]>
Commit | Line | Data |
---|---|---|
73c04bcf | 1 | /******************************************************************** |
57a6839d | 2 | * COPYRIGHT: |
b331163b | 3 | * Copyright (c) 2005-2014, International Business Machines Corporation and |
73c04bcf A |
4 | * others. All Rights Reserved. |
5 | ********************************************************************/ | |
6 | /************************************************************************ | |
7 | * Tests for the UText and UTextIterator text abstraction classses | |
8 | * | |
9 | ************************************************************************/ | |
10 | ||
73c04bcf A |
11 | #include <string.h> |
12 | #include <stdio.h> | |
13 | #include <stdlib.h> | |
729e4ab9 A |
14 | #include "unicode/utypes.h" |
15 | #include "unicode/utext.h" | |
16 | #include "unicode/utf8.h" | |
17 | #include "unicode/ustring.h" | |
18 | #include "unicode/uchriter.h" | |
73c04bcf A |
19 | #include "utxttest.h" |
20 | ||
21 | static UBool gFailed = FALSE; | |
22 | static int gTestNum = 0; | |
23 | ||
24 | // Forward decl | |
25 | UText *openFragmentedUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status); | |
26 | ||
27 | #define TEST_ASSERT(x) \ | |
28 | { if ((x)==FALSE) {errln("Test #%d failure in file %s at line %d\n", gTestNum, __FILE__, __LINE__);\ | |
29 | gFailed = TRUE;\ | |
30 | }} | |
31 | ||
32 | ||
33 | #define TEST_SUCCESS(status) \ | |
34 | { if (U_FAILURE(status)) {errln("Test #%d failure in file %s at line %d. Error = \"%s\"\n", \ | |
35 | gTestNum, __FILE__, __LINE__, u_errorName(status)); \ | |
36 | gFailed = TRUE;\ | |
37 | }} | |
38 | ||
39 | UTextTest::UTextTest() { | |
40 | } | |
41 | ||
42 | UTextTest::~UTextTest() { | |
43 | } | |
44 | ||
45 | ||
46 | void | |
47 | UTextTest::runIndexedTest(int32_t index, UBool exec, | |
48 | const char* &name, char* /*par*/) { | |
49 | switch (index) { | |
50 | case 0: name = "TextTest"; | |
51 | if (exec) TextTest(); break; | |
52 | case 1: name = "ErrorTest"; | |
53 | if (exec) ErrorTest(); break; | |
54 | case 2: name = "FreezeTest"; | |
55 | if (exec) FreezeTest(); break; | |
46f4442e A |
56 | case 3: name = "Ticket5560"; |
57 | if (exec) Ticket5560(); break; | |
58 | case 4: name = "Ticket6847"; | |
59 | if (exec) Ticket6847(); break; | |
57a6839d A |
60 | case 5: name = "Ticket10562"; |
61 | if (exec) Ticket10562(); break; | |
b331163b A |
62 | case 6: name = "Ticket10983"; |
63 | if (exec) Ticket10983(); break; | |
73c04bcf A |
64 | default: name = ""; break; |
65 | } | |
66 | } | |
67 | ||
68 | // | |
69 | // Quick and dirty random number generator. | |
70 | // (don't use library so that results are portable. | |
71 | static uint32_t m_seed = 1; | |
72 | static uint32_t m_rand() | |
73 | { | |
74 | m_seed = m_seed * 1103515245 + 12345; | |
75 | return (uint32_t)(m_seed/65536) % 32768; | |
76 | } | |
77 | ||
78 | ||
79 | // | |
80 | // TextTest() | |
81 | // | |
82 | // Top Level function for UText testing. | |
83 | // Specifies the strings to be tested, with the acutal testing itself | |
84 | // being carried out in another function, TestString(). | |
85 | // | |
86 | void UTextTest::TextTest() { | |
87 | int32_t i, j; | |
88 | ||
89 | TestString("abcd\\U00010001xyz"); | |
90 | TestString(""); | |
91 | ||
92 | // Supplementary chars at start or end | |
93 | TestString("\\U00010001"); | |
94 | TestString("abc\\U00010001"); | |
95 | TestString("\\U00010001abc"); | |
96 | ||
97 | // Test simple strings of lengths 1 to 60, looking for glitches at buffer boundaries | |
98 | UnicodeString s; | |
99 | for (i=1; i<60; i++) { | |
100 | s.truncate(0); | |
101 | for (j=0; j<i; j++) { | |
102 | if (j+0x30 == 0x5c) { | |
103 | // backslash. Needs to be escaped | |
104 | s.append((UChar)0x5c); | |
105 | } | |
106 | s.append(UChar(j+0x30)); | |
107 | } | |
108 | TestString(s); | |
109 | } | |
110 | ||
111 | // Test strings with odd-aligned supplementary chars, | |
112 | // looking for glitches at buffer boundaries | |
113 | for (i=1; i<60; i++) { | |
114 | s.truncate(0); | |
115 | s.append((UChar)0x41); | |
116 | for (j=0; j<i; j++) { | |
117 | s.append(UChar32(j+0x11000)); | |
118 | } | |
119 | TestString(s); | |
120 | } | |
121 | ||
122 | // String of chars of randomly varying size in utf-8 representation. | |
123 | // Exercise the mapping, and the varying sized buffer. | |
124 | // | |
125 | s.truncate(0); | |
126 | UChar32 c1 = 0; | |
127 | UChar32 c2 = 0x100; | |
128 | UChar32 c3 = 0xa000; | |
129 | UChar32 c4 = 0x11000; | |
130 | for (i=0; i<1000; i++) { | |
131 | int len8 = m_rand()%4 + 1; | |
132 | switch (len8) { | |
57a6839d | 133 | case 1: |
73c04bcf A |
134 | c1 = (c1+1)%0x80; |
135 | // don't put 0 into string (0 terminated strings for some tests) | |
136 | // don't put '\', will cause unescape() to fail. | |
137 | if (c1==0x5c || c1==0) { | |
138 | c1++; | |
139 | } | |
140 | s.append(c1); | |
141 | break; | |
142 | case 2: | |
143 | s.append(c2++); | |
144 | break; | |
145 | case 3: | |
146 | s.append(c3++); | |
147 | break; | |
148 | case 4: | |
149 | s.append(c4++); | |
150 | break; | |
151 | } | |
152 | } | |
153 | TestString(s); | |
154 | } | |
155 | ||
156 | ||
157 | // | |
158 | // TestString() Run a suite of UText tests on a string. | |
159 | // The test string is unescaped before use. | |
160 | // | |
161 | void UTextTest::TestString(const UnicodeString &s) { | |
162 | int32_t i; | |
163 | int32_t j; | |
164 | UChar32 c; | |
165 | int32_t cpCount = 0; | |
166 | UErrorCode status = U_ZERO_ERROR; | |
167 | UText *ut = NULL; | |
168 | int32_t saLen; | |
169 | ||
170 | UnicodeString sa = s.unescape(); | |
171 | saLen = sa.length(); | |
172 | ||
173 | // | |
174 | // Build up a mapping between code points and UTF-16 code unit indexes. | |
175 | // | |
176 | m *cpMap = new m[sa.length() + 1]; | |
177 | j = 0; | |
178 | for (i=0; i<sa.length(); i=sa.moveIndex32(i, 1)) { | |
179 | c = sa.char32At(i); | |
180 | cpMap[j].nativeIdx = i; | |
181 | cpMap[j].cp = c; | |
182 | j++; | |
183 | cpCount++; | |
184 | } | |
57a6839d | 185 | cpMap[j].nativeIdx = i; // position following the last char in utf-16 string. |
73c04bcf A |
186 | |
187 | ||
188 | // UChar * test, null terminated | |
189 | status = U_ZERO_ERROR; | |
190 | UChar *buf = new UChar[saLen+1]; | |
191 | sa.extract(buf, saLen+1, status); | |
192 | TEST_SUCCESS(status); | |
193 | ut = utext_openUChars(NULL, buf, -1, &status); | |
194 | TEST_SUCCESS(status); | |
195 | TestAccess(sa, ut, cpCount, cpMap); | |
196 | utext_close(ut); | |
197 | delete [] buf; | |
198 | ||
199 | // UChar * test, with length | |
200 | status = U_ZERO_ERROR; | |
201 | buf = new UChar[saLen+1]; | |
202 | sa.extract(buf, saLen+1, status); | |
203 | TEST_SUCCESS(status); | |
204 | ut = utext_openUChars(NULL, buf, saLen, &status); | |
205 | TEST_SUCCESS(status); | |
206 | TestAccess(sa, ut, cpCount, cpMap); | |
207 | utext_close(ut); | |
208 | delete [] buf; | |
209 | ||
210 | ||
211 | // UnicodeString test | |
212 | status = U_ZERO_ERROR; | |
213 | ut = utext_openUnicodeString(NULL, &sa, &status); | |
214 | TEST_SUCCESS(status); | |
