]>
Commit | Line | Data |
---|---|---|
374ca955 | 1 | /************************************************************************ |
51004dcb | 2 | * Copyright (C) 1996-2012, International Business Machines Corporation |
4388f060 | 3 | * and others. All Rights Reserved. |
374ca955 A |
4 | ************************************************************************ |
5 | * 2003-nov-07 srl Port from Java | |
6 | */ | |
7 | ||
8 | #include "astro.h" | |
9 | ||
10 | #if !UCONFIG_NO_FORMATTING | |
11 | ||
12 | #include "unicode/calendar.h" | |
46f4442e | 13 | #include <math.h> |
374ca955 A |
14 | #include <float.h> |
15 | #include "unicode/putil.h" | |
16 | #include "uhash.h" | |
17 | #include "umutex.h" | |
18 | #include "ucln_in.h" | |
19 | #include "putilimp.h" | |
20 | #include <stdio.h> // for toString() | |
21 | ||
729e4ab9 A |
22 | #if defined (PI) |
23 | #undef PI | |
24 | #endif | |
25 | ||
374ca955 A |
26 | #ifdef U_DEBUG_ASTRO |
27 | # include "uresimp.h" // for debugging | |
28 | ||
29 | static void debug_astro_loc(const char *f, int32_t l) | |
30 | { | |
31 | fprintf(stderr, "%s:%d: ", f, l); | |
32 | } | |
33 | ||
34 | static void debug_astro_msg(const char *pat, ...) | |
35 | { | |
36 | va_list ap; | |
37 | va_start(ap, pat); | |
38 | vfprintf(stderr, pat, ap); | |
39 | fflush(stderr); | |
40 | } | |
41 | #include "unicode/datefmt.h" | |
42 | #include "unicode/ustring.h" | |
43 | static const char * debug_astro_date(UDate d) { | |
44 | static char gStrBuf[1024]; | |
45 | static DateFormat *df = NULL; | |
46 | if(df == NULL) { | |
47 | df = DateFormat::createDateTimeInstance(DateFormat::MEDIUM, DateFormat::MEDIUM, Locale::getUS()); | |
48 | df->adoptTimeZone(TimeZone::getGMT()->clone()); | |
49 | } | |
50 | UnicodeString str; | |
51 | df->format(d,str); | |
52 | u_austrncpy(gStrBuf,str.getTerminatedBuffer(),sizeof(gStrBuf)-1); | |
53 | return gStrBuf; | |
54 | } | |
55 | ||
56 | // must use double parens, i.e.: U_DEBUG_ASTRO_MSG(("four is: %d",4)); | |
57 | #define U_DEBUG_ASTRO_MSG(x) {debug_astro_loc(__FILE__,__LINE__);debug_astro_msg x;} | |
58 | #else | |
59 | #define U_DEBUG_ASTRO_MSG(x) | |
60 | #endif | |
61 | ||
62 | static inline UBool isINVALID(double d) { | |
63 | return(uprv_isNaN(d)); | |
64 | } | |
65 | ||
51004dcb | 66 | static UMutex ccLock = U_MUTEX_INITIALIZER; |
374ca955 A |
67 | |
68 | U_CDECL_BEGIN | |
69 | static UBool calendar_astro_cleanup(void) { | |
374ca955 A |
70 | return TRUE; |
71 | } | |
72 | U_CDECL_END | |
73 | ||
74 | U_NAMESPACE_BEGIN | |
75 | ||
76 | /** | |
77 | * The number of standard hours in one sidereal day. | |
78 | * Approximately 24.93. | |
79 | * @internal | |
80 | * @deprecated ICU 2.4. This class may be removed or modified. | |
81 | */ | |
82 | #define SIDEREAL_DAY (23.93446960027) | |
83 | ||
84 | /** | |
85 | * The number of sidereal hours in one mean solar day. | |
86 | * Approximately 24.07. | |
87 | * @internal | |
88 | * @deprecated ICU 2.4. This class may be removed or modified. | |
89 | */ | |
90 | #define SOLAR_DAY (24.065709816) | |
91 | ||
92 | /** | |
93 | * The average number of solar days from one new moon to the next. This is the time | |
94 | * it takes for the moon to return the same ecliptic longitude as the sun. | |
95 | * It is longer than the sidereal month because the sun's longitude increases | |
96 | * during the year due to the revolution of the earth around the sun. | |
97 | * Approximately 29.53. | |
98 | * | |
99 | * @see #SIDEREAL_MONTH | |
100 | * @internal | |
101 | * @deprecated ICU 2.4. This class may be removed or modified. | |
102 | */ | |
103 | const double CalendarAstronomer::SYNODIC_MONTH = 29.530588853; | |
104 | ||
105 | /** | |
106 | * The average number of days it takes | |
107 | * for the moon to return to the same ecliptic longitude relative to the | |
108 | * stellar background. This is referred to as the sidereal month. | |
109 | * It is shorter than the synodic month due to | |
110 | * the revolution of the earth around the sun. | |
111 | * Approximately 27.32. | |
112 | * | |
113 | * @see #SYNODIC_MONTH | |
114 | * @internal | |
115 | * @deprecated ICU 2.4. This class may be removed or modified. | |
116 | */ | |
117 | #define SIDEREAL_MONTH 27.32166 | |
118 | ||
119 | /** | |
120 | * The average number number of days between successive vernal equinoxes. | |
121 | * Due to the precession of the earth's | |
122 | * axis, this is not precisely the same as the sidereal year. | |
123 | * Approximately 365.24 | |
124 | * | |
125 | * @see #SIDEREAL_YEAR | |
126 | * @internal | |
127 | * @deprecated ICU 2.4. This class may be removed or modified. | |
128 | */ | |
129 | #define TROPICAL_YEAR 365.242191 | |
130 | ||
131 | /** | |
132 | * The average number of days it takes | |
133 | * for the sun to return to the same position against the fixed stellar | |
134 | * background. This is the duration of one orbit of the earth about the sun | |
135 | * as it would appear to an outside observer. | |
136 | * Due to the precession of the earth's | |
137 | * axis, this is not precisely the same as the tropical year. | |
138 | * Approximately 365.25. | |
139 | * | |
140 | * @see #TROPICAL_YEAR | |
141 | * @internal | |
142 | * @deprecated ICU 2.4. This class may be removed or modified. | |
143 | */ | |
144 | #define SIDEREAL_YEAR 365.25636 | |
145 | ||
146 | //------------------------------------------------------------------------- | |
147 | // Time-related constants | |
148 | //------------------------------------------------------------------------- | |
149 | ||
150 | /** | |
151 | * The number of milliseconds in one second. | |
152 | * @internal | |
153 | * @deprecated ICU 2.4. This class may be removed or modified. | |
154 | */ | |
155 | #define SECOND_MS U_MILLIS_PER_SECOND | |
156 | ||
157 | /** | |
158 | * The number of milliseconds in one minute. | |
159 | * @internal | |
160 | * @deprecated ICU 2.4. This class may be removed or modified. | |
161 | */ | |
162 | #define MINUTE_MS U_MILLIS_PER_MINUTE | |
163 | ||
164 | /** | |
165 | * The number of milliseconds in one hour. | |
166 | * @internal | |
167 | * @deprecated ICU 2.4. This class may be removed or modified. | |
168 | */ | |
169 | #define HOUR_MS U_MILLIS_PER_HOUR | |
170 | ||
171 | /** | |
172 | * The number of milliseconds in one day. | |
173 | * @internal | |
174 | * @deprecated ICU 2.4. This class may be removed or modified. | |
175 | */ | |
176 | #define DAY_MS U_MILLIS_PER_DAY | |
177 | ||
178 | /** | |
179 | * The start of the julian day numbering scheme used by astronomers, which | |
180 | * is 1/1/4713 BC (Julian), 12:00 GMT. This is given as the number of milliseconds | |
181 | * since 1/1/1970 AD (Gregorian), a negative number. | |
182 | * Note that julian day numbers and | |
183 | * the Julian calendar are <em>not</em> the same thing. Also note that | |
184 | * julian days start at <em>noon</em>, not midnight. | |
185 | * @internal | |
186 | * @deprecated ICU 2.4. This class may be removed or modified. | |
187 | */ | |
188 | #define JULIAN_EPOCH_MS -210866760000000.0 | |
189 | ||
190 | ||
191 | /** | |
192 | * Milliseconds value for 0.0 January 2000 AD. | |
193 | */ | |
194 | #define EPOCH_2000_MS 946598400000.0 | |
195 | ||
196 | //------------------------------------------------------------------------- | |
197 | // Assorted private data used for conversions | |
198 | //------------------------------------------------------------------------- | |
199 | ||
200 | // My own copies of these so compilers are more likely to optimize them away | |
201 | const double CalendarAstronomer::PI = 3.14159265358979323846; | |
202 | ||
203 | #define CalendarAstronomer_PI2 (CalendarAstronomer::PI*2.0) | |
204 | #define RAD_HOUR ( 12 / CalendarAstronomer::PI ) // radians -> hours | |
205 | #define DEG_RAD ( CalendarAstronomer::PI / 180 ) // degrees -> radians | |
206 | #define RAD_DEG ( 180 / CalendarAstronomer::PI ) // radians -> degrees | |
207 | ||
46f4442e A |
208 | /*** |
209 | * Given 'value', add or subtract 'range' until 0 <= 'value' < range. | |
210 | * The modulus operator. | |
211 | */ | |
212 | inline static double normalize(double value, double range) { | |
729e4ab9 | 213 | return value - range * ClockMath::floorDivide(value, range); |
46f4442e A |
214 | } |
215 | ||
216 | /** | |
217 | * Normalize an angle so that it's in the range 0 - 2pi. | |
218 | * For positive angles this is just (angle % 2pi), but the Java | |
219 | * mod operator doesn't work that way for negative numbers.... | |
220 | */ | |
221 | inline static double norm2PI(double angle) { | |
