]> git.saurik.com Git - apple/icu.git/blame - icuSources/test/intltest/utxttest.cpp
ICU-511.32.tar.gz
[apple/icu.git] / icuSources / test / intltest / utxttest.cpp
CommitLineData
73c04bcf
A
1/********************************************************************
2 * COPYRIGHT:
4388f060 3 * Copyright (c) 2005-2012, International Business Machines Corporation and
73c04bcf
A
4 * others. All Rights Reserved.
5 ********************************************************************/
6/************************************************************************
7* Tests for the UText and UTextIterator text abstraction classses
8*
9************************************************************************/
10
73c04bcf
A
11#include <string.h>
12#include <stdio.h>
13#include <stdlib.h>
729e4ab9
A
14#include "unicode/utypes.h"
15#include "unicode/utext.h"
16#include "unicode/utf8.h"
17#include "unicode/ustring.h"
18#include "unicode/uchriter.h"
73c04bcf
A
19#include "utxttest.h"
20
21static UBool gFailed = FALSE;
22static int gTestNum = 0;
23
24// Forward decl
25UText *openFragmentedUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status);
26
27#define TEST_ASSERT(x) \
28{ if ((x)==FALSE) {errln("Test #%d failure in file %s at line %d\n", gTestNum, __FILE__, __LINE__);\
29 gFailed = TRUE;\
30 }}
31
32
33#define TEST_SUCCESS(status) \
34{ if (U_FAILURE(status)) {errln("Test #%d failure in file %s at line %d. Error = \"%s\"\n", \
35 gTestNum, __FILE__, __LINE__, u_errorName(status)); \
36 gFailed = TRUE;\
37 }}
38
39UTextTest::UTextTest() {
40}
41
42UTextTest::~UTextTest() {
43}
44
45
46void
47UTextTest::runIndexedTest(int32_t index, UBool exec,
48 const char* &name, char* /*par*/) {
49 switch (index) {
50 case 0: name = "TextTest";
51 if (exec) TextTest(); break;
52 case 1: name = "ErrorTest";
53 if (exec) ErrorTest(); break;
54 case 2: name = "FreezeTest";
55 if (exec) FreezeTest(); break;
46f4442e
A
56 case 3: name = "Ticket5560";
57 if (exec) Ticket5560(); break;
58 case 4: name = "Ticket6847";
59 if (exec) Ticket6847(); break;
73c04bcf
A
60 default: name = ""; break;
61 }
62}
63
64//
65// Quick and dirty random number generator.
66// (don't use library so that results are portable.
67static uint32_t m_seed = 1;
68static uint32_t m_rand()
69{
70 m_seed = m_seed * 1103515245 + 12345;
71 return (uint32_t)(m_seed/65536) % 32768;
72}
73
74
75//
76// TextTest()
77//
78// Top Level function for UText testing.
79// Specifies the strings to be tested, with the acutal testing itself
80// being carried out in another function, TestString().
81//
82void UTextTest::TextTest() {
83 int32_t i, j;
84
85 TestString("abcd\\U00010001xyz");
86 TestString("");
87
88 // Supplementary chars at start or end
89 TestString("\\U00010001");
90 TestString("abc\\U00010001");
91 TestString("\\U00010001abc");
92
93 // Test simple strings of lengths 1 to 60, looking for glitches at buffer boundaries
94 UnicodeString s;
95 for (i=1; i<60; i++) {
96 s.truncate(0);
97 for (j=0; j<i; j++) {
98 if (j+0x30 == 0x5c) {
99 // backslash. Needs to be escaped
100 s.append((UChar)0x5c);
101 }
102 s.append(UChar(j+0x30));
103 }
104 TestString(s);
105 }
106
107 // Test strings with odd-aligned supplementary chars,
108 // looking for glitches at buffer boundaries
109 for (i=1; i<60; i++) {
110 s.truncate(0);
111 s.append((UChar)0x41);
112 for (j=0; j<i; j++) {
113 s.append(UChar32(j+0x11000));
114 }
115 TestString(s);
116 }
117
118 // String of chars of randomly varying size in utf-8 representation.
119 // Exercise the mapping, and the varying sized buffer.
120 //
121 s.truncate(0);
122 UChar32 c1 = 0;
123 UChar32 c2 = 0x100;
124 UChar32 c3 = 0xa000;
125 UChar32 c4 = 0x11000;
126 for (i=0; i<1000; i++) {
127 int len8 = m_rand()%4 + 1;
128 switch (len8) {
129 case 1:
130 c1 = (c1+1)%0x80;
131 // don't put 0 into string (0 terminated strings for some tests)
132 // don't put '\', will cause unescape() to fail.
133 if (c1==0x5c || c1==0) {
134 c1++;
135 }
136 s.append(c1);
137 break;
138 case 2:
139 s.append(c2++);
140 break;
141 case 3:
142 s.append(c3++);
143 break;
144 case 4:
145 s.append(c4++);
146 break;
147 }
148 }
149 TestString(s);
150}
151
152
153//
154// TestString() Run a suite of UText tests on a string.
155// The test string is unescaped before use.
156//
157void UTextTest::TestString(const UnicodeString &s) {
158 int32_t i;
159 int32_t j;
160 UChar32 c;
161 int32_t cpCount = 0;
162 UErrorCode status = U_ZERO_ERROR;
163 UText *ut = NULL;
164 int32_t saLen;
165
166 UnicodeString sa = s.unescape();
167 saLen = sa.length();
168
169 //
170 // Build up a mapping between code points and UTF-16 code unit indexes.
171 //
172 m *cpMap = new m[sa.length() + 1];
173 j = 0;
174 for (i=0; i<sa.length(); i=sa.moveIndex32(i, 1)) {
175 c = sa.char32At(i);
176 cpMap[j].nativeIdx = i;
177 cpMap[j].cp = c;
178 j++;
179 cpCount++;
180 }
181 cpMap[j].nativeIdx = i; // position following the last char in utf-16 string.