215 | TestAccess(sa, ut, cpCount, cpMap); | |
216 | TestCMR(sa, ut, cpCount, cpMap, cpMap); | |
217 | utext_close(ut); | |
218 | ||
219 | ||
220 | // Const UnicodeString test | |
221 | status = U_ZERO_ERROR; | |
222 | ut = utext_openConstUnicodeString(NULL, &sa, &status); | |
223 | TEST_SUCCESS(status); | |
224 | TestAccess(sa, ut, cpCount, cpMap); | |
225 | utext_close(ut); | |
226 | ||
227 | ||
228 | // Replaceable test. (UnicodeString inherits Replaceable) | |
229 | status = U_ZERO_ERROR; | |
230 | ut = utext_openReplaceable(NULL, &sa, &status); | |
231 | TEST_SUCCESS(status); | |
232 | TestAccess(sa, ut, cpCount, cpMap); | |
233 | TestCMR(sa, ut, cpCount, cpMap, cpMap); | |
234 | utext_close(ut); | |
235 | ||
236 | // Character Iterator Tests | |
237 | status = U_ZERO_ERROR; | |
238 | const UChar *cbuf = sa.getBuffer(); | |
239 | CharacterIterator *ci = new UCharCharacterIterator(cbuf, saLen, status); | |
240 | TEST_SUCCESS(status); | |
241 | ut = utext_openCharacterIterator(NULL, ci, &status); | |
242 | TEST_SUCCESS(status); | |
243 | TestAccess(sa, ut, cpCount, cpMap); | |
244 | utext_close(ut); | |
245 | delete ci; | |
57a6839d | 246 | |
73c04bcf A |
247 | |
248 | // Fragmented UnicodeString (Chunk size of one) | |
249 | // | |
250 | status = U_ZERO_ERROR; | |
251 | ut = openFragmentedUnicodeString(NULL, &sa, &status); | |
252 | TEST_SUCCESS(status); | |
253 | TestAccess(sa, ut, cpCount, cpMap); | |
254 | utext_close(ut); | |
255 | ||
256 | // | |
257 | // UTF-8 test | |
258 | // | |
259 | ||
260 | // Convert the test string from UnicodeString to (char *) in utf-8 format | |
261 | int32_t u8Len = sa.extract(0, sa.length(), NULL, 0, "utf-8"); | |
262 | char *u8String = new char[u8Len + 1]; | |
263 | sa.extract(0, sa.length(), u8String, u8Len+1, "utf-8"); | |
264 | ||
265 | // Build up the map of code point indices in the utf-8 string | |
266 | m * u8Map = new m[sa.length() + 1]; | |
267 | i = 0; // native utf-8 index | |
268 | for (j=0; j<cpCount ; j++) { // code point number | |
269 | u8Map[j].nativeIdx = i; | |
270 | U8_NEXT(u8String, i, u8Len, c) | |
271 | u8Map[j].cp = c; | |
272 | } | |
273 | u8Map[cpCount].nativeIdx = u8Len; // position following the last char in utf-8 string. | |
274 | ||
275 | // Do the test itself | |
276 | status = U_ZERO_ERROR; | |
277 | ut = utext_openUTF8(NULL, u8String, -1, &status); | |
278 | TEST_SUCCESS(status); | |
279 | TestAccess(sa, ut, cpCount, u8Map); | |
280 | utext_close(ut); | |
281 | ||
282 | ||
283 | ||
729e4ab9 A |
284 | delete []cpMap; |
285 | delete []u8Map; | |
286 | delete []u8String; | |
73c04bcf A |
287 | } |
288 | ||
289 | // TestCMR test Copy, Move and Replace operations. | |
290 | // us UnicodeString containing the test text. | |
291 | // ut UText containing the same test text. | |
292 | // cpCount number of code points in the test text. | |
293 | // nativeMap Mapping from code points to native indexes for the UText. | |
294 | // u16Map Mapping from code points to UTF-16 indexes, for use with the UnicodeString. | |
295 | // | |
296 | // This function runs a whole series of opertions on each incoming UText. | |
297 | // The UText is deep-cloned prior to each operation, so that the original UText remains unchanged. | |
57a6839d | 298 | // |
73c04bcf A |
299 | void UTextTest::TestCMR(const UnicodeString &us, UText *ut, int cpCount, m *nativeMap, m *u16Map) { |
300 | TEST_ASSERT(utext_isWritable(ut) == TRUE); | |
301 | ||
302 | int srcLengthType; // Loop variables for selecting the postion and length | |
303 | int srcPosType; // of the block to operate on within the source text. | |
57a6839d | 304 | int destPosType; |
73c04bcf A |
305 | |
306 | int srcIndex = 0; // Code Point indexes of the block to operate on for | |
307 | int srcLength = 0; // a specific test. | |
308 | ||
309 | int destIndex = 0; // Code point index of the destination for a copy/move test. | |
310 | ||
311 | int32_t nativeStart = 0; // Native unit indexes for a test. | |
312 | int32_t nativeLimit = 0; | |
313 | int32_t nativeDest = 0; | |
314 | ||
315 | int32_t u16Start = 0; // UTF-16 indexes for a test. | |
316 | int32_t u16Limit = 0; // used when performing the same operation in a Unicode String | |
317 | int32_t u16Dest = 0; | |
318 | ||
319 | // Iterate over a whole series of source index, length and a target indexes. | |
320 | // This is done with code point indexes; these will be later translated to native | |
321 | // indexes using the cpMap. | |
322 | for (srcLengthType=1; srcLengthType<=3; srcLengthType++) { | |
323 | switch (srcLengthType) { | |
324 | case 1: srcLength = 1; break; | |
325 | case 2: srcLength = 5; break; | |
326 | case 3: srcLength = cpCount / 3; | |
327 | } | |
328 | for (srcPosType=1; srcPosType<=5; srcPosType++) { | |
329 | switch (srcPosType) { | |
330 | case 1: srcIndex = 0; break; | |
331 | case 2: srcIndex = 1; break; | |
332 | case 3: srcIndex = cpCount - srcLength; break; | |
333 | case 4: srcIndex = cpCount - srcLength - 1; break; | |
334 | case 5: srcIndex = cpCount / 2; break; | |
335 | } | |
336 | if (srcIndex < 0 || srcIndex + srcLength > cpCount) { | |
57a6839d | 337 | // filter out bogus test cases - |
73c04bcf A |
338 | // those with a source range that falls of an edge of the string. |
339 | continue; | |
340 | } | |
341 | ||
342 | // | |
343 | // Copy and move tests. | |
344 | // iterate over a variety of destination positions. | |
345 | // | |
346 | for (destPosType=1; destPosType<=4; destPosType++) { | |
347 | switch (destPosType) { | |
348 | case 1: destIndex = 0; break; | |
349 | case 2: destIndex = 1; break; | |
350 | case 3: destIndex = srcIndex - 1; break; | |
351 | case 4: destIndex = srcIndex + srcLength + 1; break; | |
352 | case 5: destIndex = cpCount-1; break; | |
353 | case 6: destIndex = cpCount; break; | |
354 | } | |
355 | if (destIndex<0 || destIndex>cpCount) { | |
356 | // filter out bogus test cases. | |
357 | continue; | |
358 | } | |
359 | ||
360 | nativeStart = nativeMap[srcIndex].nativeIdx; | |
361 | nativeLimit = nativeMap[srcIndex+srcLength].nativeIdx; | |
362 | nativeDest = nativeMap[destIndex].nativeIdx; | |
363 | ||
364 | u16Start = u16Map[srcIndex].nativeIdx; | |
365 | u16Limit = u16Map[srcIndex+srcLength].nativeIdx; | |
366 | u16Dest = u16Map[destIndex].nativeIdx; | |
367 | ||
368 | gFailed = FALSE; | |
369 | TestCopyMove(us, ut, FALSE, | |
370 | nativeStart, nativeLimit, nativeDest, | |
371 | u16Start, u16Limit, u16Dest); | |
372 | ||
373 | TestCopyMove(us, ut, TRUE, | |
374 | nativeStart, nativeLimit, nativeDest, | |
375 | u16Start, u16Limit, u16Dest); | |
376 | ||
377 | if (gFailed) { | |
378 | return; | |
379 | } | |
380 | } | |
381 | ||
382 | // | |
383 | // Replace tests. | |
384 | // | |
385 | UnicodeString fullRepString("This is an arbitrary string that will be used as replacement text"); | |
386 | for (int32_t replStrLen=0; replStrLen<20; replStrLen++) { | |
387 | UnicodeString repStr(fullRepString, 0, replStrLen); | |
388 | TestReplace(us, ut, | |
389 | nativeStart, nativeLimit, | |
390 | u16Start, u16Limit, | |
391 | repStr); | |
392 | if (gFailed) { | |
