]>
Commit | Line | Data |
---|---|---|
b75a7d8f A |
1 | /* |
2 | ****************************************************************************** | |
4388f060 | 3 | * Copyright (C) 1997-2012, International Business Machines |
b75a7d8f A |
4 | * Corporation and others. All Rights Reserved. |
5 | ****************************************************************************** | |
6 | * file name: nfrs.cpp | |
7 | * encoding: US-ASCII | |
8 | * tab size: 8 (not used) | |
9 | * indentation:4 | |
10 | * | |
11 | * Modification history | |
12 | * Date Name Comments | |
13 | * 10/11/2001 Doug Ported from ICU4J | |
14 | */ | |
15 | ||
16 | #include "nfrs.h" | |
17 | ||
18 | #if U_HAVE_RBNF | |
19 | ||
20 | #include "unicode/uchar.h" | |
21 | #include "nfrule.h" | |
22 | #include "nfrlist.h" | |
4388f060 | 23 | #include "patternprops.h" |
b75a7d8f A |
24 | |
25 | #ifdef RBNF_DEBUG | |
26 | #include "cmemory.h" | |
27 | #endif | |
28 | ||
b75a7d8f A |
29 | U_NAMESPACE_BEGIN |
30 | ||
31 | #if 0 | |
32 | // euclid's algorithm works with doubles | |
33 | // note, doubles only get us up to one quadrillion or so, which | |
34 | // isn't as much range as we get with longs. We probably still | |
35 | // want either 64-bit math, or BigInteger. | |
36 | ||
37 | static int64_t | |
38 | util_lcm(int64_t x, int64_t y) | |
39 | { | |
40 | x.abs(); | |
41 | y.abs(); | |
42 | ||
43 | if (x == 0 || y == 0) { | |
44 | return 0; | |
45 | } else { | |
46 | do { | |
47 | if (x < y) { | |
48 | int64_t t = x; x = y; y = t; | |
49 | } | |
50 | x -= y * (x/y); | |
51 | } while (x != 0); | |
52 | ||
53 | return y; | |
54 | } | |
55 | } | |
56 | ||
57 | #else | |
58 | /** | |
59 | * Calculates the least common multiple of x and y. | |
60 | */ | |
61 | static int64_t | |
62 | util_lcm(int64_t x, int64_t y) | |
63 | { | |
64 | // binary gcd algorithm from Knuth, "The Art of Computer Programming," | |
65 | // vol. 2, 1st ed., pp. 298-299 | |
66 | int64_t x1 = x; | |
67 | int64_t y1 = y; | |
68 | ||
69 | int p2 = 0; | |
70 | while ((x1 & 1) == 0 && (y1 & 1) == 0) { | |
71 | ++p2; | |
72 | x1 >>= 1; | |
73 | y1 >>= 1; | |
74 | } | |
75 | ||
76 | int64_t t; | |
77 | if ((x1 & 1) == 1) { | |
78 | t = -y1; | |
79 | } else { | |
80 | t = x1; | |
81 | } | |
82 | ||
83 | while (t != 0) { | |
84 | while ((t & 1) == 0) { | |
85 | t = t >> 1; | |
86 | } | |
87 | if (t > 0) { | |
88 | x1 = t; | |
89 | } else { | |
90 | y1 = -t; | |
91 | } | |
92 | t = x1 - y1; | |
93 | } | |
94 | ||
95 | int64_t gcd = x1 << p2; | |
96 | ||
97 | // x * y == gcd(x, y) * lcm(x, y) | |
98 | return x / gcd * y; | |
99 | } | |
100 | #endif | |
101 | ||
102 | static const UChar gPercent = 0x0025; | |
103 | static const UChar gColon = 0x003a; | |
104 | static const UChar gSemicolon = 0x003b; | |
105 | static const UChar gLineFeed = 0x000a; | |
106 | ||
107 | static const UChar gFourSpaces[] = | |
108 | { | |
109 | 0x20, 0x20, 0x20, 0x20, 0 | |
110 | }; /* " " */ | |
111 | static const UChar gPercentPercent[] = | |
112 | { | |
113 | 0x25, 0x25, 0 | |
114 | }; /* "%%" */ | |
115 | ||
4388f060 A |
116 | static const UChar gNoparse[] = |
117 | { | |
118 | 0x40, 0x6E, 0x6F, 0x70, 0x61, 0x72, 0x73, 0x65, 0 | |
119 | }; /* "@noparse" */ | |
120 | ||
b75a7d8f A |
121 | NFRuleSet::NFRuleSet(UnicodeString* descriptions, int32_t index, UErrorCode& status) |
122 | : name() | |
123 | , rules(0) | |
124 | , negativeNumberRule(NULL) | |
125 | , fIsFractionRuleSet(FALSE) | |
126 | , fIsPublic(FALSE) | |
4388f060 | 127 | , fIsParseable(TRUE) |
374ca955 | 128 | , fRecursionCount(0) |
b75a7d8f A |
129 | { |
130 | for (int i = 0; i < 3; ++i) { | |
131 | fractionRules[i] = NULL; | |
132 | } | |
133 | ||
134 | if (U_FAILURE(status)) { | |
135 | return; | |
136 | } | |
137 | ||
138 | UnicodeString& description = descriptions[index]; // !!! make sure index is valid | |
139 | ||
374ca955 A |
140 | if (description.length() == 0) { |
141 | // throw new IllegalArgumentException("Empty rule set description"); | |
142 | status = U_PARSE_ERROR; | |
73c04bcf | 143 | return; |
374ca955 A |
144 | } |
145 | ||
b75a7d8f A |
146 | // if the description begins with a rule set name (the rule set |
147 | // name can be omitted in formatter descriptions that consist | |
148 | // of only one rule set), copy it out into our "name" member | |
149 | // and delete it from the description | |
