi(); | |
2063 | if (patIdx < 0) { | |
2064 | // value < 0 flags the start of the frame on the paren stack. | |
2065 | break; | |
2066 | } | |
2067 | U_ASSERT(patIdx>0 && patIdx <= fRXPat->fCompiledPat->size()); | |
2068 | patOp = fRXPat->fCompiledPat->elementAti(patIdx); | |
2069 | U_ASSERT(URX_VAL(patOp) == 0); // Branch target for JMP should not be set. | |
2070 | patOp |= fRXPat->fCompiledPat->size(); // Set it now. | |
2071 | fRXPat->fCompiledPat->setElementAt(patOp, patIdx); | |
2072 | fMatchOpenParen = patIdx; | |
2073 | } | |
2074 | ||
2075 | // At the close of any parenthesized block, restore the match mode flags to | |
2076 | // the value they had at the open paren. Saved value is | |
46f4442e | 2077 | // at the top of the paren stack. |
b75a7d8f | 2078 | fModeFlags = fParenStack.popi(); |
73c04bcf | 2079 | U_ASSERT(fModeFlags < 0); |
46f4442e | 2080 | |
b75a7d8f A |
2081 | // DO any additional fixups, depending on the specific kind of |
2082 | // parentesized grouping this is | |
2083 | ||
2084 | switch (patIdx) { | |
2085 | case plain: | |
2086 | case flags: | |
2087 | // No additional fixups required. | |
2088 | // (Grouping-only parentheses) | |
2089 | break; | |
2090 | case capturing: | |
2091 | // Capturing Parentheses. | |
2092 | // Insert a End Capture op into the pattern. | |
2093 | // The frame offset of the variables for this cg is obtained from the | |
2094 | // start capture op and put it into the end-capture op. | |
2095 | { | |
2096 | int32_t captureOp = fRXPat->fCompiledPat->elementAti(fMatchOpenParen+1); | |
2097 | U_ASSERT(URX_TYPE(captureOp) == URX_START_CAPTURE); | |
2098 | ||
2099 | int32_t frameVarLocation = URX_VAL(captureOp); | |
2100 | int32_t endCaptureOp = URX_BUILD(URX_END_CAPTURE, frameVarLocation); | |
2101 | fRXPat->fCompiledPat->addElement(endCaptureOp, *fStatus); | |
2102 | } | |
2103 | break; | |
2104 | case atomic: | |
2105 | // Atomic Parenthesis. | |
2106 | // Insert a LD_SP operation to restore the state stack to the position | |
2107 | // it was when the atomic parens were entered. | |
2108 | { | |
2109 | int32_t stoOp = fRXPat->fCompiledPat->elementAti(fMatchOpenParen+1); | |
2110 | U_ASSERT(URX_TYPE(stoOp) == URX_STO_SP); | |
2111 | int32_t stoLoc = URX_VAL(stoOp); | |
2112 | int32_t ldOp = URX_BUILD(URX_LD_SP, stoLoc); | |
2113 | fRXPat->fCompiledPat->addElement(ldOp, *fStatus); | |
2114 | } | |
2115 | break; | |
2116 | ||
2117 | case lookAhead: | |
2118 | { | |
46f4442e | 2119 | int32_t startOp = fRXPat->fCompiledPat->elementAti(fMatchOpenParen-5); |
b75a7d8f A |
2120 | U_ASSERT(URX_TYPE(startOp) == URX_LA_START); |
2121 | int32_t dataLoc = URX_VAL(startOp); | |
2122 | int32_t op = URX_BUILD(URX_LA_END, dataLoc); | |
2123 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
2124 | } | |
2125 | break; | |
2126 | ||
2127 | case negLookAhead: | |
2128 | { | |
2129 | // See comment at doOpenLookAheadNeg | |
2130 | int32_t startOp = fRXPat->fCompiledPat->elementAti(fMatchOpenParen-1); | |
2131 | U_ASSERT(URX_TYPE(startOp) == URX_LA_START); | |
2132 | int32_t dataLoc = URX_VAL(startOp); | |
2133 | int32_t op = URX_BUILD(URX_LA_END, dataLoc); | |
2134 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
46f4442e A |
2135 | op = URX_BUILD(URX_BACKTRACK, 0); |
2136 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
2137 | op = URX_BUILD(URX_LA_END, 0); | |
b75a7d8f A |
2138 | fRXPat->fCompiledPat->addElement(op, *fStatus); |
2139 | ||
2140 | // Patch the URX_SAVE near the top of the block. | |
46f4442e | 2141 | // The destination of the SAVE is the final LA_END that was just added. |
b75a7d8f A |
2142 | int32_t saveOp = fRXPat->fCompiledPat->elementAti(fMatchOpenParen); |
2143 | U_ASSERT(URX_TYPE(saveOp) == URX_STATE_SAVE); | |
46f4442e | 2144 | int32_t dest = fRXPat->fCompiledPat->size()-1; |
b75a7d8f A |
2145 | saveOp = URX_BUILD(URX_STATE_SAVE, dest); |
2146 | fRXPat->fCompiledPat->setElementAt(saveOp, fMatchOpenParen); | |
2147 | } | |
2148 | break; | |
2149 | ||
2150 | case lookBehind: | |
2151 | { | |
2152 | // See comment at doOpenLookBehind. | |
46f4442e | 2153 | |
b75a7d8f A |
2154 | // Append the URX_LB_END and URX_LA_END to the compiled pattern. |
2155 | int32_t startOp = fRXPat->fCompiledPat->elementAti(fMatchOpenParen-4); | |
2156 | U_ASSERT(URX_TYPE(startOp) == URX_LB_START); | |
2157 | int32_t dataLoc = URX_VAL(startOp); | |
2158 | int32_t op = URX_BUILD(URX_LB_END, dataLoc); | |
2159 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
2160 | op = URX_BUILD(URX_LA_END, dataLoc); | |
2161 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
2162 | ||
2163 | // Determine the min and max bounds for the length of the | |
2164 | // string that the pattern can match. | |
2165 | // An unbounded upper limit is an error. | |
2166 | int32_t patEnd = fRXPat->fCompiledPat->size() - 1; | |
2167 | int32_t minML = minMatchLength(fMatchOpenParen, patEnd); | |
2168 | int32_t maxML = maxMatchLength(fMatchOpenParen, patEnd); | |
2169 | if (maxML == INT32_MAX) { | |
2170 | error(U_REGEX_LOOK_BEHIND_LIMIT); | |
2171 | break; | |
2172 | } | |
2173 | U_ASSERT(minML <= maxML); | |
2174 | ||
2175 | // Insert the min and max match len bounds into the URX_LB_CONT op that | |
2176 | // appears at the top of the look-behind block, at location fMatchOpenParen+1 | |
2177 | fRXPat->fCompiledPat->setElementAt(minML, fMatchOpenParen-2); | |
2178 | fRXPat->fCompiledPat->setElementAt(maxML, fMatchOpenParen-1); | |
2179 | ||
2180 | } | |
2181 | break; | |
2182 | ||
2183 | ||
2184 | ||
2185 | case lookBehindN: | |
2186 | { | |
2187 | // See comment at doOpenLookBehindNeg. | |
46f4442e | 2188 | |
b75a7d8f A |
2189 | // Append the URX_LBN_END to the compiled pattern. |
2190 | int32_t startOp = fRXPat->fCompiledPat->elementAti(fMatchOpenParen-5); | |
2191 | U_ASSERT(URX_TYPE(startOp) == URX_LB_START); | |
2192 | int32_t dataLoc = URX_VAL(startOp); | |
2193 | int32_t op = URX_BUILD(URX_LBN_END, dataLoc); | |
2194 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
2195 | ||
2196 | // Determine the min and max bounds for the length of the | |
2197 | // string that the pattern can match. | |
2198 | // An unbounded upper limit is an error. | |
2199 | int32_t patEnd = fRXPat->fCompiledPat->size() - 1; | |
2200 | int32_t minML = minMatchLength(fMatchOpenParen, patEnd); | |
2201 | int32_t maxML = maxMatchLength(fMatchOpenParen, patEnd); | |
2202 | if (maxML == INT32_MAX) { | |
2203 | error(U_REGEX_LOOK_BEHIND_LIMIT); | |
2204 | break; | |
2205 | } | |
2206 | U_ASSERT(minML <= maxML); | |
2207 | ||
2208 | // Insert the min and max match len bounds into the URX_LB_CONT op that | |
2209 | // appears at the top of the look-behind block, at location fMatchOpenParen+1 | |
2210 | fRXPat->fCompiledPat->setElementAt(minML, fMatchOpenParen-3); | |
2211 | fRXPat->fCompiledPat->setElementAt(maxML, fMatchOpenParen-2); | |
2212 | ||
2213 | // Insert the pattern location to continue at after a successful match | |
2214 | // as the last operand of the URX_LBN_CONT | |
2215 | op = URX_BUILD(URX_RELOC_OPRND, fRXPat->fCompiledPat->size()); | |
2216 | fRXPat->fCompiledPat->setElementAt(op, fMatchOpenParen-1); | |
2217 | } | |
2218 | break; | |
2219 | ||
2220 | ||
2221 | ||
2222 | default: | |
2223 | U_ASSERT(FALSE); | |
2224 | } | |
2225 | ||
2226 | // remember the next location in the compiled pattern. | |
2227 | // The compilation of Quantifiers will look at this to see whether its looping | |
2228 | // over a parenthesized block or a single item | |
2229 | fMatchCloseParen = fRXPat->fCompiledPat->size(); | |
2230 | } | |
2231 | ||
2232 | ||
2233 | ||
73c04bcf | 2234 | //------------------------------------------------------------------------------ |
b75a7d8f A |
2235 | // |
2236 | // compileSet Compile the pattern operations for a reference to a | |
2237 | // UnicodeSet. | |
2238 | // | |
73c04bcf | 2239 | //------------------------------------------------------------------------------ |
b75a7d8f A |
2240 | void RegexCompile::compileSet(UnicodeSet *theSet) |
2241 | { | |
2242 | if (theSet == NULL) { | |
2243 | return; | |
2244 | } | |
46f4442e A |
2245 | // Remove any strings from the set. |
2246 | // There shoudn't be any, but just in case. | |
2247 | // (Case Closure can add them; if we had a simple case closure avaialble that | |
2248 | // ignored strings, that would be better.) | |
2249 | theSet->removeAllStrings(); | |
b75a7d8f A |
2250 | int32_t setSize = theSet->size(); |
2251 | UChar32 firstSetChar = theSet->charAt(0); | |
b75a7d8f A |
2252 | |
2253 | switch (setSize) { | |
46f4442e | 2254 | case 0: |
b75a7d8f | 2255 | { |
46f4442e | 2256 | // Set of no elements. Always fails to match. |
b75a7d8f A |
2257 | fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKTRACK, 0), *fStatus); |
2258 | delete theSet; | |
2259 | } | |
2260 | break; | |
46f4442e | 2261 | |
b75a7d8f A |
2262 | case 1: |
2263 | { | |
2264 | // The set contains only a single code point. Put it into | |
2265 | // the compiled pattern as a single char operation rather | |
2266 | // than a set, and discard the set itself. | |
2267 | literalChar(firstSetChar); | |
2268 | delete theSet; | |
2269 | } | |
2270 | break; | |
46f4442e A |
2271 | |
2272 | default: | |
b75a7d8f A |
2273 | { |
2274 | // The set contains two or more chars. (the normal case) | |
2275 | // Put it into the compiled pattern as a set. | |
2276 | int32_t setNumber = fRXPat->fSets->size(); | |
2277 | fRXPat->fSets->addElement(theSet, *fStatus); | |
2278 | int32_t setOp = URX_BUILD(URX_SETREF, setNumber); | |
2279 | fRXPat->fCompiledPat->addElement(setOp, *fStatus); | |
2280 | } | |
2281 | } | |
2282 | } | |
2283 | ||
2284 | ||
73c04bcf | 2285 | //------------------------------------------------------------------------------ |
b75a7d8f A |
2286 | // |
2287 | // compileInterval Generate the code for a {min, max} style interval quantifier. | |
2288 | // Except for the specific opcodes used, the code is the same | |
2289 | // for all three types (greedy, non-greedy, possessive) of | |
2290 | // intervals. The opcodes are supplied as parameters. | |
2291 | // | |
2292 | // The code for interval loops has this form: | |
2293 | // 0 CTR_INIT counter loc (in stack frame) | |
2294 | // 1 5 patt address of CTR_LOOP at bottom of block | |
2295 | // 2 min count | |
2296 | // 3 max count (-1 for unbounded) | |
2297 | // 4 ... block to be iterated over | |
46f4442e A |
2298 | // 5 CTR_LOOP |
2299 | // | |
2300 | // In | |
73c04bcf | 2301 | //------------------------------------------------------------------------------ |
b75a7d8f A |
2302 | void RegexCompile::compileInterval(int32_t InitOp, int32_t LoopOp) |
2303 | { | |
2304 | // The CTR_INIT op at the top of the block with the {n,m} quantifier takes | |
2305 | // four slots in the compiled code. Reserve them. | |
2306 | int32_t topOfBlock = blockTopLoc(TRUE); | |