182
183
184 // UChar * test, null terminated
185 status = U_ZERO_ERROR;
186 UChar *buf = new UChar[saLen+1];
187 sa.extract(buf, saLen+1, status);
188 TEST_SUCCESS(status);
189 ut = utext_openUChars(NULL, buf, -1, &status);
190 TEST_SUCCESS(status);
191 TestAccess(sa, ut, cpCount, cpMap);
192 utext_close(ut);
193 delete [] buf;
194
195 // UChar * test, with length
196 status = U_ZERO_ERROR;
197 buf = new UChar[saLen+1];
198 sa.extract(buf, saLen+1, status);
199 TEST_SUCCESS(status);
200 ut = utext_openUChars(NULL, buf, saLen, &status);
201 TEST_SUCCESS(status);
202 TestAccess(sa, ut, cpCount, cpMap);
203 utext_close(ut);
204 delete [] buf;
205
206
207 // UnicodeString test
208 status = U_ZERO_ERROR;
209 ut = utext_openUnicodeString(NULL, &sa, &status);
210 TEST_SUCCESS(status);
211 TestAccess(sa, ut, cpCount, cpMap);
212 TestCMR(sa, ut, cpCount, cpMap, cpMap);
213 utext_close(ut);
214
215
216 // Const UnicodeString test
217 status = U_ZERO_ERROR;
218 ut = utext_openConstUnicodeString(NULL, &sa, &status);
219 TEST_SUCCESS(status);
220 TestAccess(sa, ut, cpCount, cpMap);
221 utext_close(ut);
222
223
224 // Replaceable test. (UnicodeString inherits Replaceable)
225 status = U_ZERO_ERROR;
226 ut = utext_openReplaceable(NULL, &sa, &status);
227 TEST_SUCCESS(status);
228 TestAccess(sa, ut, cpCount, cpMap);
229 TestCMR(sa, ut, cpCount, cpMap, cpMap);
230 utext_close(ut);
231
232 // Character Iterator Tests
233 status = U_ZERO_ERROR;
234 const UChar *cbuf = sa.getBuffer();
235 CharacterIterator *ci = new UCharCharacterIterator(cbuf, saLen, status);
236 TEST_SUCCESS(status);
237 ut = utext_openCharacterIterator(NULL, ci, &status);
238 TEST_SUCCESS(status);
239 TestAccess(sa, ut, cpCount, cpMap);
240 utext_close(ut);
241 delete ci;
242
243
244 // Fragmented UnicodeString (Chunk size of one)
245 //
246 status = U_ZERO_ERROR;
247 ut = openFragmentedUnicodeString(NULL, &sa, &status);
248 TEST_SUCCESS(status);
249 TestAccess(sa, ut, cpCount, cpMap);
250 utext_close(ut);
251
252 //
253 // UTF-8 test
254 //
255
256 // Convert the test string from UnicodeString to (char *) in utf-8 format
257 int32_t u8Len = sa.extract(0, sa.length(), NULL, 0, "utf-8");
258 char *u8String = new char[u8Len + 1];
259 sa.extract(0, sa.length(), u8String, u8Len+1, "utf-8");
260
261 // Build up the map of code point indices in the utf-8 string
262 m * u8Map = new m[sa.length() + 1];
263 i = 0; // native utf-8 index
264 for (j=0; j<cpCount ; j++) { // code point number
265 u8Map[j].nativeIdx = i;
266 U8_NEXT(u8String, i, u8Len, c)
267 u8Map[j].cp = c;
268 }
269 u8Map[cpCount].nativeIdx = u8Len; // position following the last char in utf-8 string.
270
271 // Do the test itself
272 status = U_ZERO_ERROR;
273 ut = utext_openUTF8(NULL, u8String, -1, &status);
274 TEST_SUCCESS(status);
275 TestAccess(sa, ut, cpCount, u8Map);
276 utext_close(ut);
277
278
279
729e4ab9
A
280 delete []cpMap;
281 delete []u8Map;
282 delete []u8String;
73c04bcf
A
283}
284
285// TestCMR test Copy, Move and Replace operations.
286// us UnicodeString containing the test text.
287// ut UText containing the same test text.
288// cpCount number of code points in the test text.
289// nativeMap Mapping from code points to native indexes for the UText.
290// u16Map Mapping from code points to UTF-16 indexes, for use with the UnicodeString.
291//
292// This function runs a whole series of opertions on each incoming UText.
293// The UText is deep-cloned prior to each operation, so that the original UText remains unchanged.
294//
295void UTextTest::TestCMR(const UnicodeString &us, UText *ut, int cpCount, m *nativeMap, m *u16Map) {
296 TEST_ASSERT(utext_isWritable(ut) == TRUE);
297
298 int srcLengthType; // Loop variables for selecting the postion and length
299 int srcPosType; // of the block to operate on within the source text.
300 int destPosType;
301
302 int srcIndex = 0; // Code Point indexes of the block to operate on for
303 int srcLength = 0; // a specific test.
304
305 int destIndex = 0; // Code point index of the destination for a copy/move test.
306
307 int32_t nativeStart = 0; // Native unit indexes for a test.
308 int32_t nativeLimit = 0;
309 int32_t nativeDest = 0;
310
311 int32_t u16Start = 0; // UTF-16 indexes for a test.
312 int32_t u16Limit = 0; // used when performing the same operation in a Unicode String
313 int32_t u16Dest = 0;
314
315 // Iterate over a whole series of source index, length and a target indexes.
316 // This is done with code point indexes; these will be later translated to native
317 // indexes using the cpMap.
318 for (srcLengthType=1; srcLengthType<=3; srcLengthType++) {
319 switch (srcLengthType) {
320 case 1: srcLength = 1; break;
321 case 2: srcLength = 5; break;
322 case 3: srcLength = cpCount / 3;
323 }
324 for (srcPosType=1; srcPosType<=5; srcPosType++) {
325 switch (srcPosType) {
326 case 1: srcIndex = 0; break;
327 case 2: srcIndex = 1; break;
328 case 3: srcIndex = cpCount - srcLength; break;
329 case 4: srcIndex = cpCount - srcLength - 1; break;
330 case 5: srcIndex = cpCount / 2; break;
331 }
332 if (srcIndex < 0 || srcIndex + srcLength > cpCount) {
333 // filter out bogus test cases -
334 // those with a source range that falls of an edge of the string.
335 continue;
336 }
337
338 //
339 // Copy and move tests.
340 // iterate over a variety of destination positions.
341 //
342 for (destPosType=1; destPosType<=4; destPosType++) {
343 switch (destPosType) {
344 case 1: destIndex = 0; break;
345 case 2: destIndex = 1; break;
346 case 3: destIndex = srcIndex - 1; break;
347 case 4: destIndex = srcIndex + srcLength + 1; break;
348 case 5: destIndex = cpCount-1; break;
349 case 6: destIndex = cpCount; break;
350 }
351 if (destIndex<0 || destIndex>cpCount) {
352 // filter out bogus test cases.
353 continue;
354 }
355
356 nativeStart = nativeMap[srcIndex].nativeIdx;
357 nativeLimit = nativeMap[srcIndex+srcLength].nativeIdx;
358 nativeDest = nativeMap[destIndex].nativeIdx;
359
360 u16Start = u16Map[srcIndex].nativeIdx;
361 u16Limit = u16Map[srcIndex+srcLength].nativeIdx;
362 u16Dest = u16Map[destIndex].nativeIdx;
363
364 gFailed = FALSE;
365 TestCopyMove(us, ut, FALSE,
366 nativeStart, nativeLimit, nativeDest,
367 u16Start, u16Limit, u16Dest);
368
369 TestCopyMove(us, ut, TRUE,
370 nativeStart, nativeLimit, nativeDest,
371 u16Start, u16Limit, u16Dest);
372
373 if (gFailed) {
374 return;
375 }
376 }
377
378 //
379 // Replace tests.
380 //
381 UnicodeString fullRepString("This is an arbitrary string that will be used as replacement text");
382 for (int32_t replStrLen=0; replStrLen<20; replStrLen++) {
383 UnicodeString repStr(fullRepString, 0, replStrLen);
384 TestReplace(us, ut,
385 nativeStart, nativeLimit,
386 u16Start, u16Limit,
387 repStr);
388 if (gFailed) {
389 return;
390 }
391 }
392
393 }
394 }
395
396}
397
398//
399// TestCopyMove run a single test case for utext_copy.
400// Test cases are created in TestCMR and dispatched here for execution.
401//
402void UTextTest::TestCopyMove(const UnicodeString &us, UText *ut, UBool move,
403 int32_t nativeStart, int32_t nativeLimit, int32_t nativeDest,
404 int32_t u16Start, int32_t u16Limit, int32_t u16Dest)
405{
406 UErrorCode status = U_ZERO_ERROR;
407 UText *targetUT = NULL;
408 gTestNum++;
409 gFailed = FALSE;
410
411 //
412 // clone the UText. The test will be run in the cloned copy
413 // so that we don't alter the original.