150 | if (description.charAt(0) == gPercent) { | |
151 | int32_t pos = description.indexOf(gColon); | |
152 | if (pos == -1) { | |
153 | // throw new IllegalArgumentException("Rule set name doesn't end in colon"); | |
154 | status = U_PARSE_ERROR; | |
155 | } else { | |
156 | name.setTo(description, 0, pos); | |
4388f060 | 157 | while (pos < description.length() && PatternProps::isWhiteSpace(description.charAt(++pos))) { |
b75a7d8f A |
158 | } |
159 | description.remove(0, pos); | |
160 | } | |
161 | } else { | |
374ca955 | 162 | name.setTo(UNICODE_STRING_SIMPLE("%default")); |
b75a7d8f A |
163 | } |
164 | ||
165 | if (description.length() == 0) { | |
166 | // throw new IllegalArgumentException("Empty rule set description"); | |
167 | status = U_PARSE_ERROR; | |
168 | } | |
169 | ||
4388f060 A |
170 | fIsPublic = name.indexOf(gPercentPercent, 2, 0) != 0; |
171 | ||
172 | if ( name.endsWith(gNoparse,8) ) { | |
173 | fIsParseable = FALSE; | |
174 | name.truncate(name.length()-8); // remove the @noparse from the name | |
175 | } | |
b75a7d8f A |
176 | |
177 | // all of the other members of NFRuleSet are initialized | |
178 | // by parseRules() | |
179 | } | |
180 | ||
181 | void | |
182 | NFRuleSet::parseRules(UnicodeString& description, const RuleBasedNumberFormat* owner, UErrorCode& status) | |
183 | { | |
184 | // start by creating a Vector whose elements are Strings containing | |
185 | // the descriptions of the rules (one rule per element). The rules | |
186 | // are separated by semicolons (there's no escape facility: ALL | |
187 | // semicolons are rule delimiters) | |
188 | ||
189 | if (U_FAILURE(status)) { | |
190 | return; | |
191 | } | |
192 | ||
4388f060 A |
193 | // ensure we are starting with an empty rule list |
194 | rules.deleteAll(); | |
195 | ||
b75a7d8f A |
196 | // dlf - the original code kept a separate description array for no reason, |
197 | // so I got rid of it. The loop was too complex so I simplified it. | |
198 | ||
199 | UnicodeString currentDescription; | |
200 | int32_t oldP = 0; | |
201 | while (oldP < description.length()) { | |
202 | int32_t p = description.indexOf(gSemicolon, oldP); | |
203 | if (p == -1) { | |
204 | p = description.length(); | |
205 | } | |
206 | currentDescription.setTo(description, oldP, p - oldP); | |
207 | NFRule::makeRules(currentDescription, this, rules.last(), owner, rules, status); | |
208 | oldP = p + 1; | |
209 | } | |
210 | ||
211 | // for rules that didn't specify a base value, their base values | |
212 | // were initialized to 0. Make another pass through the list and | |
213 | // set all those rules' base values. We also remove any special | |
214 | // rules from the list and put them into their own member variables | |
215 | int64_t defaultBaseValue = 0; | |
216 | ||
217 | // (this isn't a for loop because we might be deleting items from | |
218 | // the vector-- we want to make sure we only increment i when | |
219 | // we _didn't_ delete aything from the vector) | |
220 | uint32_t i = 0; | |
221 | while (i < rules.size()) { | |
222 | NFRule* rule = rules[i]; | |
223 | ||
224 | switch (rule->getType()) { | |
225 | // if the rule's base value is 0, fill in a default | |
226 | // base value (this will be 1 plus the preceding | |
227 | // rule's base value for regular rule sets, and the | |
228 | // same as the preceding rule's base value in fraction | |
229 | // rule sets) | |
230 | case NFRule::kNoBase: | |
374ca955 | 231 | rule->setBaseValue(defaultBaseValue, status); |
b75a7d8f A |
232 | if (!isFractionRuleSet()) { |
233 | ++defaultBaseValue; | |
234 | } | |
235 | ++i; | |
236 | break; | |
237 | ||
238 | // if it's the negative-number rule, copy it into its own | |
239 | // data member and delete it from the list | |
240 | case NFRule::kNegativeNumberRule: | |
4388f060 A |
241 | if (negativeNumberRule) { |
242 | delete negativeNumberRule; | |
243 | } | |
b75a7d8f A |
244 | negativeNumberRule = rules.remove(i); |
245 | break; | |
246 | ||
247 | // if it's the improper fraction rule, copy it into the | |
248 | // correct element of fractionRules | |
249 | case NFRule::kImproperFractionRule: | |
4388f060 A |
250 | if (fractionRules[0]) { |
251 | delete fractionRules[0]; | |
252 | } | |
b75a7d8f A |
253 | fractionRules[0] = rules.remove(i); |
254 | break; | |
255 | ||
256 | // if it's the proper fraction rule, copy it into the | |