2307 | insertOp(topOfBlock); | |
2308 | insertOp(topOfBlock); | |
2309 | insertOp(topOfBlock); | |
2310 | ||
2311 | // The operands for the CTR_INIT opcode include the index in the matcher data | |
2312 | // of the counter. Allocate it now. | |
2313 | int32_t counterLoc = fRXPat->fFrameSize; | |
2314 | fRXPat->fFrameSize++; | |
2315 | ||
2316 | int32_t op = URX_BUILD(InitOp, counterLoc); | |
2317 | fRXPat->fCompiledPat->setElementAt(op, topOfBlock); | |
2318 | ||
2319 | // The second operand of CTR_INIT is the location following the end of the loop. | |
2320 | // Must put in as a URX_RELOC_OPRND so that the value will be adjusted if the | |
2321 | // compilation of something later on causes the code to grow and the target | |
2322 | // position to move. | |
2323 | int32_t loopEnd = fRXPat->fCompiledPat->size(); | |
2324 | op = URX_BUILD(URX_RELOC_OPRND, loopEnd); | |
2325 | fRXPat->fCompiledPat->setElementAt(op, topOfBlock+1); | |
2326 | ||
2327 | // Followed by the min and max counts. | |
2328 | fRXPat->fCompiledPat->setElementAt(fIntervalLow, topOfBlock+2); | |
2329 | fRXPat->fCompiledPat->setElementAt(fIntervalUpper, topOfBlock+3); | |
2330 | ||
2331 | // Apend the CTR_LOOP op. The operand is the location of the CTR_INIT op. | |
2332 | // Goes at end of the block being looped over, so just append to the code so far. | |
2333 | op = URX_BUILD(LoopOp, topOfBlock); | |
2334 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
2335 | ||
374ca955 A |
2336 | if ((fIntervalLow & 0xff000000) != 0 || |
2337 | fIntervalUpper > 0 && (fIntervalUpper & 0xff000000) != 0) { | |
2338 | error(U_REGEX_NUMBER_TOO_BIG); | |
2339 | } | |
2340 | ||
b75a7d8f A |
2341 | if (fIntervalLow > fIntervalUpper && fIntervalUpper != -1) { |
2342 | error(U_REGEX_MAX_LT_MIN); | |
2343 | } | |
b75a7d8f A |
2344 | } |
2345 | ||
2346 | ||
2347 | ||
2348 | UBool RegexCompile::compileInlineInterval() { | |
2349 | if (fIntervalUpper > 10 || fIntervalUpper < fIntervalLow) { | |
2350 | // Too big to inline. Fail, which will cause looping code to be generated. | |
2351 | // (Upper < Lower picks up unbounded upper and errors, both.) | |
2352 | return FALSE; | |
2353 | } | |
2354 | ||
2355 | int32_t topOfBlock = blockTopLoc(FALSE); | |
2356 | if (fIntervalUpper == 0) { | |
2357 | // Pathological case. Attempt no matches, as if the block doesn't exist. | |
2358 | fRXPat->fCompiledPat->setSize(topOfBlock); | |
2359 | return TRUE; | |
2360 | } | |
2361 | ||
2362 | if (topOfBlock != fRXPat->fCompiledPat->size()-1 && fIntervalUpper != 1) { | |
2363 | // The thing being repeated is not a single op, but some | |
2364 | // more complex block. Do it as a loop, not inlines. | |
2365 | // Note that things "repeated" a max of once are handled as inline, because | |
2366 | // the one copy of the code already generated is just fine. | |
2367 | return FALSE; | |
2368 | } | |
2369 | ||
2370 | // Pick up the opcode that is to be repeated | |
2371 | // | |
2372 | int32_t op = fRXPat->fCompiledPat->elementAti(topOfBlock); | |
2373 | ||
46f4442e | 2374 | // Compute the pattern location where the inline sequence |
b75a7d8f | 2375 | // will end, and set up the state save op that will be needed. |
46f4442e | 2376 | // |
b75a7d8f A |
2377 | int32_t endOfSequenceLoc = fRXPat->fCompiledPat->size()-1 |
2378 | + fIntervalUpper + (fIntervalUpper-fIntervalLow); | |
2379 | int32_t saveOp = URX_BUILD(URX_STATE_SAVE, endOfSequenceLoc); | |
2380 | if (fIntervalLow == 0) { | |
2381 | insertOp(topOfBlock); | |
2382 | fRXPat->fCompiledPat->setElementAt(saveOp, topOfBlock); | |
2383 | } | |
2384 | ||
2385 | ||
2386 | ||
2387 | // Loop, emitting the op for the thing being repeated each time. | |
2388 | // Loop starts at 1 because one instance of the op already exists in the pattern, | |
2389 | // it was put there when it was originally encountered. | |
2390 | int32_t i; | |
2391 | for (i=1; i<fIntervalUpper; i++ ) { | |
2392 | if (i == fIntervalLow) { | |
2393 | fRXPat->fCompiledPat->addElement(saveOp, *fStatus); | |
2394 | } | |
2395 | if (i > fIntervalLow) { | |
2396 | fRXPat->fCompiledPat->addElement(saveOp, *fStatus); | |
2397 | } | |
2398 | fRXPat->fCompiledPat->addElement(op, *fStatus); | |
2399 | } | |
2400 | return TRUE; | |
2401 | } | |
2402 | ||
2403 | ||
2404 | ||
73c04bcf | 2405 | //------------------------------------------------------------------------------ |
b75a7d8f A |
2406 | // |
2407 | // matchStartType Determine how a match can start. | |
2408 | // Used to optimize find() operations. | |
2409 | // | |
2410 | // Operation is very similar to minMatchLength(). Walk the compiled | |
2411 | // pattern, keeping an on-going minimum-match-length. For any | |
2412 | // op where the min match coming in is zero, add that ops possible | |
2413 | // starting matches to the possible starts for the overall pattern. | |
2414 | // | |
73c04bcf | 2415 | //------------------------------------------------------------------------------ |
b75a7d8f A |
2416 | void RegexCompile::matchStartType() { |
2417 | if (U_FAILURE(*fStatus)) { | |
2418 | return; | |
2419 | } | |
2420 | ||
2421 | ||
2422 | int32_t loc; // Location in the pattern of the current op being processed. | |
2423 | int32_t op; // The op being processed | |
2424 | int32_t opType; // The opcode type of the op | |
2425 | int32_t currentLen = 0; // Minimum length of a match to this point (loc) in the pattern | |
2426 | int32_t numInitialStrings = 0; // Number of strings encountered that could match at start. | |
2427 | ||
2428 | UBool atStart = TRUE; // True if no part of the pattern yet encountered | |
2429 | // could have advanced the position in a match. | |
2430 | // (Maximum match length so far == 0) | |
2431 | ||
2432 | // forwardedLength is a vector holding minimum-match-length values that | |
2433 | // are propagated forward in the pattern by JMP or STATE_SAVE operations. | |
2434 | // It must be one longer than the pattern being checked because some ops | |
2435 | // will jmp to a end-of-block+1 location from within a block, and we must | |
2436 | // count those when checking the block. | |
2437 | int32_t end = fRXPat->fCompiledPat->size(); | |
2438 | UVector32 forwardedLength(end+1, *fStatus); | |
2439 | forwardedLength.setSize(end+1); | |
2440 | for (loc=3; loc<end; loc++) { | |
2441 | forwardedLength.setElementAt(INT32_MAX, loc); | |
2442 | } | |
2443 | ||
2444 | for (loc = 3; loc<end; loc++) { | |
2445 | op = fRXPat->fCompiledPat->elementAti(loc); | |
2446 | opType = URX_TYPE(op); | |
2447 | ||
2448 | // The loop is advancing linearly through the pattern. | |
2449 | // If the op we are now at was the destination of a branch in the pattern, | |
2450 | // and that path has a shorter minimum length than the current accumulated value, | |
2451 | // replace the current accumulated value. | |
b75a7d8f A |
2452 | if (forwardedLength.elementAti(loc) < currentLen) { |
2453 | currentLen = forwardedLength.elementAti(loc); | |
2454 | U_ASSERT(currentLen>=0 && currentLen < INT32_MAX); | |
2455 | } | |
2456 | ||
2457 | switch (opType) { | |
2458 | // Ops that don't change the total length matched | |
2459 | case URX_RESERVED_OP: | |
2460 | case URX_END: | |
46f4442e | 2461 | case URX_FAIL: |
b75a7d8f A |
2462 | case URX_STRING_LEN: |
2463 | case URX_NOP: | |
2464 | case URX_START_CAPTURE: | |
2465 | case URX_END_CAPTURE: | |
2466 | case URX_BACKSLASH_B: | |
374ca955 | 2467 | case URX_BACKSLASH_BU: |
b75a7d8f A |
2468 | case URX_BACKSLASH_G: |
2469 | case URX_BACKSLASH_Z: | |
2470 | case URX_DOLLAR: | |
46f4442e A |
2471 | case URX_DOLLAR_M: |
2472 | case URX_DOLLAR_D: | |
2473 | case URX_DOLLAR_MD: | |
b75a7d8f A |
2474 | case URX_RELOC_OPRND: |
2475 | case URX_STO_INP_LOC: | |
b75a7d8f A |
2476 | case URX_BACKREF: // BackRef. Must assume that it might be a zero length match |
2477 | case URX_BACKREF_I: | |
2478 | ||
2479 | case URX_STO_SP: // Setup for atomic or possessive blocks. Doesn't change what can match. | |
2480 | case URX_LD_SP: | |
2481 | break; | |
46f4442e | 2482 | |
b75a7d8f A |
2483 | case URX_CARET: |
2484 | if (atStart) { | |
2485 | fRXPat->fStartType = START_START; | |
2486 | } | |
2487 | break; | |
2488 | ||
2489 | case URX_CARET_M: | |
46f4442e | 2490 | case URX_CARET_M_UNIX: |
b75a7d8f A |
2491 | if (atStart) { |
2492 | fRXPat->fStartType = START_LINE; | |
2493 | } | |
2494 | break; | |
46f4442e | 2495 | |
b75a7d8f A |
2496 | case URX_ONECHAR: |
2497 | if (currentLen == 0) { | |
2498 | // This character could appear at the start of a match. | |
2499 | // Add it to the set of possible starting characters. | |
2500 | fRXPat->fInitialChars->add(URX_VAL(op)); | |
2501 | numInitialStrings += 2; | |
2502 | } | |
2503 | currentLen++; | |
2504 | atStart = FALSE; | |
2505 | break; | |
b75a7d8f | 2506 | |
46f4442e A |
2507 | |
2508 | case URX_SETREF: | |
b75a7d8f A |
2509 | if (currentLen == 0) { |
2510 | int32_t sn = URX_VAL(op); | |
2511 | U_ASSERT(sn > 0 && sn < fRXPat->fSets->size()); | |
2512 | const UnicodeSet *s = (UnicodeSet *)fRXPat->fSets->elementAt(sn); | |
2513 | fRXPat->fInitialChars->addAll(*s); | |
2514 | numInitialStrings += 2; | |
2515 | } | |
2516 | currentLen++; | |
2517 | atStart = FALSE; | |
2518 | break; | |
2519 | ||
2520 | case URX_LOOP_SR_I: | |
2521 | // [Set]*, like a SETREF, above, in what it can match, | |
2522 | // but may not match at all, so currentLen is not incremented. | |
2523 | if (currentLen == 0) { | |
2524 | int32_t sn = URX_VAL(op); | |
2525 | U_ASSERT(sn > 0 && sn < fRXPat->fSets->size()); | |
2526 | const UnicodeSet *s = (UnicodeSet *)fRXPat->fSets->elementAt(sn); | |
2527 | fRXPat->fInitialChars->addAll(*s); | |
2528 | numInitialStrings += 2; | |
2529 | } | |
2530 | atStart = FALSE; | |
2531 | break; | |
2532 | ||
2533 | case URX_LOOP_DOT_I: | |
2534 | if (currentLen == 0) { | |
2535 | // .* at the start of a pattern. | |
2536 | // Any character can begin the match. | |
2537 | fRXPat->fInitialChars->clear(); | |
2538 | fRXPat->fInitialChars->complement(); | |
2539 | numInitialStrings += 2; | |
2540 | } | |
2541 | atStart = FALSE; | |
2542 | break; | |
2543 | ||
2544 | ||
46f4442e | 2545 | case URX_STATIC_SETREF: |
b75a7d8f A |
2546 | if (currentLen == 0) { |
2547 | int32_t sn = URX_VAL(op); | |
2548 | U_ASSERT(sn>0 && sn<URX_LAST_SET); | |
2549 | const UnicodeSet *s = fRXPat->fStaticSets[sn]; | |
2550 | fRXPat->fInitialChars->addAll(*s); | |
2551 | numInitialStrings += 2; | |
2552 | } | |
2553 | currentLen++; | |
2554 | atStart = FALSE; | |
2555 | break; | |
2556 | ||
2557 | ||
2558 | ||
46f4442e | 2559 | case URX_STAT_SETREF_N: |
b75a7d8f A |
2560 | if (currentLen == 0) { |
2561 | int32_t sn = URX_VAL(op); | |
2562 | const UnicodeSet *s = fRXPat->fStaticSets[sn]; | |
2563 | UnicodeSet sc(*s); | |
2564 | sc.complement(); | |
2565 | fRXPat->fInitialChars->addAll(sc); | |