414 //
415 targetUT = utext_clone(NULL, ut, TRUE, FALSE, &status);
416 TEST_SUCCESS(status);
417 UnicodeString targetUS(us); // And copy the reference string.
418
419 // do the test operation first in the reference
420 targetUS.copy(u16Start, u16Limit, u16Dest);
421 if (move) {
422 // delete out the source range.
423 if (u16Limit < u16Dest) {
424 targetUS.removeBetween(u16Start, u16Limit);
425 } else {
426 int32_t amtCopied = u16Limit - u16Start;
427 targetUS.removeBetween(u16Start+amtCopied, u16Limit+amtCopied);
428 }
429 }
430
431 // Do the same operation in the UText under test
432 utext_copy(targetUT, nativeStart, nativeLimit, nativeDest, move, &status);
433 if (nativeDest > nativeStart && nativeDest < nativeLimit) {
434 TEST_ASSERT(status == U_INDEX_OUTOFBOUNDS_ERROR);
435 } else {
436 TEST_SUCCESS(status);
437
438 // Compare the results of the two parallel tests
439 int32_t usi = 0; // UnicodeString postion, utf-16 index.
440 int64_t uti = 0; // UText position, native index.
441 int32_t cpi; // char32 position (code point index)
442 UChar32 usc; // code point from Unicode String
443 UChar32 utc; // code point from UText
444 utext_setNativeIndex(targetUT, 0);
445 for (cpi=0; ; cpi++) {
446 usc = targetUS.char32At(usi);
447 utc = utext_next32(targetUT);
448 if (utc < 0) {
449 break;
450 }
451 TEST_ASSERT(uti == usi);
452 TEST_ASSERT(utc == usc);
453 usi = targetUS.moveIndex32(usi, 1);
454 uti = utext_getNativeIndex(targetUT);
455 if (gFailed) {
456 goto cleanupAndReturn;
457 }
458 }
459 int64_t expectedNativeLength = utext_nativeLength(ut);
460 if (move == FALSE) {
461 expectedNativeLength += nativeLimit - nativeStart;
462 }
463 uti = utext_getNativeIndex(targetUT);
464 TEST_ASSERT(uti == expectedNativeLength);
465 }
466
467cleanupAndReturn:
468 utext_close(targetUT);
469}
470
471
472//
473// TestReplace Test a single Replace operation.
474//
475void UTextTest::TestReplace(
476 const UnicodeString &us, // reference UnicodeString in which to do the replace
477 UText *ut, // UnicodeText object under test.
478 int32_t nativeStart, // Range to be replaced, in UText native units.
479 int32_t nativeLimit,
480 int32_t u16Start, // Range to be replaced, in UTF-16 units
481 int32_t u16Limit, // for use in the reference UnicodeString.
482 const UnicodeString &repStr) // The replacement string
483{
484 UErrorCode status = U_ZERO_ERROR;
485 UText *targetUT = NULL;
486 gTestNum++;
487 gFailed = FALSE;
488
489 //
490 // clone the target UText. The test will be run in the cloned copy
491 // so that we don't alter the original.
492 //
493 targetUT = utext_clone(NULL, ut, TRUE, FALSE, &status);
494 TEST_SUCCESS(status);
495 UnicodeString targetUS(us); // And copy the reference string.
496
497 //
498 // Do the replace operation in the Unicode String, to
499 // produce a reference result.
500 //
501 targetUS.replace(u16Start, u16Limit-u16Start, repStr);
502
503 //
504 // Do the replace on the UText under test
505 //
506 const UChar *rs = repStr.getBuffer();
507 int32_t rsLen = repStr.length();
508 int32_t actualDelta = utext_replace(targetUT, nativeStart, nativeLimit, rs, rsLen, &status);
509 int32_t expectedDelta = repStr.length() - (nativeLimit - nativeStart);
510 TEST_ASSERT(actualDelta == expectedDelta);
511
512 //
513 // Compare the results
514 //
515 int32_t usi = 0; // UnicodeString postion, utf-16 index.
516 int64_t uti = 0; // UText position, native index.
517 int32_t cpi; // char32 position (code point index)
518 UChar32 usc; // code point from Unicode String
519 UChar32 utc; // code point from UText
520 int64_t expectedNativeLength = 0;
521 utext_setNativeIndex(targetUT, 0);
522 for (cpi=0; ; cpi++) {
523 usc = targetUS.char32At(usi);
524 utc = utext_next32(targetUT);
525 if (utc < 0) {
526 break;
527 }
528 TEST_ASSERT(uti == usi);
529 TEST_ASSERT(utc == usc);
530 usi = targetUS.moveIndex32(usi, 1);
531 uti = utext_getNativeIndex(targetUT);
532 if (gFailed) {
533 goto cleanupAndReturn;
534 }
535 }
536 expectedNativeLength = utext_nativeLength(ut) + expectedDelta;
537 uti = utext_getNativeIndex(targetUT);
538 TEST_ASSERT(uti == expectedNativeLength);
539
540cleanupAndReturn:
541 utext_close(targetUT);
542}
543
544//
46f4442e 545// TestAccess Test the read only access functions on a UText, including cloning.
73c04bcf
A
546// The text is accessed in a variety of ways, and compared with
547// the reference UnicodeString.
548//
549void UTextTest::TestAccess(const UnicodeString &us, UText *ut, int cpCount, m *cpMap) {
46f4442e
A
550 // Run the standard tests on the caller-supplied UText.
551 TestAccessNoClone(us, ut, cpCount, cpMap);
552
553 // Re-run tests on a shallow clone.
554 utext_setNativeIndex(ut, 0);
555 UErrorCode status = U_ZERO_ERROR;
556 UText *shallowClone = utext_clone(NULL, ut, FALSE /*deep*/, FALSE /*readOnly*/, &status);
557 TEST_SUCCESS(status);
558 TestAccessNoClone(us, shallowClone, cpCount, cpMap);
559
560 //
561 // Rerun again on a deep clone.
562 // Note that text providers are not required to provide deep cloning,
563 // so unsupported errors are ignored.
564 //
565 status = U_ZERO_ERROR;
566 utext_setNativeIndex(shallowClone, 0);
567 UText *deepClone = utext_clone(NULL, shallowClone, TRUE, FALSE, &status);
568 utext_close(shallowClone);
569 if (status != U_UNSUPPORTED_ERROR) {
570 TEST_SUCCESS(status);
571 TestAccessNoClone(us, deepClone, cpCount, cpMap);
572 }
573 utext_close(deepClone);
574}
575
576
577//
578// TestAccessNoClone() Test the read only access functions on a UText.
579// The text is accessed in a variety of ways, and compared with
580// the reference UnicodeString.
581//
582void UTextTest::TestAccessNoClone(const UnicodeString &us, UText *ut, int cpCount, m *cpMap) {
73c04bcf
A
583 UErrorCode status = U_ZERO_ERROR;
584 gTestNum++;
585
586 //
587 // Check the length from the UText
588 //
589 int64_t expectedLen = cpMap[cpCount].nativeIdx;
590 int64_t utlen = utext_nativeLength(ut);
591 TEST_ASSERT(expectedLen == utlen);
592
593 //
594 // Iterate forwards, verify that we get the correct code points
595 // at the correct native offsets.