222 | return normalize(angle, CalendarAstronomer::PI * 2.0); | |
223 | } | |
224 | ||
225 | /** | |
226 | * Normalize an angle into the range -PI - PI | |
227 | */ | |
228 | inline static double normPI(double angle) { | |
229 | return normalize(angle + CalendarAstronomer::PI, CalendarAstronomer::PI * 2.0) - CalendarAstronomer::PI; | |
230 | } | |
231 | ||
374ca955 A |
232 | //------------------------------------------------------------------------- |
233 | // Constructors | |
234 | //------------------------------------------------------------------------- | |
235 | ||
236 | /** | |
237 | * Construct a new <code>CalendarAstronomer</code> object that is initialized to | |
238 | * the current date and time. | |
239 | * @internal | |
240 | * @deprecated ICU 2.4. This class may be removed or modified. | |
241 | */ | |
242 | CalendarAstronomer::CalendarAstronomer(): | |
243 | fTime(Calendar::getNow()), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(FALSE) { | |
244 | clearCache(); | |
245 | } | |
246 | ||
247 | /** | |
248 | * Construct a new <code>CalendarAstronomer</code> object that is initialized to | |
249 | * the specified date and time. | |
250 | * @internal | |
251 | * @deprecated ICU 2.4. This class may be removed or modified. | |
252 | */ | |
253 | CalendarAstronomer::CalendarAstronomer(UDate d): fTime(d), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(FALSE) { | |
254 | clearCache(); | |
255 | } | |
256 | ||
257 | /** | |
258 | * Construct a new <code>CalendarAstronomer</code> object with the given | |
259 | * latitude and longitude. The object's time is set to the current | |
260 | * date and time. | |
261 | * <p> | |
262 | * @param longitude The desired longitude, in <em>degrees</em> east of | |
263 | * the Greenwich meridian. | |
264 | * | |
265 | * @param latitude The desired latitude, in <em>degrees</em>. Positive | |
266 | * values signify North, negative South. | |
267 | * | |
268 | * @see java.util.Date#getTime() | |
269 | * @internal | |
270 | * @deprecated ICU 2.4. This class may be removed or modified. | |
271 | */ | |
272 | CalendarAstronomer::CalendarAstronomer(double longitude, double latitude) : | |
273 | fTime(Calendar::getNow()), moonPosition(0,0), moonPositionSet(FALSE) { | |
274 | fLongitude = normPI(longitude * (double)DEG_RAD); | |
275 | fLatitude = normPI(latitude * (double)DEG_RAD); | |
276 | fGmtOffset = (double)(fLongitude * 24. * (double)HOUR_MS / (double)CalendarAstronomer_PI2); | |
277 | clearCache(); | |
278 | } | |
279 | ||
280 | CalendarAstronomer::~CalendarAstronomer() | |
281 | { | |
282 | } | |
283 | ||
284 | //------------------------------------------------------------------------- | |
285 | // Time and date getters and setters | |
286 | //------------------------------------------------------------------------- | |
287 | ||
288 | /** | |
289 | * Set the current date and time of this <code>CalendarAstronomer</code> object. All | |
290 | * astronomical calculations are performed based on this time setting. | |
291 | * | |
292 | * @param aTime the date and time, expressed as the number of milliseconds since | |
293 | * 1/1/1970 0:00 GMT (Gregorian). | |
294 | * | |
295 | * @see #setDate | |
296 | * @see #getTime | |
297 | * @internal | |
298 | * @deprecated ICU 2.4. This class may be removed or modified. | |
299 | */ | |
300 | void CalendarAstronomer::setTime(UDate aTime) { | |
46f4442e A |
301 | fTime = aTime; |
302 | U_DEBUG_ASTRO_MSG(("setTime(%.1lf, %sL)\n", aTime, debug_astro_date(aTime+fGmtOffset))); | |
303 | clearCache(); | |
374ca955 A |
304 | } |
305 | ||
306 | /** | |
307 | * Set the current date and time of this <code>CalendarAstronomer</code> object. All | |
308 | * astronomical calculations are performed based on this time setting. | |
309 | * | |
310 | * @param jdn the desired time, expressed as a "julian day number", | |
311 | * which is the number of elapsed days since | |
312 | * 1/1/4713 BC (Julian), 12:00 GMT. Note that julian day | |
313 | * numbers start at <em>noon</em>. To get the jdn for | |
314 | * the corresponding midnight, subtract 0.5. | |
315 | * | |
316 | * @see #getJulianDay | |
317 | * @see #JULIAN_EPOCH_MS | |
318 | * @internal | |
319 | * @deprecated ICU 2.4. This class may be removed or modified. | |
320 | */ | |
321 | void CalendarAstronomer::setJulianDay(double jdn) { | |
46f4442e A |
322 | fTime = (double)(jdn * DAY_MS) + JULIAN_EPOCH_MS; |
323 | clearCache(); | |
324 | julianDay = jdn; | |
374ca955 A |
325 | } |
326 | ||
327 | /** | |
328 | * Get the current time of this <code>CalendarAstronomer</code> object, | |
329 | * represented as the number of milliseconds since | |
330 | * 1/1/1970 AD 0:00 GMT (Gregorian). | |
331 | * | |
332 | * @see #setTime | |
333 | * @see #getDate | |
334 | * @internal | |
335 | * @deprecated ICU 2.4. This class may be removed or modified. | |
336 | */ | |
337 | UDate CalendarAstronomer::getTime() { | |
46f4442e | 338 | return fTime; |
374ca955 A |
339 | } |
340 | ||
341 | /** | |
342 | * Get the current time of this <code>CalendarAstronomer</code> object, | |
343 | * expressed as a "julian day number", which is the number of elapsed | |
344 | * days since 1/1/4713 BC (Julian), 12:00 GMT. | |
345 | * | |
346 | * @see #setJulianDay | |
347 | * @see #JULIAN_EPOCH_MS | |
348 | * @internal | |
349 | * @deprecated ICU 2.4. This class may be removed or modified. | |
350 | */ | |
351 | double CalendarAstronomer::getJulianDay() { | |
46f4442e A |
352 | if (isINVALID(julianDay)) { |
353 | julianDay = (fTime - (double)JULIAN_EPOCH_MS) / (double)DAY_MS; | |
354 | } | |
355 | return julianDay; | |
374ca955 A |
356 | } |
357 | ||
358 | /** | |
359 | * Return this object's time expressed in julian centuries: | |
360 | * the number of centuries after 1/1/1900 AD, 12:00 GMT | |
361 | * | |
362 | * @see #getJulianDay | |
363 | * @internal | |
364 | * @deprecated ICU 2.4. This class may be removed or modified. | |
365 | */ | |
366 | double CalendarAstronomer::getJulianCentury() { | |
46f4442e A |
367 | if (isINVALID(julianCentury)) { |
368 | julianCentury = (getJulianDay() - 2415020.0) / 36525.0; | |
369 | } | |
370 | return julianCentury; | |
374ca955 A |
371 | } |
372 | ||
373 | /** | |
374 | * Returns the current Greenwich sidereal time, measured in hours | |
375 | * @internal | |
376 | * @deprecated ICU 2.4. This class may be removed or modified. | |
377 | */ | |
378 | double CalendarAstronomer::getGreenwichSidereal() { | |
46f4442e A |
379 | if (isINVALID(siderealTime)) { |
380 | // See page 86 of "Practial Astronomy with your Calculator", | |
381 | // by Peter Duffet-Smith, for details on the algorithm. | |
374ca955 | 382 | |
46f4442e | 383 | double UT = normalize(fTime/(double)HOUR_MS, 24.); |
374ca955 | 384 | |
46f4442e A |
385 | siderealTime = normalize(getSiderealOffset() + UT*1.002737909, 24.); |
386 | } | |
387 | return siderealTime; | |
374ca955 A |
388 | } |
389 | ||
390 | double CalendarAstronomer::getSiderealOffset() { | |
46f4442e A |
391 | if (isINVALID(siderealT0)) { |
392 | double JD = uprv_floor(getJulianDay() - 0.5) + 0.5; | |
393 | double S = JD - 2451545.0; | |
394 | double T = S / 36525.0; | |
395 | siderealT0 = normalize(6.697374558 + 2400.051336*T + 0.000025862*T*T, 24); | |
396 | } | |
397 | return siderealT0; | |
374ca955 A |
398 | } |
399 | ||
400 | /** | |
401 | * Returns the current local sidereal time, measured in hours | |
402 | * @internal | |
403 | * @deprecated ICU 2.4. This class may be removed or modified. | |
404 | */ | |
405 | double CalendarAstronomer::getLocalSidereal() { | |
46f4442e | 406 | return normalize(getGreenwichSidereal() + (fGmtOffset/(double)HOUR_MS), 24.); |
374ca955 A |
407 | } |
408 | ||
409 | /** | |
410 | * Converts local sidereal time to Universal Time. | |
411 | * | |
412 | * @param lst The Local Sidereal Time, in hours since sidereal midnight | |
413 | * on this object's current date. | |
414 | * | |
415 | * @return The corresponding Universal Time, in milliseconds since | |
416 | * 1 Jan 1970, GMT. | |
417 | */ | |
418 | double CalendarAstronomer::lstToUT(double lst) { | |
46f4442e A |
419 | // Convert to local mean time |
420 | double lt = normalize((lst - getSiderealOffset()) * 0.9972695663, 24); | |
374ca955 | 421 | |
46f4442e | 422 | // Then find local midnight on this day |
729e4ab9 | 423 | double base = (DAY_MS * ClockMath::floorDivide(fTime + fGmtOffset,(double)DAY_MS)) - fGmtOffset; |
374ca955 | 424 | |
46f4442e A |
425 | //out(" lt =" + lt + " hours"); |
426 | //out(" base=" + new Date(base)); | |
374ca955 | 427 | |
46f4442e | 428 | return base + (long)(lt * HOUR_MS); |
374ca955 A |
429 | } |