2566 | numInitialStrings += 2; | |
2567 | } | |
2568 | currentLen++; | |
2569 | atStart = FALSE; | |
2570 | break; | |
2571 | ||
2572 | ||
2573 | ||
2574 | case URX_BACKSLASH_D: | |
2575 | // Digit Char | |
2576 | if (currentLen == 0) { | |
46f4442e | 2577 | UnicodeSet s; |
b75a7d8f A |
2578 | s.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, U_GC_ND_MASK, *fStatus); |
2579 | if (URX_VAL(op) != 0) { | |
2580 | s.complement(); | |
2581 | } | |
2582 | fRXPat->fInitialChars->addAll(s); | |
2583 | numInitialStrings += 2; | |
2584 | } | |
2585 | currentLen++; | |
2586 | atStart = FALSE; | |
2587 | break; | |
2588 | ||
2589 | ||
2590 | case URX_ONECHAR_I: | |
2591 | // Case Insensitive Single Character. | |
2592 | if (currentLen == 0) { | |
2593 | UChar32 c = URX_VAL(op); | |
2594 | if (u_hasBinaryProperty(c, UCHAR_CASE_SENSITIVE)) { | |
2595 | // character may have distinct cased forms. Add all of them | |
2596 | // to the set of possible starting match chars. | |
2597 | UnicodeSet s(c, c); | |
73c04bcf | 2598 | s.closeOver(USET_CASE_INSENSITIVE); |
b75a7d8f A |
2599 | fRXPat->fInitialChars->addAll(s); |
2600 | } else { | |
2601 | // Char has no case variants. Just add it as-is to the | |
2602 | // set of possible starting chars. | |
2603 | fRXPat->fInitialChars->add(c); | |
2604 | } | |
2605 | numInitialStrings += 2; | |
2606 | } | |
2607 | currentLen++; | |
2608 | atStart = FALSE; | |
2609 | break; | |
2610 | ||
2611 | ||
2612 | case URX_BACKSLASH_X: // Grahpeme Cluster. Minimum is 1, max unbounded. | |
2613 | case URX_DOTANY_ALL: // . matches one or two. | |
2614 | case URX_DOTANY: | |
46f4442e | 2615 | case URX_DOTANY_UNIX: |
b75a7d8f A |
2616 | if (currentLen == 0) { |
2617 | // These constructs are all bad news when they appear at the start | |
2618 | // of a match. Any character can begin the match. | |
2619 | fRXPat->fInitialChars->clear(); | |
2620 | fRXPat->fInitialChars->complement(); | |
2621 | numInitialStrings += 2; | |
2622 | } | |
2623 | currentLen++; | |
2624 | atStart = FALSE; | |
2625 | break; | |
2626 | ||
2627 | ||
2628 | case URX_JMPX: | |
2629 | loc++; // Except for extra operand on URX_JMPX, same as URX_JMP. | |
2630 | case URX_JMP: | |
2631 | { | |
2632 | int32_t jmpDest = URX_VAL(op); | |
2633 | if (jmpDest < loc) { | |
2634 | // Loop of some kind. Can safely ignore, the worst that will happen | |
2635 | // is that we understate the true minimum length | |
2636 | currentLen = forwardedLength.elementAti(loc+1); | |
46f4442e | 2637 | |
b75a7d8f A |
2638 | } else { |
2639 | // Forward jump. Propagate the current min length to the target loc of the jump. | |
2640 | U_ASSERT(jmpDest <= end+1); | |
2641 | if (forwardedLength.elementAti(jmpDest) > currentLen) { | |
2642 | forwardedLength.setElementAt(currentLen, jmpDest); | |
2643 | } | |
2644 | } | |
2645 | } | |
2646 | atStart = FALSE; | |
2647 | break; | |
2648 | ||
2649 | case URX_JMP_SAV: | |
2650 | case URX_JMP_SAV_X: | |
2651 | // Combo of state save to the next loc, + jmp backwards. | |
2652 | // Net effect on min. length computation is nothing. | |
2653 | atStart = FALSE; | |
2654 | break; | |
2655 | ||
46f4442e | 2656 | case URX_BACKTRACK: |
b75a7d8f A |
2657 | // Fails are kind of like a branch, except that the min length was |
2658 | // propagated already, by the state save. | |
2659 | currentLen = forwardedLength.elementAti(loc+1); | |
2660 | atStart = FALSE; | |
2661 | break; | |
2662 | ||
2663 | ||
2664 | case URX_STATE_SAVE: | |
2665 | { | |
2666 | // State Save, for forward jumps, propagate the current minimum. | |
2667 | // of the state save. | |
2668 | int32_t jmpDest = URX_VAL(op); | |
2669 | if (jmpDest > loc) { | |
2670 | if (currentLen < forwardedLength.elementAti(jmpDest)) { | |
2671 | forwardedLength.setElementAt(currentLen, jmpDest); | |
2672 | } | |
46f4442e | 2673 | } |
b75a7d8f A |
2674 | } |
2675 | atStart = FALSE; | |
2676 | break; | |
46f4442e | 2677 | |
b75a7d8f A |
2678 | |
2679 | ||
2680 | ||
2681 | case URX_STRING: | |
2682 | { | |
2683 | loc++; | |
2684 | int32_t stringLenOp = fRXPat->fCompiledPat->elementAti(loc); | |
2685 | int32_t stringLen = URX_VAL(stringLenOp); | |
2686 | U_ASSERT(URX_TYPE(stringLenOp) == URX_STRING_LEN); | |
2687 | U_ASSERT(stringLenOp >= 2); | |
2688 | if (currentLen == 0) { | |
2689 | // Add the starting character of this string to the set of possible starting | |
2690 | // characters for this pattern. | |
2691 | int32_t stringStartIdx = URX_VAL(op); | |
2692 | UChar32 c = fRXPat->fLiteralText.char32At(stringStartIdx); | |
2693 | fRXPat->fInitialChars->add(c); | |
2694 | ||
2695 | // Remember this string. After the entire pattern has been checked, | |
2696 | // if nothing else is identified that can start a match, we'll use it. | |
2697 | numInitialStrings++; | |
2698 | fRXPat->fInitialStringIdx = stringStartIdx; | |
2699 | fRXPat->fInitialStringLen = stringLen; | |
2700 | } | |
46f4442e | 2701 | |
b75a7d8f A |
2702 | currentLen += stringLen; |
2703 | atStart = FALSE; | |
2704 | } | |
2705 | break; | |
2706 | ||
2707 | case URX_STRING_I: | |
2708 | { | |
2709 | // Case-insensitive string. Unlike exact-match strings, we won't | |
2710 | // attempt a string search for possible match positions. But we | |
2711 | // do update the set of possible starting characters. | |
2712 | loc++; | |
2713 | int32_t stringLenOp = fRXPat->fCompiledPat->elementAti(loc); | |
2714 | int32_t stringLen = URX_VAL(stringLenOp); | |
2715 | U_ASSERT(URX_TYPE(stringLenOp) == URX_STRING_LEN); | |
2716 | U_ASSERT(stringLenOp >= 2); | |
2717 | if (currentLen == 0) { | |
2718 | // Add the starting character of this string to the set of possible starting | |
2719 | // characters for this pattern. | |
2720 | int32_t stringStartIdx = URX_VAL(op); | |
2721 | UChar32 c = fRXPat->fLiteralText.char32At(stringStartIdx); | |
2722 | UnicodeSet s(c, c); | |
73c04bcf | 2723 | s.closeOver(USET_CASE_INSENSITIVE); |
b75a7d8f A |
2724 | fRXPat->fInitialChars->addAll(s); |
2725 | numInitialStrings += 2; // Matching on an initial string not possible. | |
2726 | } | |
2727 | currentLen += stringLen; | |
2728 | atStart = FALSE; | |
2729 | } | |
2730 | break; | |
2731 | ||
2732 | case URX_CTR_INIT: | |
2733 | case URX_CTR_INIT_NG: | |
2734 | { | |
2735 | // Loop Init Ops. These don't change the min length, but they are 4 word ops | |
2736 | // so location must be updated accordingly. | |
46f4442e | 2737 | // Loop Init Ops. |
b75a7d8f A |
2738 | // If the min loop count == 0 |
2739 | // move loc forwards to the end of the loop, skipping over the body. | |
46f4442e | 2740 | // If the min count is > 0, |
b75a7d8f A |
2741 | // continue normal processing of the body of the loop. |
2742 | int32_t loopEndLoc = fRXPat->fCompiledPat->elementAti(loc+1); | |
2743 | loopEndLoc = URX_VAL(loopEndLoc); | |
2744 | int32_t minLoopCount = fRXPat->fCompiledPat->elementAti(loc+2); | |
2745 | if (minLoopCount == 0) { | |
374ca955 A |
2746 | // Min Loop Count of 0, treat like a forward branch and |
2747 | // move the current minimum length up to the target | |
2748 | // (end of loop) location. | |
2749 | U_ASSERT(loopEndLoc <= end+1); | |
2750 | if (forwardedLength.elementAti(loopEndLoc) > currentLen) { | |
2751 | forwardedLength.setElementAt(currentLen, loopEndLoc); | |
2752 | } | |
46f4442e | 2753 | } |
374ca955 | 2754 | loc+=3; // Skips over operands of CTR_INIT |
b75a7d8f A |
2755 | } |
2756 | atStart = FALSE; | |
2757 | break; | |
2758 | ||
2759 | ||
2760 | case URX_CTR_LOOP: | |
2761 | case URX_CTR_LOOP_NG: | |
46f4442e | 2762 | // Loop ops. |
b75a7d8f A |
2763 | // The jump is conditional, backwards only. |
2764 | atStart = FALSE; | |
2765 | break; | |
46f4442e | 2766 | |
b75a7d8f A |
2767 | case URX_LOOP_C: |
2768 | // More loop ops. These state-save to themselves. | |
2769 | // don't change the minimum match | |
2770 | atStart = FALSE; | |
2771 | break; | |
46f4442e | 2772 | |
b75a7d8f A |
2773 | |
2774 | case URX_LA_START: | |
2775 | case URX_LB_START: | |
2776 | { | |
2777 | // Look-around. Scan forward until the matching look-ahead end, | |
2778 | // without processing the look-around block. This is overly pessimistic. | |
46f4442e A |
2779 | |
2780 | // Keep track of the nesting depth of look-around blocks. Boilerplate code for | |
2781 | // lookahead contains two LA_END instructions, so count goes up by two | |
2782 | // for each LA_START. | |
2783 | int32_t depth = (opType == URX_LA_START? 2: 1); | |
b75a7d8f A |
2784 | for (;;) { |
2785 | loc++; | |
2786 | op = fRXPat->fCompiledPat->elementAti(loc); | |
46f4442e A |
2787 | if (URX_TYPE(op) == URX_LA_START) { |
2788 | depth+=2; | |
2789 | } | |
2790 | if (URX_TYPE(op) == URX_LB_START) { | |
b75a7d8f A |
2791 | depth++; |
2792 | } | |
2793 | if (URX_TYPE(op) == URX_LA_END || URX_TYPE(op)==URX_LBN_END) { | |
46f4442e | 2794 | depth--; |
b75a7d8f A |
2795 | if (depth == 0) { |
2796 | break; | |
2797 | } | |
b75a7d8f A |
2798 | } |
2799 | if (URX_TYPE(op) == URX_STATE_SAVE) { | |
2800 | // Need this because neg lookahead blocks will FAIL to outside | |
2801 | // of the block. | |
2802 | int32_t jmpDest = URX_VAL(op); | |
2803 | if (jmpDest > loc) { | |
2804 | if (currentLen < forwardedLength.elementAti(jmpDest)) { | |
2805 | forwardedLength.setElementAt(currentLen, jmpDest); | |
2806 | } | |
2807 | } | |
2808 | } | |
46f4442e | 2809 | U_ASSERT(loc <= end); |
b75a7d8f A |
2810 | } |
2811 | } | |
2812 | break; | |
46f4442e | 2813 | |
b75a7d8f A |
2814 | case URX_LA_END: |
2815 | case URX_LB_CONT: | |
2816 | case URX_LB_END: | |
2817 | case URX_LBN_CONT: | |
2818 | case URX_LBN_END: | |
46f4442e | 2819 | U_ASSERT(FALSE); // Shouldn't get here. These ops should be |
b75a7d8f A |
2820 | // consumed by the scan in URX_LA_START and LB_START |
2821 | ||
2822 | break; | |
46f4442e | 2823 | |
b75a7d8f A |
2824 | default: |
2825 | U_ASSERT(FALSE); | |
2826 | } | |
46f4442e | 2827 | |
b75a7d8f A |
2828 | } |
2829 | ||
2830 | ||
2831 | // We have finished walking through the ops. Check whether some forward jump | |
2832 | // propagated a shorter length to location end+1. | |
2833 | if (forwardedLength.elementAti(end+1) < currentLen) { | |
2834 | currentLen = forwardedLength.elementAti(end+1); | |
2835 | } | |
2836 | ||
2837 | ||
2838 | fRXPat->fInitialChars8->init(fRXPat->fInitialChars); | |
2839 | ||
2840 | ||
2841 | // Sort out what we should check for when looking for candidate match start positions. | |
2842 | // In order of preference, | |
2843 | // 1. Start of input text buffer. | |
2844 | // 2. A literal string. | |
2845 | // 3. Start of line in multi-line mode. | |
2846 | // 4. A single literal character. | |
2847 | // 5. A character from a set of characters. | |
2848 | // | |
2849 | if (fRXPat->fStartType == START_START) { | |
2850 | // Match only at the start of an input text string. | |