596 //
597 int i = 0;
598 int64_t index;
599 int64_t expectedIndex = 0;
600 int64_t foundIndex = 0;
601 UChar32 expectedC;
602 UChar32 foundC;
603 int64_t len;
604
605 for (i=0; i<cpCount; i++) {
606 expectedIndex = cpMap[i].nativeIdx;
607 foundIndex = utext_getNativeIndex(ut);
608 TEST_ASSERT(expectedIndex == foundIndex);
609 expectedC = cpMap[i].cp;
610 foundC = utext_next32(ut);
611 TEST_ASSERT(expectedC == foundC);
612 foundIndex = utext_getPreviousNativeIndex(ut);
613 TEST_ASSERT(expectedIndex == foundIndex);
614 if (gFailed) {
615 return;
616 }
617 }
618 foundC = utext_next32(ut);
619 TEST_ASSERT(foundC == U_SENTINEL);
620
621 // Repeat above, using macros
622 utext_setNativeIndex(ut, 0);
623 for (i=0; i<cpCount; i++) {
624 expectedIndex = cpMap[i].nativeIdx;
625 foundIndex = UTEXT_GETNATIVEINDEX(ut);
626 TEST_ASSERT(expectedIndex == foundIndex);
627 expectedC = cpMap[i].cp;
628 foundC = UTEXT_NEXT32(ut);
629 TEST_ASSERT(expectedC == foundC);
630 if (gFailed) {
631 return;
632 }
633 }
634 foundC = UTEXT_NEXT32(ut);
635 TEST_ASSERT(foundC == U_SENTINEL);
636
637 //
638 // Forward iteration (above) should have left index at the
639 // end of the input, which should == length().
640 //
641 len = utext_nativeLength(ut);
642 foundIndex = utext_getNativeIndex(ut);
643 TEST_ASSERT(len == foundIndex);
644
645 //
646 // Iterate backwards over entire test string
647 //
648 len = utext_getNativeIndex(ut);
649 utext_setNativeIndex(ut, len);
650 for (i=cpCount-1; i>=0; i--) {
651 expectedC = cpMap[i].cp;
652 expectedIndex = cpMap[i].nativeIdx;
653 int64_t prevIndex = utext_getPreviousNativeIndex(ut);
654 foundC = utext_previous32(ut);
655 foundIndex = utext_getNativeIndex(ut);
656 TEST_ASSERT(expectedIndex == foundIndex);
657 TEST_ASSERT(expectedC == foundC);
658 TEST_ASSERT(prevIndex == foundIndex);
659 if (gFailed) {
660 return;
661 }
662 }
663
664 //
665 // Backwards iteration, above, should have left our iterator
666 // position at zero, and continued backwards iterationshould fail.
667 //
668 foundIndex = utext_getNativeIndex(ut);
669 TEST_ASSERT(foundIndex == 0);
670 foundIndex = utext_getPreviousNativeIndex(ut);
671 TEST_ASSERT(foundIndex == 0);
672
673
674 foundC = utext_previous32(ut);
675 TEST_ASSERT(foundC == U_SENTINEL);
676 foundIndex = utext_getNativeIndex(ut);
677 TEST_ASSERT(foundIndex == 0);
678 foundIndex = utext_getPreviousNativeIndex(ut);
679 TEST_ASSERT(foundIndex == 0);
680
681
682 // And again, with the macros
683 utext_setNativeIndex(ut, len);
684 for (i=cpCount-1; i>=0; i--) {
685 expectedC = cpMap[i].cp;
686 expectedIndex = cpMap[i].nativeIdx;
687 foundC = UTEXT_PREVIOUS32(ut);
688 foundIndex = UTEXT_GETNATIVEINDEX(ut);
689 TEST_ASSERT(expectedIndex == foundIndex);
690 TEST_ASSERT(expectedC == foundC);
691 if (gFailed) {
692 return;
693 }
694 }
695
696 //
697 // Backwards iteration, above, should have left our iterator
698 // position at zero, and continued backwards iterationshould fail.
699 //
700 foundIndex = UTEXT_GETNATIVEINDEX(ut);
701 TEST_ASSERT(foundIndex == 0);
702
703 foundC = UTEXT_PREVIOUS32(ut);
704 TEST_ASSERT(foundC == U_SENTINEL);
705 foundIndex = UTEXT_GETNATIVEINDEX(ut);
706 TEST_ASSERT(foundIndex == 0);
707 if (gFailed) {
708 return;
709 }
710
711 //
712 // next32From(), prevous32From(), Iterate in a somewhat random order.
713 //
714 int cpIndex = 0;
715 for (i=0; i<cpCount; i++) {
716 cpIndex = (cpIndex + 9973) % cpCount;
717 index = cpMap[cpIndex].nativeIdx;
718 expectedC = cpMap[cpIndex].cp;
719 foundC = utext_next32From(ut, index);
720 TEST_ASSERT(expectedC == foundC);
721 if (gFailed) {
722 return;
723 }
724 }
725
726 cpIndex = 0;
727 for (i=0; i<cpCount; i++) {
728 cpIndex = (cpIndex + 9973) % cpCount;
729 index = cpMap[cpIndex+1].nativeIdx;
730 expectedC = cpMap[cpIndex].cp;
731 foundC = utext_previous32From(ut, index);
732 TEST_ASSERT(expectedC == foundC);
733 if (gFailed) {
734 return;
735 }
736 }
737
738
739 //
740 // moveIndex(int32_t delta);
741 //
742
743 // Walk through frontwards, incrementing by one
744 utext_setNativeIndex(ut, 0);
745 for (i=1; i<=cpCount; i++) {
746 utext_moveIndex32(ut, 1);
747 index = utext_getNativeIndex(ut);
748 expectedIndex = cpMap[i].nativeIdx;
749 TEST_ASSERT(expectedIndex == index);
750 index = UTEXT_GETNATIVEINDEX(ut);
751 TEST_ASSERT(expectedIndex == index);
752 }
753
754 // Walk through frontwards, incrementing by two
755 utext_setNativeIndex(ut, 0);
756 for (i=2; i<cpCount; i+=2) {
757 utext_moveIndex32(ut, 2);
758 index = utext_getNativeIndex(ut);
759 expectedIndex = cpMap[i].nativeIdx;
760 TEST_ASSERT(expectedIndex == index);
761 index = UTEXT_GETNATIVEINDEX(ut);
762 TEST_ASSERT(expectedIndex == index);
763 }
764
765 // walk through the string backwards, decrementing by one.