393 | return; | |
394 | } | |
395 | } | |
396 | ||
397 | } | |
398 | } | |
399 | ||
400 | } | |
401 | ||
402 | // | |
403 | // TestCopyMove run a single test case for utext_copy. | |
404 | // Test cases are created in TestCMR and dispatched here for execution. | |
405 | // | |
406 | void UTextTest::TestCopyMove(const UnicodeString &us, UText *ut, UBool move, | |
407 | int32_t nativeStart, int32_t nativeLimit, int32_t nativeDest, | |
57a6839d | 408 | int32_t u16Start, int32_t u16Limit, int32_t u16Dest) |
73c04bcf A |
409 | { |
410 | UErrorCode status = U_ZERO_ERROR; | |
411 | UText *targetUT = NULL; | |
412 | gTestNum++; | |
413 | gFailed = FALSE; | |
414 | ||
415 | // | |
416 | // clone the UText. The test will be run in the cloned copy | |
417 | // so that we don't alter the original. | |
418 | // | |
419 | targetUT = utext_clone(NULL, ut, TRUE, FALSE, &status); | |
420 | TEST_SUCCESS(status); | |
421 | UnicodeString targetUS(us); // And copy the reference string. | |
422 | ||
423 | // do the test operation first in the reference | |
424 | targetUS.copy(u16Start, u16Limit, u16Dest); | |
425 | if (move) { | |
426 | // delete out the source range. | |
427 | if (u16Limit < u16Dest) { | |
428 | targetUS.removeBetween(u16Start, u16Limit); | |
429 | } else { | |
430 | int32_t amtCopied = u16Limit - u16Start; | |
431 | targetUS.removeBetween(u16Start+amtCopied, u16Limit+amtCopied); | |
432 | } | |
433 | } | |
434 | ||
435 | // Do the same operation in the UText under test | |
436 | utext_copy(targetUT, nativeStart, nativeLimit, nativeDest, move, &status); | |
437 | if (nativeDest > nativeStart && nativeDest < nativeLimit) { | |
438 | TEST_ASSERT(status == U_INDEX_OUTOFBOUNDS_ERROR); | |
439 | } else { | |
440 | TEST_SUCCESS(status); | |
441 | ||
442 | // Compare the results of the two parallel tests | |
443 | int32_t usi = 0; // UnicodeString postion, utf-16 index. | |
444 | int64_t uti = 0; // UText position, native index. | |
57a6839d | 445 | int32_t cpi; // char32 position (code point index) |
73c04bcf A |
446 | UChar32 usc; // code point from Unicode String |
447 | UChar32 utc; // code point from UText | |
448 | utext_setNativeIndex(targetUT, 0); | |
449 | for (cpi=0; ; cpi++) { | |
450 | usc = targetUS.char32At(usi); | |
451 | utc = utext_next32(targetUT); | |
452 | if (utc < 0) { | |
453 | break; | |
454 | } | |
455 | TEST_ASSERT(uti == usi); | |
456 | TEST_ASSERT(utc == usc); | |
457 | usi = targetUS.moveIndex32(usi, 1); | |
458 | uti = utext_getNativeIndex(targetUT); | |
459 | if (gFailed) { | |
460 | goto cleanupAndReturn; | |
461 | } | |
462 | } | |
463 | int64_t expectedNativeLength = utext_nativeLength(ut); | |
464 | if (move == FALSE) { | |
465 | expectedNativeLength += nativeLimit - nativeStart; | |
466 | } | |
467 | uti = utext_getNativeIndex(targetUT); | |
468 | TEST_ASSERT(uti == expectedNativeLength); | |
469 | } | |
470 | ||
471 | cleanupAndReturn: | |
472 | utext_close(targetUT); | |
473 | } | |
57a6839d | 474 | |
73c04bcf A |
475 | |
476 | // | |
477 | // TestReplace Test a single Replace operation. | |
478 | // | |
479 | void UTextTest::TestReplace( | |
57a6839d | 480 | const UnicodeString &us, // reference UnicodeString in which to do the replace |
73c04bcf | 481 | UText *ut, // UnicodeText object under test. |
57a6839d | 482 | int32_t nativeStart, // Range to be replaced, in UText native units. |
73c04bcf A |
483 | int32_t nativeLimit, |
484 | int32_t u16Start, // Range to be replaced, in UTF-16 units | |
485 | int32_t u16Limit, // for use in the reference UnicodeString. | |
486 | const UnicodeString &repStr) // The replacement string | |
487 | { | |
488 | UErrorCode status = U_ZERO_ERROR; | |
489 | UText *targetUT = NULL; | |
490 | gTestNum++; | |
491 | gFailed = FALSE; | |
492 | ||
493 | // | |
494 | // clone the target UText. The test will be run in the cloned copy | |
495 | // so that we don't alter the original. | |
496 | // | |
497 | targetUT = utext_clone(NULL, ut, TRUE, FALSE, &status); | |
498 | TEST_SUCCESS(status); | |
499 | UnicodeString targetUS(us); // And copy the reference string. | |
500 | ||
501 | // | |
57a6839d | 502 | // Do the replace operation in the Unicode String, to |
73c04bcf A |
503 | // produce a reference result. |
504 | // | |
505 | targetUS.replace(u16Start, u16Limit-u16Start, repStr); | |
506 | ||
507 | // | |
508 | // Do the replace on the UText under test | |
509 | // | |
510 | const UChar *rs = repStr.getBuffer(); | |
511 | int32_t rsLen = repStr.length(); | |
512 | int32_t actualDelta = utext_replace(targetUT, nativeStart, nativeLimit, rs, rsLen, &status); | |
513 | int32_t expectedDelta = repStr.length() - (nativeLimit - nativeStart); | |
514 | TEST_ASSERT(actualDelta == expectedDelta); | |
515 | ||
516 | // | |
517 | // Compare the results | |
518 | // | |
519 | int32_t usi = 0; // UnicodeString postion, utf-16 index. | |
520 | int64_t uti = 0; // UText position, native index. | |
57a6839d | 521 | int32_t cpi; // char32 position (code point index) |
73c04bcf A |
522 | UChar32 usc; // code point from Unicode String |
523 | UChar32 utc; // code point from UText | |
524 | int64_t expectedNativeLength = 0; | |
525 | utext_setNativeIndex(targetUT, 0); | |
526 | for (cpi=0; ; cpi++) { | |
527 | usc = targetUS.char32At(usi); | |
528 | utc = utext_next32(targetUT); | |
529 | if (utc < 0) { | |
530 | break; | |
531 | } | |
532 | TEST_ASSERT(uti == usi); | |
533 | TEST_ASSERT(utc == usc); | |
534 | usi = targetUS.moveIndex32(usi, 1); | |
535 | uti = utext_getNativeIndex(targetUT); | |
536 | if (gFailed) { | |
537 | goto cleanupAndReturn; | |
538 | } | |
539 | } | |
540 | expectedNativeLength = utext_nativeLength(ut) + expectedDelta; | |
541 | uti = utext_getNativeIndex(targetUT); | |
542 | TEST_ASSERT(uti == expectedNativeLength); | |
543 | ||
544 | cleanupAndReturn: | |
545 | utext_close(targetUT); | |
546 | } | |
547 | ||
548 | // | |
46f4442e | 549 | // TestAccess Test the read only access functions on a UText, including cloning. |
73c04bcf A |
550 | // The text is accessed in a variety of ways, and compared with |
551 | // the reference UnicodeString. | |
552 | // | |
553 | void UTextTest::TestAccess(const UnicodeString &us, UText *ut, int cpCount, m *cpMap) { | |
46f4442e A |
554 | // Run the standard tests on the caller-supplied UText. |
555 | TestAccessNoClone(us, ut, cpCount, cpMap); | |
556 | ||
557 | // Re-run tests on a shallow clone. | |
558 | utext_setNativeIndex(ut, 0); | |
559 | UErrorCode status = U_ZERO_ERROR; | |
560 | UText *shallowClone = utext_clone(NULL, ut, FALSE /*deep*/, FALSE /*readOnly*/, &status); | |
561 | TEST_SUCCESS(status); | |
562 | TestAccessNoClone(us, shallowClone, cpCount, cpMap); | |
563 | ||
564 | // | |
565 | // Rerun again on a deep clone. | |
566 | // Note that text providers are not required to provide deep cloning, | |
567 | // so unsupported errors are ignored. | |
568 | // | |
569 | status = U_ZERO_ERROR; | |
570 | utext_setNativeIndex(shallowClone, 0); | |
571 | UText *deepClone = utext_clone(NULL, shallowClone, TRUE, FALSE, &status); | |
572 | utext_close(shallowClone); | |