2851 | // start type is already set. We're done. | |
2852 | } else if (numInitialStrings == 1 && fRXPat->fMinMatchLen > 0) { | |
2853 | // Match beginning only with a literal string. | |
2854 | UChar32 c = fRXPat->fLiteralText.char32At(fRXPat->fInitialStringIdx); | |
2855 | U_ASSERT(fRXPat->fInitialChars->contains(c)); | |
2856 | fRXPat->fStartType = START_STRING; | |
2857 | fRXPat->fInitialChar = c; | |
2858 | } else if (fRXPat->fStartType == START_LINE) { | |
374ca955 | 2859 | // Match at start of line in Multi-Line mode. |
b75a7d8f A |
2860 | // Nothing to do here; everything is already set. |
2861 | } else if (fRXPat->fMinMatchLen == 0) { | |
2862 | // Zero length match possible. We could start anywhere. | |
2863 | fRXPat->fStartType = START_NO_INFO; | |
2864 | } else if (fRXPat->fInitialChars->size() == 1) { | |
2865 | // All matches begin with the same char. | |
2866 | fRXPat->fStartType = START_CHAR; | |
2867 | fRXPat->fInitialChar = fRXPat->fInitialChars->charAt(0); | |
2868 | U_ASSERT(fRXPat->fInitialChar != (UChar32)-1); | |
2869 | } else if (fRXPat->fInitialChars->contains((UChar32)0, (UChar32)0x10ffff) == FALSE && | |
2870 | fRXPat->fMinMatchLen > 0) { | |
2871 | // Matches start with a set of character smaller than the set of all chars. | |
2872 | fRXPat->fStartType = START_SET; | |
2873 | } else { | |
2874 | // Matches can start with anything | |
2875 | fRXPat->fStartType = START_NO_INFO; | |
2876 | } | |
2877 | ||
2878 | return; | |
2879 | } | |
2880 | ||
2881 | ||
2882 | ||
73c04bcf | 2883 | //------------------------------------------------------------------------------ |
b75a7d8f A |
2884 | // |
2885 | // minMatchLength Calculate the length of the shortest string that could | |
46f4442e | 2886 | // match the specified pattern. |
b75a7d8f A |
2887 | // Length is in 16 bit code units, not code points. |
2888 | // | |
2889 | // The calculated length may not be exact. The returned | |
2890 | // value may be shorter than the actual minimum; it must | |
2891 | // never be longer. | |
2892 | // | |
2893 | // start and end are the range of p-code operations to be | |
2894 | // examined. The endpoints are included in the range. | |
2895 | // | |
73c04bcf | 2896 | //------------------------------------------------------------------------------ |
b75a7d8f A |
2897 | int32_t RegexCompile::minMatchLength(int32_t start, int32_t end) { |
2898 | if (U_FAILURE(*fStatus)) { | |
2899 | return 0; | |
2900 | } | |
2901 | ||
2902 | U_ASSERT(start <= end); | |
2903 | U_ASSERT(end < fRXPat->fCompiledPat->size()); | |
2904 | ||
2905 | ||
2906 | int32_t loc; | |
2907 | int32_t op; | |
2908 | int32_t opType; | |
2909 | int32_t currentLen = 0; | |
2910 | ||
2911 | ||
2912 | // forwardedLength is a vector holding minimum-match-length values that | |
2913 | // are propagated forward in the pattern by JMP or STATE_SAVE operations. | |
2914 | // It must be one longer than the pattern being checked because some ops | |
2915 | // will jmp to a end-of-block+1 location from within a block, and we must | |
2916 | // count those when checking the block. | |
2917 | UVector32 forwardedLength(end+2, *fStatus); | |
2918 | forwardedLength.setSize(end+2); | |
2919 | for (loc=start; loc<=end+1; loc++) { | |
2920 | forwardedLength.setElementAt(INT32_MAX, loc); | |
2921 | } | |
2922 | ||
2923 | for (loc = start; loc<=end; loc++) { | |
2924 | op = fRXPat->fCompiledPat->elementAti(loc); | |
2925 | opType = URX_TYPE(op); | |
2926 | ||
2927 | // The loop is advancing linearly through the pattern. | |
2928 | // If the op we are now at was the destination of a branch in the pattern, | |
2929 | // and that path has a shorter minimum length than the current accumulated value, | |
2930 | // replace the current accumulated value. | |
46f4442e A |
2931 | // U_ASSERT(currentLen>=0 && currentLen < INT32_MAX); // MinLength == INT32_MAX for some |
2932 | // no-match-possible cases. | |
b75a7d8f A |
2933 | if (forwardedLength.elementAti(loc) < currentLen) { |
2934 | currentLen = forwardedLength.elementAti(loc); | |
2935 | U_ASSERT(currentLen>=0 && currentLen < INT32_MAX); | |
2936 | } | |
2937 | ||
2938 | switch (opType) { | |
2939 | // Ops that don't change the total length matched | |
2940 | case URX_RESERVED_OP: | |
2941 | case URX_END: | |
2942 | case URX_STRING_LEN: | |
2943 | case URX_NOP: | |
2944 | case URX_START_CAPTURE: | |
2945 | case URX_END_CAPTURE: | |
2946 | case URX_BACKSLASH_B: | |
374ca955 | 2947 | case URX_BACKSLASH_BU: |
b75a7d8f A |
2948 | case URX_BACKSLASH_G: |
2949 | case URX_BACKSLASH_Z: | |
2950 | case URX_CARET: | |
2951 | case URX_DOLLAR: | |
46f4442e A |
2952 | case URX_DOLLAR_M: |
2953 | case URX_DOLLAR_D: | |
2954 | case URX_DOLLAR_MD: | |
b75a7d8f A |
2955 | case URX_RELOC_OPRND: |
2956 | case URX_STO_INP_LOC: | |
b75a7d8f | 2957 | case URX_CARET_M: |
46f4442e | 2958 | case URX_CARET_M_UNIX: |
b75a7d8f A |
2959 | case URX_BACKREF: // BackRef. Must assume that it might be a zero length match |
2960 | case URX_BACKREF_I: | |
2961 | ||
2962 | case URX_STO_SP: // Setup for atomic or possessive blocks. Doesn't change what can match. | |
2963 | case URX_LD_SP: | |
2964 | ||
2965 | case URX_JMP_SAV: | |
2966 | case URX_JMP_SAV_X: | |
2967 | break; | |
46f4442e | 2968 | |
b75a7d8f A |
2969 | |
2970 | // Ops that match a minimum of one character (one or two 16 bit code units.) | |
46f4442e | 2971 | // |
b75a7d8f A |
2972 | case URX_ONECHAR: |
2973 | case URX_STATIC_SETREF: | |
2974 | case URX_STAT_SETREF_N: | |
2975 | case URX_SETREF: | |
2976 | case URX_BACKSLASH_D: | |
2977 | case URX_ONECHAR_I: | |
2978 | case URX_BACKSLASH_X: // Grahpeme Cluster. Minimum is 1, max unbounded. | |
2979 | case URX_DOTANY_ALL: // . matches one or two. | |
2980 | case URX_DOTANY: | |
46f4442e | 2981 | case URX_DOTANY_UNIX: |
b75a7d8f A |
2982 | currentLen++; |
2983 | break; | |
2984 | ||
2985 | ||
2986 | case URX_JMPX: | |
2987 | loc++; // URX_JMPX has an extra operand, ignored here, | |
2988 | // otherwise processed identically to URX_JMP. | |
2989 | case URX_JMP: | |
2990 | { | |
2991 | int32_t jmpDest = URX_VAL(op); | |
2992 | if (jmpDest < loc) { | |
2993 | // Loop of some kind. Can safely ignore, the worst that will happen | |
2994 | // is that we understate the true minimum length | |
2995 | currentLen = forwardedLength.elementAti(loc+1); | |
2996 | } else { | |
2997 | // Forward jump. Propagate the current min length to the target loc of the jump. | |
2998 | U_ASSERT(jmpDest <= end+1); | |
2999 | if (forwardedLength.elementAti(jmpDest) > currentLen) { | |
3000 | forwardedLength.setElementAt(currentLen, jmpDest); | |
3001 | } | |
3002 | } | |
3003 | } | |
3004 | break; | |
3005 | ||
46f4442e | 3006 | case URX_BACKTRACK: |
b75a7d8f | 3007 | { |
46f4442e | 3008 | // Back-tracks are kind of like a branch, except that the min length was |
b75a7d8f A |
3009 | // propagated already, by the state save. |
3010 | currentLen = forwardedLength.elementAti(loc+1); | |
b75a7d8f A |
3011 | } |
3012 | break; | |
3013 | ||
3014 | ||
3015 | case URX_STATE_SAVE: | |
3016 | { | |
3017 | // State Save, for forward jumps, propagate the current minimum. | |
3018 | // of the state save. | |
3019 | int32_t jmpDest = URX_VAL(op); | |
3020 | if (jmpDest > loc) { | |
3021 | if (currentLen < forwardedLength.elementAti(jmpDest)) { | |
3022 | forwardedLength.setElementAt(currentLen, jmpDest); | |
3023 | } | |
46f4442e | 3024 | } |
b75a7d8f A |
3025 | } |
3026 | break; | |
46f4442e | 3027 | |
b75a7d8f A |
3028 | |
3029 | case URX_STRING: | |
3030 | case URX_STRING_I: | |
3031 | { | |
3032 | loc++; | |
3033 | int32_t stringLenOp = fRXPat->fCompiledPat->elementAti(loc); | |
3034 | currentLen += URX_VAL(stringLenOp); | |
3035 | } | |
3036 | break; | |
3037 | ||
3038 | ||
3039 | case URX_CTR_INIT: | |
3040 | case URX_CTR_INIT_NG: | |
3041 | { | |
46f4442e | 3042 | // Loop Init Ops. |
b75a7d8f A |
3043 | // If the min loop count == 0 |
3044 | // move loc forwards to the end of the loop, skipping over the body. | |
46f4442e | 3045 | // If the min count is > 0, |
b75a7d8f A |
3046 | // continue normal processing of the body of the loop. |
3047 | int32_t loopEndLoc = fRXPat->fCompiledPat->elementAti(loc+1); | |
3048 | loopEndLoc = URX_VAL(loopEndLoc); | |
3049 | int32_t minLoopCount = fRXPat->fCompiledPat->elementAti(loc+2); | |
3050 | if (minLoopCount == 0) { | |
3051 | loc = loopEndLoc; | |
3052 | } else { | |
3053 | loc+=3; // Skips over operands of CTR_INIT | |
3054 | } | |
3055 | } | |
3056 | break; | |
3057 | ||
3058 | ||
3059 | case URX_CTR_LOOP: | |
3060 | case URX_CTR_LOOP_NG: | |
46f4442e | 3061 | // Loop ops. |
b75a7d8f A |
3062 | // The jump is conditional, backwards only. |
3063 | break; | |
46f4442e | 3064 | |
b75a7d8f A |
3065 | case URX_LOOP_SR_I: |
3066 | case URX_LOOP_DOT_I: | |
3067 | case URX_LOOP_C: | |
3068 | // More loop ops. These state-save to themselves. | |
3069 | // don't change the minimum match - could match nothing at all. | |
3070 | break; | |
46f4442e | 3071 | |
b75a7d8f A |
3072 | |
3073 | case URX_LA_START: | |
3074 | case URX_LB_START: | |
3075 | { | |
3076 | // Look-around. Scan forward until the matching look-ahead end, | |
46f4442e A |
3077 | // without processing the look-around block. This is overly pessimistic for look-ahead, |
3078 | // it assumes that the look-ahead match might be zero-length. | |
b75a7d8f | 3079 | // TODO: Positive lookahead could recursively do the block, then continue |
46f4442e A |
3080 | // with the longer of the block or the value coming in. Ticket 6060 |
3081 | int32_t depth = (opType == URX_LA_START? 2: 1);; | |
b75a7d8f A |
3082 | for (;;) { |
3083 | loc++; | |
3084 | op = fRXPat->fCompiledPat->elementAti(loc); | |
46f4442e A |
3085 | if (URX_TYPE(op) == URX_LA_START) { |
3086 | // The boilerplate for look-ahead includes two LA_END insturctions, | |
3087 | // Depth will be decremented by each one when it is seen. | |
3088 | depth += 2; | |
3089 | } | |
3090 | if (URX_TYPE(op) == URX_LB_START) { | |
b75a7d8f A |
3091 | depth++; |
3092 | } | |
46f4442e A |
3093 | if (URX_TYPE(op) == URX_LA_END) { |
3094 | depth--; | |
b75a7d8f A |
3095 | if (depth == 0) { |
3096 | break; | |
3097 | } | |
46f4442e A |
3098 | } |
3099 | if (URX_TYPE(op)==URX_LBN_END) { | |
b75a7d8f | 3100 | depth--; |
46f4442e A |
3101 | if (depth == 0) { |
3102 | break; | |
3103 | } | |
b75a7d8f A |
3104 | } |
3105 | if (URX_TYPE(op) == URX_STATE_SAVE) { | |
3106 | // Need this because neg lookahead blocks will FAIL to outside | |
3107 | // of the block. | |
3108 | int32_t jmpDest = URX_VAL(op); | |
3109 | if (jmpDest > loc) { | |
3110 | if (currentLen < forwardedLength.elementAti(jmpDest)) { | |
3111 | forwardedLength.setElementAt(currentLen, jmpDest); | |
3112 | } | |
3113 | } | |
3114 | } | |
46f4442e | 3115 | U_ASSERT(loc <= end); |
b75a7d8f A |
3116 | } |
3117 | } | |
3118 | break; | |