430 | ||
431 | ||
432 | //------------------------------------------------------------------------- | |
433 | // Coordinate transformations, all based on the current time of this object | |
434 | //------------------------------------------------------------------------- | |
435 | ||
436 | /** | |
437 | * Convert from ecliptic to equatorial coordinates. | |
438 | * | |
439 | * @param ecliptic A point in the sky in ecliptic coordinates. | |
440 | * @return The corresponding point in equatorial coordinates. | |
441 | * @internal | |
442 | * @deprecated ICU 2.4. This class may be removed or modified. | |
443 | */ | |
444 | CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, const CalendarAstronomer::Ecliptic& ecliptic) | |
445 | { | |
46f4442e | 446 | return eclipticToEquatorial(result, ecliptic.longitude, ecliptic.latitude); |
374ca955 A |
447 | } |
448 | ||
449 | /** | |
450 | * Convert from ecliptic to equatorial coordinates. | |
451 | * | |
452 | * @param eclipLong The ecliptic longitude | |
453 | * @param eclipLat The ecliptic latitude | |
454 | * | |
455 | * @return The corresponding point in equatorial coordinates. | |
456 | * @internal | |
457 | * @deprecated ICU 2.4. This class may be removed or modified. | |
458 | */ | |
459 | CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong, double eclipLat) | |
460 | { | |
46f4442e A |
461 | // See page 42 of "Practial Astronomy with your Calculator", |
462 | // by Peter Duffet-Smith, for details on the algorithm. | |
374ca955 | 463 | |
46f4442e A |
464 | double obliq = eclipticObliquity(); |
465 | double sinE = ::sin(obliq); | |
466 | double cosE = cos(obliq); | |
374ca955 | 467 | |
46f4442e A |
468 | double sinL = ::sin(eclipLong); |
469 | double cosL = cos(eclipLong); | |
374ca955 | 470 | |
46f4442e A |
471 | double sinB = ::sin(eclipLat); |
472 | double cosB = cos(eclipLat); | |
473 | double tanB = tan(eclipLat); | |
374ca955 | 474 | |
46f4442e A |
475 | result.set(atan2(sinL*cosE - tanB*sinE, cosL), |
476 | asin(sinB*cosE + cosB*sinE*sinL) ); | |
477 | return result; | |
374ca955 A |
478 | } |
479 | ||
480 | /** | |
481 | * Convert from ecliptic longitude to equatorial coordinates. | |
482 | * | |
483 | * @param eclipLong The ecliptic longitude | |
484 | * | |
485 | * @return The corresponding point in equatorial coordinates. | |
486 | * @internal | |
487 | * @deprecated ICU 2.4. This class may be removed or modified. | |
488 | */ | |
489 | CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong) | |
490 | { | |
46f4442e | 491 | return eclipticToEquatorial(result, eclipLong, 0); // TODO: optimize |
374ca955 A |
492 | } |
493 | ||
494 | /** | |
495 | * @internal | |
496 | * @deprecated ICU 2.4. This class may be removed or modified. | |
497 | */ | |
498 | CalendarAstronomer::Horizon& CalendarAstronomer::eclipticToHorizon(CalendarAstronomer::Horizon& result, double eclipLong) | |
499 | { | |
46f4442e A |
500 | Equatorial equatorial; |
501 | eclipticToEquatorial(equatorial, eclipLong); | |
374ca955 | 502 | |
46f4442e | 503 | double H = getLocalSidereal()*CalendarAstronomer::PI/12 - equatorial.ascension; // Hour-angle |
374ca955 | 504 | |
46f4442e A |
505 | double sinH = ::sin(H); |
506 | double cosH = cos(H); | |
507 | double sinD = ::sin(equatorial.declination); | |
508 | double cosD = cos(equatorial.declination); | |
509 | double sinL = ::sin(fLatitude); | |
510 | double cosL = cos(fLatitude); | |
374ca955 | 511 | |
46f4442e A |
512 | double altitude = asin(sinD*sinL + cosD*cosL*cosH); |
513 | double azimuth = atan2(-cosD*cosL*sinH, sinD - sinL * ::sin(altitude)); | |
374ca955 | 514 | |
46f4442e A |
515 | result.set(azimuth, altitude); |
516 | return result; | |
374ca955 A |
517 | } |
518 | ||
519 | ||
520 | //------------------------------------------------------------------------- | |
521 | // The Sun | |
522 | //------------------------------------------------------------------------- | |
523 | ||
524 | // | |
525 | // Parameters of the Sun's orbit as of the epoch Jan 0.0 1990 | |
526 | // Angles are in radians (after multiplying by CalendarAstronomer::PI/180) | |
527 | // | |
528 | #define JD_EPOCH 2447891.5 // Julian day of epoch | |
529 | ||
530 | #define SUN_ETA_G (279.403303 * CalendarAstronomer::PI/180) // Ecliptic longitude at epoch | |
531 | #define SUN_OMEGA_G (282.768422 * CalendarAstronomer::PI/180) // Ecliptic longitude of perigee | |
532 | #define SUN_E 0.016713 // Eccentricity of orbit | |
533 | //double sunR0 1.495585e8 // Semi-major axis in KM | |
534 | //double sunTheta0 (0.533128 * CalendarAstronomer::PI/180) // Angular diameter at R0 | |
535 | ||
536 | // The following three methods, which compute the sun parameters | |
537 | // given above for an arbitrary epoch (whatever time the object is | |
538 | // set to), make only a small difference as compared to using the | |
539 | // above constants. E.g., Sunset times might differ by ~12 | |
540 | // seconds. Furthermore, the eta-g computation is befuddled by | |
541 | // Duffet-Smith's incorrect coefficients (p.86). I've corrected | |
542 | // the first-order coefficient but the others may be off too - no | |
543 | // way of knowing without consulting another source. | |
544 | ||
545 | // /** | |
546 | // * Return the sun's ecliptic longitude at perigee for the current time. | |
547 | // * See Duffett-Smith, p. 86. | |
548 | // * @return radians | |
549 | // */ | |
550 | // private double getSunOmegaG() { | |
551 | // double T = getJulianCentury(); | |
552 | // return (281.2208444 + (1.719175 + 0.000452778*T)*T) * DEG_RAD; | |
553 | // } | |
554 | ||
555 | // /** | |
556 | // * Return the sun's ecliptic longitude for the current time. | |
557 | // * See Duffett-Smith, p. 86. | |
558 | // * @return radians | |
559 | // */ | |
560 | // private double getSunEtaG() { | |
561 | // double T = getJulianCentury(); | |
562 | // //return (279.6966778 + (36000.76892 + 0.0003025*T)*T) * DEG_RAD; | |
563 | // // | |
564 | // // The above line is from Duffett-Smith, and yields manifestly wrong | |
565 | // // results. The below constant is derived empirically to match the | |
566 | // // constant he gives for the 1990 EPOCH. | |
567 | // // | |
568 | // return (279.6966778 + (-0.3262541582718024 + 0.0003025*T)*T) * DEG_RAD; | |
569 | // } | |
570 | ||
571 | // /** | |
572 | // * Return the sun's eccentricity of orbit for the current time. | |
573 | // * See Duffett-Smith, p. 86. | |
574 | // * @return double | |
575 | // */ | |
576 | // private double getSunE() { | |
577 | // double T = getJulianCentury(); | |
578 | // return 0.01675104 - (0.0000418 + 0.000000126*T)*T; | |
579 | // } | |
580 | ||
46f4442e A |
581 | /** |
582 | * Find the "true anomaly" (longitude) of an object from | |
583 | * its mean anomaly and the eccentricity of its orbit. This uses | |
584 | * an iterative solution to Kepler's equation. | |
585 | * | |
586 | * @param meanAnomaly The object's longitude calculated as if it were in | |
587 | * a regular, circular orbit, measured in radians | |
588 | * from the point of perigee. | |
589 | * | |
590 | * @param eccentricity The eccentricity of the orbit | |
591 | * | |
592 | * @return The true anomaly (longitude) measured in radians | |
593 | */ | |
594 | static double trueAnomaly(double meanAnomaly, double eccentricity) | |
595 | { | |
596 | // First, solve Kepler's equation iteratively | |
597 | // Duffett-Smith, p.90 | |
598 | double delta; | |
599 | double E = meanAnomaly; | |
600 | do { | |
601 | delta = E - eccentricity * ::sin(E) - meanAnomaly; | |
602 | E = E - delta / (1 - eccentricity * ::cos(E)); | |
603 | } | |
604 | while (uprv_fabs(delta) > 1e-5); // epsilon = 1e-5 rad | |
605 | ||
606 | return 2.0 * ::atan( ::tan(E/2) * ::sqrt( (1+eccentricity) | |
607 | /(1-eccentricity) ) ); | |
608 | } | |
609 | ||
374ca955 A |
610 | /** |
611 | * The longitude of the sun at the time specified by this object. | |
612 | * The longitude is measured in radians along the ecliptic | |
613 | * from the "first point of Aries," the point at which the ecliptic | |
614 | * crosses the earth's equatorial plane at the vernal equinox. | |
615 | * <p> | |
616 | * Currently, this method uses an approximation of the two-body Kepler's | |
617 | * equation for the earth and the sun. It does not take into account the | |
618 | * perturbations caused by the other planets, the moon, etc. | |
619 | * @internal | |
620 | * @deprecated ICU 2.4. This class may be removed or modified. | |
621 | */ | |
622 | double CalendarAstronomer::getSunLongitude() | |
623 | { | |
46f4442e A |
624 | // See page 86 of "Practial Astronomy with your Calculator", |