766 i = cpMap[cpCount].nativeIdx;
767 utext_setNativeIndex(ut, i);
768 for (i=cpCount; i>=0; i--) {
769 expectedIndex = cpMap[i].nativeIdx;
770 index = utext_getNativeIndex(ut);
771 TEST_ASSERT(expectedIndex == index);
772 index = UTEXT_GETNATIVEINDEX(ut);
773 TEST_ASSERT(expectedIndex == index);
774 utext_moveIndex32(ut, -1);
775 }
776
777
778 // walk through backwards, decrementing by three
779 i = cpMap[cpCount].nativeIdx;
780 utext_setNativeIndex(ut, i);
781 for (i=cpCount; i>=0; i-=3) {
782 expectedIndex = cpMap[i].nativeIdx;
783 index = utext_getNativeIndex(ut);
784 TEST_ASSERT(expectedIndex == index);
785 index = UTEXT_GETNATIVEINDEX(ut);
786 TEST_ASSERT(expectedIndex == index);
787 utext_moveIndex32(ut, -3);
788 }
789
790
791 //
792 // Extract
793 //
794 int bufSize = us.length() + 10;
795 UChar *buf = new UChar[bufSize];
796 status = U_ZERO_ERROR;
797 expectedLen = us.length();
798 len = utext_extract(ut, 0, utlen, buf, bufSize, &status);
799 TEST_SUCCESS(status);
800 TEST_ASSERT(len == expectedLen);
801 int compareResult = us.compare(buf, -1);
802 TEST_ASSERT(compareResult == 0);
803
804 status = U_ZERO_ERROR;
805 len = utext_extract(ut, 0, utlen, NULL, 0, &status);
806 if (utlen == 0) {
807 TEST_ASSERT(status == U_STRING_NOT_TERMINATED_WARNING);
808 } else {
809 TEST_ASSERT(status == U_BUFFER_OVERFLOW_ERROR);
810 }
811 TEST_ASSERT(len == expectedLen);
812
813 status = U_ZERO_ERROR;
814 u_memset(buf, 0x5555, bufSize);
815 len = utext_extract(ut, 0, utlen, buf, 1, &status);
816 if (us.length() == 0) {
817 TEST_SUCCESS(status);
818 TEST_ASSERT(buf[0] == 0);
819 } else {
820 // Buf len == 1, extracting a single 16 bit value.
821 // If the data char is supplementary, it doesn't matter whether the buffer remains unchanged,
822 // or whether the lead surrogate of the pair is extracted.
823 // It's a buffer overflow error in either case.
824 TEST_ASSERT(buf[0] == us.charAt(0) ||
729e4ab9 825 (buf[0] == 0x5555 && U_IS_SUPPLEMENTARY(us.char32At(0))));
73c04bcf
A
826 TEST_ASSERT(buf[1] == 0x5555);
827 if (us.length() == 1) {
828 TEST_ASSERT(status == U_STRING_NOT_TERMINATED_WARNING);
829 } else {
830 TEST_ASSERT(status == U_BUFFER_OVERFLOW_ERROR);
831 }
832 }
833
834 delete []buf;
835}
836
73c04bcf
A
837//
838// ErrorTest() Check various error and edge cases.
839//
840void UTextTest::ErrorTest()
841{
842 // Close of an unitialized UText. Shouldn't blow up.
843 {
844 UText ut;
845 memset(&ut, 0, sizeof(UText));
846 utext_close(&ut);
847 utext_close(NULL);
848 }
849
850 // Double-close of a UText. Shouldn't blow up. UText should still be usable.
851 {
852 UErrorCode status = U_ZERO_ERROR;
853 UText ut = UTEXT_INITIALIZER;
854 UnicodeString s("Hello, World");
855 UText *ut2 = utext_openUnicodeString(&ut, &s, &status);
856 TEST_SUCCESS(status);
857 TEST_ASSERT(ut2 == &ut);
858
859 UText *ut3 = utext_close(&ut);
860 TEST_ASSERT(ut3 == &ut);
861
862 UText *ut4 = utext_close(&ut);
863 TEST_ASSERT(ut4 == &ut);
864
865 utext_openUnicodeString(&ut, &s, &status);
866 TEST_SUCCESS(status);
867 utext_close(&ut);
868 }
869
870 // Re-use of a UText, chaining through each of the types of UText
871 // (If it doesn't blow up, and doesn't leak, it's probably working fine)
872 {
873 UErrorCode status = U_ZERO_ERROR;
874 UText ut = UTEXT_INITIALIZER;
875 UText *utp;
876 UnicodeString s1("Hello, World");
877 UChar s2[] = {(UChar)0x41, (UChar)0x42, (UChar)0};
878 const char *s3 = "\x66\x67\x68";
879
880 utp = utext_openUnicodeString(&ut, &s1, &status);
881 TEST_SUCCESS(status);
882 TEST_ASSERT(utp == &ut);
883
884 utp = utext_openConstUnicodeString(&ut, &s1, &status);
885 TEST_SUCCESS(status);
886 TEST_ASSERT(utp == &ut);
887
888 utp = utext_openUTF8(&ut, s3, -1, &status);
889 TEST_SUCCESS(status);
890 TEST_ASSERT(utp == &ut);
891
892 utp = utext_openUChars(&ut, s2, -1, &status);
893 TEST_SUCCESS(status);
894 TEST_ASSERT(utp == &ut);
895
896 utp = utext_close(&ut);
897 TEST_ASSERT(utp == &ut);
898
899 utp = utext_openUnicodeString(&ut, &s1, &status);
900 TEST_SUCCESS(status);
901 TEST_ASSERT(utp == &ut);
902 }
903
729e4ab9
A
904 // Invalid parameters on open
905 //
906 {
907 UErrorCode status = U_ZERO_ERROR;
908 UText ut = UTEXT_INITIALIZER;
909
910 utext_openUChars(&ut, NULL, 5, &status);
911 TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR);
912
913 status = U_ZERO_ERROR;
914 utext_openUChars(&ut, NULL, -1, &status);
915 TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR);
916
917 status = U_ZERO_ERROR;
918 utext_openUTF8(&ut, NULL, 4, &status);
919 TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR);
920
921 status = U_ZERO_ERROR;
922 utext_openUTF8(&ut, NULL, -1, &status);
923 TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR);
924 }
925
73c04bcf
A
926 //
927 // UTF-8 with malformed sequences.
928 // These should come through as the Unicode replacement char, \ufffd
929 //
930 {
931 UErrorCode status = U_ZERO_ERROR;
932 UText *ut = NULL;
933 const char *badUTF8 = "\x41\x81\x42\xf0\x81\x81\x43";
934 UChar32 c;
935
936 ut = utext_openUTF8(NULL, badUTF8, -1, &status);
937 TEST_SUCCESS(status);
938 c = utext_char32At(ut, 1);
939 TEST_ASSERT(c == 0xfffd);
940 c = utext_char32At(ut, 3);
941 TEST_ASSERT(c == 0xfffd);
942 c = utext_char32At(ut, 5);
943 TEST_ASSERT(c == 0xfffd);
944 c = utext_char32At(ut, 6);
945 TEST_ASSERT(c == 0x43);
946
947 UChar buf[10];
948 int n = utext_extract(ut, 0, 9, buf, 10, &status);
949 TEST_SUCCESS(status);
950 TEST_ASSERT(n==5);
951 TEST_ASSERT(buf[1] == 0xfffd);
952 TEST_ASSERT(buf[3] == 0xfffd);
953 TEST_ASSERT(buf[2] == 0x42);
954 utext_close(ut);
955 }
956
957
958 //
959 // isLengthExpensive - does it make the exptected transitions after
960 // getting the length of a nul terminated string?
961 //
962 {
963 UErrorCode status = U_ZERO_ERROR;
964 UnicodeString sa("Hello, this is a string");
965 UBool isExpensive;
966
967 UChar sb[100];
968 memset(sb, 0x20, sizeof(sb));
969 sb[99] = 0;
970
971 UText *uta = utext_openUnicodeString(NULL, &sa, &status);
972 TEST_SUCCESS(status);
973 isExpensive = utext_isLengthExpensive(uta);
974 TEST_ASSERT(isExpensive == FALSE);
975 utext_close(uta);
976
977 UText *utb = utext_openUChars(NULL, sb, -1, &status);
978 TEST_SUCCESS(status);
979 isExpensive = utext_isLengthExpensive(utb);
980 TEST_ASSERT(isExpensive == TRUE);
981 int64_t len = utext_nativeLength(utb);
982 TEST_ASSERT(len == 99);
983 isExpensive = utext_isLengthExpensive(utb);
984 TEST_ASSERT(isExpensive == FALSE);
985 utext_close(utb);
986 }
987
988 //
989 // Index to positions not on code point boundaries.