46f4442e | 3119 | |
b75a7d8f A |
3120 | case URX_LA_END: |
3121 | case URX_LB_CONT: | |
3122 | case URX_LB_END: | |
3123 | case URX_LBN_CONT: | |
3124 | case URX_LBN_END: | |
3125 | // Only come here if the matching URX_LA_START or URX_LB_START was not in the | |
3126 | // range being sized, which happens when measuring size of look-behind blocks. | |
3127 | break; | |
46f4442e | 3128 | |
b75a7d8f A |
3129 | default: |
3130 | U_ASSERT(FALSE); | |
3131 | } | |
46f4442e | 3132 | |
b75a7d8f A |
3133 | } |
3134 | ||
3135 | // We have finished walking through the ops. Check whether some forward jump | |
3136 | // propagated a shorter length to location end+1. | |
3137 | if (forwardedLength.elementAti(end+1) < currentLen) { | |
3138 | currentLen = forwardedLength.elementAti(end+1); | |
3139 | U_ASSERT(currentLen>=0 && currentLen < INT32_MAX); | |
3140 | } | |
46f4442e | 3141 | |
b75a7d8f A |
3142 | return currentLen; |
3143 | } | |
3144 | ||
3145 | ||
3146 | ||
73c04bcf | 3147 | //------------------------------------------------------------------------------ |
b75a7d8f A |
3148 | // |
3149 | // maxMatchLength Calculate the length of the longest string that could | |
46f4442e | 3150 | // match the specified pattern. |
b75a7d8f A |
3151 | // Length is in 16 bit code units, not code points. |
3152 | // | |
3153 | // The calculated length may not be exact. The returned | |
3154 | // value may be longer than the actual maximum; it must | |
3155 | // never be shorter. | |
3156 | // | |
73c04bcf | 3157 | //------------------------------------------------------------------------------ |
b75a7d8f A |
3158 | int32_t RegexCompile::maxMatchLength(int32_t start, int32_t end) { |
3159 | if (U_FAILURE(*fStatus)) { | |
3160 | return 0; | |
3161 | } | |
3162 | U_ASSERT(start <= end); | |
3163 | U_ASSERT(end < fRXPat->fCompiledPat->size()); | |
3164 | ||
3165 | ||
3166 | int32_t loc; | |
3167 | int32_t op; | |
3168 | int32_t opType; | |
3169 | int32_t currentLen = 0; | |
3170 | UVector32 forwardedLength(end+1, *fStatus); | |
3171 | forwardedLength.setSize(end+1); | |
3172 | ||
3173 | for (loc=start; loc<=end; loc++) { | |
3174 | forwardedLength.setElementAt(0, loc); | |
3175 | } | |
3176 | ||
3177 | for (loc = start; loc<=end; loc++) { | |
3178 | op = fRXPat->fCompiledPat->elementAti(loc); | |
3179 | opType = URX_TYPE(op); | |
3180 | ||
3181 | // The loop is advancing linearly through the pattern. | |
3182 | // If the op we are now at was the destination of a branch in the pattern, | |
3183 | // and that path has a longer maximum length than the current accumulated value, | |
3184 | // replace the current accumulated value. | |
3185 | if (forwardedLength.elementAti(loc) > currentLen) { | |
3186 | currentLen = forwardedLength.elementAti(loc); | |
3187 | } | |
3188 | ||
3189 | switch (opType) { | |
3190 | // Ops that don't change the total length matched | |
3191 | case URX_RESERVED_OP: | |
3192 | case URX_END: | |
3193 | case URX_STRING_LEN: | |
3194 | case URX_NOP: | |
3195 | case URX_START_CAPTURE: | |
3196 | case URX_END_CAPTURE: | |
3197 | case URX_BACKSLASH_B: | |
374ca955 | 3198 | case URX_BACKSLASH_BU: |
b75a7d8f A |
3199 | case URX_BACKSLASH_G: |
3200 | case URX_BACKSLASH_Z: | |
3201 | case URX_CARET: | |
3202 | case URX_DOLLAR: | |
46f4442e A |
3203 | case URX_DOLLAR_M: |
3204 | case URX_DOLLAR_D: | |
3205 | case URX_DOLLAR_MD: | |
b75a7d8f A |
3206 | case URX_RELOC_OPRND: |
3207 | case URX_STO_INP_LOC: | |
b75a7d8f | 3208 | case URX_CARET_M: |
46f4442e | 3209 | case URX_CARET_M_UNIX: |
b75a7d8f A |
3210 | |
3211 | case URX_STO_SP: // Setup for atomic or possessive blocks. Doesn't change what can match. | |
3212 | case URX_LD_SP: | |
3213 | ||
3214 | case URX_LB_END: | |
3215 | case URX_LB_CONT: | |
3216 | case URX_LBN_CONT: | |
3217 | case URX_LBN_END: | |
3218 | break; | |
46f4442e | 3219 | |
b75a7d8f A |
3220 | |
3221 | // Ops that increase that cause an unbounded increase in the length | |
3222 | // of a matched string, or that increase it a hard to characterize way. | |
3223 | // Call the max length unbounded, and stop further checking. | |
3224 | case URX_BACKREF: // BackRef. Must assume that it might be a zero length match | |
3225 | case URX_BACKREF_I: | |
3226 | case URX_BACKSLASH_X: // Grahpeme Cluster. Minimum is 1, max unbounded. | |
b75a7d8f A |
3227 | currentLen = INT32_MAX; |
3228 | break; | |
3229 | ||
3230 | ||
3231 | // Ops that match a max of one character (possibly two 16 bit code units.) | |
46f4442e | 3232 | // |
b75a7d8f A |
3233 | case URX_STATIC_SETREF: |
3234 | case URX_STAT_SETREF_N: | |
3235 | case URX_SETREF: | |
3236 | case URX_BACKSLASH_D: | |
3237 | case URX_ONECHAR_I: | |
46f4442e | 3238 | case URX_DOTANY_ALL: |
b75a7d8f | 3239 | case URX_DOTANY: |
46f4442e | 3240 | case URX_DOTANY_UNIX: |
b75a7d8f A |
3241 | currentLen+=2; |
3242 | break; | |
3243 | ||
3244 | // Single literal character. Increase current max length by one or two, | |
3245 | // depending on whether the char is in the supplementary range. | |
3246 | case URX_ONECHAR: | |
3247 | currentLen++; | |
3248 | if (URX_VAL(op) > 0x10000) { | |
3249 | currentLen++; | |
3250 | } | |
3251 | break; | |
3252 | ||
46f4442e | 3253 | // Jumps. |
b75a7d8f A |
3254 | // |
3255 | case URX_JMP: | |
3256 | case URX_JMPX: | |
3257 | case URX_JMP_SAV: | |
3258 | case URX_JMP_SAV_X: | |
3259 | { | |
3260 | int32_t jmpDest = URX_VAL(op); | |
3261 | if (jmpDest < loc) { | |
3262 | // Loop of some kind. Max match length is unbounded. | |
3263 | currentLen = INT32_MAX; | |
3264 | } else { | |
3265 | // Forward jump. Propagate the current min length to the target loc of the jump. | |
3266 | if (forwardedLength.elementAti(jmpDest) < currentLen) { | |
3267 | forwardedLength.setElementAt(currentLen, jmpDest); | |
3268 | } | |
3269 | currentLen = 0; | |
3270 | } | |
3271 | } | |
3272 | break; | |
3273 | ||
46f4442e A |
3274 | case URX_BACKTRACK: |
3275 | // back-tracks are kind of like a branch, except that the max length was | |
b75a7d8f A |
3276 | // propagated already, by the state save. |
3277 | currentLen = forwardedLength.elementAti(loc+1); | |
3278 | break; | |
3279 | ||
3280 | ||
3281 | case URX_STATE_SAVE: | |
3282 | { | |
3283 | // State Save, for forward jumps, propagate the current minimum. | |
3284 | // of the state save. | |
3285 | // For backwards jumps, they create a loop, maximum | |
3286 | // match length is unbounded. | |
3287 | int32_t jmpDest = URX_VAL(op); | |
3288 | if (jmpDest > loc) { | |
3289 | if (currentLen > forwardedLength.elementAti(jmpDest)) { | |
3290 | forwardedLength.setElementAt(currentLen, jmpDest); | |
3291 | } | |
3292 | } else { | |
3293 | currentLen = INT32_MAX; | |
3294 | } | |
3295 | } | |
3296 | break; | |
46f4442e | 3297 | |
b75a7d8f A |
3298 | |
3299 | ||
3300 | ||
3301 | case URX_STRING: | |
3302 | case URX_STRING_I: | |
3303 | { | |
3304 | loc++; | |
3305 | int32_t stringLenOp = fRXPat->fCompiledPat->elementAti(loc); | |
3306 | currentLen += URX_VAL(stringLenOp); | |
3307 | } | |
3308 | break; | |
3309 | ||
3310 | ||
3311 | case URX_CTR_INIT: | |
3312 | case URX_CTR_INIT_NG: | |
3313 | case URX_CTR_LOOP: | |
3314 | case URX_CTR_LOOP_NG: | |
3315 | case URX_LOOP_SR_I: | |
3316 | case URX_LOOP_DOT_I: | |
3317 | case URX_LOOP_C: | |
3318 | // For anything to do with loops, make the match length unbounded. | |
3319 | // Note: INIT instructions are multi-word. Can ignore because | |
3320 | // INT32_MAX length will stop the per-instruction loop. | |
3321 | currentLen = INT32_MAX; | |
3322 | break; | |
46f4442e A |
3323 | |
3324 | ||
b75a7d8f A |
3325 | |
3326 | case URX_LA_START: | |
3327 | case URX_LA_END: | |
3328 | // Look-ahead. Just ignore, treat the look-ahead block as if | |
3329 | // it were normal pattern. Gives a too-long match length, | |
3330 | // but good enough for now. | |
3331 | break; | |
46f4442e | 3332 | |
b75a7d8f A |
3333 | // End of look-ahead ops should always be consumed by the processing at |
3334 | // the URX_LA_START op. | |
73c04bcf A |
3335 | // U_ASSERT(FALSE); |
3336 | // break; | |
46f4442e | 3337 | |
b75a7d8f A |
3338 | case URX_LB_START: |
3339 | { | |
3340 | // Look-behind. Scan forward until the matching look-around end, | |
46f4442e | 3341 | // without processing the look-behind block. |
b75a7d8f A |
3342 | int32_t depth = 0; |
3343 | for (;;) { | |
3344 | loc++; | |
3345 | op = fRXPat->fCompiledPat->elementAti(loc); | |
3346 | if (URX_TYPE(op) == URX_LA_START || URX_TYPE(op) == URX_LB_START) { | |
3347 | depth++; | |
3348 | } | |
3349 | if (URX_TYPE(op) == URX_LA_END || URX_TYPE(op)==URX_LBN_END) { | |
3350 | if (depth == 0) { | |
3351 | break; | |
3352 | } | |
3353 | depth--; | |
3354 | } | |
46f4442e | 3355 | U_ASSERT(loc < end); |
b75a7d8f A |
3356 | } |
3357 | } | |
3358 | break; | |
3359 | ||
3360 | default: | |
3361 | U_ASSERT(FALSE); | |
3362 | } | |
3363 | ||
46f4442e | 3364 | |
b75a7d8f A |
3365 | if (currentLen == INT32_MAX) { |
3366 | // The maximum length is unbounded. | |
3367 | // Stop further processing of the pattern. | |
3368 | break; | |
3369 | } | |
46f4442e | 3370 | |
b75a7d8f A |
3371 | } |
3372 | return currentLen; | |
46f4442e | 3373 | |
b75a7d8f A |
3374 | } |
3375 | ||
3376 | ||
73c04bcf | 3377 | //------------------------------------------------------------------------------ |
b75a7d8f A |
3378 | // |
3379 | // stripNOPs Remove any NOP operations from the compiled pattern code. | |
3380 | // Extra NOPs are inserted for some constructs during the initial | |
3381 | // code generation to provide locations that may be patched later. | |
3382 | // Many end up unneeded, and are removed by this function. | |
3383 | // | |
73c04bcf | 3384 | //------------------------------------------------------------------------------ |
b75a7d8f A |
3385 | void RegexCompile::stripNOPs() { |
3386 | ||
3387 | if (U_FAILURE(*fStatus)) { | |
3388 | return; | |
3389 | } | |
3390 | ||
3391 | int32_t end = fRXPat->fCompiledPat->size(); | |
3392 | UVector32 deltas(end, *fStatus); | |
3393 | ||
3394 | // Make a first pass over the code, computing the amount that things | |
3395 | // will be offset at each location in the original code. | |
3396 | int32_t loc; | |
3397 | int32_t d = 0; | |
3398 | for (loc=0; loc<end; loc++) { | |
3399 | deltas.addElement(d, *fStatus); | |
3400 | int32_t op = fRXPat->fCompiledPat->elementAti(loc); | |
3401 | if (URX_TYPE(op) == URX_NOP) { | |
3402 | d++; | |
3403 | } | |
3404 | } | |
3405 | ||
3406 | // Make a second pass over the code, removing the NOPs by moving following | |
3407 | // code up, and patching operands that refer to code locations that | |
3408 | // are being moved. The array of offsets from the first step is used | |
3409 | // to compute the new operand values. | |
3410 | int32_t src; | |
3411 | int32_t dst = 0; | |
3412 | for (src=0; src<end; src++) { | |