625 | // by Peter Duffet-Smith, for details on the algorithm. | |
374ca955 | 626 | |
46f4442e A |
627 | if (isINVALID(sunLongitude)) { |
628 | getSunLongitude(getJulianDay(), sunLongitude, meanAnomalySun); | |
629 | } | |
630 | return sunLongitude; | |
374ca955 A |
631 | } |
632 | ||
633 | /** | |
634 | * TODO Make this public when the entire class is package-private. | |
635 | */ | |
636 | /*public*/ void CalendarAstronomer::getSunLongitude(double jDay, double &longitude, double &meanAnomaly) | |
637 | { | |
46f4442e A |
638 | // See page 86 of "Practial Astronomy with your Calculator", |
639 | // by Peter Duffet-Smith, for details on the algorithm. | |
374ca955 | 640 | |
46f4442e | 641 | double day = jDay - JD_EPOCH; // Days since epoch |
374ca955 | 642 | |
46f4442e A |
643 | // Find the angular distance the sun in a fictitious |
644 | // circular orbit has travelled since the epoch. | |
645 | double epochAngle = norm2PI(CalendarAstronomer_PI2/TROPICAL_YEAR*day); | |
374ca955 | 646 | |
46f4442e A |
647 | // The epoch wasn't at the sun's perigee; find the angular distance |
648 | // since perigee, which is called the "mean anomaly" | |
649 | meanAnomaly = norm2PI(epochAngle + SUN_ETA_G - SUN_OMEGA_G); | |
374ca955 | 650 | |
46f4442e A |
651 | // Now find the "true anomaly", e.g. the real solar longitude |
652 | // by solving Kepler's equation for an elliptical orbit | |
653 | // NOTE: The 3rd ed. of the book lists omega_g and eta_g in different | |
654 | // equations; omega_g is to be correct. | |
655 | longitude = norm2PI(trueAnomaly(meanAnomaly, SUN_E) + SUN_OMEGA_G); | |
374ca955 A |
656 | } |
657 | ||
658 | /** | |
659 | * The position of the sun at this object's current date and time, | |
660 | * in equatorial coordinates. | |
661 | * @internal | |
662 | * @deprecated ICU 2.4. This class may be removed or modified. | |
663 | */ | |
664 | CalendarAstronomer::Equatorial& CalendarAstronomer::getSunPosition(CalendarAstronomer::Equatorial& result) { | |
46f4442e | 665 | return eclipticToEquatorial(result, getSunLongitude(), 0); |
374ca955 A |
666 | } |
667 | ||
668 | ||
669 | /** | |
670 | * Constant representing the vernal equinox. | |
671 | * For use with {@link #getSunTime getSunTime}. | |
672 | * Note: In this case, "vernal" refers to the northern hemisphere's seasons. | |
673 | * @internal | |
674 | * @deprecated ICU 2.4. This class may be removed or modified. | |
675 | */ | |
73c04bcf | 676 | /*double CalendarAstronomer::VERNAL_EQUINOX() { |
374ca955 | 677 | return 0; |
73c04bcf | 678 | }*/ |
374ca955 A |
679 | |
680 | /** | |
681 | * Constant representing the summer solstice. | |
682 | * For use with {@link #getSunTime getSunTime}. | |
683 | * Note: In this case, "summer" refers to the northern hemisphere's seasons. | |
684 | * @internal | |
685 | * @deprecated ICU 2.4. This class may be removed or modified. | |
686 | */ | |
687 | double CalendarAstronomer::SUMMER_SOLSTICE() { | |
46f4442e | 688 | return (CalendarAstronomer::PI/2); |
374ca955 A |
689 | } |
690 | ||
691 | /** | |
692 | * Constant representing the autumnal equinox. | |
693 | * For use with {@link #getSunTime getSunTime}. | |
694 | * Note: In this case, "autumn" refers to the northern hemisphere's seasons. | |
695 | * @internal | |
696 | * @deprecated ICU 2.4. This class may be removed or modified. | |
697 | */ | |
73c04bcf | 698 | /*double CalendarAstronomer::AUTUMN_EQUINOX() { |
374ca955 | 699 | return (CalendarAstronomer::PI); |
73c04bcf | 700 | }*/ |
374ca955 A |
701 | |
702 | /** | |
703 | * Constant representing the winter solstice. | |
704 | * For use with {@link #getSunTime getSunTime}. | |
705 | * Note: In this case, "winter" refers to the northern hemisphere's seasons. | |
706 | * @internal | |
707 | * @deprecated ICU 2.4. This class may be removed or modified. | |
708 | */ | |
46f4442e A |
709 | double CalendarAstronomer::WINTER_SOLSTICE() { |
710 | return ((CalendarAstronomer::PI*3)/2); | |
711 | } | |
73c04bcf A |
712 | |
713 | CalendarAstronomer::AngleFunc::~AngleFunc() {} | |
374ca955 A |
714 | |
715 | /** | |
716 | * Find the next time at which the sun's ecliptic longitude will have | |
717 | * the desired value. | |
718 | * @internal | |
719 | * @deprecated ICU 2.4. This class may be removed or modified. | |
720 | */ | |
721 | class SunTimeAngleFunc : public CalendarAstronomer::AngleFunc { | |
722 | public: | |
4388f060 | 723 | virtual ~SunTimeAngleFunc(); |
46f4442e | 724 | virtual double eval(CalendarAstronomer& a) { return a.getSunLongitude(); } |
374ca955 A |
725 | }; |
726 | ||
4388f060 A |
727 | SunTimeAngleFunc::~SunTimeAngleFunc() {} |
728 | ||
374ca955 A |
729 | UDate CalendarAstronomer::getSunTime(double desired, UBool next) |
730 | { | |
46f4442e A |
731 | SunTimeAngleFunc func; |
732 | return timeOfAngle( func, | |
733 | desired, | |
734 | TROPICAL_YEAR, | |
735 | MINUTE_MS, | |
736 | next); | |
374ca955 A |
737 | } |
738 | ||
73c04bcf A |
739 | CalendarAstronomer::CoordFunc::~CoordFunc() {} |
740 | ||
374ca955 A |
741 | class RiseSetCoordFunc : public CalendarAstronomer::CoordFunc { |
742 | public: | |
4388f060 | 743 | virtual ~RiseSetCoordFunc(); |
46f4442e | 744 | virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer&a) { a.getSunPosition(result); } |
374ca955 A |
745 | }; |
746 | ||
4388f060 A |
747 | RiseSetCoordFunc::~RiseSetCoordFunc() {} |
748 | ||
374ca955 A |
749 | UDate CalendarAstronomer::getSunRiseSet(UBool rise) |
750 | { | |
46f4442e | 751 | UDate t0 = fTime; |
374ca955 | 752 | |
46f4442e | 753 | // Make a rough guess: 6am or 6pm local time on the current day |
729e4ab9 | 754 | double noon = ClockMath::floorDivide(fTime + fGmtOffset, (double)DAY_MS)*DAY_MS - fGmtOffset + (12*HOUR_MS); |
374ca955 | 755 | |
46f4442e A |
756 | U_DEBUG_ASTRO_MSG(("Noon=%.2lf, %sL, gmtoff %.2lf\n", noon, debug_astro_date(noon+fGmtOffset), fGmtOffset)); |
757 | setTime(noon + ((rise ? -6 : 6) * HOUR_MS)); | |
758 | U_DEBUG_ASTRO_MSG(("added %.2lf ms as a guess,\n", ((rise ? -6. : 6.) * HOUR_MS))); | |
374ca955 | 759 | |
46f4442e A |
760 | RiseSetCoordFunc func; |
761 | double t = riseOrSet(func, | |
762 | rise, | |
763 | .533 * DEG_RAD, // Angular Diameter | |
764 | 34. /60.0 * DEG_RAD, // Refraction correction | |
765 | MINUTE_MS / 12.); // Desired accuracy | |
374ca955 | 766 | |
46f4442e A |
767 | setTime(t0); |
768 | return t; | |
374ca955 A |
769 | } |
770 | ||
771 | // Commented out - currently unused. ICU 2.6, Alan | |
772 | // //------------------------------------------------------------------------- | |
773 | // // Alternate Sun Rise/Set | |
774 | // // See Duffett-Smith p.93 | |
775 | // //------------------------------------------------------------------------- | |
776 | // | |
777 | // // This yields worse results (as compared to USNO data) than getSunRiseSet(). | |
778 | // /** | |
779 | // * TODO Make this when the entire class is package-private. | |
780 | // */ | |
781 | // /*public*/ long getSunRiseSet2(boolean rise) { | |
782 | // // 1. Calculate coordinates of the sun's center for midnight | |
783 | // double jd = uprv_floor(getJulianDay() - 0.5) + 0.5; | |
784 | // double[] sl = getSunLongitude(jd);// double lambda1 = sl[0]; | |
785 | // Equatorial pos1 = eclipticToEquatorial(lambda1, 0); | |
786 | // | |
787 | // // 2. Add ... to lambda to get position 24 hours later | |
788 | // double lambda2 = lambda1 + 0.985647*DEG_RAD; | |
789 | // Equatorial pos2 = eclipticToEquatorial(lambda2, 0); | |
790 | // | |
791 | // // 3. Calculate LSTs of rising and setting for these two positions | |
792 | // double tanL = ::tan(fLatitude); | |
793 | // double H = ::acos(-tanL * ::tan(pos1.declination)); | |
794 | // double lst1r = (CalendarAstronomer_PI2 + pos1.ascension - H) * 24 / CalendarAstronomer_PI2; | |
795 | // double lst1s = (pos1.ascension + H) * 24 / CalendarAstronomer_PI2; | |
796 | // H = ::acos(-tanL * ::tan(pos2.declination)); | |
797 | // double lst2r = (CalendarAstronomer_PI2-H + pos2.ascension ) * 24 / CalendarAstronomer_PI2; | |
798 | // double lst2s = (H + pos2.ascension ) * 24 / CalendarAstronomer_PI2; | |
799 | // if (lst1r > 24) lst1r -= 24; | |
800 | // if (lst1s > 24) lst1s -= 24; | |
801 | // if (lst2r > 24) lst2r -= 24; | |
802 | // if (lst2s > 24) lst2s -= 24; | |
803 | // | |
804 | // // 4. Convert LSTs to GSTs. If GST1 > GST2, add 24 to GST2. | |
805 | // double gst1r = lstToGst(lst1r); | |
806 | // double gst1s = lstToGst(lst1s); | |
807 | // double gst2r = lstToGst(lst2r); | |
808 | // double gst2s = lstToGst(lst2s); | |
809 | // if (gst1r > gst2r) gst2r += 24; | |