257 | // correct element of fractionRules | |
258 | case NFRule::kProperFractionRule: | |
4388f060 A |
259 | if (fractionRules[1]) { |
260 | delete fractionRules[1]; | |
261 | } | |
b75a7d8f A |
262 | fractionRules[1] = rules.remove(i); |
263 | break; | |
264 | ||
265 | // if it's the master rule, copy it into the | |
266 | // correct element of fractionRules | |
267 | case NFRule::kMasterRule: | |
4388f060 A |
268 | if (fractionRules[2]) { |
269 | delete fractionRules[2]; | |
270 | } | |
b75a7d8f A |
271 | fractionRules[2] = rules.remove(i); |
272 | break; | |
273 | ||
274 | // if it's a regular rule that already knows its base value, | |
275 | // check to make sure the rules are in order, and update | |
276 | // the default base value for the next rule | |
277 | default: | |
278 | if (rule->getBaseValue() < defaultBaseValue) { | |
279 | // throw new IllegalArgumentException("Rules are not in order"); | |
280 | status = U_PARSE_ERROR; | |
281 | return; | |
282 | } | |
283 | defaultBaseValue = rule->getBaseValue(); | |
284 | if (!isFractionRuleSet()) { | |
285 | ++defaultBaseValue; | |
286 | } | |
287 | ++i; | |
288 | break; | |
289 | } | |
290 | } | |
291 | } | |
292 | ||
293 | NFRuleSet::~NFRuleSet() | |
294 | { | |
295 | delete negativeNumberRule; | |
296 | delete fractionRules[0]; | |
297 | delete fractionRules[1]; | |
298 | delete fractionRules[2]; | |
299 | } | |
300 | ||
374ca955 | 301 | static UBool |
b75a7d8f A |
302 | util_equalRules(const NFRule* rule1, const NFRule* rule2) |
303 | { | |
304 | if (rule1) { | |
305 | if (rule2) { | |
306 | return *rule1 == *rule2; | |
307 | } | |
308 | } else if (!rule2) { | |
309 | return TRUE; | |
310 | } | |
311 | return FALSE; | |
312 | } | |
313 | ||
314 | UBool | |
315 | NFRuleSet::operator==(const NFRuleSet& rhs) const | |
316 | { | |
317 | if (rules.size() == rhs.rules.size() && | |
318 | fIsFractionRuleSet == rhs.fIsFractionRuleSet && | |
319 | name == rhs.name && | |
320 | util_equalRules(negativeNumberRule, rhs.negativeNumberRule) && | |
321 | util_equalRules(fractionRules[0], rhs.fractionRules[0]) && | |
322 | util_equalRules(fractionRules[1], rhs.fractionRules[1]) && | |
323 | util_equalRules(fractionRules[2], rhs.fractionRules[2])) { | |
324 | ||
325 | for (uint32_t i = 0; i < rules.size(); ++i) { | |
326 | if (*rules[i] != *rhs.rules[i]) { | |
327 | return FALSE; | |
328 | } | |
329 | } | |
330 | return TRUE; | |
331 | } | |
332 | return FALSE; | |
333 | } | |
334 | ||
374ca955 A |
335 | #define RECURSION_LIMIT 50 |
336 | ||
b75a7d8f A |
337 | void |
338 | NFRuleSet::format(int64_t number, UnicodeString& toAppendTo, int32_t pos) const | |
339 | { | |
340 | NFRule *rule = findNormalRule(number); | |
374ca955 A |
341 | if (rule) { // else error, but can't report it |
342 | NFRuleSet* ncThis = (NFRuleSet*)this; | |
343 | if (ncThis->fRecursionCount++ >= RECURSION_LIMIT) { | |
344 | // stop recursion | |
345 | ncThis->fRecursionCount = 0; | |
346 | } else { | |
347 | rule->doFormat(number, toAppendTo, pos); | |
348 | ncThis->fRecursionCount--; | |
349 | } | |
350 | } | |
b75a7d8f A |
351 | } |
352 | ||
353 | void | |
354 | NFRuleSet::format(double number, UnicodeString& toAppendTo, int32_t pos) const | |
355 | { | |
356 | NFRule *rule = findDoubleRule(number); | |
374ca955 A |
357 | if (rule) { // else error, but can't report it |
358 | NFRuleSet* ncThis = (NFRuleSet*)this; | |
359 | if (ncThis->fRecursionCount++ >= RECURSION_LIMIT) { | |
360 | // stop recursion | |
361 | ncThis->fRecursionCount = 0; | |
362 | } else { | |
363 | rule->doFormat(number, toAppendTo, pos); | |
364 | ncThis->fRecursionCount--; | |
365 | } | |
366 | } | |
b75a7d8f A |
367 | } |
368 | ||
369 | NFRule* | |
370 | NFRuleSet::findDoubleRule(double number) const | |
371 | { | |
372 | // if this is a fraction rule set, use findFractionRuleSetRule() | |
373 | if (isFractionRuleSet()) { | |
374 | return findFractionRuleSetRule(number); | |
375 | } | |
376 | ||
377 | // if the number is negative, return the negative number rule | |
378 | // (if there isn't a negative-number rule, we pretend it's a | |
379 | // positive number) | |
380 | if (number < 0) { | |
381 | if (negativeNumberRule) { | |
382 | return negativeNumberRule; | |
383 | } else { | |
384 | number = -number; | |
385 | } | |
386 | } | |
387 | ||