3413 | int32_t op = fRXPat->fCompiledPat->elementAti(src); | |
3414 | int32_t opType = URX_TYPE(op); | |
3415 | switch (opType) { | |
3416 | case URX_NOP: | |
3417 | break; | |
3418 | ||
3419 | case URX_STATE_SAVE: | |
3420 | case URX_JMP: | |
3421 | case URX_CTR_LOOP: | |
3422 | case URX_CTR_LOOP_NG: | |
3423 | case URX_RELOC_OPRND: | |
3424 | case URX_JMPX: | |
3425 | case URX_JMP_SAV: | |
3426 | case URX_JMP_SAV_X: | |
3427 | // These are instructions with operands that refer to code locations. | |
3428 | { | |
3429 | int32_t operandAddress = URX_VAL(op); | |
3430 | U_ASSERT(operandAddress>=0 && operandAddress<deltas.size()); | |
3431 | int32_t fixedOperandAddress = operandAddress - deltas.elementAti(operandAddress); | |
3432 | op = URX_BUILD(opType, fixedOperandAddress); | |
3433 | fRXPat->fCompiledPat->setElementAt(op, dst); | |
3434 | dst++; | |
3435 | break; | |
3436 | } | |
3437 | ||
3438 | case URX_RESERVED_OP: | |
3439 | case URX_RESERVED_OP_N: | |
3440 | case URX_BACKTRACK: | |
3441 | case URX_END: | |
3442 | case URX_ONECHAR: | |
3443 | case URX_STRING: | |
3444 | case URX_STRING_LEN: | |
3445 | case URX_START_CAPTURE: | |
3446 | case URX_END_CAPTURE: | |
3447 | case URX_STATIC_SETREF: | |
3448 | case URX_STAT_SETREF_N: | |
3449 | case URX_SETREF: | |
3450 | case URX_DOTANY: | |
3451 | case URX_FAIL: | |
3452 | case URX_BACKSLASH_B: | |
374ca955 | 3453 | case URX_BACKSLASH_BU: |
b75a7d8f A |
3454 | case URX_BACKSLASH_G: |
3455 | case URX_BACKSLASH_X: | |
3456 | case URX_BACKSLASH_Z: | |
3457 | case URX_DOTANY_ALL: | |
b75a7d8f A |
3458 | case URX_BACKSLASH_D: |
3459 | case URX_CARET: | |
3460 | case URX_DOLLAR: | |
3461 | case URX_CTR_INIT: | |
3462 | case URX_CTR_INIT_NG: | |
46f4442e | 3463 | case URX_DOTANY_UNIX: |
b75a7d8f A |
3464 | case URX_STO_SP: |
3465 | case URX_LD_SP: | |
3466 | case URX_BACKREF: | |
3467 | case URX_STO_INP_LOC: | |
3468 | case URX_LA_START: | |
3469 | case URX_LA_END: | |
3470 | case URX_ONECHAR_I: | |
3471 | case URX_STRING_I: | |
3472 | case URX_BACKREF_I: | |
3473 | case URX_DOLLAR_M: | |
3474 | case URX_CARET_M: | |
46f4442e | 3475 | case URX_CARET_M_UNIX: |
b75a7d8f A |
3476 | case URX_LB_START: |
3477 | case URX_LB_CONT: | |
3478 | case URX_LB_END: | |
3479 | case URX_LBN_CONT: | |
3480 | case URX_LBN_END: | |
3481 | case URX_LOOP_SR_I: | |
3482 | case URX_LOOP_DOT_I: | |
3483 | case URX_LOOP_C: | |
46f4442e A |
3484 | case URX_DOLLAR_D: |
3485 | case URX_DOLLAR_MD: | |
b75a7d8f A |
3486 | // These instructions are unaltered by the relocation. |
3487 | fRXPat->fCompiledPat->setElementAt(op, dst); | |
3488 | dst++; | |
3489 | break; | |
3490 | ||
3491 | default: | |
3492 | // Some op is unaccounted for. | |
3493 | U_ASSERT(FALSE); | |
3494 | error(U_REGEX_INTERNAL_ERROR); | |
3495 | } | |
3496 | } | |
3497 | ||
3498 | fRXPat->fCompiledPat->setSize(dst); | |
3499 | } | |
3500 | ||
3501 | ||
3502 | ||
3503 | ||
73c04bcf | 3504 | //------------------------------------------------------------------------------ |
b75a7d8f A |
3505 | // |
3506 | // Error Report a rule parse error. | |
3507 | // Only report it if no previous error has been recorded. | |
3508 | // | |
73c04bcf | 3509 | //------------------------------------------------------------------------------ |
b75a7d8f A |
3510 | void RegexCompile::error(UErrorCode e) { |
3511 | if (U_SUCCESS(*fStatus)) { | |
3512 | *fStatus = e; | |
3513 | fParseErr->line = fLineNum; | |
3514 | fParseErr->offset = fCharNum; | |
3515 | ||
3516 | // Fill in the context. | |
3517 | // Note: extractBetween() pins supplied indicies to the string bounds. | |
3518 | uprv_memset(fParseErr->preContext, 0, sizeof(fParseErr->preContext)); | |
3519 | uprv_memset(fParseErr->postContext, 0, sizeof(fParseErr->postContext)); | |
3520 | fRXPat->fPattern.extractBetween(fScanIndex-U_PARSE_CONTEXT_LEN+1, fScanIndex, | |
3521 | fParseErr->preContext, 0); | |
3522 | fRXPat->fPattern.extractBetween(fScanIndex, fScanIndex+U_PARSE_CONTEXT_LEN-1, | |
3523 | fParseErr->postContext, 0); | |
3524 | } | |
3525 | } | |
3526 | ||
3527 | ||
3528 | // | |
3529 | // Assorted Unicode character constants. | |
3530 | // Numeric because there is no portable way to enter them as literals. | |
3531 | // (Think EBCDIC). | |
3532 | // | |
3533 | static const UChar chCR = 0x0d; // New lines, for terminating comments. | |
46f4442e | 3534 | static const UChar chLF = 0x0a; // Line Feed |
b75a7d8f | 3535 | static const UChar chPound = 0x23; // '#', introduces a comment. |
46f4442e A |
3536 | static const UChar chDigit0 = 0x30; // '0' |
3537 | static const UChar chDigit7 = 0x37; // '9' | |
3538 | static const UChar chColon = 0x3A; // ':' | |
b75a7d8f | 3539 | static const UChar chE = 0x45; // 'E' |
46f4442e A |
3540 | static const UChar chQ = 0x51; // 'Q' |
3541 | static const UChar chN = 0x4E; // 'N' | |
3542 | static const UChar chP = 0x50; // 'P' | |
b75a7d8f | 3543 | static const UChar chBackSlash = 0x5c; // '\' introduces a char escape |
46f4442e A |
3544 | static const UChar chLBracket = 0x5b; // '[' |
3545 | static const UChar chRBracket = 0x5d; // ']' | |
3546 | static const UChar chUp = 0x5e; // '^' | |
3547 | static const UChar chLowerP = 0x70; | |
3548 | static const UChar chLBrace = 0x7b; // '{' | |
3549 | static const UChar chRBrace = 0x7d; // '}' | |
3550 | static const UChar chNEL = 0x85; // NEL newline variant | |
3551 | static const UChar chLS = 0x2028; // Unicode Line Separator | |
b75a7d8f A |
3552 | |
3553 | ||
73c04bcf | 3554 | //------------------------------------------------------------------------------ |
b75a7d8f A |
3555 | // |
3556 | // nextCharLL Low Level Next Char from the regex pattern. | |
3557 | // Get a char from the string, keep track of input position | |
3558 | // for error reporting. | |
3559 | // | |
73c04bcf | 3560 | //------------------------------------------------------------------------------ |
b75a7d8f A |
3561 | UChar32 RegexCompile::nextCharLL() { |
3562 | UChar32 ch; | |
3563 | UnicodeString &pattern = fRXPat->fPattern; | |
3564 | ||
3565 | if (fPeekChar != -1) { | |
3566 | ch = fPeekChar; | |
3567 | fPeekChar = -1; | |
3568 | return ch; | |
3569 | } | |
3570 | if (fPatternLength==0 || fNextIndex >= fPatternLength) { | |
3571 | return (UChar32)-1; | |
3572 | } | |
3573 | ch = pattern.char32At(fNextIndex); | |
3574 | fNextIndex = pattern.moveIndex32(fNextIndex, 1); | |
3575 | ||
3576 | if (ch == chCR || | |
3577 | ch == chNEL || | |
3578 | ch == chLS || | |
3579 | ch == chLF && fLastChar != chCR) { | |
3580 | // Character is starting a new line. Bump up the line number, and | |
3581 | // reset the column to 0. | |
3582 | fLineNum++; | |
3583 | fCharNum=0; | |
b75a7d8f A |
3584 | } |
3585 | else { | |
3586 | // Character is not starting a new line. Except in the case of a | |
3587 | // LF following a CR, increment the column position. | |
3588 | if (ch != chLF) { | |
3589 | fCharNum++; | |
3590 | } | |
3591 | } | |
3592 | fLastChar = ch; | |
3593 | return ch; | |
3594 | } | |
3595 | ||
73c04bcf | 3596 | //------------------------------------------------------------------------------ |
b75a7d8f A |
3597 | // |
3598 | // peekCharLL Low Level Character Scanning, sneak a peek at the next | |
3599 | // character without actually getting it. | |
3600 | // | |
73c04bcf | 3601 | //------------------------------------------------------------------------------ |
b75a7d8f A |
3602 | UChar32 RegexCompile::peekCharLL() { |
3603 | if (fPeekChar == -1) { | |
3604 | fPeekChar = nextCharLL(); | |
3605 | } | |
3606 | return fPeekChar; | |
3607 | } | |
3608 | ||
3609 | ||
73c04bcf | 3610 | //------------------------------------------------------------------------------ |
b75a7d8f A |
3611 | // |
3612 | // nextChar for pattern scanning. At this level, we handle stripping | |
3613 | // out comments and processing some backslash character escapes. | |
3614 | // The rest of the pattern grammar is handled at the next level up. | |
3615 | // | |
73c04bcf | 3616 | //------------------------------------------------------------------------------ |
b75a7d8f A |
3617 | void RegexCompile::nextChar(RegexPatternChar &c) { |
3618 | ||
3619 | fScanIndex = fNextIndex; | |
3620 | c.fChar = nextCharLL(); | |
3621 | c.fQuoted = FALSE; | |
3622 | ||
3623 | if (fQuoteMode) { | |
3624 | c.fQuoted = TRUE; | |
3625 | if ((c.fChar==chBackSlash && peekCharLL()==chE) || c.fChar == (UChar32)-1) { | |
3626 | fQuoteMode = FALSE; // Exit quote mode, | |
3627 | nextCharLL(); // discard the E | |
3628 | nextChar(c); // recurse to get the real next char | |
3629 | } | |
3630 | } | |
3631 | else if (fInBackslashQuote) { | |
3632 | // The current character immediately follows a '\' | |
3633 | // Don't check for any further escapes, just return it as-is. | |
3634 | // Don't set c.fQuoted, because that would prevent the state machine from | |
3635 | // dispatching on the character. | |
3636 | fInBackslashQuote = FALSE; | |
3637 | } | |
3638 | else | |
3639 | { | |
3640 | // We are not in a \Q quoted region \E of the source. | |
3641 | // | |
3642 | if (fModeFlags & UREGEX_COMMENTS) { | |
3643 | // | |
3644 | // We are in free-spacing and comments mode. | |
46f4442e | 3645 | // Scan through any white space and comments, until we |
b75a7d8f A |
3646 | // reach a significant character or the end of inut. |
3647 | for (;;) { | |
3648 | if (c.fChar == (UChar32)-1) { | |
3649 | break; // End of Input | |
3650 | } | |
3651 | if (c.fChar == chPound && fEOLComments == TRUE) { | |
3652 | // Start of a comment. Consume the rest of it, until EOF or a new line | |
3653 | for (;;) { | |
3654 | c.fChar = nextCharLL(); | |
3655 | if (c.fChar == (UChar32)-1 || // EOF | |
3656 | c.fChar == chCR || | |
3657 | c.fChar == chLF || | |
3658 | c.fChar == chNEL || | |
3659 | c.fChar == chLS) { | |
3660 | break; | |
3661 | } | |
3662 | } | |
3663 | } | |
46f4442e | 3664 | // TODO: check what Java & Perl do with non-ASCII white spaces. Ticket 6061. |
b75a7d8f A |
3665 | if (uprv_isRuleWhiteSpace(c.fChar) == FALSE) { |
3666 | break; | |
3667 | } | |
3668 | c.fChar = nextCharLL(); | |
3669 | } | |
3670 | } | |
3671 | ||
3672 | // | |
3673 | // check for backslash escaped characters. | |
3674 | // | |
b75a7d8f | 3675 | if (c.fChar == chBackSlash) { |
46f4442e A |
3676 | int32_t startX = fNextIndex; // start and end positions of the |
3677 | int32_t endX = fNextIndex; // sequence following the '\' | |
3678 | if (RegexStaticSets::gStaticSets->fUnescapeCharSet.contains(peekCharLL())) { | |
b75a7d8f A |
3679 | // |
3680 | // A '\' sequence that is handled by ICU's standard unescapeAt function. | |
3681 | // Includes \uxxxx, \n, \r, many others. | |
3682 | // Return the single equivalent character. | |
3683 | // | |
3684 | nextCharLL(); // get & discard the peeked char. | |
3685 | c.fQuoted = TRUE; | |