990 //
991 {
992 const char *u8str = "\xc8\x81\xe1\x82\x83\xf1\x84\x85\x86";
993 int32_t startMap[] = { 0, 0, 2, 2, 2, 5, 5, 5, 5, 9, 9};
994 int32_t nextMap[] = { 2, 2, 5, 5, 5, 9, 9, 9, 9, 9, 9};
995 int32_t prevMap[] = { 0, 0, 0, 0, 0, 2, 2, 2, 2, 5, 5};
996 UChar32 c32Map[] = {0x201, 0x201, 0x1083, 0x1083, 0x1083, 0x044146, 0x044146, 0x044146, 0x044146, -1, -1};
997 UChar32 pr32Map[] = { -1, -1, 0x201, 0x201, 0x201, 0x1083, 0x1083, 0x1083, 0x1083, 0x044146, 0x044146};
998
999 // extractLen is the size, in UChars, of what will be extracted between index and index+1.
1000 // is zero when both index positions lie within the same code point.
1001 int32_t exLen[] = { 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0};
1002
1003
1004 UErrorCode status = U_ZERO_ERROR;
1005 UText *ut = utext_openUTF8(NULL, u8str, -1, &status);
1006 TEST_SUCCESS(status);
1007
1008 // Check setIndex
1009 int32_t i;
1010 int32_t startMapLimit = sizeof(startMap) / sizeof(int32_t);
1011 for (i=0; i<startMapLimit; i++) {
1012 utext_setNativeIndex(ut, i);
1013 int64_t cpIndex = utext_getNativeIndex(ut);
1014 TEST_ASSERT(cpIndex == startMap[i]);
1015 cpIndex = UTEXT_GETNATIVEINDEX(ut);
1016 TEST_ASSERT(cpIndex == startMap[i]);
1017 }
1018
1019 // Check char32At
1020 for (i=0; i<startMapLimit; i++) {
1021 UChar32 c32 = utext_char32At(ut, i);
1022 TEST_ASSERT(c32 == c32Map[i]);
1023 int64_t cpIndex = utext_getNativeIndex(ut);
1024 TEST_ASSERT(cpIndex == startMap[i]);
1025 }
1026
1027 // Check utext_next32From
1028 for (i=0; i<startMapLimit; i++) {
1029 UChar32 c32 = utext_next32From(ut, i);
1030 TEST_ASSERT(c32 == c32Map[i]);
1031 int64_t cpIndex = utext_getNativeIndex(ut);
1032 TEST_ASSERT(cpIndex == nextMap[i]);
1033 }
1034
1035 // check utext_previous32From
1036 for (i=0; i<startMapLimit; i++) {
1037 gTestNum++;
1038 UChar32 c32 = utext_previous32From(ut, i);
1039 TEST_ASSERT(c32 == pr32Map[i]);
1040 int64_t cpIndex = utext_getNativeIndex(ut);
1041 TEST_ASSERT(cpIndex == prevMap[i]);
1042 }
1043
1044 // check Extract
1045 // Extract from i to i+1, which may be zero or one code points,
1046 // depending on whether the indices straddle a cp boundary.
1047 for (i=0; i<startMapLimit; i++) {
1048 UChar buf[3];
1049 status = U_ZERO_ERROR;
1050 int32_t extractedLen = utext_extract(ut, i, i+1, buf, 3, &status);
1051 TEST_SUCCESS(status);
1052 TEST_ASSERT(extractedLen == exLen[i]);
1053 if (extractedLen > 0) {
1054 UChar32 c32;
46f4442e
A
1055 /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */
1056 U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32);
73c04bcf
A
1057 TEST_ASSERT(c32 == c32Map[i]);
1058 }
1059 }
1060
1061 utext_close(ut);
1062 }
1063
1064
1065 { // Similar test, with utf16 instead of utf8
1066 // TODO: merge the common parts of these tests.
1067
46f4442e 1068 UnicodeString u16str("\\u1000\\U00011000\\u2000\\U00022000", -1, US_INV);
73c04bcf
A
1069 int32_t startMap[] ={ 0, 1, 1, 3, 4, 4, 6, 6};
1070 int32_t nextMap[] = { 1, 3, 3, 4, 6, 6, 6, 6};
1071 int32_t prevMap[] = { 0, 0, 0, 1, 3, 3, 4, 4};
1072 UChar32 c32Map[] = {0x1000, 0x11000, 0x11000, 0x2000, 0x22000, 0x22000, -1, -1};
1073 UChar32 pr32Map[] = { -1, 0x1000, 0x1000, 0x11000, 0x2000, 0x2000, 0x22000, 0x22000};
1074 int32_t exLen[] = { 1, 0, 2, 1, 0, 2, 0, 0,};
1075
1076 u16str = u16str.unescape();
1077 UErrorCode status = U_ZERO_ERROR;
1078 UText *ut = utext_openUnicodeString(NULL, &u16str, &status);
1079 TEST_SUCCESS(status);
1080
1081 int32_t startMapLimit = sizeof(startMap) / sizeof(int32_t);
1082 int i;
1083 for (i=0; i<startMapLimit; i++) {
1084 utext_setNativeIndex(ut, i);
1085 int64_t cpIndex = utext_getNativeIndex(ut);
1086 TEST_ASSERT(cpIndex == startMap[i]);
1087 }
1088
1089 // Check char32At
1090 for (i=0; i<startMapLimit; i++) {
1091 UChar32 c32 = utext_char32At(ut, i);
1092 TEST_ASSERT(c32 == c32Map[i]);
1093 int64_t cpIndex = utext_getNativeIndex(ut);
1094 TEST_ASSERT(cpIndex == startMap[i]);
1095 }
1096
1097 // Check utext_next32From
1098 for (i=0; i<startMapLimit; i++) {
1099 UChar32 c32 = utext_next32From(ut, i);
1100 TEST_ASSERT(c32 == c32Map[i]);
1101 int64_t cpIndex = utext_getNativeIndex(ut);
1102 TEST_ASSERT(cpIndex == nextMap[i]);
1103 }
1104
1105 // check utext_previous32From
1106 for (i=0; i<startMapLimit; i++) {
1107 UChar32 c32 = utext_previous32From(ut, i);
1108 TEST_ASSERT(c32 == pr32Map[i]);
1109 int64_t cpIndex = utext_getNativeIndex(ut);
1110 TEST_ASSERT(cpIndex == prevMap[i]);
1111 }
1112
1113 // check Extract
1114 // Extract from i to i+1, which may be zero or one code points,
1115 // depending on whether the indices straddle a cp boundary.
1116 for (i=0; i<startMapLimit; i++) {
1117 UChar buf[3];
1118 status = U_ZERO_ERROR;
1119 int32_t extractedLen = utext_extract(ut, i, i+1, buf, 3, &status);
1120 TEST_SUCCESS(status);
1121 TEST_ASSERT(extractedLen == exLen[i]);
1122 if (extractedLen > 0) {
1123 UChar32 c32;
46f4442e
A
1124 /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */
1125 U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32);
73c04bcf
A
1126 TEST_ASSERT(c32 == c32Map[i]);
1127 }
1128 }
1129
1130 utext_close(ut);
1131 }
1132
1133 { // Similar test, with UText over Replaceable
1134 // TODO: merge the common parts of these tests.