388 | // if the number isn't an integer, we use one of the fraction rules... | |
389 | if (number != uprv_floor(number)) { | |
390 | // if the number is between 0 and 1, return the proper | |
391 | // fraction rule | |
392 | if (number < 1 && fractionRules[1]) { | |
393 | return fractionRules[1]; | |
394 | } | |
395 | // otherwise, return the improper fraction rule | |
396 | else if (fractionRules[0]) { | |
397 | return fractionRules[0]; | |
398 | } | |
399 | } | |
400 | ||
401 | // if there's a master rule, use it to format the number | |
402 | if (fractionRules[2]) { | |
403 | return fractionRules[2]; | |
404 | } | |
405 | ||
729e4ab9 | 406 | // always use the last rule for infinity. It is likely that rule |
4388f060 | 407 | // has a DecimalFormat that will do the right thing with infinity even |
729e4ab9 A |
408 | // if the rule's base value is strange, i.e. something larger than what |
409 | // util64_fromDouble produces below. | |
410 | if (uprv_isInfinite(number) && (rules.size() > 0)) { | |
411 | return rules[rules.size() - 1]; | |
412 | } | |
413 | ||
b75a7d8f A |
414 | // and if we haven't yet returned a rule, use findNormalRule() |
415 | // to find the applicable rule | |
416 | int64_t r = util64_fromDouble(number + 0.5); | |
417 | return findNormalRule(r); | |
418 | } | |
419 | ||
420 | NFRule * | |
421 | NFRuleSet::findNormalRule(int64_t number) const | |
422 | { | |
423 | // if this is a fraction rule set, use findFractionRuleSetRule() | |
424 | // to find the rule (we should only go into this clause if the | |
425 | // value is 0) | |
426 | if (fIsFractionRuleSet) { | |
427 | return findFractionRuleSetRule((double)number); | |
428 | } | |
429 | ||
430 | // if the number is negative, return the negative-number rule | |
431 | // (if there isn't one, pretend the number is positive) | |
432 | if (number < 0) { | |
433 | if (negativeNumberRule) { | |
434 | return negativeNumberRule; | |
435 | } else { | |
436 | number = -number; | |
437 | } | |
438 | } | |
439 | ||
440 | // we have to repeat the preceding two checks, even though we | |
441 | // do them in findRule(), because the version of format() that | |
442 | // takes a long bypasses findRule() and goes straight to this | |
443 | // function. This function does skip the fraction rules since | |
444 | // we know the value is an integer (it also skips the master | |
445 | // rule, since it's considered a fraction rule. Skipping the | |
446 | // master rule in this function is also how we avoid infinite | |
447 | // recursion) | |
448 | ||
449 | // {dlf} unfortunately this fails if there are no rules except | |
450 | // special rules. If there are no rules, use the master rule. | |
451 | ||
452 | // binary-search the rule list for the applicable rule | |
453 | // (a rule is used for all values from its base value to | |
454 | // the next rule's base value) | |
455 | int32_t hi = rules.size(); | |
456 | if (hi > 0) { | |
457 | int32_t lo = 0; | |
458 | ||
459 | while (lo < hi) { | |
460 | int32_t mid = (lo + hi) / 2; | |
461 | if (rules[mid]->getBaseValue() == number) { | |
462 | return rules[mid]; | |
463 | } | |
464 | else if (rules[mid]->getBaseValue() > number) { | |
465 | hi = mid; | |
466 | } | |
467 | else { | |
468 | lo = mid + 1; | |
469 | } | |
470 | } | |
374ca955 A |
471 | if (hi == 0) { // bad rule set, minimum base > 0 |
472 | return NULL; // want to throw exception here | |
473 | } | |
474 | ||
b75a7d8f A |
475 | NFRule *result = rules[hi - 1]; |
476 | ||
477 | // use shouldRollBack() to see whether we need to invoke the | |
478 | // rollback rule (see shouldRollBack()'s documentation for | |
479 | // an explanation of the rollback rule). If we do, roll back | |
480 | // one rule and return that one instead of the one we'd normally | |
481 | // return | |
482 | if (result->shouldRollBack((double)number)) { | |
374ca955 A |
483 | if (hi == 1) { // bad rule set, no prior rule to rollback to from this base |
484 | return NULL; | |
485 | } | |
b75a7d8f A |
486 | result = rules[hi - 2]; |
487 | } | |
488 | return result; | |
489 | } | |
490 | // else use the master rule | |
491 | return fractionRules[2]; | |
492 | } | |
493 | ||
494 | /** | |
495 | * If this rule is a fraction rule set, this function is used by | |
496 | * findRule() to select the most appropriate rule for formatting | |