573 | if (status != U_UNSUPPORTED_ERROR) { | |
574 | TEST_SUCCESS(status); | |
575 | TestAccessNoClone(us, deepClone, cpCount, cpMap); | |
576 | } | |
577 | utext_close(deepClone); | |
578 | } | |
57a6839d | 579 | |
46f4442e A |
580 | |
581 | // | |
582 | // TestAccessNoClone() Test the read only access functions on a UText. | |
583 | // The text is accessed in a variety of ways, and compared with | |
584 | // the reference UnicodeString. | |
585 | // | |
586 | void UTextTest::TestAccessNoClone(const UnicodeString &us, UText *ut, int cpCount, m *cpMap) { | |
73c04bcf A |
587 | UErrorCode status = U_ZERO_ERROR; |
588 | gTestNum++; | |
589 | ||
590 | // | |
591 | // Check the length from the UText | |
592 | // | |
593 | int64_t expectedLen = cpMap[cpCount].nativeIdx; | |
594 | int64_t utlen = utext_nativeLength(ut); | |
595 | TEST_ASSERT(expectedLen == utlen); | |
596 | ||
597 | // | |
598 | // Iterate forwards, verify that we get the correct code points | |
599 | // at the correct native offsets. | |
600 | // | |
601 | int i = 0; | |
602 | int64_t index; | |
603 | int64_t expectedIndex = 0; | |
604 | int64_t foundIndex = 0; | |
605 | UChar32 expectedC; | |
606 | UChar32 foundC; | |
607 | int64_t len; | |
608 | ||
609 | for (i=0; i<cpCount; i++) { | |
610 | expectedIndex = cpMap[i].nativeIdx; | |
611 | foundIndex = utext_getNativeIndex(ut); | |
612 | TEST_ASSERT(expectedIndex == foundIndex); | |
613 | expectedC = cpMap[i].cp; | |
57a6839d | 614 | foundC = utext_next32(ut); |
73c04bcf A |
615 | TEST_ASSERT(expectedC == foundC); |
616 | foundIndex = utext_getPreviousNativeIndex(ut); | |
617 | TEST_ASSERT(expectedIndex == foundIndex); | |
618 | if (gFailed) { | |
619 | return; | |
620 | } | |
621 | } | |
622 | foundC = utext_next32(ut); | |
623 | TEST_ASSERT(foundC == U_SENTINEL); | |
57a6839d | 624 | |
73c04bcf A |
625 | // Repeat above, using macros |
626 | utext_setNativeIndex(ut, 0); | |
627 | for (i=0; i<cpCount; i++) { | |
628 | expectedIndex = cpMap[i].nativeIdx; | |
629 | foundIndex = UTEXT_GETNATIVEINDEX(ut); | |
630 | TEST_ASSERT(expectedIndex == foundIndex); | |
631 | expectedC = cpMap[i].cp; | |
57a6839d | 632 | foundC = UTEXT_NEXT32(ut); |
73c04bcf A |
633 | TEST_ASSERT(expectedC == foundC); |
634 | if (gFailed) { | |
635 | return; | |
636 | } | |
637 | } | |
638 | foundC = UTEXT_NEXT32(ut); | |
639 | TEST_ASSERT(foundC == U_SENTINEL); | |
640 | ||
641 | // | |
642 | // Forward iteration (above) should have left index at the | |
643 | // end of the input, which should == length(). | |
644 | // | |
645 | len = utext_nativeLength(ut); | |
646 | foundIndex = utext_getNativeIndex(ut); | |
647 | TEST_ASSERT(len == foundIndex); | |
648 | ||
649 | // | |
650 | // Iterate backwards over entire test string | |
651 | // | |
652 | len = utext_getNativeIndex(ut); | |
653 | utext_setNativeIndex(ut, len); | |
654 | for (i=cpCount-1; i>=0; i--) { | |
655 | expectedC = cpMap[i].cp; | |
656 | expectedIndex = cpMap[i].nativeIdx; | |
657 | int64_t prevIndex = utext_getPreviousNativeIndex(ut); | |
658 | foundC = utext_previous32(ut); | |
659 | foundIndex = utext_getNativeIndex(ut); | |
660 | TEST_ASSERT(expectedIndex == foundIndex); | |
661 | TEST_ASSERT(expectedC == foundC); | |
662 | TEST_ASSERT(prevIndex == foundIndex); | |
663 | if (gFailed) { | |
664 | return; | |
665 | } | |
666 | } | |
667 | ||
668 | // | |
669 | // Backwards iteration, above, should have left our iterator | |
670 | // position at zero, and continued backwards iterationshould fail. | |
671 | // | |
672 | foundIndex = utext_getNativeIndex(ut); | |
673 | TEST_ASSERT(foundIndex == 0); | |
674 | foundIndex = utext_getPreviousNativeIndex(ut); | |
675 | TEST_ASSERT(foundIndex == 0); | |
676 | ||
677 | ||
678 | foundC = utext_previous32(ut); | |
679 | TEST_ASSERT(foundC == U_SENTINEL); | |
680 | foundIndex = utext_getNativeIndex(ut); | |
681 | TEST_ASSERT(foundIndex == 0); | |
682 | foundIndex = utext_getPreviousNativeIndex(ut); | |
683 | TEST_ASSERT(foundIndex == 0); | |
684 | ||
685 | ||
686 | // And again, with the macros | |
687 | utext_setNativeIndex(ut, len); | |
688 | for (i=cpCount-1; i>=0; i--) { | |
689 | expectedC = cpMap[i].cp; | |
690 | expectedIndex = cpMap[i].nativeIdx; | |
691 | foundC = UTEXT_PREVIOUS32(ut); | |
692 | foundIndex = UTEXT_GETNATIVEINDEX(ut); | |
693 | TEST_ASSERT(expectedIndex == foundIndex); | |
694 | TEST_ASSERT(expectedC == foundC); | |
695 | if (gFailed) { | |
696 | return; | |
697 | } | |
698 | } | |
699 | ||
700 | // | |
701 | // Backwards iteration, above, should have left our iterator | |
702 | // position at zero, and continued backwards iterationshould fail. | |
703 | // | |
704 | foundIndex = UTEXT_GETNATIVEINDEX(ut); | |
705 | TEST_ASSERT(foundIndex == 0); | |
706 | ||
707 | foundC = UTEXT_PREVIOUS32(ut); | |
708 | TEST_ASSERT(foundC == U_SENTINEL); | |
709 | foundIndex = UTEXT_GETNATIVEINDEX(ut); | |
710 | TEST_ASSERT(foundIndex == 0); | |
711 | if (gFailed) { | |
712 | return; | |
713 | } | |
714 | ||
715 | // | |
716 | // next32From(), prevous32From(), Iterate in a somewhat random order. | |
717 | // | |
718 | int cpIndex = 0; | |
719 | for (i=0; i<cpCount; i++) { | |
720 | cpIndex = (cpIndex + 9973) % cpCount; | |
721 | index = cpMap[cpIndex].nativeIdx; | |
722 | expectedC = cpMap[cpIndex].cp; | |
723 | foundC = utext_next32From(ut, index); | |
724 | TEST_ASSERT(expectedC == foundC); | |
725 | if (gFailed) { | |
726 | return; | |
727 | } | |
728 | } | |
729 | ||
730 | cpIndex = 0; | |
731 | for (i=0; i<cpCount; i++) { | |
732 | cpIndex = (cpIndex + 9973) % cpCount; | |
733 | index = cpMap[cpIndex+1].nativeIdx; | |
734 | expectedC = cpMap[cpIndex].cp; | |
735 | foundC = utext_previous32From(ut, index); | |
736 | TEST_ASSERT(expectedC == foundC); | |
737 | if (gFailed) { | |
738 | return; | |
739 | } | |
740 | } | |
741 | ||
742 | ||
743 | // | |
744 | // moveIndex(int32_t delta); | |
745 | // | |
746 | ||
747 | // Walk through frontwards, incrementing by one | |
748 | utext_setNativeIndex(ut, 0); | |
749 | for (i=1; i<=cpCount; i++) { | |
750 | utext_moveIndex32(ut, 1); | |
751 | index = utext_getNativeIndex(ut); | |
752 | expectedIndex = cpMap[i].nativeIdx; | |
753 | TEST_ASSERT(expectedIndex == index); | |
754 | index = UTEXT_GETNATIVEINDEX(ut); | |
755 | TEST_ASSERT(expectedIndex == index); | |
756 | } | |
757 | ||
758 | // Walk through frontwards, incrementing by two | |
759 | utext_setNativeIndex(ut, 0); | |
760 | for (i=2; i<cpCount; i+=2) { | |
761 | utext_moveIndex32(ut, 2); | |
762 | index = utext_getNativeIndex(ut); | |
763 | expectedIndex = cpMap[i].nativeIdx; | |
764 | TEST_ASSERT(expectedIndex == index); | |
765 | index = UTEXT_GETNATIVEINDEX(ut); | |
766 | TEST_ASSERT(expectedIndex == index); | |
767 | } | |
768 | ||
769 | // walk through the string backwards, decrementing by one. | |
770 | i = cpMap[cpCount].nativeIdx; | |
771 | utext_setNativeIndex(ut, i); | |
772 | for (i=cpCount; i>=0; i--) { | |
773 | expectedIndex = cpMap[i].nativeIdx; | |
774 | index = utext_getNativeIndex(ut); | |
775 | TEST_ASSERT(expectedIndex == index); | |
776 | index = UTEXT_GETNATIVEINDEX(ut); | |