1135
46f4442e 1136 UnicodeString u16str("\\u1000\\U00011000\\u2000\\U00022000", -1, US_INV);
73c04bcf
A
1137 int32_t startMap[] ={ 0, 1, 1, 3, 4, 4, 6, 6};
1138 int32_t nextMap[] = { 1, 3, 3, 4, 6, 6, 6, 6};
1139 int32_t prevMap[] = { 0, 0, 0, 1, 3, 3, 4, 4};
1140 UChar32 c32Map[] = {0x1000, 0x11000, 0x11000, 0x2000, 0x22000, 0x22000, -1, -1};
1141 UChar32 pr32Map[] = { -1, 0x1000, 0x1000, 0x11000, 0x2000, 0x2000, 0x22000, 0x22000};
1142 int32_t exLen[] = { 1, 0, 2, 1, 0, 2, 0, 0,};
1143
1144 u16str = u16str.unescape();
1145 UErrorCode status = U_ZERO_ERROR;
1146 UText *ut = utext_openReplaceable(NULL, &u16str, &status);
1147 TEST_SUCCESS(status);
1148
1149 int32_t startMapLimit = sizeof(startMap) / sizeof(int32_t);
1150 int i;
1151 for (i=0; i<startMapLimit; i++) {
1152 utext_setNativeIndex(ut, i);
1153 int64_t cpIndex = utext_getNativeIndex(ut);
1154 TEST_ASSERT(cpIndex == startMap[i]);
1155 }
1156
1157 // Check char32At
1158 for (i=0; i<startMapLimit; i++) {
1159 UChar32 c32 = utext_char32At(ut, i);
1160 TEST_ASSERT(c32 == c32Map[i]);
1161 int64_t cpIndex = utext_getNativeIndex(ut);
1162 TEST_ASSERT(cpIndex == startMap[i]);
1163 }
1164
1165 // Check utext_next32From
1166 for (i=0; i<startMapLimit; i++) {
1167 UChar32 c32 = utext_next32From(ut, i);
1168 TEST_ASSERT(c32 == c32Map[i]);
1169 int64_t cpIndex = utext_getNativeIndex(ut);
1170 TEST_ASSERT(cpIndex == nextMap[i]);
1171 }
1172
1173 // check utext_previous32From
1174 for (i=0; i<startMapLimit; i++) {
1175 UChar32 c32 = utext_previous32From(ut, i);
1176 TEST_ASSERT(c32 == pr32Map[i]);
1177 int64_t cpIndex = utext_getNativeIndex(ut);
1178 TEST_ASSERT(cpIndex == prevMap[i]);
1179 }
1180
1181 // check Extract
1182 // Extract from i to i+1, which may be zero or one code points,
1183 // depending on whether the indices straddle a cp boundary.
1184 for (i=0; i<startMapLimit; i++) {
1185 UChar buf[3];
1186 status = U_ZERO_ERROR;
1187 int32_t extractedLen = utext_extract(ut, i, i+1, buf, 3, &status);
1188 TEST_SUCCESS(status);
1189 TEST_ASSERT(extractedLen == exLen[i]);
1190 if (extractedLen > 0) {
1191 UChar32 c32;
46f4442e
A
1192 /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */
1193 U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32);
73c04bcf
A
1194 TEST_ASSERT(c32 == c32Map[i]);
1195 }
1196 }
1197
1198 utext_close(ut);
1199 }
1200}
1201
1202
1203void UTextTest::FreezeTest() {
1204 // Check isWritable() and freeze() behavior.
1205 //
1206
1207 UnicodeString ustr("Hello, World.");
1208 const char u8str[] = {char(0x31), (char)0x32, (char)0x33, 0};
1209 const UChar u16str[] = {(UChar)0x31, (UChar)0x32, (UChar)0x44, 0};
1210
1211 UErrorCode status = U_ZERO_ERROR;
1212 UText *ut = NULL;
1213 UText *ut2 = NULL;
1214
1215 ut = utext_openUTF8(ut, u8str, -1, &status);
1216 TEST_SUCCESS(status);
1217 UBool writable = utext_isWritable(ut);
1218 TEST_ASSERT(writable == FALSE);
1219 utext_copy(ut, 1, 2, 0, TRUE, &status);
1220 TEST_ASSERT(status == U_NO_WRITE_PERMISSION);
1221
1222 status = U_ZERO_ERROR;
1223 ut = utext_openUChars(ut, u16str, -1, &status);
1224 TEST_SUCCESS(status);
1225 writable = utext_isWritable(ut);
1226 TEST_ASSERT(writable == FALSE);
1227 utext_copy(ut, 1, 2, 0, TRUE, &status);
1228 TEST_ASSERT(status == U_NO_WRITE_PERMISSION);
1229
1230 status = U_ZERO_ERROR;
1231 ut = utext_openUnicodeString(ut, &ustr, &status);
1232 TEST_SUCCESS(status);
1233 writable = utext_isWritable(ut);
1234 TEST_ASSERT(writable == TRUE);
1235 utext_freeze(ut);
1236 writable = utext_isWritable(ut);
1237 TEST_ASSERT(writable == FALSE);
1238 utext_copy(ut, 1, 2, 0, TRUE, &status);
1239 TEST_ASSERT(status == U_NO_WRITE_PERMISSION);
1240
1241 status = U_ZERO_ERROR;
1242 ut = utext_openUnicodeString(ut, &ustr, &status);
1243 TEST_SUCCESS(status);
1244 ut2 = utext_clone(ut2, ut, FALSE, FALSE, &status); // clone with readonly = false
1245 TEST_SUCCESS(status);
1246 writable = utext_isWritable(ut2);
1247 TEST_ASSERT(writable == TRUE);
1248 ut2 = utext_clone(ut2, ut, FALSE, TRUE, &status); // clone with readonly = true
1249 TEST_SUCCESS(status);
1250 writable = utext_isWritable(ut2);
1251 TEST_ASSERT(writable == FALSE);
1252 utext_copy(ut2, 1, 2, 0, TRUE, &status);
1253 TEST_ASSERT(status == U_NO_WRITE_PERMISSION);
1254
1255 status = U_ZERO_ERROR;
1256 ut = utext_openConstUnicodeString(ut, (const UnicodeString *)&ustr, &status);
1257 TEST_SUCCESS(status);
1258 writable = utext_isWritable(ut);
1259 TEST_ASSERT(writable == FALSE);
1260 utext_copy(ut, 1, 2, 0, TRUE, &status);
1261 TEST_ASSERT(status == U_NO_WRITE_PERMISSION);
1262
1263 // Deep Clone of a frozen UText should re-enable writing in the copy.
1264 status = U_ZERO_ERROR;
1265 ut = utext_openUnicodeString(ut, &ustr, &status);
1266 TEST_SUCCESS(status);
1267 utext_freeze(ut);
1268 ut2 = utext_clone(ut2, ut, TRUE, FALSE, &status); // deep clone
1269 TEST_SUCCESS(status);
1270 writable = utext_isWritable(ut2);
1271 TEST_ASSERT(writable == TRUE);
1272
1273
1274 // Deep clone of a frozen UText, where the base type is intrinsically non-writable,
1275 // should NOT enable writing in the copy.