497 | * the number. Basically, the base value of each rule in the rule | |
498 | * set is treated as the denominator of a fraction. Whichever | |
499 | * denominator can produce the fraction closest in value to the | |
500 | * number passed in is the result. If there's a tie, the earlier | |
501 | * one in the list wins. (If there are two rules in a row with the | |
502 | * same base value, the first one is used when the numerator of the | |
503 | * fraction would be 1, and the second rule is used the rest of the | |
504 | * time. | |
505 | * @param number The number being formatted (which will always be | |
506 | * a number between 0 and 1) | |
507 | * @return The rule to use to format this number | |
508 | */ | |
509 | NFRule* | |
510 | NFRuleSet::findFractionRuleSetRule(double number) const | |
511 | { | |
512 | // the obvious way to do this (multiply the value being formatted | |
513 | // by each rule's base value until you get an integral result) | |
514 | // doesn't work because of rounding error. This method is more | |
515 | // accurate | |
516 | ||
517 | // find the least common multiple of the rules' base values | |
518 | // and multiply this by the number being formatted. This is | |
519 | // all the precision we need, and we can do all of the rest | |
520 | // of the math using integer arithmetic | |
521 | int64_t leastCommonMultiple = rules[0]->getBaseValue(); | |
522 | int64_t numerator; | |
523 | { | |
524 | for (uint32_t i = 1; i < rules.size(); ++i) { | |
525 | leastCommonMultiple = util_lcm(leastCommonMultiple, rules[i]->getBaseValue()); | |
526 | } | |
527 | numerator = util64_fromDouble(number * (double)leastCommonMultiple + 0.5); | |
528 | } | |
529 | // for each rule, do the following... | |
530 | int64_t tempDifference; | |
531 | int64_t difference = util64_fromDouble(uprv_maxMantissa()); | |
532 | int32_t winner = 0; | |
533 | for (uint32_t i = 0; i < rules.size(); ++i) { | |
534 | // "numerator" is the numerator of the fraction if the | |
535 | // denominator is the LCD. The numerator if the rule's | |
536 | // base value is the denominator is "numerator" times the | |
537 | // base value divided bythe LCD. Here we check to see if | |
538 | // that's an integer, and if not, how close it is to being | |
539 | // an integer. | |
540 | tempDifference = numerator * rules[i]->getBaseValue() % leastCommonMultiple; | |
541 | ||
542 | ||
543 | // normalize the result of the above calculation: we want | |
544 | // the numerator's distance from the CLOSEST multiple | |
545 | // of the LCD | |
546 | if (leastCommonMultiple - tempDifference < tempDifference) { | |
547 | tempDifference = leastCommonMultiple - tempDifference; | |
548 | } | |
549 | ||
550 | // if this is as close as we've come, keep track of how close | |
551 | // that is, and the line number of the rule that did it. If | |
552 | // we've scored a direct hit, we don't have to look at any more | |
553 | // rules | |
554 | if (tempDifference < difference) { | |
555 | difference = tempDifference; | |
556 | winner = i; | |
557 | if (difference == 0) { | |
558 | break; | |
559 | } | |
560 | } | |
561 | } | |
562 | ||
563 | // if we have two successive rules that both have the winning base | |
564 | // value, then the first one (the one we found above) is used if | |
565 | // the numerator of the fraction is 1 and the second one is used if | |
566 | // the numerator of the fraction is anything else (this lets us | |
567 | // do things like "one third"/"two thirds" without haveing to define | |
568 | // a whole bunch of extra rule sets) | |
569 | if ((unsigned)(winner + 1) < rules.size() && | |
570 | rules[winner + 1]->getBaseValue() == rules[winner]->getBaseValue()) { | |
571 | double n = ((double)rules[winner]->getBaseValue()) * number; | |
572 | if (n < 0.5 || n >= 2) { | |
573 | ++winner; | |
574 | } | |
575 | } | |
576 | ||
577 | // finally, return the winning rule | |
578 | return rules[winner]; | |
579 | } | |
580 | ||
581 | /** | |
582 | * Parses a string. Matches the string to be parsed against each | |
583 | * of its rules (with a base value less than upperBound) and returns | |
584 | * the value produced by the rule that matched the most charcters | |
585 | * in the source string. | |
586 | * @param text The string to parse | |
587 | * @param parsePosition The initial position is ignored and assumed | |