3686 | c.fChar = fRXPat->fPattern.unescapeAt(endX); | |
3687 | if (startX == endX) { | |
3688 | error(U_REGEX_BAD_ESCAPE_SEQUENCE); | |
3689 | } | |
3690 | fCharNum += endX - startX; | |
3691 | fNextIndex = endX; | |
3692 | } | |
46f4442e A |
3693 | else if (peekCharLL() == chDigit0) { |
3694 | // Octal Escape, using Java Regexp Conventions | |
3695 | // which are \0 followed by 1-3 octal digits. | |
3696 | // Different from ICU Unescape handling of Octal, which does not | |
3697 | // require the leading 0. | |
3698 | // Java also has the convention of only consuning 2 octal digits if | |
3699 | // the three digit number would be > 0xff | |
3700 | // | |
3701 | c.fChar = 0; | |
3702 | nextCharLL(); // Consume the initial 0. | |
3703 | int index; | |
3704 | for (index=0; index<3; index++) { | |
3705 | int32_t ch = peekCharLL(); | |
3706 | if (ch<chDigit0 || ch>chDigit7) { | |
3707 | if (index==0) { | |
3708 | // \0 is not followed by any octal digits. | |
3709 | error(U_REGEX_BAD_ESCAPE_SEQUENCE); | |
3710 | } | |
3711 | break; | |
3712 | } | |
3713 | c.fChar <<= 3; | |
3714 | c.fChar += ch&7; | |
3715 | if (c.fChar <= 255) { | |
3716 | nextCharLL(); | |
3717 | } else { | |
3718 | // The last digit made the number too big. Forget we saw it. | |
3719 | c.fChar >>= 3; | |
3720 | } | |
3721 | } | |
3722 | c.fQuoted = TRUE; | |
3723 | } | |
3724 | else if (peekCharLL() == chQ) { | |
3725 | // "\Q" enter quote mode, which will continue until "\E" | |
3726 | fQuoteMode = TRUE; | |
3727 | nextCharLL(); // discard the 'Q'. | |
3728 | nextChar(c); // recurse to get the real next char. | |
3729 | } | |
b75a7d8f A |
3730 | else |
3731 | { | |
3732 | // We are in a '\' escape that will be handled by the state table scanner. | |
3733 | // Just return the backslash, but remember that the following char is to | |
46f4442e | 3734 | // be taken literally. |
b75a7d8f A |
3735 | fInBackslashQuote = TRUE; |
3736 | } | |
3737 | } | |
3738 | } | |
3739 | ||
3740 | // re-enable # to end-of-line comments, in case they were disabled. | |
3741 | // They are disabled by the parser upon seeing '(?', but this lasts for | |
3742 | // the fetching of the next character only. | |
3743 | fEOLComments = TRUE; | |
3744 | ||
3745 | // putc(c.fChar, stdout); | |
3746 | } | |
3747 | ||
3748 | ||
3749 | ||
73c04bcf | 3750 | //------------------------------------------------------------------------------ |
b75a7d8f | 3751 | // |
46f4442e A |
3752 | // scanNamedChar |
3753 | // Get a UChar32 from a \N{UNICODE CHARACTER NAME} in the pattern. | |
3754 | // | |
3755 | // The scan position will be at the 'N'. On return | |
3756 | // the scan position should be just after the '}' | |
b75a7d8f | 3757 | // |
46f4442e | 3758 | // Return the UChar32 |
b75a7d8f | 3759 | // |
73c04bcf | 3760 | //------------------------------------------------------------------------------ |
46f4442e | 3761 | UChar32 RegexCompile::scanNamedChar() { |
b75a7d8f | 3762 | if (U_FAILURE(*fStatus)) { |
46f4442e | 3763 | return 0; |
b75a7d8f A |
3764 | } |
3765 | ||
46f4442e A |
3766 | nextChar(fC); |
3767 | if (fC.fChar != chLBrace) { | |
3768 | error(U_REGEX_PROPERTY_SYNTAX); | |
3769 | return 0; | |
b75a7d8f | 3770 | } |
46f4442e A |
3771 | |
3772 | UnicodeString charName; | |
b75a7d8f | 3773 | for (;;) { |
46f4442e A |
3774 | nextChar(fC); |
3775 | if (fC.fChar == chRBrace) { | |
b75a7d8f A |
3776 | break; |
3777 | } | |
46f4442e A |
3778 | if (fC.fChar == -1) { |
3779 | error(U_REGEX_PROPERTY_SYNTAX); | |
3780 | return 0; | |
3781 | } | |
3782 | charName.append(fC.fChar); | |
b75a7d8f | 3783 | } |
46f4442e A |
3784 | |
3785 | char name[100]; | |
3786 | if (!uprv_isInvariantUString(charName.getBuffer(), charName.length()) || | |
3787 | (uint32_t)charName.length()>=sizeof(name)) { | |
3788 | // All Unicode character names have only invariant characters. | |
3789 | // The API to get a character, given a name, accepts only char *, forcing us to convert, | |
3790 | // which requires this error check | |
3791 | error(U_REGEX_PROPERTY_SYNTAX); | |
3792 | return 0; | |
3793 | } | |
3794 | charName.extract(0, charName.length(), name, sizeof(name), US_INV); | |
b75a7d8f | 3795 | |
46f4442e A |
3796 | UChar32 theChar = u_charFromName(U_UNICODE_CHAR_NAME, name, fStatus); |
3797 | if (U_FAILURE(*fStatus)) { | |
3798 | error(U_REGEX_PROPERTY_SYNTAX); | |
3799 | } | |
b75a7d8f | 3800 | |
46f4442e A |
3801 | nextChar(fC); // Continue overall regex pattern processing with char after the '}' |
3802 | return theChar; | |
3803 | } | |
b75a7d8f | 3804 | |
73c04bcf | 3805 | //------------------------------------------------------------------------------ |
b75a7d8f A |
3806 | // |
3807 | // scanProp Construct a UnicodeSet from the text at the current scan | |
3808 | // position, which will be of the form \p{whaterver} | |
3809 | // | |
3810 | // The scan position will be at the 'p' or 'P'. On return | |
3811 | // the scan position should be just after the '}' | |
3812 | // | |
3813 | // Return a UnicodeSet, constructed from the \P pattern, | |
3814 | // or NULL if the pattern is invalid. | |
3815 | // | |
73c04bcf | 3816 | //------------------------------------------------------------------------------ |
b75a7d8f A |
3817 | UnicodeSet *RegexCompile::scanProp() { |
3818 | UnicodeSet *uset = NULL; | |
3819 | ||
3820 | if (U_FAILURE(*fStatus)) { | |
3821 | return NULL; | |
3822 | } | |
46f4442e A |
3823 | U_ASSERT(fC.fChar == chLowerP || fC.fChar == chP); |
3824 | UBool negated = (fC.fChar == chP); | |
b75a7d8f | 3825 | |
46f4442e A |
3826 | UnicodeString propertyName; |
3827 | nextChar(fC); | |
3828 | if (fC.fChar != chLBrace) { | |
3829 | error(U_REGEX_PROPERTY_SYNTAX); | |
3830 | return NULL; | |
3831 | } | |
b75a7d8f | 3832 | for (;;) { |
46f4442e | 3833 | nextChar(fC); |
b75a7d8f A |
3834 | if (fC.fChar == chRBrace) { |
3835 | break; | |
3836 | } | |
b75a7d8f A |
3837 | if (fC.fChar == -1) { |
3838 | // Hit the end of the input string without finding the closing '}' | |
3839 | error(U_REGEX_PROPERTY_SYNTAX); | |
3840 | return NULL; | |
3841 | } | |
46f4442e A |
3842 | propertyName.append(fC.fChar); |
3843 | } | |
3844 | uset = createSetForProperty(propertyName, negated); | |
3845 | nextChar(fC); // Move input scan to position following the closing '}' | |
3846 | return uset; | |
3847 | } | |
3848 | ||
3849 | //------------------------------------------------------------------------------ | |
3850 | // | |
3851 | // scanPosixProp Construct a UnicodeSet from the text at the current scan | |
3852 | // position, which is expected be of the form [:property expression:] | |
3853 | // | |
3854 | // The scan position will be at the opening ':'. On return | |
3855 | // the scan position must be on the closing ']' | |
3856 | // | |
3857 | // Return a UnicodeSet constructed from the pattern, | |
3858 | // or NULL if this is not a valid POSIX-style set expression. | |
3859 | // If not a property expression, restore the initial scan position | |
3860 | // (to the opening ':') | |
3861 | // | |
3862 | // Note: the opening '[:' is not sufficient to guarantee that | |
3863 | // this is a [:property:] expression. | |
3864 | // [:'+=,] is a perfectly good ordinary set expression that | |
3865 | // happens to include ':' as one of its characters. | |
3866 | // | |
3867 | //------------------------------------------------------------------------------ | |
3868 | UnicodeSet *RegexCompile::scanPosixProp() { | |
3869 | UnicodeSet *uset = NULL; | |
3870 | ||
3871 | if (U_FAILURE(*fStatus)) { | |
3872 | return NULL; | |
b75a7d8f | 3873 | } |
b75a7d8f | 3874 | |
46f4442e A |
3875 | U_ASSERT(fC.fChar == chColon); |
3876 | ||
3877 | // Save the scanner state. | |
3878 | // TODO: move this into the scanner, with the state encapsulated in some way. Ticket 6062 | |
3879 | int32_t savedScanIndex = fScanIndex; | |
3880 | int32_t savedNextIndex = fNextIndex; | |
3881 | UBool savedQuoteMode = fQuoteMode; | |
3882 | UBool savedInBackslashQuote = fInBackslashQuote; | |
3883 | UBool savedEOLComments = fEOLComments; | |
3884 | int32_t savedLineNum = fLineNum; | |
3885 | int32_t savedCharNum = fCharNum; | |
3886 | UChar32 savedLastChar = fLastChar; | |
3887 | UChar32 savedPeekChar = fPeekChar; | |
3888 | RegexPatternChar savedfC = fC; | |
3889 | ||
3890 | // Scan for a closing ]. A little tricky because there are some perverse | |
3891 | // edge cases possible. "[:abc\Qdef:] \E]" is a valid non-property expression, | |
3892 | // ending on the second closing ]. | |
3893 | ||
3894 | UnicodeString propName; | |
3895 | UBool negated = FALSE; | |
3896 | ||
3897 | // Check for and consume the '^' in a negated POSIX property, e.g. [:^Letter:] | |
3898 | nextChar(fC); | |
3899 | if (fC.fChar == chUp) { | |
3900 | negated = TRUE; | |
3901 | nextChar(fC); | |
3902 | } | |
3903 | ||
3904 | // Scan for the closing ":]", collecting the property name along the way. | |
3905 | UBool sawPropSetTerminator = FALSE; | |
3906 | for (;;) { | |
3907 | propName.append(fC.fChar); | |
3908 | nextChar(fC); | |
3909 | if (fC.fQuoted || fC.fChar == -1) { | |
3910 | // Escaped characters or end of input - either says this isn't a [:Property:] | |
3911 | break; | |
3912 | } | |
3913 | if (fC.fChar == chColon) { | |
3914 | nextChar(fC); | |
3915 | if (fC.fChar == chRBracket) { | |
3916 | sawPropSetTerminator = TRUE; | |
3917 | } | |
3918 | break; | |
3919 | } | |
3920 | } | |
3921 | ||
3922 | if (sawPropSetTerminator) { | |
3923 | uset = createSetForProperty(propName, negated); | |
3924 | } | |
3925 | else | |
3926 | { | |
3927 | // No closing ":]". | |
3928 | // Restore the original scan position. | |
3929 | // The main scanner will retry the input as a normal set expression, | |
3930 | // not a [:Property:] expression. | |
3931 | fScanIndex = savedScanIndex; | |
3932 | fNextIndex = savedNextIndex; | |
3933 | fQuoteMode = savedQuoteMode; | |
3934 | fInBackslashQuote = savedInBackslashQuote; | |
3935 | fEOLComments = savedEOLComments; | |
3936 | fLineNum = savedLineNum; | |
3937 | fCharNum = savedCharNum; | |
3938 | fLastChar = savedLastChar; | |
3939 | fPeekChar = savedPeekChar; | |
3940 | fC = savedfC; | |
3941 | } | |
3942 | return uset; | |
3943 | } | |
3944 | ||
3945 | static inline void addIdentifierIgnorable(UnicodeSet *set, UErrorCode& ec) { | |
3946 | set->add(0, 8).add(0x0e, 0x1b).add(0x7f, 0x9f); | |
3947 | addCategory(set, U_GC_CF_MASK, ec); | |
3948 | } | |
3949 | ||
3950 | // | |
3951 | // Create a Unicode Set from a Unicode Property expression. | |
3952 | // This is common code underlying both \p{...} ane [:...:] expressions. | |
3953 | // Includes trying the Java "properties" that aren't supported as | |
3954 | // normal ICU UnicodeSet properties | |
3955 | // | |
3956 | static const UChar posSetPrefix[] = {0x5b, 0x5c, 0x70, 0x7b, 0}; // "[\p{" | |