777 | TEST_ASSERT(expectedIndex == index); | |
778 | utext_moveIndex32(ut, -1); | |
779 | } | |
780 | ||
781 | ||
782 | // walk through backwards, decrementing by three | |
783 | i = cpMap[cpCount].nativeIdx; | |
784 | utext_setNativeIndex(ut, i); | |
785 | for (i=cpCount; i>=0; i-=3) { | |
786 | expectedIndex = cpMap[i].nativeIdx; | |
787 | index = utext_getNativeIndex(ut); | |
788 | TEST_ASSERT(expectedIndex == index); | |
789 | index = UTEXT_GETNATIVEINDEX(ut); | |
790 | TEST_ASSERT(expectedIndex == index); | |
791 | utext_moveIndex32(ut, -3); | |
792 | } | |
793 | ||
794 | ||
795 | // | |
796 | // Extract | |
797 | // | |
798 | int bufSize = us.length() + 10; | |
799 | UChar *buf = new UChar[bufSize]; | |
800 | status = U_ZERO_ERROR; | |
801 | expectedLen = us.length(); | |
802 | len = utext_extract(ut, 0, utlen, buf, bufSize, &status); | |
803 | TEST_SUCCESS(status); | |
804 | TEST_ASSERT(len == expectedLen); | |
805 | int compareResult = us.compare(buf, -1); | |
806 | TEST_ASSERT(compareResult == 0); | |
807 | ||
808 | status = U_ZERO_ERROR; | |
809 | len = utext_extract(ut, 0, utlen, NULL, 0, &status); | |
810 | if (utlen == 0) { | |
811 | TEST_ASSERT(status == U_STRING_NOT_TERMINATED_WARNING); | |
812 | } else { | |
813 | TEST_ASSERT(status == U_BUFFER_OVERFLOW_ERROR); | |
814 | } | |
815 | TEST_ASSERT(len == expectedLen); | |
816 | ||
817 | status = U_ZERO_ERROR; | |
818 | u_memset(buf, 0x5555, bufSize); | |
819 | len = utext_extract(ut, 0, utlen, buf, 1, &status); | |
820 | if (us.length() == 0) { | |
821 | TEST_SUCCESS(status); | |
822 | TEST_ASSERT(buf[0] == 0); | |
823 | } else { | |
824 | // Buf len == 1, extracting a single 16 bit value. | |
825 | // If the data char is supplementary, it doesn't matter whether the buffer remains unchanged, | |
826 | // or whether the lead surrogate of the pair is extracted. | |
827 | // It's a buffer overflow error in either case. | |
828 | TEST_ASSERT(buf[0] == us.charAt(0) || | |
729e4ab9 | 829 | (buf[0] == 0x5555 && U_IS_SUPPLEMENTARY(us.char32At(0)))); |
73c04bcf A |
830 | TEST_ASSERT(buf[1] == 0x5555); |
831 | if (us.length() == 1) { | |
832 | TEST_ASSERT(status == U_STRING_NOT_TERMINATED_WARNING); | |
833 | } else { | |
834 | TEST_ASSERT(status == U_BUFFER_OVERFLOW_ERROR); | |
835 | } | |
836 | } | |
837 | ||
838 | delete []buf; | |
839 | } | |
840 | ||
73c04bcf A |
841 | // |
842 | // ErrorTest() Check various error and edge cases. | |
843 | // | |
57a6839d | 844 | void UTextTest::ErrorTest() |
73c04bcf A |
845 | { |
846 | // Close of an unitialized UText. Shouldn't blow up. | |
847 | { | |
57a6839d | 848 | UText ut; |
73c04bcf A |
849 | memset(&ut, 0, sizeof(UText)); |
850 | utext_close(&ut); | |
851 | utext_close(NULL); | |
852 | } | |
853 | ||
854 | // Double-close of a UText. Shouldn't blow up. UText should still be usable. | |
855 | { | |
856 | UErrorCode status = U_ZERO_ERROR; | |
857 | UText ut = UTEXT_INITIALIZER; | |
858 | UnicodeString s("Hello, World"); | |
859 | UText *ut2 = utext_openUnicodeString(&ut, &s, &status); | |
860 | TEST_SUCCESS(status); | |
861 | TEST_ASSERT(ut2 == &ut); | |
862 | ||
863 | UText *ut3 = utext_close(&ut); | |
864 | TEST_ASSERT(ut3 == &ut); | |
865 | ||
866 | UText *ut4 = utext_close(&ut); | |
867 | TEST_ASSERT(ut4 == &ut); | |
868 | ||
869 | utext_openUnicodeString(&ut, &s, &status); | |
870 | TEST_SUCCESS(status); | |
871 | utext_close(&ut); | |
872 | } | |
873 | ||
874 | // Re-use of a UText, chaining through each of the types of UText | |
875 | // (If it doesn't blow up, and doesn't leak, it's probably working fine) | |
876 | { | |
877 | UErrorCode status = U_ZERO_ERROR; | |
878 | UText ut = UTEXT_INITIALIZER; | |
879 | UText *utp; | |
880 | UnicodeString s1("Hello, World"); | |
881 | UChar s2[] = {(UChar)0x41, (UChar)0x42, (UChar)0}; | |
882 | const char *s3 = "\x66\x67\x68"; | |
883 | ||
884 | utp = utext_openUnicodeString(&ut, &s1, &status); | |
885 | TEST_SUCCESS(status); | |
886 | TEST_ASSERT(utp == &ut); | |
887 | ||
888 | utp = utext_openConstUnicodeString(&ut, &s1, &status); | |
889 | TEST_SUCCESS(status); | |
890 | TEST_ASSERT(utp == &ut); | |
891 | ||
892 | utp = utext_openUTF8(&ut, s3, -1, &status); | |
893 | TEST_SUCCESS(status); | |
894 | TEST_ASSERT(utp == &ut); | |
895 | ||
896 | utp = utext_openUChars(&ut, s2, -1, &status); | |
897 | TEST_SUCCESS(status); | |
898 | TEST_ASSERT(utp == &ut); | |
899 | ||
900 | utp = utext_close(&ut); | |
901 | TEST_ASSERT(utp == &ut); | |
902 | ||
903 | utp = utext_openUnicodeString(&ut, &s1, &status); | |
904 | TEST_SUCCESS(status); | |
905 | TEST_ASSERT(utp == &ut); | |
906 | } | |
907 | ||
729e4ab9 A |
908 | // Invalid parameters on open |
909 | // | |
910 | { | |
911 | UErrorCode status = U_ZERO_ERROR; | |
912 | UText ut = UTEXT_INITIALIZER; | |
57a6839d | 913 | |
729e4ab9 A |
914 | utext_openUChars(&ut, NULL, 5, &status); |
915 | TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR); | |
916 | ||
917 | status = U_ZERO_ERROR; | |
918 | utext_openUChars(&ut, NULL, -1, &status); | |
919 | TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR); | |
920 | ||
921 | status = U_ZERO_ERROR; | |
922 | utext_openUTF8(&ut, NULL, 4, &status); | |
923 | TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR); | |
924 | ||
925 | status = U_ZERO_ERROR; | |
926 | utext_openUTF8(&ut, NULL, -1, &status); | |
927 | TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR); | |
928 | } | |
929 | ||
73c04bcf A |
930 | // |
931 | // UTF-8 with malformed sequences. | |
932 | // These should come through as the Unicode replacement char, \ufffd | |
933 | // | |
934 | { | |
935 | UErrorCode status = U_ZERO_ERROR; | |
936 | UText *ut = NULL; | |
57a6839d | 937 | const char *badUTF8 = "\x41\x81\x42\xf0\x81\x81\x43"; |
73c04bcf A |
938 | UChar32 c; |
939 | ||
940 | ut = utext_openUTF8(NULL, badUTF8, -1, &status); | |
941 | TEST_SUCCESS(status); | |
942 | c = utext_char32At(ut, 1); | |
943 | TEST_ASSERT(c == 0xfffd); | |
944 | c = utext_char32At(ut, 3); | |
945 | TEST_ASSERT(c == 0xfffd); | |
946 | c = utext_char32At(ut, 5); | |
947 | TEST_ASSERT(c == 0xfffd); | |
948 | c = utext_char32At(ut, 6); | |
949 | TEST_ASSERT(c == 0x43); | |
950 | ||
951 | UChar buf[10]; | |
952 | int n = utext_extract(ut, 0, 9, buf, 10, &status); | |
953 | TEST_SUCCESS(status); | |
954 | TEST_ASSERT(n==5); | |
955 | TEST_ASSERT(buf[1] == 0xfffd); | |
956 | TEST_ASSERT(buf[3] == 0xfffd); | |
957 | TEST_ASSERT(buf[2] == 0x42); | |
958 | utext_close(ut); | |
959 | } | |
960 | ||
961 | ||
962 | // | |
963 | // isLengthExpensive - does it make the exptected transitions after | |
964 | // getting the length of a nul terminated string? | |
965 | // | |
966 | { | |
967 | UErrorCode status = U_ZERO_ERROR; | |
968 | UnicodeString sa("Hello, this is a string"); | |
969 | UBool isExpensive; | |
970 | ||
971 | UChar sb[100]; | |
972 | memset(sb, 0x20, sizeof(sb)); | |
973 | sb[99] = 0; | |
974 | ||
975 | UText *uta = utext_openUnicodeString(NULL, &sa, &status); | |
976 | TEST_SUCCESS(status); | |
977 | isExpensive = utext_isLengthExpensive(uta); | |
978 | TEST_ASSERT(isExpensive == FALSE); | |