588 | * to be 0. On exit, this object has been updated to point to the | |
589 | * first character position this rule set didn't consume. | |
590 | * @param upperBound Limits the rules that can be allowed to match. | |
591 | * Only rules whose base values are strictly less than upperBound | |
592 | * are considered. | |
593 | * @return The numerical result of parsing this string. This will | |
594 | * be the matching rule's base value, composed appropriately with | |
595 | * the results of matching any of its substitutions. The object | |
596 | * will be an instance of Long if it's an integral value; otherwise, | |
597 | * it will be an instance of Double. This function always returns | |
598 | * a valid object: If nothing matched the input string at all, | |
599 | * this function returns new Long(0), and the parse position is | |
600 | * left unchanged. | |
601 | */ | |
602 | #ifdef RBNF_DEBUG | |
603 | #include <stdio.h> | |
604 | ||
605 | static void dumpUS(FILE* f, const UnicodeString& us) { | |
606 | int len = us.length(); | |
607 | char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1]; | |
46f4442e A |
608 | if (buf != NULL) { |
609 | us.extract(0, len, buf); | |
610 | buf[len] = 0; | |
611 | fprintf(f, "%s", buf); | |
612 | uprv_free(buf); //delete[] buf; | |
613 | } | |
b75a7d8f A |
614 | } |
615 | #endif | |
616 | ||
617 | UBool | |
729e4ab9 | 618 | NFRuleSet::parse(const UnicodeString& text, ParsePosition& pos, double upperBound, Formattable& result, UBool lenient) const |
b75a7d8f A |
619 | { |
620 | // try matching each rule in the rule set against the text being | |
621 | // parsed. Whichever one matches the most characters is the one | |
622 | // that determines the value we return. | |
623 | ||
624 | result.setLong(0); | |
625 | ||
626 | // dump out if there's no text to parse | |
627 | if (text.length() == 0) { | |
628 | return 0; | |
629 | } | |
630 | ||
631 | ParsePosition highWaterMark; | |
632 | ParsePosition workingPos = pos; | |
633 | ||
634 | #ifdef RBNF_DEBUG | |
635 | fprintf(stderr, "<nfrs> %x '", this); | |
636 | dumpUS(stderr, name); | |
637 | fprintf(stderr, "' text '"); | |
638 | dumpUS(stderr, text); | |
639 | fprintf(stderr, "'\n"); | |
640 | fprintf(stderr, " parse negative: %d\n", this, negativeNumberRule != 0); | |
641 | #endif | |
642 | ||
643 | // start by trying the negative number rule (if there is one) | |
644 | if (negativeNumberRule) { | |
645 | Formattable tempResult; | |
646 | #ifdef RBNF_DEBUG | |
647 | fprintf(stderr, " <nfrs before negative> %x ub: %g\n", negativeNumberRule, upperBound); | |
648 | #endif | |
649 | UBool success = negativeNumberRule->doParse(text, workingPos, 0, upperBound, tempResult); | |
650 | #ifdef RBNF_DEBUG | |
651 | fprintf(stderr, " <nfrs after negative> success: %d wpi: %d\n", success, workingPos.getIndex()); | |
652 | #endif | |
653 | if (success && workingPos.getIndex() > highWaterMark.getIndex()) { | |
654 | result = tempResult; | |
655 | highWaterMark = workingPos; | |
656 | } | |
657 | workingPos = pos; | |
658 | } | |
659 | #ifdef RBNF_DEBUG | |
660 | fprintf(stderr, "<nfrs> continue fractional with text '"); | |
661 | dumpUS(stderr, text); | |
662 | fprintf(stderr, "' hwm: %d\n", highWaterMark.getIndex()); | |
663 | #endif | |
664 | // then try each of the fraction rules | |
665 | { | |
666 | for (int i = 0; i < 3; i++) { | |
667 | if (fractionRules[i]) { | |
668 | Formattable tempResult; | |
729e4ab9 | 669 | UBool success = fractionRules[i]->doParse(text, workingPos, 0, upperBound, tempResult, lenient || isDecimalFormatRuleParseable() ); |
b75a7d8f A |
670 | if (success && (workingPos.getIndex() > highWaterMark.getIndex())) { |
671 | result = tempResult; | |
672 | highWaterMark = workingPos; | |
673 | } | |
674 | workingPos = pos; | |
675 | } | |
676 | } | |
677 | } | |
678 | #ifdef RBNF_DEBUG | |
679 | fprintf(stderr, "<nfrs> continue other with text '"); | |
680 | dumpUS(stderr, text); | |
681 | fprintf(stderr, "' hwm: %d\n", highWaterMark.getIndex()); | |
682 | #endif | |
683 | ||
684 | // finally, go through the regular rules one at a time. We start | |
685 | // at the end of the list because we want to try matching the most | |
686 | // sigificant rule first (this helps ensure that we parse | |
687 | // "five thousand three hundred six" as | |
688 | // "(five thousand) (three hundred) (six)" rather than | |