810 | // if (gst1s > gst2s) gst2s += 24; | |
811 | // | |
812 | // // 5. Calculate GST at 0h UT of this date | |
813 | // double t00 = utToGst(0); | |
814 | // | |
815 | // // 6. Calculate GST at 0h on the observer's longitude | |
816 | // double offset = ::round(fLongitude*12/PI); // p.95 step 6; he _rounds_ to nearest 15 deg. | |
817 | // double t00p = t00 - offset*1.002737909; | |
818 | // if (t00p < 0) t00p += 24; // do NOT normalize | |
819 | // | |
820 | // // 7. Adjust | |
821 | // if (gst1r < t00p) { | |
822 | // gst1r += 24; | |
823 | // gst2r += 24; | |
824 | // } | |
825 | // if (gst1s < t00p) { | |
826 | // gst1s += 24; | |
827 | // gst2s += 24; | |
828 | // } | |
829 | // | |
830 | // // 8. | |
831 | // double gstr = (24.07*gst1r-t00*(gst2r-gst1r))/(24.07+gst1r-gst2r); | |
832 | // double gsts = (24.07*gst1s-t00*(gst2s-gst1s))/(24.07+gst1s-gst2s); | |
833 | // | |
834 | // // 9. Correct for parallax, refraction, and sun's diameter | |
835 | // double dec = (pos1.declination + pos2.declination) / 2; | |
836 | // double psi = ::acos(sin(fLatitude) / cos(dec)); | |
837 | // double x = 0.830725 * DEG_RAD; // parallax+refraction+diameter | |
838 | // double y = ::asin(sin(x) / ::sin(psi)) * RAD_DEG; | |
839 | // double delta_t = 240 * y / cos(dec) / 3600; // hours | |
840 | // | |
841 | // // 10. Add correction to GSTs, subtract from GSTr | |
842 | // gstr -= delta_t; | |
843 | // gsts += delta_t; | |
844 | // | |
845 | // // 11. Convert GST to UT and then to local civil time | |
846 | // double ut = gstToUt(rise ? gstr : gsts); | |
847 | // //System.out.println((rise?"rise=":"set=") + ut + ", delta_t=" + delta_t); | |
848 | // long midnight = DAY_MS * (time / DAY_MS); // Find UT midnight on this day | |
849 | // return midnight + (long) (ut * 3600000); | |
850 | // } | |
851 | ||
852 | // Commented out - currently unused. ICU 2.6, Alan | |
853 | // /** | |
854 | // * Convert local sidereal time to Greenwich sidereal time. | |
855 | // * Section 15. Duffett-Smith p.21 | |
856 | // * @param lst in hours (0..24) | |
857 | // * @return GST in hours (0..24) | |
858 | // */ | |
859 | // double lstToGst(double lst) { | |
860 | // double delta = fLongitude * 24 / CalendarAstronomer_PI2; | |
861 | // return normalize(lst - delta, 24); | |
862 | // } | |
863 | ||
864 | // Commented out - currently unused. ICU 2.6, Alan | |
865 | // /** | |
866 | // * Convert UT to GST on this date. | |
867 | // * Section 12. Duffett-Smith p.17 | |
868 | // * @param ut in hours | |
869 | // * @return GST in hours | |
870 | // */ | |
871 | // double utToGst(double ut) { | |
872 | // return normalize(getT0() + ut*1.002737909, 24); | |
873 | // } | |
874 | ||
875 | // Commented out - currently unused. ICU 2.6, Alan | |
876 | // /** | |
877 | // * Convert GST to UT on this date. | |
878 | // * Section 13. Duffett-Smith p.18 | |
879 | // * @param gst in hours | |
880 | // * @return UT in hours | |
881 | // */ | |
882 | // double gstToUt(double gst) { | |
883 | // return normalize(gst - getT0(), 24) * 0.9972695663; | |
884 | // } | |
885 | ||
886 | // Commented out - currently unused. ICU 2.6, Alan | |
887 | // double getT0() { | |
888 | // // Common computation for UT <=> GST | |
889 | // | |
890 | // // Find JD for 0h UT | |
891 | // double jd = uprv_floor(getJulianDay() - 0.5) + 0.5; | |
892 | // | |
893 | // double s = jd - 2451545.0; | |
894 | // double t = s / 36525.0; | |
895 | // double t0 = 6.697374558 + (2400.051336 + 0.000025862*t)*t; | |
896 | // return t0; | |
897 | // } | |
898 | ||
899 | // Commented out - currently unused. ICU 2.6, Alan | |
900 | // //------------------------------------------------------------------------- | |
901 | // // Alternate Sun Rise/Set | |
902 | // // See sci.astro FAQ | |
903 | // // http://www.faqs.org/faqs/astronomy/faq/part3/section-5.html | |
904 | // //------------------------------------------------------------------------- | |
905 | // | |
906 | // // Note: This method appears to produce inferior accuracy as | |
907 | // // compared to getSunRiseSet(). | |
908 | // | |
909 | // /** | |
910 | // * TODO Make this when the entire class is package-private. | |
911 | // */ | |
912 | // /*public*/ long getSunRiseSet3(boolean rise) { | |
913 | // | |
914 | // // Compute day number for 0.0 Jan 2000 epoch | |
915 | // double d = (double)(time - EPOCH_2000_MS) / DAY_MS; | |
916 | // | |
917 | // // Now compute the Local Sidereal Time, LST: | |
918 | // // | |
919 | // double LST = 98.9818 + 0.985647352 * d + /*UT*15 + long*/ | |
920 | // fLongitude*RAD_DEG; | |
921 | // // | |
922 | // // (east long. positive). Note that LST is here expressed in degrees, | |
923 | // // where 15 degrees corresponds to one hour. Since LST really is an angle, | |
924 | // // it's convenient to use one unit---degrees---throughout. | |
925 | // | |
926 | // // COMPUTING THE SUN'S POSITION | |
927 | // // ---------------------------- | |
928 | // // | |
929 | // // To be able to compute the Sun's rise/set times, you need to be able to | |
930 | // // compute the Sun's position at any time. First compute the "day | |
931 | // // number" d as outlined above, for the desired moment. Next compute: | |
932 | // // | |
933 | // double oblecl = 23.4393 - 3.563E-7 * d; | |
934 | // // | |
935 | // double w = 282.9404 + 4.70935E-5 * d; | |
936 | // double M = 356.0470 + 0.9856002585 * d; | |
937 | // double e = 0.016709 - 1.151E-9 * d; | |
938 | // // | |
939 | // // This is the obliquity of the ecliptic, plus some of the elements of | |
940 | // // the Sun's apparent orbit (i.e., really the Earth's orbit): w = | |
941 | // // argument of perihelion, M = mean anomaly, e = eccentricity. | |
942 | // // Semi-major axis is here assumed to be exactly 1.0 (while not strictly | |
943 | // // true, this is still an accurate approximation). Next compute E, the | |
944 | // // eccentric anomaly: | |
945 | // // | |
946 | // double E = M + e*(180/PI) * ::sin(M*DEG_RAD) * ( 1.0 + e*cos(M*DEG_RAD) ); | |
947 | // // | |
948 | // // where E and M are in degrees. This is it---no further iterations are | |
949 | // // needed because we know e has a sufficiently small value. Next compute | |
950 | // // the true anomaly, v, and the distance, r: | |
951 | // // | |
952 | // /* r * cos(v) = */ double A = cos(E*DEG_RAD) - e; | |
953 | // /* r * ::sin(v) = */ double B = ::sqrt(1 - e*e) * ::sin(E*DEG_RAD); | |
954 | // // | |
955 | // // and | |
956 | // // | |
957 | // // r = sqrt( A*A + B*B ) | |
958 | // double v = ::atan2( B, A )*RAD_DEG; | |
959 | // // | |
960 | // // The Sun's true longitude, slon, can now be computed: | |
961 | // // | |
962 | // double slon = v + w; | |
963 | // // | |
964 | // // Since the Sun is always at the ecliptic (or at least very very close to | |
965 | // // it), we can use simplified formulae to convert slon (the Sun's ecliptic | |
966 | // // longitude) to sRA and sDec (the Sun's RA and Dec): | |
967 | // // | |
968 | // // ::sin(slon) * cos(oblecl) | |
969 | // // tan(sRA) = ------------------------- | |
970 | // // cos(slon) | |
971 | // // | |
972 | // // ::sin(sDec) = ::sin(oblecl) * ::sin(slon) | |
973 | // // | |
974 | // // As was the case when computing az, the Azimuth, if possible use an | |
975 | // // atan2() function to compute sRA. | |
976 | // | |
977 | // double sRA = ::atan2(sin(slon*DEG_RAD) * cos(oblecl*DEG_RAD), cos(slon*DEG_RAD))*RAD_DEG; | |
978 | // | |
979 | // double sin_sDec = ::sin(oblecl*DEG_RAD) * ::sin(slon*DEG_RAD); | |
980 | // double sDec = ::asin(sin_sDec)*RAD_DEG; | |
981 | // | |
982 | // // COMPUTING RISE AND SET TIMES | |
983 | // // ---------------------------- | |
984 | // // | |
985 | // // To compute when an object rises or sets, you must compute when it | |
986 | // // passes the meridian and the HA of rise/set. Then the rise time is | |
987 | // // the meridian time minus HA for rise/set, and the set time is the | |
988 | // // meridian time plus the HA for rise/set. | |
989 | // // | |
990 | // // To find the meridian time, compute the Local Sidereal Time at 0h local | |
991 | // // time (or 0h UT if you prefer to work in UT) as outlined above---name | |
992 | // // that quantity LST0. The Meridian Time, MT, will now be: | |
993 | // // | |
994 | // // MT = RA - LST0 | |
995 | // double MT = normalize(sRA - LST, 360); | |
996 | // // | |
997 | // // where "RA" is the object's Right Ascension (in degrees!). If negative, | |
998 | // // add 360 deg to MT. If the object is the Sun, leave the time as it is, | |
999 | // // but if it's stellar, multiply MT by 365.2422/366.2422, to convert from | |