979 | utext_close(uta); | |
980 | ||
981 | UText *utb = utext_openUChars(NULL, sb, -1, &status); | |
982 | TEST_SUCCESS(status); | |
983 | isExpensive = utext_isLengthExpensive(utb); | |
984 | TEST_ASSERT(isExpensive == TRUE); | |
985 | int64_t len = utext_nativeLength(utb); | |
986 | TEST_ASSERT(len == 99); | |
987 | isExpensive = utext_isLengthExpensive(utb); | |
988 | TEST_ASSERT(isExpensive == FALSE); | |
989 | utext_close(utb); | |
990 | } | |
991 | ||
992 | // | |
993 | // Index to positions not on code point boundaries. | |
994 | // | |
995 | { | |
996 | const char *u8str = "\xc8\x81\xe1\x82\x83\xf1\x84\x85\x86"; | |
997 | int32_t startMap[] = { 0, 0, 2, 2, 2, 5, 5, 5, 5, 9, 9}; | |
998 | int32_t nextMap[] = { 2, 2, 5, 5, 5, 9, 9, 9, 9, 9, 9}; | |
999 | int32_t prevMap[] = { 0, 0, 0, 0, 0, 2, 2, 2, 2, 5, 5}; | |
57a6839d A |
1000 | UChar32 c32Map[] = {0x201, 0x201, 0x1083, 0x1083, 0x1083, 0x044146, 0x044146, 0x044146, 0x044146, -1, -1}; |
1001 | UChar32 pr32Map[] = { -1, -1, 0x201, 0x201, 0x201, 0x1083, 0x1083, 0x1083, 0x1083, 0x044146, 0x044146}; | |
73c04bcf A |
1002 | |
1003 | // extractLen is the size, in UChars, of what will be extracted between index and index+1. | |
1004 | // is zero when both index positions lie within the same code point. | |
1005 | int32_t exLen[] = { 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0}; | |
1006 | ||
1007 | ||
1008 | UErrorCode status = U_ZERO_ERROR; | |
1009 | UText *ut = utext_openUTF8(NULL, u8str, -1, &status); | |
1010 | TEST_SUCCESS(status); | |
1011 | ||
1012 | // Check setIndex | |
1013 | int32_t i; | |
1014 | int32_t startMapLimit = sizeof(startMap) / sizeof(int32_t); | |
1015 | for (i=0; i<startMapLimit; i++) { | |
1016 | utext_setNativeIndex(ut, i); | |
1017 | int64_t cpIndex = utext_getNativeIndex(ut); | |
1018 | TEST_ASSERT(cpIndex == startMap[i]); | |
1019 | cpIndex = UTEXT_GETNATIVEINDEX(ut); | |
1020 | TEST_ASSERT(cpIndex == startMap[i]); | |
1021 | } | |
1022 | ||
1023 | // Check char32At | |
1024 | for (i=0; i<startMapLimit; i++) { | |
1025 | UChar32 c32 = utext_char32At(ut, i); | |
1026 | TEST_ASSERT(c32 == c32Map[i]); | |
1027 | int64_t cpIndex = utext_getNativeIndex(ut); | |
1028 | TEST_ASSERT(cpIndex == startMap[i]); | |
1029 | } | |
1030 | ||
1031 | // Check utext_next32From | |
1032 | for (i=0; i<startMapLimit; i++) { | |
1033 | UChar32 c32 = utext_next32From(ut, i); | |
1034 | TEST_ASSERT(c32 == c32Map[i]); | |
1035 | int64_t cpIndex = utext_getNativeIndex(ut); | |
1036 | TEST_ASSERT(cpIndex == nextMap[i]); | |
1037 | } | |
57a6839d | 1038 | |
73c04bcf A |
1039 | // check utext_previous32From |
1040 | for (i=0; i<startMapLimit; i++) { | |
1041 | gTestNum++; | |
1042 | UChar32 c32 = utext_previous32From(ut, i); | |
1043 | TEST_ASSERT(c32 == pr32Map[i]); | |
1044 | int64_t cpIndex = utext_getNativeIndex(ut); | |
1045 | TEST_ASSERT(cpIndex == prevMap[i]); | |
1046 | } | |
1047 | ||
1048 | // check Extract | |
1049 | // Extract from i to i+1, which may be zero or one code points, | |
1050 | // depending on whether the indices straddle a cp boundary. | |
1051 | for (i=0; i<startMapLimit; i++) { | |
1052 | UChar buf[3]; | |
1053 | status = U_ZERO_ERROR; | |
1054 | int32_t extractedLen = utext_extract(ut, i, i+1, buf, 3, &status); | |
1055 | TEST_SUCCESS(status); | |
1056 | TEST_ASSERT(extractedLen == exLen[i]); | |
1057 | if (extractedLen > 0) { | |
1058 | UChar32 c32; | |
46f4442e A |
1059 | /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */ |
1060 | U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32); | |
73c04bcf A |
1061 | TEST_ASSERT(c32 == c32Map[i]); |
1062 | } | |
1063 | } | |
1064 | ||
1065 | utext_close(ut); | |
1066 | } | |
1067 | ||
1068 | ||
1069 | { // Similar test, with utf16 instead of utf8 | |
1070 | // TODO: merge the common parts of these tests. | |
57a6839d | 1071 | |
46f4442e | 1072 | UnicodeString u16str("\\u1000\\U00011000\\u2000\\U00022000", -1, US_INV); |
73c04bcf A |
1073 | int32_t startMap[] ={ 0, 1, 1, 3, 4, 4, 6, 6}; |
1074 | int32_t nextMap[] = { 1, 3, 3, 4, 6, 6, 6, 6}; | |
1075 | int32_t prevMap[] = { 0, 0, 0, 1, 3, 3, 4, 4}; | |
57a6839d A |
1076 | UChar32 c32Map[] = {0x1000, 0x11000, 0x11000, 0x2000, 0x22000, 0x22000, -1, -1}; |
1077 | UChar32 pr32Map[] = { -1, 0x1000, 0x1000, 0x11000, 0x2000, 0x2000, 0x22000, 0x22000}; | |
73c04bcf A |
1078 | int32_t exLen[] = { 1, 0, 2, 1, 0, 2, 0, 0,}; |
1079 | ||
1080 | u16str = u16str.unescape(); | |
1081 | UErrorCode status = U_ZERO_ERROR; | |
1082 | UText *ut = utext_openUnicodeString(NULL, &u16str, &status); | |
1083 | TEST_SUCCESS(status); | |
1084 | ||
1085 | int32_t startMapLimit = sizeof(startMap) / sizeof(int32_t); | |
1086 | int i; | |
1087 | for (i=0; i<startMapLimit; i++) { | |
1088 | utext_setNativeIndex(ut, i); | |
1089 | int64_t cpIndex = utext_getNativeIndex(ut); | |
1090 | TEST_ASSERT(cpIndex == startMap[i]); | |
1091 | } | |
1092 | ||
1093 | // Check char32At | |
1094 | for (i=0; i<startMapLimit; i++) { | |
1095 | UChar32 c32 = utext_char32At(ut, i); | |
1096 | TEST_ASSERT(c32 == c32Map[i]); | |
1097 | int64_t cpIndex = utext_getNativeIndex(ut); | |
1098 | TEST_ASSERT(cpIndex == startMap[i]); | |
1099 | } | |
1100 | ||
1101 | // Check utext_next32From | |
1102 | for (i=0; i<startMapLimit; i++) { | |
1103 | UChar32 c32 = utext_next32From(ut, i); | |
1104 | TEST_ASSERT(c32 == c32Map[i]); | |
1105 | int64_t cpIndex = utext_getNativeIndex(ut); | |
1106 | TEST_ASSERT(cpIndex == nextMap[i]); | |
1107 | } | |
57a6839d | 1108 | |
73c04bcf A |
1109 | // check utext_previous32From |
1110 | for (i=0; i<startMapLimit; i++) { | |
1111 | UChar32 c32 = utext_previous32From(ut, i); | |
1112 | TEST_ASSERT(c32 == pr32Map[i]); | |
1113 | int64_t cpIndex = utext_getNativeIndex(ut); | |
1114 | TEST_ASSERT(cpIndex == prevMap[i]); | |
1115 | } | |
1116 | ||
1117 | // check Extract | |
1118 | // Extract from i to i+1, which may be zero or one code points, | |
1119 | // depending on whether the indices straddle a cp boundary. | |
1120 | for (i=0; i<startMapLimit; i++) { | |
1121 | UChar buf[3]; | |
1122 | status = U_ZERO_ERROR; | |
1123 | int32_t extractedLen = utext_extract(ut, i, i+1, buf, 3, &status); | |
1124 | TEST_SUCCESS(status); | |
1125 | TEST_ASSERT(extractedLen == exLen[i]); | |
1126 | if (extractedLen > 0) { | |
1127 | UChar32 c32; | |
46f4442e A |
1128 | /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */ |
1129 | U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32); | |
73c04bcf A |
1130 | TEST_ASSERT(c32 == c32Map[i]); |
1131 | } | |
1132 | } | |
1133 | ||
1134 | utext_close(ut); | |
1135 | } | |
1136 | ||
1137 | { // Similar test, with UText over Replaceable | |
1138 | // TODO: merge the common parts of these tests. | |
57a6839d | 1139 | |
46f4442e | 1140 | UnicodeString u16str("\\u1000\\U00011000\\u2000\\U00022000", -1, US_INV); |
73c04bcf A |
1141 | int32_t startMap[] ={ 0, 1, 1, 3, 4, 4, 6, 6}; |
1142 | int32_t nextMap[] = { 1, 3, 3, 4, 6, 6, 6, 6}; | |
1143 | int32_t prevMap[] = { 0, 0, 0, 1, 3, 3, 4, 4}; | |
57a6839d A |
1144 | UChar32 c32Map[] = {0x1000, 0x11000, 0x11000, 0x2000, 0x22000, 0x22000, -1, -1}; |