3957 | static const UChar negSetPrefix[] = {0x5b, 0x5c, 0x50, 0x7b, 0}; // "[\P{" | |
3958 | UnicodeSet *RegexCompile::createSetForProperty(const UnicodeString &propName, UBool negated) { | |
3959 | UnicodeString setExpr; | |
3960 | UnicodeSet *set; | |
3961 | uint32_t usetFlags = 0; | |
3962 | ||
3963 | if (U_FAILURE(*fStatus)) { | |
3964 | return NULL; | |
3965 | } | |
3966 | ||
3967 | // | |
3968 | // First try the property as we received it | |
3969 | // | |
3970 | if (negated) { | |
3971 | setExpr.append(negSetPrefix, -1); | |
3972 | } else { | |
3973 | setExpr.append(posSetPrefix, -1); | |
3974 | } | |
3975 | setExpr.append(propName); | |
3976 | setExpr.append(chRBrace); | |
3977 | setExpr.append(chRBracket); | |
b75a7d8f A |
3978 | if (fModeFlags & UREGEX_CASE_INSENSITIVE) { |
3979 | usetFlags |= USET_CASE_INSENSITIVE; | |
3980 | } | |
46f4442e A |
3981 | set = new UnicodeSet(setExpr, usetFlags, NULL, *fStatus); |
3982 | if (U_SUCCESS(*fStatus)) { | |
3983 | return set; | |
3984 | } | |
3985 | delete set; | |
3986 | set = NULL; | |
3987 | ||
3988 | // | |
3989 | // The property as it was didn't work. | |
3990 | // Do emergency fixes - | |
3991 | // InGreek -> InGreek or Coptic, that being the official Unicode name for that block. | |
3992 | // InCombiningMarksforSymbols -> InCombiningDiacriticalMarksforSymbols. | |
3993 | // | |
3994 | // Note on Spaces: either "InCombiningMarksForSymbols" or "InCombining Marks for Symbols" | |
3995 | // is accepted by Java. The property part of the name is compared | |
3996 | // case-insenstively. The spaces must be exactly as shown, either | |
3997 | // all there, or all omitted, with exactly one at each position | |
3998 | // if they are present. From checking against JDK 1.6 | |
3999 | // | |
4000 | // This code should be removed when ICU properties support the Java compatibility names | |
4001 | // (ICU 4.0?) | |
4002 | // | |
4003 | UnicodeString mPropName = propName; | |
4004 | if (mPropName.caseCompare(UNICODE_STRING_SIMPLE("InGreek"), 0) == 0) { | |
4005 | mPropName = UNICODE_STRING_SIMPLE("InGreek and Coptic"); | |
4006 | } | |
4007 | if (mPropName.caseCompare(UNICODE_STRING_SIMPLE("InCombining Marks for Symbols"), 0) == 0 || | |
4008 | mPropName.caseCompare(UNICODE_STRING_SIMPLE("InCombiningMarksforSymbols"), 0) == 0) { | |
4009 | mPropName = UNICODE_STRING_SIMPLE("InCombining Diacritical Marks for Symbols"); | |
4010 | } | |
4011 | else if (mPropName.compare(UNICODE_STRING_SIMPLE("all")) == 0) { | |
4012 | mPropName = UNICODE_STRING_SIMPLE("javaValidCodePoint"); | |
4013 | } | |
4014 | ||
4015 | // See if the property looks like a Java "InBlockName", which | |
4016 | // we will recast as "Block=BlockName" | |
4017 | // | |
4018 | static const UChar IN[] = {0x49, 0x6E, 0}; // "In" | |
4019 | static const UChar BLOCK[] = {0x42, 0x6C, 0x6f, 0x63, 0x6b, 0x3d, 00}; // "Block=" | |
4020 | if (mPropName.startsWith(IN, 2) && propName.length()>=3) { | |
4021 | setExpr.truncate(4); // Leaves "[\p{", or "[\P{" | |
4022 | setExpr.append(BLOCK, -1); | |
4023 | setExpr.append(UnicodeString(mPropName, 2)); // Property with the leading "In" removed. | |
4024 | setExpr.append(chRBrace); | |
4025 | setExpr.append(chRBracket); | |
4026 | *fStatus = U_ZERO_ERROR; | |
4027 | set = new UnicodeSet(setExpr, usetFlags, NULL, *fStatus); | |
4028 | if (U_SUCCESS(*fStatus)) { | |
4029 | return set; | |
4030 | } | |
4031 | delete set; | |
4032 | set = NULL; | |
b75a7d8f A |
4033 | } |
4034 | ||
46f4442e A |
4035 | if (propName.startsWith(UNICODE_STRING_SIMPLE("java")) || |
4036 | propName.compare(UNICODE_STRING_SIMPLE("all")) == 0) | |
4037 | { | |
4038 | UErrorCode localStatus = U_ZERO_ERROR; | |
4039 | //setExpr.remove(); | |
4040 | set = new UnicodeSet(); | |
4041 | // | |
4042 | // Try the various Java specific properties. | |
4043 | // These all begin with "java" | |
4044 | // | |
4045 | if (mPropName.compare(UNICODE_STRING_SIMPLE("javaDefined")) == 0) { | |
4046 | addCategory(set, U_GC_CN_MASK, localStatus); | |
4047 | set->complement(); | |
4048 | } | |
4049 | else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaDigit")) == 0) { | |
4050 | addCategory(set, U_GC_ND_MASK, localStatus); | |
4051 | } | |
4052 | else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaIdentifierIgnorable")) == 0) { | |
4053 | addIdentifierIgnorable(set, localStatus); | |
4054 | } | |
4055 | else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaISOControl")) == 0) { | |
4056 | set->add(0, 0x1F).add(0x7F, 0x9F); | |
4057 | } | |
4058 | else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaJavaIdentifierPart")) == 0) { | |
4059 | addCategory(set, U_GC_L_MASK, localStatus); | |
4060 | addCategory(set, U_GC_SC_MASK, localStatus); | |
4061 | addCategory(set, U_GC_PC_MASK, localStatus); | |
4062 | addCategory(set, U_GC_ND_MASK, localStatus); | |
4063 | addCategory(set, U_GC_NL_MASK, localStatus); | |
4064 | addCategory(set, U_GC_MC_MASK, localStatus); | |
4065 | addCategory(set, U_GC_MN_MASK, localStatus); | |
4066 | addIdentifierIgnorable(set, localStatus); | |
4067 | } | |
4068 | else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaJavaIdentifierStart")) == 0) { | |
4069 | addCategory(set, U_GC_L_MASK, localStatus); | |
4070 | addCategory(set, U_GC_NL_MASK, localStatus); | |
4071 | addCategory(set, U_GC_SC_MASK, localStatus); | |
4072 | addCategory(set, U_GC_PC_MASK, localStatus); | |
4073 | } | |
4074 | else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaLetter")) == 0) { | |
4075 | addCategory(set, U_GC_L_MASK, localStatus); | |
4076 | } | |
4077 | else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaLetterOrDigit")) == 0) { | |
4078 | addCategory(set, U_GC_L_MASK, localStatus); | |
4079 | addCategory(set, U_GC_ND_MASK, localStatus); | |
4080 | } | |
4081 | else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaLowerCase")) == 0) { | |
4082 | addCategory(set, U_GC_LL_MASK, localStatus); | |
4083 | } | |
4084 | else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaMirrored")) == 0) { | |
4085 | set->applyIntPropertyValue(UCHAR_BIDI_MIRRORED, 1, localStatus); | |
4086 | } | |
4087 | else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaSpaceChar")) == 0) { | |
4088 | addCategory(set, U_GC_Z_MASK, localStatus); | |
4089 | } | |
4090 | else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaSupplementaryCodePoint")) == 0) { | |
4091 | set->add(0x10000, UnicodeSet::MAX_VALUE); | |
4092 | } | |
4093 | else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaTitleCase")) == 0) { | |
4094 | addCategory(set, U_GC_LT_MASK, localStatus); | |
4095 | } | |
4096 | else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaUnicodeIdentifierStart")) == 0) { | |
4097 | addCategory(set, U_GC_L_MASK, localStatus); | |
4098 | addCategory(set, U_GC_NL_MASK, localStatus); | |
4099 | } | |
4100 | else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaUnicodeIdentifierPart")) == 0) { | |
4101 | addCategory(set, U_GC_L_MASK, localStatus); | |
4102 | addCategory(set, U_GC_PC_MASK, localStatus); | |
4103 | addCategory(set, U_GC_ND_MASK, localStatus); | |
4104 | addCategory(set, U_GC_NL_MASK, localStatus); | |
4105 | addCategory(set, U_GC_MC_MASK, localStatus); | |
4106 | addCategory(set, U_GC_MN_MASK, localStatus); | |
4107 | addIdentifierIgnorable(set, localStatus); | |
4108 | } | |
4109 | else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaUpperCase")) == 0) { | |
4110 | addCategory(set, U_GC_LU_MASK, localStatus); | |
4111 | } | |
4112 | else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaValidCodePoint")) == 0) { | |
4113 | set->add(0, UnicodeSet::MAX_VALUE); | |
4114 | } | |
4115 | else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaWhitespace")) == 0) { | |
4116 | addCategory(set, U_GC_Z_MASK, localStatus); | |
4117 | set->removeAll(UnicodeSet().add(0xa0).add(0x2007).add(0x202f)); | |
4118 | set->add(9, 0x0d).add(0x1c, 0x1f); | |
4119 | } | |
4120 | else if (mPropName.compare(UNICODE_STRING_SIMPLE("all")) == 0) { | |
4121 | set->add(0, UnicodeSet::MAX_VALUE); | |
4122 | } | |
4123 | ||
4124 | if (U_SUCCESS(localStatus) && !set->isEmpty()) { | |
4125 | *fStatus = U_ZERO_ERROR; | |
4126 | if (usetFlags & USET_CASE_INSENSITIVE) { | |
4127 | set->closeOver(USET_CASE_INSENSITIVE); | |
4128 | } | |
4129 | if (negated) { | |
4130 | set->complement(); | |
4131 | } | |
4132 | return set; | |
4133 | } | |
4134 | delete set; | |
4135 | set = NULL; | |
b75a7d8f | 4136 | } |
46f4442e A |
4137 | error(*fStatus); |
4138 | return NULL; | |
4139 | } | |
b75a7d8f | 4140 | |
46f4442e A |
4141 | |
4142 | ||
4143 | // | |
4144 | // SetEval Part of the evaluation of [set expressions]. | |
4145 | // Perform any pending (stacked) operations with precedence | |
4146 | // equal or greater to that of the next operator encountered | |
4147 | // in the expression. | |
4148 | // | |
4149 | void RegexCompile::setEval(int32_t nextOp) { | |
4150 | UnicodeSet *rightOperand = NULL; | |
4151 | UnicodeSet *leftOperand = NULL; | |
4152 | for (;;) { | |
4153 | U_ASSERT(fSetOpStack.empty()==FALSE); | |
4154 | int32_t pendingSetOperation = fSetOpStack.peeki(); | |
4155 | if ((pendingSetOperation&0xffff0000) < (nextOp&0xffff0000)) { | |
4156 | break; | |
4157 | } | |
4158 | fSetOpStack.popi(); | |
4159 | U_ASSERT(fSetStack.empty() == FALSE); | |
4160 | rightOperand = (UnicodeSet *)fSetStack.peek(); | |
4161 | switch (pendingSetOperation) { | |
4162 | case setNegation: | |
4163 | rightOperand->complement(); | |
4164 | break; | |
4165 | case setCaseClose: | |
4166 | // TODO: need a simple close function. Ticket 6065 | |
4167 | rightOperand->closeOver(USET_CASE_INSENSITIVE); | |
4168 | rightOperand->removeAllStrings(); | |
4169 | break; | |
4170 | case setDifference1: | |
4171 | case setDifference2: | |
4172 | fSetStack.pop(); | |
4173 | leftOperand = (UnicodeSet *)fSetStack.peek(); | |
4174 | leftOperand->removeAll(*rightOperand); | |
4175 | delete rightOperand; | |
4176 | break; | |
4177 | case setIntersection1: | |
4178 | case setIntersection2: | |
4179 | fSetStack.pop(); | |
4180 | leftOperand = (UnicodeSet *)fSetStack.peek(); | |
4181 | leftOperand->retainAll(*rightOperand); | |
4182 | delete rightOperand; | |
4183 | break; | |
4184 | case setUnion: | |
4185 | fSetStack.pop(); | |
4186 | leftOperand = (UnicodeSet *)fSetStack.peek(); | |
4187 | leftOperand->addAll(*rightOperand); | |
4188 | delete rightOperand; | |
4189 | break; | |
4190 | default: | |
4191 | U_ASSERT(FALSE); | |
4192 | break; | |
4193 | } | |
4194 | } | |
4195 | } | |
4196 | ||
4197 | void RegexCompile::setPushOp(int32_t op) { | |
4198 | setEval(op); | |
4199 | fSetOpStack.push(op, *fStatus); | |
4200 | fSetStack.push(new UnicodeSet(), *fStatus); | |
73c04bcf | 4201 | } |
b75a7d8f A |
4202 | |
4203 | U_NAMESPACE_END | |
4204 | #endif // !UCONFIG_NO_REGULAR_EXPRESSIONS | |
73c04bcf | 4205 |