1000 | // // sidereal to solar time. Now, compute HA for rise/set, name that | |
1001 | // // quantity HA0: | |
1002 | // // | |
1003 | // // ::sin(h0) - ::sin(lat) * ::sin(Dec) | |
1004 | // // cos(HA0) = --------------------------------- | |
1005 | // // cos(lat) * cos(Dec) | |
1006 | // // | |
1007 | // // where h0 is the altitude selected to represent rise/set. For a purely | |
1008 | // // mathematical horizon, set h0 = 0 and simplify to: | |
1009 | // // | |
1010 | // // cos(HA0) = - tan(lat) * tan(Dec) | |
1011 | // // | |
1012 | // // If you want to account for refraction on the atmosphere, set h0 = -35/60 | |
1013 | // // degrees (-35 arc minutes), and if you want to compute the rise/set times | |
1014 | // // for the Sun's upper limb, set h0 = -50/60 (-50 arc minutes). | |
1015 | // // | |
1016 | // double h0 = -50/60 * DEG_RAD; | |
1017 | // | |
1018 | // double HA0 = ::acos( | |
1019 | // (sin(h0) - ::sin(fLatitude) * sin_sDec) / | |
1020 | // (cos(fLatitude) * cos(sDec*DEG_RAD)))*RAD_DEG; | |
1021 | // | |
1022 | // // When HA0 has been computed, leave it as it is for the Sun but multiply | |
1023 | // // by 365.2422/366.2422 for stellar objects, to convert from sidereal to | |
1024 | // // solar time. Finally compute: | |
1025 | // // | |
1026 | // // Rise time = MT - HA0 | |
1027 | // // Set time = MT + HA0 | |
1028 | // // | |
1029 | // // convert the times from degrees to hours by dividing by 15. | |
1030 | // // | |
1031 | // // If you'd like to check that your calculations are accurate or just | |
1032 | // // need a quick result, check the USNO's Sun or Moon Rise/Set Table, | |
1033 | // // <URL:http://aa.usno.navy.mil/AA/data/docs/RS_OneYear.html>. | |
1034 | // | |
1035 | // double result = MT + (rise ? -HA0 : HA0); // in degrees | |
1036 | // | |
1037 | // // Find UT midnight on this day | |
1038 | // long midnight = DAY_MS * (time / DAY_MS); | |
1039 | // | |
1040 | // return midnight + (long) (result * 3600000 / 15); | |
1041 | // } | |
1042 | ||
1043 | //------------------------------------------------------------------------- | |
1044 | // The Moon | |
1045 | //------------------------------------------------------------------------- | |
1046 | ||
1047 | #define moonL0 (318.351648 * CalendarAstronomer::PI/180 ) // Mean long. at epoch | |
1048 | #define moonP0 ( 36.340410 * CalendarAstronomer::PI/180 ) // Mean long. of perigee | |
1049 | #define moonN0 ( 318.510107 * CalendarAstronomer::PI/180 ) // Mean long. of node | |
1050 | #define moonI ( 5.145366 * CalendarAstronomer::PI/180 ) // Inclination of orbit | |
1051 | #define moonE ( 0.054900 ) // Eccentricity of orbit | |
1052 | ||
1053 | // These aren't used right now | |
1054 | #define moonA ( 3.84401e5 ) // semi-major axis (km) | |
1055 | #define moonT0 ( 0.5181 * CalendarAstronomer::PI/180 ) // Angular size at distance A | |
1056 | #define moonPi ( 0.9507 * CalendarAstronomer::PI/180 ) // Parallax at distance A | |
1057 | ||
1058 | /** | |
1059 | * The position of the moon at the time set on this | |
1060 | * object, in equatorial coordinates. | |
1061 | * @internal | |
1062 | * @deprecated ICU 2.4. This class may be removed or modified. | |
1063 | */ | |
1064 | const CalendarAstronomer::Equatorial& CalendarAstronomer::getMoonPosition() | |
1065 | { | |
374ca955 | 1066 | // |
46f4442e A |
1067 | // See page 142 of "Practial Astronomy with your Calculator", |
1068 | // by Peter Duffet-Smith, for details on the algorithm. | |
374ca955 | 1069 | // |
46f4442e A |
1070 | if (moonPositionSet == FALSE) { |
1071 | // Calculate the solar longitude. Has the side effect of | |
1072 | // filling in "meanAnomalySun" as well. | |
1073 | getSunLongitude(); | |
1074 | ||
1075 | // | |
1076 | // Find the # of days since the epoch of our orbital parameters. | |
1077 | // TODO: Convert the time of day portion into ephemeris time | |
1078 | // | |
1079 | double day = getJulianDay() - JD_EPOCH; // Days since epoch | |
1080 | ||
1081 | // Calculate the mean longitude and anomaly of the moon, based on | |
1082 | // a circular orbit. Similar to the corresponding solar calculation. | |
1083 | double meanLongitude = norm2PI(13.1763966*PI/180*day + moonL0); | |
1084 | meanAnomalyMoon = norm2PI(meanLongitude - 0.1114041*PI/180 * day - moonP0); | |
1085 | ||
1086 | // | |
1087 | // Calculate the following corrections: | |
1088 | // Evection: the sun's gravity affects the moon's eccentricity | |
1089 | // Annual Eqn: variation in the effect due to earth-sun distance | |
1090 | // A3: correction factor (for ???) | |
1091 | // | |
1092 | double evection = 1.2739*PI/180 * ::sin(2 * (meanLongitude - sunLongitude) | |
1093 | - meanAnomalyMoon); | |
1094 | double annual = 0.1858*PI/180 * ::sin(meanAnomalySun); | |
1095 | double a3 = 0.3700*PI/180 * ::sin(meanAnomalySun); | |
1096 | ||
1097 | meanAnomalyMoon += evection - annual - a3; | |
1098 | ||
1099 | // | |
1100 | // More correction factors: | |
1101 | // center equation of the center correction | |
1102 | // a4 yet another error correction (???) | |
1103 | // | |
1104 | // TODO: Skip the equation of the center correction and solve Kepler's eqn? | |
1105 | // | |
1106 | double center = 6.2886*PI/180 * ::sin(meanAnomalyMoon); | |
1107 | double a4 = 0.2140*PI/180 * ::sin(2 * meanAnomalyMoon); | |
1108 | ||
1109 | // Now find the moon's corrected longitude | |
1110 | moonLongitude = meanLongitude + evection + center - annual + a4; | |
1111 | ||
1112 | // | |
1113 | // And finally, find the variation, caused by the fact that the sun's | |
1114 | // gravitational pull on the moon varies depending on which side of | |
1115 | // the earth the moon is on | |
1116 | // | |
1117 | double variation = 0.6583*CalendarAstronomer::PI/180 * ::sin(2*(moonLongitude - sunLongitude)); | |
1118 | ||
1119 | moonLongitude += variation; | |
1120 | ||
1121 | // | |
1122 | // What we've calculated so far is the moon's longitude in the plane | |
1123 | // of its own orbit. Now map to the ecliptic to get the latitude | |
1124 | // and longitude. First we need to find the longitude of the ascending | |
1125 | // node, the position on the ecliptic where it is crossed by the moon's | |
1126 | // orbit as it crosses from the southern to the northern hemisphere. | |
1127 | // | |
1128 | double nodeLongitude = norm2PI(moonN0 - 0.0529539*PI/180 * day); | |
1129 | ||
1130 | nodeLongitude -= 0.16*PI/180 * ::sin(meanAnomalySun); | |
1131 | ||
1132 | double y = ::sin(moonLongitude - nodeLongitude); | |
1133 | double x = cos(moonLongitude - nodeLongitude); | |
1134 | ||
1135 | moonEclipLong = ::atan2(y*cos(moonI), x) + nodeLongitude; | |
1136 | double moonEclipLat = ::asin(y * ::sin(moonI)); | |
1137 | ||
1138 | eclipticToEquatorial(moonPosition, moonEclipLong, moonEclipLat); | |
1139 | moonPositionSet = TRUE; | |
1140 | } | |
1141 | return moonPosition; | |
374ca955 A |
1142 | } |
1143 | ||
1144 | /** | |
1145 | * The "age" of the moon at the time specified in this object. | |
1146 | * This is really the angle between the | |
1147 | * current ecliptic longitudes of the sun and the moon, | |
1148 | * measured in radians. | |
1149 | * | |
1150 | * @see #getMoonPhase | |
1151 | * @internal | |
1152 | * @deprecated ICU 2.4. This class may be removed or modified. | |
1153 | */ | |
1154 | double CalendarAstronomer::getMoonAge() { | |
46f4442e A |
1155 | // See page 147 of "Practial Astronomy with your Calculator", |
1156 | // by Peter Duffet-Smith, for details on the algorithm. | |
1157 | // | |
1158 | // Force the moon's position to be calculated. We're going to use | |
1159 | // some the intermediate results cached during that calculation. | |
1160 | // | |
1161 | getMoonPosition(); | |
1162 | ||
1163 | return norm2PI(moonEclipLong - sunLongitude); | |
374ca955 A |
1164 | } |
1165 | ||
1166 | /** | |
1167 | * Calculate the phase of the moon at the time set in this object. | |
1168 | * The returned phase is a <code>double</code> in the range | |
1169 | * <code>0 <= phase < 1</code>, interpreted as follows: | |
1170 | * <ul> | |
1171 | * <li>0.00: New moon | |
1172 | * <li>0.25: First quarter | |
1173 | * <li>0.50: Full moon | |
1174 | * <li>0.75: Last quarter | |
1175 | * </ul> | |
1176 | * | |
1177 | * @see #getMoonAge | |
1178 | * @internal | |
1179 | * @deprecated ICU 2.4. This class may be removed or modified. | |
1180 | */ | |
1181 | double CalendarAstronomer::getMoonPhase() { | |
46f4442e A |
1182 | // See page 147 of "Practial Astronomy with your Calculator", |
1183 | // by Peter Duffet-Smith, for details on the algorithm. | |
1184 | return 0.5 * (1 - cos(getMoonAge())); | |
374ca955 A |