1145 | UChar32 pr32Map[] = { -1, 0x1000, 0x1000, 0x11000, 0x2000, 0x2000, 0x22000, 0x22000}; | |
73c04bcf A |
1146 | int32_t exLen[] = { 1, 0, 2, 1, 0, 2, 0, 0,}; |
1147 | ||
1148 | u16str = u16str.unescape(); | |
1149 | UErrorCode status = U_ZERO_ERROR; | |
1150 | UText *ut = utext_openReplaceable(NULL, &u16str, &status); | |
1151 | TEST_SUCCESS(status); | |
1152 | ||
1153 | int32_t startMapLimit = sizeof(startMap) / sizeof(int32_t); | |
1154 | int i; | |
1155 | for (i=0; i<startMapLimit; i++) { | |
1156 | utext_setNativeIndex(ut, i); | |
1157 | int64_t cpIndex = utext_getNativeIndex(ut); | |
1158 | TEST_ASSERT(cpIndex == startMap[i]); | |
1159 | } | |
1160 | ||
1161 | // Check char32At | |
1162 | for (i=0; i<startMapLimit; i++) { | |
1163 | UChar32 c32 = utext_char32At(ut, i); | |
1164 | TEST_ASSERT(c32 == c32Map[i]); | |
1165 | int64_t cpIndex = utext_getNativeIndex(ut); | |
1166 | TEST_ASSERT(cpIndex == startMap[i]); | |
1167 | } | |
1168 | ||
1169 | // Check utext_next32From | |
1170 | for (i=0; i<startMapLimit; i++) { | |
1171 | UChar32 c32 = utext_next32From(ut, i); | |
1172 | TEST_ASSERT(c32 == c32Map[i]); | |
1173 | int64_t cpIndex = utext_getNativeIndex(ut); | |
1174 | TEST_ASSERT(cpIndex == nextMap[i]); | |
1175 | } | |
57a6839d | 1176 | |
73c04bcf A |
1177 | // check utext_previous32From |
1178 | for (i=0; i<startMapLimit; i++) { | |
1179 | UChar32 c32 = utext_previous32From(ut, i); | |
1180 | TEST_ASSERT(c32 == pr32Map[i]); | |
1181 | int64_t cpIndex = utext_getNativeIndex(ut); | |
1182 | TEST_ASSERT(cpIndex == prevMap[i]); | |
1183 | } | |
1184 | ||
1185 | // check Extract | |
1186 | // Extract from i to i+1, which may be zero or one code points, | |
1187 | // depending on whether the indices straddle a cp boundary. | |
1188 | for (i=0; i<startMapLimit; i++) { | |
1189 | UChar buf[3]; | |
1190 | status = U_ZERO_ERROR; | |
1191 | int32_t extractedLen = utext_extract(ut, i, i+1, buf, 3, &status); | |
1192 | TEST_SUCCESS(status); | |
1193 | TEST_ASSERT(extractedLen == exLen[i]); | |
1194 | if (extractedLen > 0) { | |
1195 | UChar32 c32; | |
46f4442e A |
1196 | /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */ |
1197 | U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32); | |
73c04bcf A |
1198 | TEST_ASSERT(c32 == c32Map[i]); |
1199 | } | |
1200 | } | |
1201 | ||
1202 | utext_close(ut); | |
1203 | } | |
1204 | } | |
1205 | ||
1206 | ||
1207 | void UTextTest::FreezeTest() { | |
1208 | // Check isWritable() and freeze() behavior. | |
1209 | // | |
1210 | ||
1211 | UnicodeString ustr("Hello, World."); | |
57a6839d | 1212 | const char u8str[] = {char(0x31), (char)0x32, (char)0x33, 0}; |
73c04bcf A |
1213 | const UChar u16str[] = {(UChar)0x31, (UChar)0x32, (UChar)0x44, 0}; |
1214 | ||
1215 | UErrorCode status = U_ZERO_ERROR; | |
1216 | UText *ut = NULL; | |
1217 | UText *ut2 = NULL; | |
1218 | ||
1219 | ut = utext_openUTF8(ut, u8str, -1, &status); | |
1220 | TEST_SUCCESS(status); | |
1221 | UBool writable = utext_isWritable(ut); | |
1222 | TEST_ASSERT(writable == FALSE); | |
1223 | utext_copy(ut, 1, 2, 0, TRUE, &status); | |
1224 | TEST_ASSERT(status == U_NO_WRITE_PERMISSION); | |
1225 | ||
1226 | status = U_ZERO_ERROR; | |
1227 | ut = utext_openUChars(ut, u16str, -1, &status); | |
1228 | TEST_SUCCESS(status); | |
1229 | writable = utext_isWritable(ut); | |
1230 | TEST_ASSERT(writable == FALSE); | |
1231 | utext_copy(ut, 1, 2, 0, TRUE, &status); | |
1232 | TEST_ASSERT(status == U_NO_WRITE_PERMISSION); | |
1233 | ||
1234 | status = U_ZERO_ERROR; | |
1235 | ut = utext_openUnicodeString(ut, &ustr, &status); | |
1236 | TEST_SUCCESS(status); | |
1237 | writable = utext_isWritable(ut); | |
1238 | TEST_ASSERT(writable == TRUE); | |
1239 | utext_freeze(ut); | |
1240 | writable = utext_isWritable(ut); | |
1241 | TEST_ASSERT(writable == FALSE); | |
1242 | utext_copy(ut, 1, 2, 0, TRUE, &status); | |
1243 | TEST_ASSERT(status == U_NO_WRITE_PERMISSION); | |
57a6839d | 1244 | |
73c04bcf A |
1245 | status = U_ZERO_ERROR; |
1246 | ut = utext_openUnicodeString(ut, &ustr, &status); | |
1247 | TEST_SUCCESS(status); | |
1248 | ut2 = utext_clone(ut2, ut, FALSE, FALSE, &status); // clone with readonly = false | |
1249 | TEST_SUCCESS(status); | |
1250 | writable = utext_isWritable(ut2); | |
1251 | TEST_ASSERT(writable == TRUE); | |
1252 | ut2 = utext_clone(ut2, ut, FALSE, TRUE, &status); // clone with readonly = true | |
1253 | TEST_SUCCESS(status); | |
1254 | writable = utext_isWritable(ut2); | |
1255 | TEST_ASSERT(writable == FALSE); | |
1256 | utext_copy(ut2, 1, 2, 0, TRUE, &status); | |
1257 | TEST_ASSERT(status == U_NO_WRITE_PERMISSION); | |
1258 | ||
1259 | status = U_ZERO_ERROR; | |
1260 | ut = utext_openConstUnicodeString(ut, (const UnicodeString *)&ustr, &status); | |
1261 | TEST_SUCCESS(status); | |
1262 | writable = utext_isWritable(ut); | |
1263 | TEST_ASSERT(writable == FALSE); | |
1264 | utext_copy(ut, 1, 2, 0, TRUE, &status); | |
1265 | TEST_ASSERT(status == U_NO_WRITE_PERMISSION); | |
1266 | ||
1267 | // Deep Clone of a frozen UText should re-enable writing in the copy. | |
1268 | status = U_ZERO_ERROR; | |
1269 | ut = utext_openUnicodeString(ut, &ustr, &status); | |
1270 | TEST_SUCCESS(status); | |
1271 | utext_freeze(ut); | |
1272 | ut2 = utext_clone(ut2, ut, TRUE, FALSE, &status); // deep clone | |
1273 | TEST_SUCCESS(status); | |
1274 | writable = utext_isWritable(ut2); | |
1275 | TEST_ASSERT(writable == TRUE); | |
1276 | ||
1277 | ||
1278 | // Deep clone of a frozen UText, where the base type is intrinsically non-writable, | |
1279 | // should NOT enable writing in the copy. | |
1280 | status = U_ZERO_ERROR; | |
1281 | ut = utext_openUChars(ut, u16str, -1, &status); | |
1282 | TEST_SUCCESS(status); | |
1283 | utext_freeze(ut); | |
1284 | ut2 = utext_clone(ut2, ut, TRUE, FALSE, &status); // deep clone | |
1285 | TEST_SUCCESS(status); | |
1286 | writable = utext_isWritable(ut2); | |
1287 | TEST_ASSERT(writable == FALSE); | |
1288 | ||
1289 | // cleanup | |
1290 | utext_close(ut); | |
1291 | utext_close(ut2); | |
1292 | } | |
1293 | ||
1294 | ||
1295 | // | |
1296 | // Fragmented UText | |
1297 | // A UText type that works with a chunk size of 1. | |
1298 | // Intended to test for edge cases. | |
1299 | // Input comes from a UnicodeString. | |
1300 | // | |
1301 | // ut.b the character. Put into both halves. | |
1302 | // | |
1303 | ||
1304 | U_CDECL_BEGIN | |
1305 | static UBool U_CALLCONV | |
1306 | fragTextAccess(UText *ut, int64_t index, UBool forward) { | |
1307 | const UnicodeString *us = (const UnicodeString *)ut->context; | |
1308 | UChar c; | |
1309 | int32_t length = us->length(); | |
1310 | if (forward && index>=0 && index<length) { | |
1311 | c = us->charAt((int32_t)index); | |
1312 | ut->b = c | c<<16; | |
1313 | ut->chunkOffset = 0; | |
1314 | ut->chunkLength = 1; | |
1315 | ut->chunkNativeStart = index; | |
1316 | ut->chunkNativeLimit = index+1; | |
1317 | return true; | |
1318 | } | |
1319 | if (!forward && index>0 && index <=length) { | |
1320 | c = us->charAt((int32_t)index-1); | |
1321 | ut->b = c | c<<16; | |