689 | // "((five thousand three) hundred) (six)"). Skip rules whose | |
690 | // base values are higher than the upper bound (again, this helps | |
691 | // limit ambiguity by making sure the rules that match a rule's | |
692 | // are less significant than the rule containing the substitutions)/ | |
693 | { | |
694 | int64_t ub = util64_fromDouble(upperBound); | |
695 | #ifdef RBNF_DEBUG | |
696 | { | |
697 | char ubstr[64]; | |
698 | util64_toa(ub, ubstr, 64); | |
699 | char ubstrhex[64]; | |
700 | util64_toa(ub, ubstrhex, 64, 16); | |
701 | fprintf(stderr, "ub: %g, i64: %s (%s)\n", upperBound, ubstr, ubstrhex); | |
702 | } | |
703 | #endif | |
704 | for (int32_t i = rules.size(); --i >= 0 && highWaterMark.getIndex() < text.length();) { | |
705 | if ((!fIsFractionRuleSet) && (rules[i]->getBaseValue() >= ub)) { | |
706 | continue; | |
707 | } | |
708 | Formattable tempResult; | |
709 | UBool success = rules[i]->doParse(text, workingPos, fIsFractionRuleSet, upperBound, tempResult); | |
710 | if (success && workingPos.getIndex() > highWaterMark.getIndex()) { | |
711 | result = tempResult; | |
712 | highWaterMark = workingPos; | |
713 | } | |
714 | workingPos = pos; | |
715 | } | |
716 | } | |
717 | #ifdef RBNF_DEBUG | |
718 | fprintf(stderr, "<nfrs> exit\n"); | |
719 | #endif | |
720 | // finally, update the parse postion we were passed to point to the | |
721 | // first character we didn't use, and return the result that | |
722 | // corresponds to that string of characters | |
723 | pos = highWaterMark; | |
724 | ||
725 | return 1; | |
726 | } | |
727 | ||
728 | void | |
729 | NFRuleSet::appendRules(UnicodeString& result) const | |
730 | { | |
731 | // the rule set name goes first... | |
732 | result.append(name); | |
733 | result.append(gColon); | |
734 | result.append(gLineFeed); | |
735 | ||
736 | // followed by the regular rules... | |
737 | for (uint32_t i = 0; i < rules.size(); i++) { | |
4388f060 | 738 | result.append(gFourSpaces, 4); |
73c04bcf | 739 | rules[i]->_appendRuleText(result); |
b75a7d8f A |
740 | result.append(gLineFeed); |
741 | } | |
742 | ||
743 | // followed by the special rules (if they exist) | |
744 | if (negativeNumberRule) { | |
4388f060 | 745 | result.append(gFourSpaces, 4); |
73c04bcf | 746 | negativeNumberRule->_appendRuleText(result); |
b75a7d8f A |
747 | result.append(gLineFeed); |
748 | } | |
749 | ||
750 | { | |
751 | for (uint32_t i = 0; i < 3; ++i) { | |
752 | if (fractionRules[i]) { | |
4388f060 | 753 | result.append(gFourSpaces, 4); |
73c04bcf | 754 | fractionRules[i]->_appendRuleText(result); |
b75a7d8f A |
755 | result.append(gLineFeed); |
756 | } | |
757 | } | |
758 | } | |
759 | } | |
760 | ||
761 | // utility functions | |
762 | ||
763 | int64_t util64_fromDouble(double d) { | |
764 | int64_t result = 0; | |
765 | if (!uprv_isNaN(d)) { | |
766 | double mant = uprv_maxMantissa(); | |
767 | if (d < -mant) { | |
768 | d = -mant; | |
769 | } else if (d > mant) { | |
770 | d = mant; | |
771 | } | |
772 | UBool neg = d < 0; | |
773 | if (neg) { | |
774 | d = -d; | |
775 | } | |
776 | result = (int64_t)uprv_floor(d); | |
777 | if (neg) { | |
778 | result = -result; | |
779 | } | |
780 | } | |
781 | return result; | |
782 | } | |
783 | ||
784 | int64_t util64_pow(int32_t r, uint32_t e) { | |
785 | if (r == 0) { | |
786 | return 0; | |
787 | } else if (e == 0) { | |
788 | return 1; | |
789 | } else { | |
790 | int64_t n = r; | |
791 | while (--e > 0) { | |
792 | n *= r; | |
793 | } | |
794 | return n; | |
795 | } | |
796 | } | |
797 | ||
798 | static const uint8_t asciiDigits[] = { | |
799 | 0x30u, 0x31u, 0x32u, 0x33u, 0x34u, 0x35u, 0x36u, 0x37u, | |
800 | 0x38u, 0x39u, 0x61u, 0x62u, 0x63u, 0x64u, 0x65u, 0x66u, | |
801 | 0x67u, 0x68u, 0x69u, 0x6au, 0x6bu, 0x6cu, 0x6du, 0x6eu, | |
802 | 0x6fu, 0x70u, 0x71u, 0x72u, 0x73u, 0x74u, 0x75u, 0x76u, | |
803 | 0x77u, 0x78u, 0x79u, 0x7au, | |
804 | }; | |
805 | ||
806 | static const UChar kUMinus = (UChar)0x002d; | |
807 | ||
73c04bcf | 808 | #ifdef RBNF_DEBUG |
b75a7d8f A |
809 | static const char kMinus = '-'; |
810 | ||
811 | static const uint8_t digitInfo[] = { | |
812 | 0, 0, 0, 0, 0, 0, 0, 0, | |
813 | 0, 0, 0, 0, 0, 0, 0, 0, | |
814 | 0, 0, 0, 0, 0, 0, 0, 0, | |
815 | 0, 0, 0, 0, 0, 0, 0, 0, | |
816 | 0, 0, 0, 0, 0, 0, 0, 0, | |
817 | 0, 0, 0, 0, 0, 0, 0, 0, | |