1185 | } |
1186 | ||
1187 | /** | |
1188 | * Constant representing a new moon. | |
1189 | * For use with {@link #getMoonTime getMoonTime} | |
1190 | * @internal | |
1191 | * @deprecated ICU 2.4. This class may be removed or modified. | |
1192 | */ | |
46f4442e A |
1193 | const CalendarAstronomer::MoonAge CalendarAstronomer::NEW_MOON() { |
1194 | return CalendarAstronomer::MoonAge(0); | |
1195 | } | |
374ca955 A |
1196 | |
1197 | /** | |
1198 | * Constant representing the moon's first quarter. | |
1199 | * For use with {@link #getMoonTime getMoonTime} | |
1200 | * @internal | |
1201 | * @deprecated ICU 2.4. This class may be removed or modified. | |
1202 | */ | |
73c04bcf | 1203 | /*const CalendarAstronomer::MoonAge CalendarAstronomer::FIRST_QUARTER() { |
374ca955 | 1204 | return CalendarAstronomer::MoonAge(CalendarAstronomer::PI/2); |
73c04bcf | 1205 | }*/ |
374ca955 A |
1206 | |
1207 | /** | |
1208 | * Constant representing a full moon. | |
1209 | * For use with {@link #getMoonTime getMoonTime} | |
1210 | * @internal | |
1211 | * @deprecated ICU 2.4. This class may be removed or modified. | |
1212 | */ | |
1213 | const CalendarAstronomer::MoonAge CalendarAstronomer::FULL_MOON() { | |
46f4442e | 1214 | return CalendarAstronomer::MoonAge(CalendarAstronomer::PI); |
374ca955 A |
1215 | } |
1216 | /** | |
1217 | * Constant representing the moon's last quarter. | |
1218 | * For use with {@link #getMoonTime getMoonTime} | |
1219 | * @internal | |
1220 | * @deprecated ICU 2.4. This class may be removed or modified. | |
1221 | */ | |
1222 | ||
1223 | class MoonTimeAngleFunc : public CalendarAstronomer::AngleFunc { | |
1224 | public: | |
4388f060 | 1225 | virtual ~MoonTimeAngleFunc(); |
46f4442e | 1226 | virtual double eval(CalendarAstronomer&a) { return a.getMoonAge(); } |
374ca955 A |
1227 | }; |
1228 | ||
4388f060 A |
1229 | MoonTimeAngleFunc::~MoonTimeAngleFunc() {} |
1230 | ||
73c04bcf | 1231 | /*const CalendarAstronomer::MoonAge CalendarAstronomer::LAST_QUARTER() { |
374ca955 | 1232 | return CalendarAstronomer::MoonAge((CalendarAstronomer::PI*3)/2); |
73c04bcf | 1233 | }*/ |
374ca955 A |
1234 | |
1235 | /** | |
1236 | * Find the next or previous time at which the Moon's ecliptic | |
1237 | * longitude will have the desired value. | |
1238 | * <p> | |
1239 | * @param desired The desired longitude. | |
1240 | * @param next <tt>true</tt> if the next occurrance of the phase | |
1241 | * is desired, <tt>false</tt> for the previous occurrance. | |
1242 | * @internal | |
1243 | * @deprecated ICU 2.4. This class may be removed or modified. | |
1244 | */ | |
1245 | UDate CalendarAstronomer::getMoonTime(double desired, UBool next) | |
1246 | { | |
46f4442e A |
1247 | MoonTimeAngleFunc func; |
1248 | return timeOfAngle( func, | |
1249 | desired, | |
1250 | SYNODIC_MONTH, | |
1251 | MINUTE_MS, | |
1252 | next); | |
374ca955 A |
1253 | } |
1254 | ||
1255 | /** | |
1256 | * Find the next or previous time at which the moon will be in the | |
1257 | * desired phase. | |
1258 | * <p> | |
1259 | * @param desired The desired phase of the moon. | |
1260 | * @param next <tt>true</tt> if the next occurrance of the phase | |
1261 | * is desired, <tt>false</tt> for the previous occurrance. | |
1262 | * @internal | |
1263 | * @deprecated ICU 2.4. This class may be removed or modified. | |
1264 | */ | |
1265 | UDate CalendarAstronomer::getMoonTime(const CalendarAstronomer::MoonAge& desired, UBool next) { | |
46f4442e | 1266 | return getMoonTime(desired.value, next); |
374ca955 A |
1267 | } |
1268 | ||
1269 | class MoonRiseSetCoordFunc : public CalendarAstronomer::CoordFunc { | |
1270 | public: | |
4388f060 | 1271 | virtual ~MoonRiseSetCoordFunc(); |
46f4442e | 1272 | virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer&a) { result = a.getMoonPosition(); } |
374ca955 A |
1273 | }; |
1274 | ||
4388f060 A |
1275 | MoonRiseSetCoordFunc::~MoonRiseSetCoordFunc() {} |
1276 | ||
374ca955 A |
1277 | /** |
1278 | * Returns the time (GMT) of sunrise or sunset on the local date to which | |
1279 | * this calendar is currently set. | |
1280 | * @internal | |
1281 | * @deprecated ICU 2.4. This class may be removed or modified. | |
1282 | */ | |
1283 | UDate CalendarAstronomer::getMoonRiseSet(UBool rise) | |
1284 | { | |
46f4442e A |
1285 | MoonRiseSetCoordFunc func; |
1286 | return riseOrSet(func, | |
1287 | rise, | |
1288 | .533 * DEG_RAD, // Angular Diameter | |
1289 | 34 /60.0 * DEG_RAD, // Refraction correction | |
1290 | MINUTE_MS); // Desired accuracy | |
374ca955 A |
1291 | } |
1292 | ||
1293 | //------------------------------------------------------------------------- | |
1294 | // Interpolation methods for finding the time at which a given event occurs | |
1295 | //------------------------------------------------------------------------- | |
1296 | ||
1297 | UDate CalendarAstronomer::timeOfAngle(AngleFunc& func, double desired, | |
1298 | double periodDays, double epsilon, UBool next) | |
1299 | { | |
46f4442e A |
1300 | // Find the value of the function at the current time |
1301 | double lastAngle = func.eval(*this); | |
374ca955 | 1302 | |
46f4442e A |
1303 | // Find out how far we are from the desired angle |
1304 | double deltaAngle = norm2PI(desired - lastAngle) ; | |
374ca955 | 1305 | |
46f4442e A |
1306 | // Using the average period, estimate the next (or previous) time at |
1307 | // which the desired angle occurs. | |
1308 | double deltaT = (deltaAngle + (next ? 0.0 : - CalendarAstronomer_PI2 )) * (periodDays*DAY_MS) / CalendarAstronomer_PI2; | |
374ca955 | 1309 | |
46f4442e A |
1310 | double lastDeltaT = deltaT; // Liu |
1311 | UDate startTime = fTime; // Liu | |
374ca955 | 1312 | |
46f4442e | 1313 | setTime(fTime + uprv_ceil(deltaT)); |
374ca955 | 1314 | |
46f4442e A |
1315 | // Now iterate until we get the error below epsilon. Throughout |
1316 | // this loop we use normPI to get values in the range -Pi to Pi, | |
1317 | // since we're using them as correction factors rather than absolute angles. | |
1318 | do { | |
1319 | // Evaluate the function at the time we've estimated | |
1320 | double angle = func.eval(*this); | |
1321 | ||
1322 | // Find the # of milliseconds per radian at this point on the curve | |
1323 | double factor = uprv_fabs(deltaT / normPI(angle-lastAngle)); | |
1324 | ||
1325 | // Correct the time estimate based on how far off the angle is | |
1326 | deltaT = normPI(desired - angle) * factor; | |
1327 | ||
1328 | // HACK: | |
1329 | // | |
1330 | // If abs(deltaT) begins to diverge we need to quit this loop. | |
1331 | // This only appears to happen when attempting to locate, for | |
1332 | // example, a new moon on the day of the new moon. E.g.: | |
1333 | // | |
1334 | // This result is correct: | |
1335 | // newMoon(7508(Mon Jul 23 00:00:00 CST 1990,false))= | |
1336 | // Sun Jul 22 10:57:41 CST 1990 | |
1337 | // | |
1338 | // But attempting to make the same call a day earlier causes deltaT | |
1339 | // to diverge: | |
1340 | // CalendarAstronomer.timeOfAngle() diverging: 1.348508727575625E9 -> | |
1341 | // 1.3649828540224032E9 | |
1342 | // newMoon(7507(Sun Jul 22 00:00:00 CST 1990,false))= | |
1343 | // Sun Jul 08 13:56:15 CST 1990 | |
1344 | // | |
1345 | // As a temporary solution, we catch this specific condition and | |
1346 | // adjust our start time by one eighth period days (either forward | |
1347 | // or backward) and try again. | |
1348 | // Liu 11/9/00 | |
1349 | if (uprv_fabs(deltaT) > uprv_fabs(lastDeltaT)) { | |
1350 | double delta = uprv_ceil (periodDays * DAY_MS / 8.0); | |
1351 | setTime(startTime + (next ? delta : -delta)); | |
1352 | return timeOfAngle(func, desired, periodDays, epsilon, next); | |
1353 | } | |
1354 | ||
1355 | lastDeltaT = deltaT; | |
1356 | lastAngle = angle; | |
1357 | ||
1358 | setTime(fTime + uprv_ceil(deltaT)); | |
374ca955 | 1359 | } |
46f4442e | 1360 | while (uprv_fabs(deltaT) > epsilon); |
374ca955 | 1361 | |
46f4442e | 1362 | return fTime; |
374ca955 A |
1363 | } |
1364 | ||
1365 | UDate CalendarAstronomer::riseOrSet(CoordFunc& func, UBool rise, | |
1366 | double diameter, double refraction, | |
1367 | double epsilon) | |
1368 | { | |
46f4442e A |
1369 | Equatorial pos; |
1370 | double tanL = ::tan(fLatitude); | |
1371 | double deltaT = 0; | |
1372 | int32_t count = 0; | |
374ca955 | 1373 | |
46f4442e A |
1374 | // |
1375 | // Calculate the object's position at the current time, then use that | |
1376 | // position to calculate the time of rising or setting. The position | |
1377 | // will be different at that time, so iterate until the error is allowable. | |
1378 | // | |