1322 | ut->chunkOffset = 1; | |
1323 | ut->chunkLength = 1; | |
1324 | ut->chunkNativeStart = index-1; | |
1325 | ut->chunkNativeLimit = index; | |
1326 | return true; | |
57a6839d | 1327 | } |
73c04bcf A |
1328 | ut->b = 0; |
1329 | ut->chunkOffset = 0; | |
1330 | ut->chunkLength = 0; | |
1331 | if (index <= 0) { | |
1332 | ut->chunkNativeStart = 0; | |
1333 | ut->chunkNativeLimit = 0; | |
1334 | } else { | |
1335 | ut->chunkNativeStart = length; | |
1336 | ut->chunkNativeLimit = length; | |
1337 | } | |
1338 | return false; | |
1339 | } | |
73c04bcf A |
1340 | |
1341 | // Function table to be used with this fragmented text provider. | |
1342 | // Initialized in the open function. | |
46f4442e A |
1343 | static UTextFuncs fragmentFuncs; |
1344 | ||
1345 | // Clone function for fragmented text provider. | |
1346 | // Didn't really want to provide this, but it's easier to provide it than to keep it | |
1347 | // out of the tests. | |
1348 | // | |
1349 | UText * | |
1350 | cloneFragmentedUnicodeString(UText *dest, const UText *src, UBool deep, UErrorCode *status) { | |
1351 | if (U_FAILURE(*status)) { | |
1352 | return NULL; | |
1353 | } | |
1354 | if (deep) { | |
1355 | *status = U_UNSUPPORTED_ERROR; | |
1356 | return NULL; | |
1357 | } | |
1358 | dest = utext_openUnicodeString(dest, (UnicodeString *)src->context, status); | |
1359 | utext_setNativeIndex(dest, utext_getNativeIndex(src)); | |
1360 | return dest; | |
1361 | } | |
1362 | ||
1363 | U_CDECL_END | |
73c04bcf A |
1364 | |
1365 | // Open function for the fragmented text provider. | |
1366 | UText * | |
1367 | openFragmentedUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status) { | |
1368 | ut = utext_openUnicodeString(ut, s, status); | |
1369 | if (U_FAILURE(*status)) { | |
1370 | return ut; | |
1371 | } | |
1372 | ||
1373 | // Copy of the function table from the stock UnicodeString UText, | |
1374 | // and replace the entry for the access function. | |
1375 | memcpy(&fragmentFuncs, ut->pFuncs, sizeof(fragmentFuncs)); | |
1376 | fragmentFuncs.access = fragTextAccess; | |
46f4442e | 1377 | fragmentFuncs.clone = cloneFragmentedUnicodeString; |
73c04bcf A |
1378 | ut->pFuncs = &fragmentFuncs; |
1379 | ||
1380 | ut->chunkContents = (UChar *)&ut->b; | |
1381 | ut->pFuncs->access(ut, 0, TRUE); | |
1382 | return ut; | |
1383 | } | |
1384 | ||
46f4442e A |
1385 | // Regression test for Ticket 5560 |
1386 | // Clone fails to update chunkContentPointer in the cloned copy. | |
1387 | // This is only an issue for UText types that work in a local buffer, | |
1388 | // (UTF-8 wrapper, for example) | |
1389 | // | |
1390 | // The test: | |
1391 | // 1. Create an inital UText | |
1392 | // 2. Deep clone it. Contents should match original. | |
1393 | // 3. Reset original to something different. | |
57a6839d | 1394 | // 4. Check that clone contents did not change. |
46f4442e A |
1395 | // |
1396 | void UTextTest::Ticket5560() { | |
1397 | /* The following two strings are in UTF-8 even on EBCDIC platforms. */ | |
1398 | static const char s1[] = {0x41,0x42,0x43,0x44,0x45,0x46,0}; /* "ABCDEF" */ | |
1399 | static const char s2[] = {0x31,0x32,0x33,0x34,0x35,0x36,0}; /* "123456" */ | |
1400 | UErrorCode status = U_ZERO_ERROR; | |
1401 | ||
1402 | UText ut1 = UTEXT_INITIALIZER; | |
1403 | UText ut2 = UTEXT_INITIALIZER; | |
1404 | ||
1405 | utext_openUTF8(&ut1, s1, -1, &status); | |
1406 | UChar c = utext_next32(&ut1); | |
1407 | TEST_ASSERT(c == 0x41); // c == 'A' | |
1408 | ||
1409 | utext_clone(&ut2, &ut1, TRUE, FALSE, &status); | |
1410 | TEST_SUCCESS(status); | |
1411 | c = utext_next32(&ut2); | |
1412 | TEST_ASSERT(c == 0x42); // c == 'B' | |
1413 | c = utext_next32(&ut1); | |
1414 | TEST_ASSERT(c == 0x42); // c == 'B' | |
1415 | ||
1416 | utext_openUTF8(&ut1, s2, -1, &status); | |
1417 | c = utext_next32(&ut1); | |
1418 | TEST_ASSERT(c == 0x31); // c == '1' | |
1419 | c = utext_next32(&ut2); | |
1420 | TEST_ASSERT(c == 0x43); // c == 'C' | |
1421 | ||
1422 | utext_close(&ut1); | |
1423 | utext_close(&ut2); | |
1424 | } | |
1425 | ||
1426 | ||
1427 | // Test for Ticket 6847 | |
1428 | // | |
1429 | void UTextTest::Ticket6847() { | |
1430 | const int STRLEN = 90; | |
1431 | UChar s[STRLEN+1]; | |
1432 | u_memset(s, 0x41, STRLEN); | |
1433 | s[STRLEN] = 0; | |
1434 | ||
1435 | UErrorCode status = U_ZERO_ERROR; | |
1436 | UText *ut = utext_openUChars(NULL, s, -1, &status); | |
1437 | ||
1438 | utext_setNativeIndex(ut, 0); | |
1439 | int32_t count = 0; | |
1440 | UChar32 c = 0; | |
4388f060 | 1441 | int64_t nativeIndex = UTEXT_GETNATIVEINDEX(ut); |
46f4442e A |
1442 | TEST_ASSERT(nativeIndex == 0); |
1443 | while ((c = utext_next32(ut)) != U_SENTINEL) { | |
1444 | TEST_ASSERT(c == 0x41); | |
1445 | TEST_ASSERT(count < STRLEN); | |
1446 | if (count >= STRLEN) { | |
1447 | break; | |
1448 | } | |
1449 | count++; | |
1450 | nativeIndex = UTEXT_GETNATIVEINDEX(ut); | |
1451 | TEST_ASSERT(nativeIndex == count); | |
1452 | } | |
1453 | TEST_ASSERT(count == STRLEN); | |
1454 | nativeIndex = UTEXT_GETNATIVEINDEX(ut); | |
1455 | TEST_ASSERT(nativeIndex == STRLEN); | |
1456 | utext_close(ut); | |
1457 | } | |
73c04bcf | 1458 | |
57a6839d A |
1459 | |
1460 | void UTextTest::Ticket10562() { | |
1461 | // Note: failures show as a heap error when the test is run under valgrind. | |
1462 | UErrorCode status = U_ZERO_ERROR; | |
1463 | ||
1464 | const char *utf8_string = "\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41"; | |
1465 | UText *utf8Text = utext_openUTF8(NULL, utf8_string, -1, &status); | |
1466 | TEST_SUCCESS(status); | |
1467 | UText *deepClone = utext_clone(NULL, utf8Text, TRUE, FALSE, &status); | |
1468 | TEST_SUCCESS(status); | |
1469 | UText *shallowClone = utext_clone(NULL, deepClone, FALSE, FALSE, &status); | |
1470 | TEST_SUCCESS(status); | |
1471 | utext_close(shallowClone); | |
1472 | utext_close(deepClone); | |
1473 | utext_close(utf8Text); | |
1474 | ||
1475 | status = U_ZERO_ERROR; | |
1476 | UnicodeString usString("Hello, World."); | |
1477 | UText *usText = utext_openUnicodeString(NULL, &usString, &status); | |
1478 | TEST_SUCCESS(status); | |
1479 | UText *usDeepClone = utext_clone(NULL, usText, TRUE, FALSE, &status); | |
1480 | TEST_SUCCESS(status); | |
1481 | UText *usShallowClone = utext_clone(NULL, usDeepClone, FALSE, FALSE, &status); | |
1482 | TEST_SUCCESS(status); | |
1483 | utext_close(usShallowClone); | |
1484 | utext_close(usDeepClone); | |
1485 | utext_close(usText); | |
1486 | } | |
1487 | ||
b331163b A |
1488 | |
1489 | void UTextTest::Ticket10983() { | |
1490 | // Note: failure shows as a seg fault when the defect is present. | |
1491 | ||
1492 | UErrorCode status = U_ZERO_ERROR; | |
1493 | UnicodeString s("Hello, World"); | |
1494 | UText *ut = utext_openConstUnicodeString(NULL, &s, &status); | |
1495 | TEST_SUCCESS(status); | |
1496 | ||
1497 | status = U_INVALID_STATE_ERROR; | |
1498 | UText *cloned = utext_clone(NULL, ut, TRUE, TRUE, &status); | |
1499 | TEST_ASSERT(cloned == NULL); | |
1500 | TEST_ASSERT(status == U_INVALID_STATE_ERROR); | |
1501 | ||
1502 | utext_close(ut); | |
1503 | } |