1276 status = U_ZERO_ERROR;
1277 ut = utext_openUChars(ut, u16str, -1, &status);
1278 TEST_SUCCESS(status);
1279 utext_freeze(ut);
1280 ut2 = utext_clone(ut2, ut, TRUE, FALSE, &status); // deep clone
1281 TEST_SUCCESS(status);
1282 writable = utext_isWritable(ut2);
1283 TEST_ASSERT(writable == FALSE);
1284
1285 // cleanup
1286 utext_close(ut);
1287 utext_close(ut2);
1288}
1289
1290
1291//
1292// Fragmented UText
1293// A UText type that works with a chunk size of 1.
1294// Intended to test for edge cases.
1295// Input comes from a UnicodeString.
1296//
1297// ut.b the character. Put into both halves.
1298//
1299
1300U_CDECL_BEGIN
1301static UBool U_CALLCONV
1302fragTextAccess(UText *ut, int64_t index, UBool forward) {
1303 const UnicodeString *us = (const UnicodeString *)ut->context;
1304 UChar c;
1305 int32_t length = us->length();
1306 if (forward && index>=0 && index<length) {
1307 c = us->charAt((int32_t)index);
1308 ut->b = c | c<<16;
1309 ut->chunkOffset = 0;
1310 ut->chunkLength = 1;
1311 ut->chunkNativeStart = index;
1312 ut->chunkNativeLimit = index+1;
1313 return true;
1314 }
1315 if (!forward && index>0 && index <=length) {
1316 c = us->charAt((int32_t)index-1);
1317 ut->b = c | c<<16;
1318 ut->chunkOffset = 1;
1319 ut->chunkLength = 1;
1320 ut->chunkNativeStart = index-1;
1321 ut->chunkNativeLimit = index;
1322 return true;
1323 }
1324 ut->b = 0;
1325 ut->chunkOffset = 0;
1326 ut->chunkLength = 0;
1327 if (index <= 0) {
1328 ut->chunkNativeStart = 0;
1329 ut->chunkNativeLimit = 0;
1330 } else {
1331 ut->chunkNativeStart = length;
1332 ut->chunkNativeLimit = length;
1333 }
1334 return false;
1335}
73c04bcf
A
1336
1337// Function table to be used with this fragmented text provider.
1338// Initialized in the open function.
46f4442e
A
1339static UTextFuncs fragmentFuncs;
1340
1341// Clone function for fragmented text provider.
1342// Didn't really want to provide this, but it's easier to provide it than to keep it
1343// out of the tests.
1344//
1345UText *
1346cloneFragmentedUnicodeString(UText *dest, const UText *src, UBool deep, UErrorCode *status) {
1347 if (U_FAILURE(*status)) {
1348 return NULL;
1349 }
1350 if (deep) {
1351 *status = U_UNSUPPORTED_ERROR;
1352 return NULL;
1353 }
1354 dest = utext_openUnicodeString(dest, (UnicodeString *)src->context, status);
1355 utext_setNativeIndex(dest, utext_getNativeIndex(src));
1356 return dest;
1357}
1358
1359U_CDECL_END
73c04bcf
A
1360
1361// Open function for the fragmented text provider.
1362UText *
1363openFragmentedUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status) {
1364 ut = utext_openUnicodeString(ut, s, status);
1365 if (U_FAILURE(*status)) {
1366 return ut;
1367 }
1368
1369 // Copy of the function table from the stock UnicodeString UText,
1370 // and replace the entry for the access function.
1371 memcpy(&fragmentFuncs, ut->pFuncs, sizeof(fragmentFuncs));
1372 fragmentFuncs.access = fragTextAccess;
46f4442e 1373 fragmentFuncs.clone = cloneFragmentedUnicodeString;
73c04bcf
A
1374 ut->pFuncs = &fragmentFuncs;
1375
1376 ut->chunkContents = (UChar *)&ut->b;
1377 ut->pFuncs->access(ut, 0, TRUE);
1378 return ut;
1379}
1380
46f4442e
A
1381// Regression test for Ticket 5560
1382// Clone fails to update chunkContentPointer in the cloned copy.
1383// This is only an issue for UText types that work in a local buffer,
1384// (UTF-8 wrapper, for example)
1385//
1386// The test:
1387// 1. Create an inital UText
1388// 2. Deep clone it. Contents should match original.
1389// 3. Reset original to something different.
1390// 4. Check that clone contents did not change.
1391//
1392void UTextTest::Ticket5560() {
1393 /* The following two strings are in UTF-8 even on EBCDIC platforms. */
1394 static const char s1[] = {0x41,0x42,0x43,0x44,0x45,0x46,0}; /* "ABCDEF" */
1395 static const char s2[] = {0x31,0x32,0x33,0x34,0x35,0x36,0}; /* "123456" */
1396 UErrorCode status = U_ZERO_ERROR;
1397
1398 UText ut1 = UTEXT_INITIALIZER;
1399 UText ut2 = UTEXT_INITIALIZER;
1400
1401 utext_openUTF8(&ut1, s1, -1, &status);
1402 UChar c = utext_next32(&ut1);
1403 TEST_ASSERT(c == 0x41); // c == 'A'
1404
1405 utext_clone(&ut2, &ut1, TRUE, FALSE, &status);
1406 TEST_SUCCESS(status);
1407 c = utext_next32(&ut2);
1408 TEST_ASSERT(c == 0x42); // c == 'B'
1409 c = utext_next32(&ut1);
1410 TEST_ASSERT(c == 0x42); // c == 'B'
1411
1412 utext_openUTF8(&ut1, s2, -1, &status);
1413 c = utext_next32(&ut1);
1414 TEST_ASSERT(c == 0x31); // c == '1'
1415 c = utext_next32(&ut2);
1416 TEST_ASSERT(c == 0x43); // c == 'C'
1417
1418 utext_close(&ut1);
1419 utext_close(&ut2);
1420}
1421
1422
1423// Test for Ticket 6847
1424//
1425void UTextTest::Ticket6847() {
1426 const int STRLEN = 90;
1427 UChar s[STRLEN+1];
1428 u_memset(s, 0x41, STRLEN);
1429 s[STRLEN] = 0;
1430
1431 UErrorCode status = U_ZERO_ERROR;
1432 UText *ut = utext_openUChars(NULL, s, -1, &status);
1433
1434 utext_setNativeIndex(ut, 0);
1435 int32_t count = 0;
1436 UChar32 c = 0;
4388f060 1437 int64_t nativeIndex = UTEXT_GETNATIVEINDEX(ut);
46f4442e
A
1438 TEST_ASSERT(nativeIndex == 0);
1439 while ((c = utext_next32(ut)) != U_SENTINEL) {
1440 TEST_ASSERT(c == 0x41);
1441 TEST_ASSERT(count < STRLEN);
1442 if (count >= STRLEN) {
1443 break;
1444 }
1445 count++;
1446 nativeIndex = UTEXT_GETNATIVEINDEX(ut);
1447 TEST_ASSERT(nativeIndex == count);
1448 }
1449 TEST_ASSERT(count == STRLEN);
1450 nativeIndex = UTEXT_GETNATIVEINDEX(ut);
1451 TEST_ASSERT(nativeIndex == STRLEN);
1452 utext_close(ut);
1453}
73c04bcf 1454