1379 | U_DEBUG_ASTRO_MSG(("setup rise=%s, dia=%.3lf, ref=%.3lf, eps=%.3lf\n", | |
1380 | rise?"T":"F", diameter, refraction, epsilon)); | |
1381 | do { | |
1382 | // See "Practical Astronomy With Your Calculator, section 33. | |
1383 | func.eval(pos, *this); | |
1384 | double angle = ::acos(-tanL * ::tan(pos.declination)); | |
1385 | double lst = ((rise ? CalendarAstronomer_PI2-angle : angle) + pos.ascension ) * 24 / CalendarAstronomer_PI2; | |
1386 | ||
1387 | // Convert from LST to Universal Time. | |
1388 | UDate newTime = lstToUT( lst ); | |
1389 | ||
1390 | deltaT = newTime - fTime; | |
1391 | setTime(newTime); | |
1392 | U_DEBUG_ASTRO_MSG(("%d] dT=%.3lf, angle=%.3lf, lst=%.3lf, A=%.3lf/D=%.3lf\n", | |
1393 | count, deltaT, angle, lst, pos.ascension, pos.declination)); | |
1394 | } | |
1395 | while (++ count < 5 && uprv_fabs(deltaT) > epsilon); | |
374ca955 | 1396 | |
46f4442e A |
1397 | // Calculate the correction due to refraction and the object's angular diameter |
1398 | double cosD = ::cos(pos.declination); | |
1399 | double psi = ::acos(sin(fLatitude) / cosD); | |
1400 | double x = diameter / 2 + refraction; | |
1401 | double y = ::asin(sin(x) / ::sin(psi)); | |
1402 | long delta = (long)((240 * y * RAD_DEG / cosD)*SECOND_MS); | |
374ca955 | 1403 | |
46f4442e | 1404 | return fTime + (rise ? -delta : delta); |
374ca955 | 1405 | } |
46f4442e | 1406 | /** |
374ca955 A |
1407 | * Return the obliquity of the ecliptic (the angle between the ecliptic |
1408 | * and the earth's equator) at the current time. This varies due to | |
1409 | * the precession of the earth's axis. | |
1410 | * | |
1411 | * @return the obliquity of the ecliptic relative to the equator, | |
1412 | * measured in radians. | |
1413 | */ | |
1414 | double CalendarAstronomer::eclipticObliquity() { | |
46f4442e A |
1415 | if (isINVALID(eclipObliquity)) { |
1416 | const double epoch = 2451545.0; // 2000 AD, January 1.5 | |
374ca955 | 1417 | |
46f4442e | 1418 | double T = (getJulianDay() - epoch) / 36525; |
374ca955 | 1419 | |
46f4442e A |
1420 | eclipObliquity = 23.439292 |
1421 | - 46.815/3600 * T | |
1422 | - 0.0006/3600 * T*T | |
1423 | + 0.00181/3600 * T*T*T; | |
374ca955 | 1424 | |
46f4442e A |
1425 | eclipObliquity *= DEG_RAD; |
1426 | } | |
1427 | return eclipObliquity; | |
374ca955 A |
1428 | } |
1429 | ||
1430 | ||
1431 | //------------------------------------------------------------------------- | |
1432 | // Private data | |
1433 | //------------------------------------------------------------------------- | |
1434 | void CalendarAstronomer::clearCache() { | |
46f4442e A |
1435 | const double INVALID = uprv_getNaN(); |
1436 | ||
1437 | julianDay = INVALID; | |
1438 | julianCentury = INVALID; | |
1439 | sunLongitude = INVALID; | |
1440 | meanAnomalySun = INVALID; | |
1441 | moonLongitude = INVALID; | |
1442 | moonEclipLong = INVALID; | |
1443 | meanAnomalyMoon = INVALID; | |
1444 | eclipObliquity = INVALID; | |
1445 | siderealTime = INVALID; | |
1446 | siderealT0 = INVALID; | |
1447 | moonPositionSet = FALSE; | |
374ca955 A |
1448 | } |
1449 | ||
1450 | //private static void out(String s) { | |
1451 | // System.out.println(s); | |
1452 | //} | |
1453 | ||
1454 | //private static String deg(double rad) { | |
1455 | // return Double.toString(rad * RAD_DEG); | |
1456 | //} | |
1457 | ||
1458 | //private static String hours(long ms) { | |
1459 | // return Double.toString((double)ms / HOUR_MS) + " hours"; | |
1460 | //} | |
1461 | ||
1462 | /** | |
1463 | * @internal | |
1464 | * @deprecated ICU 2.4. This class may be removed or modified. | |
1465 | */ | |
73c04bcf | 1466 | /*UDate CalendarAstronomer::local(UDate localMillis) { |
374ca955 A |
1467 | // TODO - srl ? |
1468 | TimeZone *tz = TimeZone::createDefault(); | |
1469 | int32_t rawOffset; | |
1470 | int32_t dstOffset; | |
1471 | UErrorCode status = U_ZERO_ERROR; | |
1472 | tz->getOffset(localMillis, TRUE, rawOffset, dstOffset, status); | |
1473 | delete tz; | |
1474 | return localMillis - rawOffset; | |
73c04bcf | 1475 | }*/ |
374ca955 A |
1476 | |
1477 | // Debugging functions | |
1478 | UnicodeString CalendarAstronomer::Ecliptic::toString() const | |
1479 | { | |
1480 | #ifdef U_DEBUG_ASTRO | |
46f4442e A |
1481 | char tmp[800]; |
1482 | sprintf(tmp, "[%.5f,%.5f]", longitude*RAD_DEG, latitude*RAD_DEG); | |
1483 | return UnicodeString(tmp, ""); | |
374ca955 | 1484 | #else |
46f4442e | 1485 | return UnicodeString(); |
374ca955 A |
1486 | #endif |
1487 | } | |
1488 | ||
1489 | UnicodeString CalendarAstronomer::Equatorial::toString() const | |
1490 | { | |
1491 | #ifdef U_DEBUG_ASTRO | |
46f4442e A |
1492 | char tmp[400]; |
1493 | sprintf(tmp, "%f,%f", | |
1494 | (ascension*RAD_DEG), (declination*RAD_DEG)); | |
1495 | return UnicodeString(tmp, ""); | |
374ca955 | 1496 | #else |
46f4442e | 1497 | return UnicodeString(); |
374ca955 A |
1498 | #endif |
1499 | } | |
1500 | ||
1501 | UnicodeString CalendarAstronomer::Horizon::toString() const | |
1502 | { | |
1503 | #ifdef U_DEBUG_ASTRO | |
46f4442e A |
1504 | char tmp[800]; |
1505 | sprintf(tmp, "[%.5f,%.5f]", altitude*RAD_DEG, azimuth*RAD_DEG); | |
1506 | return UnicodeString(tmp, ""); | |
374ca955 | 1507 | #else |
46f4442e | 1508 | return UnicodeString(); |
374ca955 A |
1509 | #endif |
1510 | } | |
1511 | ||
1512 | ||
1513 | // static private String radToHms(double angle) { | |
1514 | // int hrs = (int) (angle*RAD_HOUR); | |
1515 | // int min = (int)((angle*RAD_HOUR - hrs) * 60); | |
1516 | // int sec = (int)((angle*RAD_HOUR - hrs - min/60.0) * 3600); | |
1517 | ||
1518 | // return Integer.toString(hrs) + "h" + min + "m" + sec + "s"; | |
1519 | // } | |
1520 | ||
1521 | // static private String radToDms(double angle) { | |
1522 | // int deg = (int) (angle*RAD_DEG); | |
1523 | // int min = (int)((angle*RAD_DEG - deg) * 60); | |
1524 | // int sec = (int)((angle*RAD_DEG - deg - min/60.0) * 3600); | |
1525 | ||
1526 | // return Integer.toString(deg) + "\u00b0" + min + "'" + sec + "\""; | |
1527 | // } | |
1528 | ||
1529 | // =============== Calendar Cache ================ | |
1530 | ||
1531 | void CalendarCache::createCache(CalendarCache** cache, UErrorCode& status) { | |
46f4442e A |
1532 | ucln_i18n_registerCleanup(UCLN_I18N_ASTRO_CALENDAR, calendar_astro_cleanup); |
1533 | if(cache == NULL) { | |
1534 | status = U_MEMORY_ALLOCATION_ERROR; | |
1535 | } else { | |
1536 | *cache = new CalendarCache(32, status); | |
1537 | if(U_FAILURE(status)) { | |
1538 | delete *cache; | |
1539 | *cache = NULL; | |
1540 | } | |
73c04bcf | 1541 | } |
374ca955 A |
1542 | } |
1543 | ||
1544 | int32_t CalendarCache::get(CalendarCache** cache, int32_t key, UErrorCode &status) { | |
46f4442e | 1545 | int32_t res; |
374ca955 | 1546 | |
374ca955 | 1547 | if(U_FAILURE(status)) { |
46f4442e A |
1548 | return 0; |
1549 | } | |
1550 | umtx_lock(&ccLock); | |
1551 | ||
1552 | if(*cache == NULL) { | |
1553 | createCache(cache, status); | |
1554 | if(U_FAILURE(status)) { | |
1555 | umtx_unlock(&ccLock); | |
1556 | return 0; | |
1557 | } | |
374ca955 | 1558 | } |
374ca955 | 1559 | |
46f4442e A |
1560 | res = uhash_igeti((*cache)->fTable, key); |
1561 | U_DEBUG_ASTRO_MSG(("%p: GET: [%d] == %d\n", (*cache)->fTable, key, res)); | |
374ca955 | 1562 | |
46f4442e A |
1563 | umtx_unlock(&ccLock); |
1564 | return res; | |
374ca955 A |
1565 | } |
1566 | ||
1567 | void CalendarCache::put(CalendarCache** cache, int32_t key, int32_t value, UErrorCode &status) { | |
374ca955 | 1568 | if(U_FAILURE(status)) { |
46f4442e A |
1569 | return; |
1570 | } | |
1571 | umtx_lock(&ccLock); | |
1572 | ||
1573 | if(*cache == NULL) { | |
1574 | createCache(cache, status); | |
1575 | if(U_FAILURE(status)) { | |
1576 | umtx_unlock(&ccLock); | |
1577 | return; | |
1578 | } | |
374ca955 | 1579 | } |
374ca955 | 1580 | |
46f4442e A |
1581 | uhash_iputi((*cache)->fTable, key, value, &status); |
1582 | U_DEBUG_ASTRO_MSG(("%p: PUT: [%d] := %d\n", (*cache)->fTable, key, value)); | |
374ca955 | 1583 | |
46f4442e | 1584 | umtx_unlock(&ccLock); |
374ca955 A |
1585 | } |
1586 | ||
1587 | CalendarCache::CalendarCache(int32_t size, UErrorCode &status) { | |
46f4442e A |
1588 | fTable = uhash_openSize(uhash_hashLong, uhash_compareLong, NULL, size, &status); |
1589 | U_DEBUG_ASTRO_MSG(("%p: Opening.\n", fTable)); | |
374ca955 A |
1590 | } |
1591 | ||
1592 | CalendarCache::~CalendarCache() { | |
46f4442e A |
1593 | if(fTable != NULL) { |
1594 | U_DEBUG_ASTRO_MSG(("%p: Closing.\n", fTable)); | |
1595 | uhash_close(fTable); | |
1596 | } | |
374ca955 A |
1597 | } |
1598 | ||
1599 | U_NAMESPACE_END | |
1600 | ||
1601 | #endif // !UCONFIG_NO_FORMATTING |