818 | 0x80u, 0x81u, 0x82u, 0x83u, 0x84u, 0x85u, 0x86u, 0x87u, | |
819 | 0x88u, 0x89u, 0, 0, 0, 0, 0, 0, | |
820 | 0, 0x8au, 0x8bu, 0x8cu, 0x8du, 0x8eu, 0x8fu, 0x90u, | |
821 | 0x91u, 0x92u, 0x93u, 0x94u, 0x95u, 0x96u, 0x97u, 0x98u, | |
822 | 0x99u, 0x9au, 0x9bu, 0x9cu, 0x9du, 0x9eu, 0x9fu, 0xa0u, | |
823 | 0xa1u, 0xa2u, 0xa3u, 0, 0, 0, 0, 0, | |
824 | 0, 0x8au, 0x8bu, 0x8cu, 0x8du, 0x8eu, 0x8fu, 0x90u, | |
825 | 0x91u, 0x92u, 0x93u, 0x94u, 0x95u, 0x96u, 0x97u, 0x98u, | |
826 | 0x99u, 0x9au, 0x9bu, 0x9cu, 0x9du, 0x9eu, 0x9fu, 0xa0u, | |
827 | 0xa1u, 0xa2u, 0xa3u, 0, 0, 0, 0, 0, | |
828 | }; | |
829 | ||
b75a7d8f A |
830 | int64_t util64_atoi(const char* str, uint32_t radix) |
831 | { | |
832 | if (radix > 36) { | |
833 | radix = 36; | |
834 | } else if (radix < 2) { | |
835 | radix = 2; | |
836 | } | |
837 | int64_t lradix = radix; | |
838 | ||
839 | int neg = 0; | |
840 | if (*str == kMinus) { | |
841 | ++str; | |
842 | neg = 1; | |
843 | } | |
844 | int64_t result = 0; | |
845 | uint8_t b; | |
846 | while ((b = digitInfo[*str++]) && ((b &= 0x7f) < radix)) { | |
847 | result *= lradix; | |
848 | result += (int32_t)b; | |
849 | } | |
850 | if (neg) { | |
851 | result = -result; | |
852 | } | |
853 | return result; | |
854 | } | |
b75a7d8f A |
855 | |
856 | int64_t util64_utoi(const UChar* str, uint32_t radix) | |
857 | { | |
858 | if (radix > 36) { | |
859 | radix = 36; | |
860 | } else if (radix < 2) { | |
861 | radix = 2; | |
862 | } | |
863 | int64_t lradix = radix; | |
864 | ||
865 | int neg = 0; | |
866 | if (*str == kUMinus) { | |
867 | ++str; | |
868 | neg = 1; | |
869 | } | |
870 | int64_t result = 0; | |
871 | UChar c; | |
872 | uint8_t b; | |
873 | while (((c = *str++) < 0x0080) && (b = digitInfo[c]) && ((b &= 0x7f) < radix)) { | |
874 | result *= lradix; | |
875 | result += (int32_t)b; | |
876 | } | |
877 | if (neg) { | |
878 | result = -result; | |
879 | } | |
880 | return result; | |
881 | } | |
882 | ||
b75a7d8f A |
883 | uint32_t util64_toa(int64_t w, char* buf, uint32_t len, uint32_t radix, UBool raw) |
884 | { | |
885 | if (radix > 36) { | |
886 | radix = 36; | |
887 | } else if (radix < 2) { | |
888 | radix = 2; | |
889 | } | |
890 | int64_t base = radix; | |
891 | ||
892 | char* p = buf; | |
893 | if (len && (w < 0) && (radix == 10) && !raw) { | |
894 | w = -w; | |
895 | *p++ = kMinus; | |
896 | --len; | |
897 | } else if (len && (w == 0)) { | |
898 | *p++ = (char)raw ? 0 : asciiDigits[0]; | |
899 | --len; | |
900 | } | |
901 | ||
902 | while (len && w != 0) { | |
903 | int64_t n = w / base; | |
904 | int64_t m = n * base; | |
905 | int32_t d = (int32_t)(w-m); | |
906 | *p++ = raw ? (char)d : asciiDigits[d]; | |
907 | w = n; | |
908 | --len; | |
909 | } | |
910 | if (len) { | |
911 | *p = 0; // null terminate if room for caller convenience | |
912 | } | |
913 | ||
914 | len = p - buf; | |
915 | if (*buf == kMinus) { | |
916 | ++buf; | |
917 | } | |
918 | while (--p > buf) { | |
919 | char c = *p; | |
920 | *p = *buf; | |
921 | *buf = c; | |
922 | ++buf; | |
923 | } | |
924 | ||
925 | return len; | |
926 | } | |
927 | #endif | |
928 | ||
929 | uint32_t util64_tou(int64_t w, UChar* buf, uint32_t len, uint32_t radix, UBool raw) | |
930 | { | |
931 | if (radix > 36) { | |
932 | radix = 36; | |
933 | } else if (radix < 2) { | |
934 | radix = 2; | |
935 | } | |
936 | int64_t base = radix; | |
937 | ||
938 | UChar* p = buf; | |
939 | if (len && (w < 0) && (radix == 10) && !raw) { | |
940 | w = -w; | |
941 | *p++ = kUMinus; | |
942 | --len; | |
943 | } else if (len && (w == 0)) { | |
944 | *p++ = (UChar)raw ? 0 : asciiDigits[0]; | |
945 | --len; | |
946 | } | |
947 | ||
948 | while (len && (w != 0)) { | |
949 | int64_t n = w / base; | |
950 | int64_t m = n * base; | |
951 | int32_t d = (int32_t)(w-m); | |
952 | *p++ = (UChar)(raw ? d : asciiDigits[d]); | |
953 | w = n; | |
954 | --len; | |
955 | } | |
956 | if (len) { | |
957 | *p = 0; // null terminate if room for caller convenience | |
958 | } | |
959 | ||
960 | len = (uint32_t)(p - buf); | |
961 | if (*buf == kUMinus) { | |
962 | ++buf; | |
963 | } | |
964 | while (--p > buf) { | |
965 | UChar c = *p; | |
966 | *p = *buf; | |
967 | *buf = c; | |
968 | ++buf; | |
969 | } | |
970 | ||
971 | return len; | |
972 | } | |
973 | ||
974 | ||
975 | U_NAMESPACE_END | |
976 | ||
977 | /* U_HAVE_RBNF */ | |
978 | #endif | |
979 |